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INTRODUCTION

We present an interpolation-based planning and replanning algorithm for generating
low-cost paths through uniform and nonuniform resolution grids. Most grid-based path
planners use discrete state transitions that artificially constrain an agent’s motion to a
small set of possible headings (e.g., 0, w/4, 7/2, etc.). As a result, even “optimal” grid-
based planners produce unnatural, suboptimal paths. Our approach uses linear interpo-
lation during planning to calculate accurate path cost estimates for arbitrary positions
within each grid cell and produce paths with a range of continuous headings. Conse-
quently, it is particularly well suited to planning low-cost trajectories for mobile robots.
In this paper, we introduce a version of the algorithm for uniform resolution grids and
a version for nonuniform resolution grids. Together, these approaches address two of the
most significant shortcomings of grid-based path planning: the quality of the paths pro-
duced and the memory and computational requirements of planning over grids. We dem-
onstrate our approaches on a number of example planning problems, compare them to
related algorithms, and present several implementations on real robotic systems. © 2006
Wiley Periodicals, Inc.

In robotics, it is common to improve efficiency by

In mobile robot navigation, we are often provided
with a grid-based representation of our environment
and tasked with planning a path from some initial ro-
bot location to a desired goal location. Depending on
the environment, the representation may be binary
(each grid cell contains either an obstacle or free
space) or may associate with each cell a cost reflecting
the difficulty of traversing the respective area of the
environment.

approximating this grid with a graph, where nodes
are placed at the center of each grid cell and edges
connect nodes within adjacent grid cells. Many algo-
rithms exist for planning paths over such graphs.
Dijkstra’s algorithm computes paths from every node
to a specified goal node (Dijkstra, 1959). A" uses a
heuristic to focus the search from a particular start lo-
cation towards the goal and thus produces a path
from a single location to the goal very efficiently
(Hart, Nilsson, & Rafael, 1968; Nilsson, 1980). D, In-
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Figure 1. Some robots that currently use Field D" for global path planning. These range from indoor planar robots (the
Pioneers) to outdoor robots able to operate in harsh terrain (the XUV).

cremental A", and D" Lite are extensions of A" that in-
crementally repair solution paths when changes oc-
cur in the underlying graph (Stentz, 1995; Koenig &
Likhachev, 2002a, b, ¢). These incremental algorithms
have been used extensively in robotics for mobile ro-
bot navigation in unknown or dynamic
environments.

However, almost all of these approaches are lim-
ited by the small, discrete set of possible transitions
they allow from each node in the graph. For instance,
given a graph extracted from a uniform resolution 2D
grid, a path planned in the manner described above
restricts the agent’s heading to increments of /4.
This results in paths that are suboptimal in length and
difficult to traverse in practice. Further, even when
these paths are used in conjunction with a local arc-
based planner [e.g., as in the RANGER system (Kelly,
1995; Stentz & Hebert, 1995)], they can still cause the
vehicle to execute expensive trajectories involving
unnecessary turning.

In this paper we present Field D', an
interpolation-based planning and replanning algo-
rithm that alleviates this problem. This algorithm ex-
tends D" and D’ Lite to use linear interpolation to ef-
ficiently produce low-cost paths that eliminate
unnecessary turning. The paths are optimal given a
linear interpolation assumption and very effective in
practice. This algorithm is currently being used by a
wide range of fielded robotic systems (see Figure 1).

A second significant limitation of current plan-
ners (including even Field D) arises from their use of
uniform resolution grids to represent the environ-
ment. Often, it is unfeasible to use such grids because
of the large amount of memory and computation re-
quired to store and plan over these structures. In-
stead, nonuniform resolution representations may be
more appropriate, for instance when the environment
is very large and sparsely populated.

In this paper, we thus also present Multi-
resolution Field D", an extension of Field D" able to
plan over nonuniform resolution grids. This algo-
rithm produces very cost-effective paths for a fraction
of the memory and, often, for a fraction of the time
required by uniform resolution grid-based
approaches.

We begin by discussing the limitations of paths
produced using classical uniform resolution grid-
based planners and the recent approaches that at-
tempt to overcome some of these limitations. We then
present a linear interpolation-based method for ob-
taining more accurate cost approximations of grid
points and introduce Field D", a novel planning and
replanning algorithm that uses this method. We pro-
vide several example illustrations and applications of
Field D", along with a comparison to competing ap-
proaches. In Sections 7 and 8 we describe Multi-
resolution Field D", an extension to the algorithm that
is able to plan over nonuniform resolution grids. We
conclude with discussion and extensions.

