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Abstract

An abnormality in the Lin28/let-7a axis is relevant to the progression of hepatitis B virus (HBV)-positive hepatocellular carcinoma
(HCC), which could be a novel therapeutic target for this malignant tumor. The present study aimed to investigate the anti-
proliferative and anti-invasive effects of urolithin A in a stable full-length HBV gene integrated cell line HepG2.2.15 using CCK-8
and transwell assays. The RNA and protein expressions of targets were assessed by quantitative PCR and western blot,
respectively. Results revealed that urolithin A induced cytotoxicity in HepG2.2.15 cells, which was accompanied by the cleavage
of caspase-3 protein and down-regulation of Bcl-2/Bax ratio. Moreover, urolithin A suppressed the protein expressions of Sp-1,
Lin28a, and Zcchc11, and elevated the expression of microRNA let-7a. Importantly, urolithin A also regulated the Lin28a/let-7a
axis in transient HBx-transfected HCC HepG2 cells. Furthermore, urolithin A decelerated the HepG2.2.15 cell invasion, which
was involved in suppressing the let-7a downstream factors HMGA2 and K-ras. These findings indicated that urolithin A exerted
the antiproliferative effect by regulating the Lin28a/let-7a axis and may be a potential supplement for HBV-infected HCC therapy.
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Introduction

Liver cancer is one of the most malignant tumors globally,
with high mortality rates, which commonly result from chronic
inflammation and hepatic fibrosis (1). In high-incidence areas
of hepatocellular carcinoma (HCC), such as West Africa
approximately, 60% of HCC patients are infected with
hepatitis B virus (HBV), suggesting that integrated HBV
genetic material in hepatocytes may accelerate the process
of cirrhosis and cell immortalization (2). Signaling pathways
that activate cell proliferation and invasion are the effectors
of HBx, a reverse transcription element in the HBV genome
for fibrosis and oncogenesis, interacted by TGF-b or
other transcriptional factors, such as nuclear factor-kB and
Sp-1 (3–5). Consequently, although HBV replication in
infected hepatocytes cannot be eradicated, acting on the
HBx-triggered molecular networks and suppressing the
cofactors of HBx might be a potent therapeutic strategy for
HBV-infected HCC.

Dysregulated microRNA (miRNA) profiles are the
collaborators of Hbx, which aggravate tumor progression

involved in carcinogenesis, cell invasion, and metastasis
in human malignancies. Let-7a, one of the let-7 family
members, was initially characterized in Caenorhabditis
elegans with Lin28a, an RNA-binding protein that acted
as a suppressor of let-7 expression and controller for
development and differentiation (6). Let-7a is also down-
regulated in HCC patients and its low expression in liver
tissues may contribute to poor survival rates (7). More-
over, Lin28-induced cancer cell EMT is dependent on the
low let-7 level and overexpression of the EMT-associated
let-7a downstream targets, such as K-ras and HMGA2 (8).
Therefore, seeking an approach to alter the Lin28a/let-7a
axis in hepatoma cancer cells may lead to the develop-
ment of effective strategies for HCC therapy.

Urolithins, the dibenzopyran-6-one colonic metabolites
derived from ellagic acid (EA) or ellagitannins (ETs), have
been suggested to be beneficial for human health. Urolithins
in target tissues and cells could act on sub-cellular compo-
nents and activate signaling transduction. These cell responses
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contribute to the various biological potentials of EA- and
ET-rich diets (9). Based on the anti-proliferative effects of
urolithin A on HepG2 cells in our previous findings (10),
the function of urolithin A in repressing HepG2.2.15 (HBV-
integrated HepG2 cell line) cell proliferation and invasion are
discussed in the present study. The results suggested that
the regulating effects of urolithin A on the Lin28a/let-7a axis
contributed to the inhibition of transcriptional factor Sp-1 and
down-regulation of HMGA2 and K-ras in HepG2.2.15 cells.

Material and Methods

Chemicals
Urolithin A was synthesized as previously described (11).

The purity (494%) of urolithin A was evaluated by HPLC,
and its molecular weight was confirmed by mass spectro-
metry analysis (Figure S1). A hydro-soluble tetrazolium
salt WST-8 (2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-
(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt) was
obtained from Dojindo Laboratories (Japan) for CCK-8 assay.
All other chemicals and reagents were of analytical grade.

Cell culture
HepG2 and HepG2.2.15 cells (HepG2 cells integrated

with a stable wild-type full-length HBV genome) were
obtained from American Type Culture Collection and
cultured in Dulbecco’s Modified Eagle Medium (Gibco,
USA) supplemented with fetal bovine serum (10%),
penicillin (1 mM) and streptomycin (1 mM) at 37°C in a
humidified 5% CO2 atmosphere.

Cell viability assay
The effect of urolithin A on HepG2.2.15 cell viability

was evaluated using the CCK-8 assay with WST-8 accord-
ing to manufacturer’s protocol (12). Cell viability values were
normalized as follows: [Final absorbance (urolithin A) / Final
absorbance (control)] � 100%. IC50 value for HepG2.2.15
cells was calculated according to a dose-response curve,
which was plotted for each concentration.

Quantitative PCR assay for miRNA and mRNA
Total RNAs containing miRNAs in cells were pre-

pared using mirVanatmiRNA Isolation Kit (Thermo Fisher
Scientific, USA). Real-time quantitative PCR (qPCR) assay
was performed on a MiniOpticont (Bio-Rad, USA) system
using FastStart Universal SYBRGreen Master (Roche, USA).

With initial denaturation at 95°C for 120 s, amplifications
were performed for 40 cycles at 95°C for 5 s and 55°C for
25 s. Primers for qPCR are listed in Table 1.

Western blot
Western blot was performed as described previously (13).

Briefly, separated proteins in SDS-PAGE were transferred
onto polyvinylidene fluoride membranes and were sequen-
tially immune-reacted with specific primary antibodies and
secondary antibodies. Antibody-conjunct proteins were quanti-
fied using SuperSignalt West Pico Chemiluminescent
Substrate (Thermo Scientific, USA). The primary antibodies
cleaved caspase-3 (Cell Signaling Technology (CST, USA)),
Bcl-2 (CST), Bax (CST), Lin28a (CST), Sp-1 (CST), HMGA2
(CST), K-ras (CST), Snail (CST), and Zcchc11 (Abcam, UK)
were applied after the membranes were blocked in either
5% milk or 5% BSA. Anti-b-actin-peroxidase antibody was
obtained from Sigma-Aldrich (USA) and used as an internal
reference. The protein content was analyzed using Image
Lab 5.1 (Bio-Rad, USA).

Vector and miRNA transfection
Cells were cultured in 6-well (qPCR and western blot)

or 24-well (luciferase assay) plates and were then trans-
fected with plasmids. The Lin28 open reading frame was
inserted into the pcDNA3.1(+) vector (Invitrogen, USA)
to express Lin28 (pcDNA3.1-Lin28) with Lipofectaminet
3000 (Invitrogen) in HepG2.2.15 cells. Let-7a inhibitor
(20-O-methyl antisense oligonucleotide) and the non-specific
control were commercially synthesized as previously
described (14). For western blot assay, cells in 6-well plates
with approximately 80% confluency were transfected
with 50 nM of let-7a miRNA inhibitor negative control
(MOCK) (Thermo Fisher, USA) or 100 nM of inhibitor
using Lipofectaminet 3000 (Invitrogen, USA). Transfec-
tion efficiency was validated by qPCR to directly assess
the expression of let-7a.

Transwell invasion assays
The transwell assay was performed using Matrigel-

coated (1:5, BD Biosciences) polycarbonate filters (Corning
Costar, USA) (15). Cells were subjected to urolithin A for
24 h before use, and the chemical was present throughout
the assay. Invasive cells in the lower chamber were stained
with crystal violet and visualized using an optical micro-
scope. Cell invasion was quantitated via the absorbance

Table 1. Primers used in real-time PCR.

Gene Forward primer 50 to 30 Reverse primer 50 to 30

Lin28a TTGTCTTCTACCCTGCCCTCT GAACAAGGGATGGAGGGTTTT
B-actin CCTGGCACCCAGCACAAT GGGCCGGACTCGTCATACT
Let-7a GGTGAGGTAGTAGGTTGTATAGTT Uni-miR qPCR primer (TaKaRa)

U6 ACGCAAATTCGTGAAGCGTT Uni-miR qPCR primer (TaKaRa)
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(600 nm) of eluted crystal violet with a microtiter plate
reader as described previously (16).

Statistics
All in vitro assessments were performed at least in

triplicate. The data are reported as means±SD. Differ-
ences between experimental groups were analyzed by
Student’s t-test or one-way analysis of variance (ANOVA),
followed by Dunnett’s t-test for multiple comparisons using
SPSS (13.0) statistical program. P-values of less than 0.05
were considered statistically significant.