2. PLANNING OVER UNIFORM RESOLUTION
GRIDS

Consider a robotic ground vehicle navigating an out-
door environment. We can represent this environ-
ment as a uniform resolution 2D traversability grid,
in which cells are given a cost per unit of traverse (tra-
versal cost) reflecting the difficulty of navigating the
respective area of the environment. If this traversabil-
ity grid encodes the configuration space costs (i.e., the
traversal costs have been expanded to reflect the
physical dimensions of the vehicle), then planning a
path for the robot translates to generating a trajectory

Journal of Field Robotics DOI 10.1002/rob
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(a) A standard 2D grid used for global path planning in which nodes reside at the centers of the grid cells. The

arcs emanating from the center node represent all the possible actions that can be taken from this node. (b) A modified
representation used by Field D", in which nodes reside at the corners of grid cells. (c) The optimal path from node s must
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intersect one of the edges {s155,5,53,5354,5455,5556,5657,575g,5851}-

through this grid for a single point. A common ap-
proach used in robotics for performing this planning
is to combine an approximate global planner with an
accurate local planner (Kelly, 1995; Stentz and Hebert,
1995; Brock & Khatib, 1999; Singh et al., 2000). The
global planner computes paths through the grid that
ignore the kinematic and dynamic constraints of the
vehicle. Then, the local planner takes into account the
constraints of the vehicle and generates a set of fea-
sible local trajectories that can be taken from its cur-
rent position. To decide which of these trajectories to
execute, the robot evaluates both the cost of each local
trajectory and the cost of a global path from the end
of each trajectory to the robot’s desired goal location.

To formalize the global planning task, we need to
define more precisely some concepts already intro-
duced. First, each cell in the grid has assigned to it
some real-valued traversal cost that is greater than
zero. The cost of a line segment between two points
within a cell is the Euclidean distance between the
points multiplied by the traversal cost of the cell. The
cost of any path within the grid is the sum of the costs
of its line segments through each cell. Then, the glo-
bal planning task (involving a uniform resolution
grid) can be specified as follows.

The Global Planning Task: Given a region in the
plane partitioned into a uniform grid of square cells T, an
assignment of traversal costs c¢:T— (0, +] to each cell,
and two points Sy and sq., within the grid, find the path
within the grid from Sgay t0 Sgoq with minimum cost.

This task can be seen as a specific instance of the
Weighted Region Problem (Mitchell & Papadimi-
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triou, 1991), where the regions are uniform square
tiles. A number of algorithms exist to solve this prob-
lem in the computational geometry literature [see
Mitchell (2000) for a good survey]. In particular,
Mitchell & Papadimitriou (1991) and Rowe & Rich-
bourg (1990) present approaches based on Snell’s law
of refraction that compute optimal paths by simulat-
ing a series of light rays that propagate out from the
start position and refract according to the different
traversal costs of the regions encountered. These ap-
proaches are efficient for planning through environ-
ments containing a small number of homogenous-
cost regions, but are computationally expensive
when the number of such regions is very large, as in
the case of a uniform grid with varying cell costs.

Because of the computational expense associated
with planning optimal paths through grids, research-
ers in robotics have focused on basic approximation
algorithms that are extremely fast. The most popular
such approach is to approximate the traversability
grid as a discrete graph, then generate paths over the
graph. A common way to do this is to assign a node
to each cell center, with edges connecting the node to
each adjacent cell center (node). The cost of each edge
is a combination of the traversal costs of the two cells
it transitions through and the length of the edge. Fig-
ure 2(a) shows this node and edge extraction process
for one cell in a uniform resolution 2D grid.

We can then plan over this graph to generate
paths from the robot’s initial location to a desired goal
location. As mentioned previously, a number of effi-
cient algorithms exist for performing this planning,
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Figure 3. A uniform resolution 2D grid-based path (e; plus e,) between two grid nodes can be up to 8% longer than an
optimal straight-line path (ey). Here, the desired straight-line heading is 7/8 and lies perfectly between the two nearest
grid-based headings of 0 and /4. This result is independent of the resolution of the grid.

such as A" for initial planning and D" and its variants
for replanning (Hart et al., 1968; Nilsson, 1980; Stentz,
1995; Koenig & Likhachev, 2002b). Unfortunately,
paths produced using this graph are restricted to
headings of 7/4 increments. This means that the final
solution path may be suboptimal in path cost, involve
unnecessary turning, or both.