Results

Urolithin A inhibited cell proliferation and induced
cytotoxicity in HepG2.2.15 cells

In the CCK-8 assay, cells were administrated with
urolithin A and B by gradual concentrations (1–120 mM) for
24 and 48 h. As shown in Figure 1A, urolithin A repressed
cell proliferation in a dose-dependent manner. It was also
found that urolithin A induced acute cytotoxicity from

80–120 mM, compared to the corresponding controls.
However, urolithin B (1–120 mM) showed a moderately
suppressing effect on HepG2.2.15 cells (Figure S2).
Because of this, we chose urolithin A for further investi-
gation. To identify whether urolithin A functions through
caspase-3 signaling, cells were incubated in the absence
or presence of Z-DEVD-FMK (20 mM) for 6 h before
urolithin A treatment. Data showed that pretreatment with
Z-DEVD-FMK abolished the inhibiting effect of cell pro-
liferation induced by urolithin A (Figure 1B). Furthermore,
we observed that the protein level of cleaved caspase-3
was up-regulated and the Bcl-2/Bax ratio was decreased
by urolithin A in HepG2.2.15 cells (Figure 1C and D),
suggesting that the suppressing effect of urolithin A on
HepG2.2.15 viability could be involved in the activation of
caspase-dependent apoptotic signaling.

Urolithin A altered the expressing pattern of Lin28a/
let-7a axis

Lin28a, which is a repressor of let-7a by recruiting
Zcchc11, could be up-regulated by the HBx protein via

Figure 1. Urolithin A (UroA) suppressed HepG2.2.15 cell proliferation via caspase-3 dependent apoptosis. A, HepG2.2.15 cells were
administrated with 0-120 mM of urolithin A for 24 or 48 h. Cell viability was assessed by a CCK assay and the data were normalized to
normal controls. B, The caspase-3 inhibitor Z-DEVD-FMK alleviated urolithin A-induced HepG2.2.15 cell death (80 or 120 mM). The cells
were incubated in the absence or presence of Z-DEVD-FMK (20 mM) for 6 h prior to urolithin A treatment, and then incubated for 48 h.
Data are reported as means±SD, n=3. a,bPo0.05 vs 80 or 120 mM of urolithin A group. C, and D, After urolithin A (80 mM) administration
for 48 h, western blot analysis for the protein expressions of cleaved caspase-3, Bcl-2, and Bax was performed in the absence or
presence of Z-DEVD-FMK. Data are reported as means±SD, n=3. *Po0.05 compared to the 80 mM urolithin A group (t-test).
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Sp-1 in HCC cells. Our data indicated that the protein
expressions of Lin28a, Zcchc11, and Sp-1 were suppressed
in the urolithin A group, compared to the control group
(Figure 2A and B). We also observed that let-7a was
up-regulated when the cells were subjected to urolithin A
(Figure 2C). To further confirm the effects of urolithin A on
the Lin28a/let-7a axis, overexpression of Lin28a (pcDNA3.1-
Lin28a) by transient transfection was performed in HepG2.
2.15 cells (Figure S3). The results showed that the effects of
urolithin A on the expression of let-7a were abolished by
Lin28a transfection (Figure 2D), indicating that urolithin A
increased the expression of let-7a by targeting Lin28a in
HepG2.2.15 cells.

Urolithin A repressed Lin28a expression and elevated
the expression of let-7a in transient HBx-transfected
HepG2 cells

The effect of urolithin A on the Lin28a/let-7a axis was
also confirmed in transient HBx-overexpressing HepG2

cells. In this section, HepG2 cells (4� 105 cells/well) were
seeded in 6-well plates for 24 h and transiently transfected
with 2 mg pcDNA-HBx (pc-HBX) plasmids (pcDNA3.1 (–)
plasmid with the sequence encoding for the HBx protein; a
gift from Prof. Fan Zhu at Wuhan University). After post-
transfection for 24 h, cells were incubated with urolithin A
(60 and 100 mM) for 48 h. As expected, qPCR assay
showed that the elevated mRNA expression of Lin28a in the
pcDNA-HBx group was repressed by urolithin A (Figure 3A).
To examine whether urolithin A affected Lin28a at the protein
level in the HBx-transfected HepG2 cells, western blot analysis
was performed; the results demonstrated that Lin28a protein
expression was suppressed (Figure 3B and C). Moreover,
the HBx-induced let-7a decrease in the pcDNA-HBx group
was alleviated by urolithin A treatment (Figure 3D). These
data indicated that urolithin A delayed the HBx-induced
change of the Lin28a/let-7a axis in HCC cells, further
enhancing the findings involved in the effects of urolithin A
on Lin28a and let-7a in HepG2.2.15 cells.

Figure 2. Urolithin A (UroA) regulated the expression of Lin28a/let-7a axis. A, The protein expressions of Sp-1, Lin28a, and Zcchc11 were
assessed by western blot assay. B, Sp-1, Lin28a, and Zcchc11 protein levels were semi-quantified by western blot assay. Data are reported
as means±SD normalized to the corresponding b-actin values. a,b,cPo0.05 vs the protein expressions of Lin28a, Zcchc11, and Sp-1 in the
NTC group, respectively (n=3). C, Cells were treated with urolithin A for 48 h. The let-7a expression was quantitated by qPCR. Data are
reported as means±SD (n=3). *Po0.05 compared to the NTC group. D, The overexpression of Lin28a abolished the effect of urolithin A on
let-7a expression (n=3). *Po0.05 compared to the MOCK control. #Po0.05 compared to the MOCK + UroA80 group (ANOVA).
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Urolithin A suppressed cell invasion by inhibiting
K-ras/HMGA2 signaling in HepG2.2.15 cells

Since let-7a was increased by urolithin A, we assumed
that downstream targets of let-7a could respond to urolithin A
exposure. Accompanied by an elevation of let-7a (Figure 2C),
the expression of HMGA2, a protein enhancing oncogenic
transformation and epithelial-mesenchymal transition, was
reduced by urolithin A compared to the MOCK group
(Figure 4A and B). The effect of urolithin A on cell invasion
was evaluated using a transwell assay. As shown in Figure
4C and D, cells in the control groups exhibited approxi-
mately 3 times higher invasion efficiency than cells in the
urolithin A (UroA100) group, indicating that urolithin A could
suppress cell invasion in vitro. To further determine whether
let-7a elevation contributed to the suppressing effect of
urolithin A on cell invasion, the let-7a inhibitor was trans-
fected for 24 h to abolish the expression of let-7a before
urolithin A administration (Figure S4). In Figure 4E, the
blockade of let-7a resulted in an increase in HMGA2
protein expression in the western blot assay, compared to

the urolithin A group. Moreover, K-ras, which was commonly
considered to be a compatible factor of HMGA2 to accel-
erate cell migration and invasion, was also down-regulated
in the urolithin A group (Figure 4A). However, the protein
expression of Snail showed no difference between the
urolithin A and the MOCK groups. Hence, our data suggested
that the regulation of the K-ras/HMGA2 signaling by urolithin A
may contribute to the inhibiting effect on cell invasion.

Discussion

Accepted theory claims that the intestinal metabolism
of ETs or EAs to dibenzopyran-6-one derivatives (urolithins)
may play an indispensable role in the absorption of ETs.
From this perspective, urolithins identified in tissues are
important, and their molecular modulation in target cells can
be more effective in interpreting the nutritional benefits for
human health than that of ETs (17).

Urolithin A is an essential metabolite generated in
humans after consumption of EA- and ET-rich food and

Figure 3. Urolithin A downregulated Lin28a expression and elevated the expression of let-7a in HBX overexpressed hepatocellular
carcinoma HepG2 cells. Urolithin A suppressed Lin28a mRNA expression (A) and protein expression (B and C) in HBX-overexpressed
HepG2 cells. D, Urolithin A elevated the let-7a expression in HBX-overexpressed HepG2 cells (qPCR). *Po0.05 compared to the
MOCK control. #Po0.05 compared to the pc-HBX group (ANOVA).
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healthy supplements (18). Cell signaling transduction (EGFR,
b-catenin), essential regulators for cell cycle (cyclin D1, c-Myc,
p21), and programmed cell death (p53, PARP, caspase-3)

could be regulated by urolithins (mainly urolithin A and B)
in cancer cells (19). Though the lipogenic gene in hepatoma
Huh7 cells and WNT signaling in HepG2 cells are targets of

Figure 4. Urolithin A (UroA) suppressed cell invasion by targeting HMGA2/K-ras axis. A, Western blotting analysis of HMGA2, K-ras,
and Snail in HepG2.2.15 cells treated by urolithin A (80 mM). B, HMGA2 and K-ras protein levels quantified by western blot optical
analysis. Quantitative data are reported as means±SD (n=3). C, Cell invasion was evaluated by a Matrigel invasion assay after 48 h
incubation with urolithin A (60, 80, and 100 mM). Magnification bar: 100 mm. The average cell number migrated per high power fields
(HPF) is shown in D. Quantitative data are reported as means±SD (n=3). E, Let-7a inhibitor abolished the suppressing effects of
urolithin A on HMGA2 expression by western blot analysis. F, Quantitative data from 2 blots shown in E. n=3. Data are reported as
means±SD. *Po0.05, **Po0.01 compared to the MOCK group (ANOVA).
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urolithin A or C (20,21), the functions of urolithins in hepa-
tocytes have not been adequately evaluated. Hence, to
explore the capacity of urolithin A on HBx-relevant cell invasion,
the Lin28a/let-7a axis and Sp-1, a transcriptional factor that
could be elevated by HBx, were assumed in the present
study to be potential targets of urolithin A in HepG2.2.15
cells.

Sp-1 is an HBx-combinative activator and a member
of the Sp/KLF family of transcription factors, and is widely
overexpressed in neoplasms, including liver carcinoma
(22,23). Based on the anti-proliferative effects of urolithin
A in HepG2.2.15 cells, we investigated whether urolithin A
could affect the expression of Sp-1. The results revealed
that the protein expression level of Sp-1 was repressed by
urolithin A treatment. Lin28a, the transcriptional target of
Sp-1, which could further elevate the levels of certain
cancer-related miRNAs (24), was also suppressed by
urolithin A in HepG2.2.15 cells. Therefore, we speculated
that suppression of Sp-1 could be responsible for the
decrease of Lin28a by urolithin A.

Let-7a functions as a tumor suppressor and is bio-
logically deleted in several cancers, including in HCC patients
with HBV infection (25). Moreover, Lin28a suppresses let-7a
miRNA biogenesis in tumor cells by recruiting Zcchc11
(TUT4) in the cell cytoplasm to degrading pre-let-7 (26). In
our study, urolithin A elevated the let-7a expression, which
was delayed by Lin28a overexpression in HepG2.2.15 cells.
The similar effects of urolithin A on the Lin28a/let-7a axis
were further observed in HBx-overexpressed HepG2 cells.
Some evidence has also highlighted that the Zcchc11 down-
regulation is Lin28b-independent, and should be restricted to
Lin28a-positive carcinomas, such as the T47D breast cancer
cells (27). In the present study, the protein expression of
Zcchc11 was reduced by urolithin A treatment, suggesting
that Zcchc11 inhibition plays a bridging role for the effects of
urolithin A on the Lin28a/let-7a axis.

High mobility group AT-hook 2 (HMGA2) is a transcrip-
tion factor highly expressed in the embryonic stage. The
exceptional re-expression of HMGA2 by chromosomal
rearrangements at chr12q13-15 in neoplasia of mice or

humans, such as HCC and lung cancer, is involved in the
let-7 deletion or loss of let-7-binding sites (28–30). In this
study, the western blot analysis supported the notion that
urolithin A can down-regulate HMGA2 expression and
the capacity is let-7a-dependent. We also found that the
invasive potential of HepG2.2.15 cells could be repressed
by urolithin A treatment. Let-7a also affected oncogenic
K-ras expression by binding the 3’-UTR of K-ras. Exoge-
nous let-7a miRNA in HepG2 cells could specifically reduce
abundant K-ras expression (31). The protein expression of
K-ras was decreased by urolithin A in HepG2.2.15 cells
at the repressible concentration in the transwell assay.
Therefore, it is possible that the functions of urolithin A in
HepG2.2.15 cells may partly match the above-identified
proposal involved in let-7a/HMGA2/K-ras signaling.

In the present study, we described the effects of
urolithin A in repressing the proliferation and invasion of
the HBV-overexpressed HepG2.2.15 HCC cell line. In fact,
the virus replication in HBV-infected patients could not be
eliminated, but only alleviated with antiviral agents, such
as adefovir. The data in this study could be considered an
update of our previous data (10) on HepG2 cells because
urolithin A has suppressed cell invasion in HepG2.2.15
cells. In other words, our findings are not only involved in
the targets of carcinogenesis but are also based on the
initial observation of the HBx-interactional cancerous trans-
criptional factor, Sp-1. Therefore, our data demonstrated that
urolithin A suppressed the HepG2.2.15 cell proliferation and
invasion via regulating the Lin28a/let-7a axis and EMT-
involved targets, such as HMGA2 and K-ras.
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