For instance, consider a robot facing its goal po-
sition in a completely obstacle-free environment (see
Figure 3). Obviously, the optimal path is a straight
line between the robot and the goal. However, if the
robot’s initial heading is not a multiple of 7/4, tra-
ditional grid-based planners would return a path that
has the robot first turn to attain the nearest grid head-
ing, move some distance along this heading, and then
turn 7/4 in the opposite direction of its initial turn
and continue to the goal. Not only does this path have
clearly suboptimal length, it contains possibly expen-
sive or difficult turns that are purely artifacts of the
limited representation. Such global paths, when
coupled with the results of a local planner, cause the
robot to behave suboptimally. Further, this limitation
of traditional grid-based planners is not alleviated by
increasing the resolution of the grid.

Sometimes it is possible to reduce the severity of
this problem by postprocessing the path. Usually,
given a robot location s, one finds the furthest point
p along the solution path for which a straight line
path from s to p is collision-free, then replaces the
original path to p with this straight line path. How-
ever, this does not always work, as illustrated by Fig-
ure 4. Indeed, for nonuniform cost environments
such postprocessing can often increase the cost of the
path.

A more comprehensive postprocessing approach
is to take the result of the global planner and use it to
seed a higher dimensional planner that incorporates

the kinematic or dynamic constraints of the robot.
Stachniss & Burgard (2002) present an approach that
takes the solution generated by the global planner
and uses it to extract a local waypoint to use as the
goal for a 5D trajectory planner. The search space of
the 5D planner is limited to a small area surrounding
the global solution path. Likhachev et al. (2003, 2005)
present an approach that uses the cost-to-goal value
function of the global planner to focus an anytime
global 4D trajectory planner. Their approach im-
proves the quality of the global trajectory while de-
liberation time allows. However, these higher dimen-
sional approaches can be much more computa-
tionally expensive than standard grid-based planners
and are still influenced by the results of the initial
grid-based solution.

Recently, robotics researchers have looked at
more sophisticated methods of obtaining better paths

[ B

Figure 4. 2D grid-based paths cannot always be short-
ened in a postprocessing phase. Here, the grid-based path
from s to g (top, in black) cannot be shortened because
there are four obstacle cells (shaded). The optimal path is
shown in blue/dashed.
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through grids without sacrificing too much of the ef-
ficiency of the classic grid-based approach described
above. Konolige (2000) presents an interpolated plan-
ner that first uses classic grid-based planning to con-
struct a cost-to-goal value function over the grid and
then interpolates this result to produce a shorter path
from the initial position to the goal. This method re-
sults in shorter, less-costly paths for agents to traverse
but does not incorporate the reduced path cost into
the planning process. Consequently, the resulting
path is not necessarily as good as the path the algo-
rithm would produce if interpolated costs were cal-
culated during planning. Further, if we are comput-
ing paths from several locations (which is common
when combining the global planner with a local plan-
ner), then this postprocessing interpolation step can
be expensive. Also, this approach provides no replan-
ning functionality to update the solution when new
information concerning the environment is received.

Philippsen & Siegwart (2005) present an algo-
rithm based on Fast Marching Methods (Sethian,
1996) that computes a value function over the grid by
growing a surface out from the goal to every region
in the environment. The surface expands according to
surface flow equations, and the value of each grid
point is computed by combining the values of two
neighboring grid points. This approach incorporates
the interpolation step into the planning process, pro-
ducing low-cost, interpolated paths. This technique
has been shown to generate nice paths in indoor en-
vironments (Philippsen, 2004; Philippsen & Siegwart,
2005). However, the search is not focused towards the
robot location (such as in A") and assumes that the
transition cost from a particular grid node to each of
its neighbors is constant. Consequently, it is not as ap-
plicable to navigation in outdoor environments,
which are often best represented by large grids with
widely varying cell traversal costs.

The idea of using interpolation to produce better
value functions for discrete samples drawn from a
continuous state space is not new. This approach has
been used in dynamic programming for some time to
compute the value of successors that are not in the set
of samples (Larson, 1967; Larson & Casti, 1982; La-
Valle, 2006). However, as LaValle (2006) points out,
this becomes difficult when the action space is also
continuous, as solving for the value of a state now re-
quires minimizing over an infinite set of successor
states.

The approach we present here is an extension of
the widely-used D" family of algorithms that uses lin-
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ear interpolation to produce near-optimal paths
which eliminate unnecessary turning. It relies upon
an efficient, closed-form solution to the above mini-
mization problem for 2D grids, which we introduce
in the next section. This method produces much
straighter, less-costly paths than classical grid-based
planners without sacrificing real-time performance.
As with D" and D’ Lite, our approach focuses its
search towards the most relevant areas of the state
space during both initial planning and replanning.
Further, it takes into account local variations in cell
traversal costs and produces paths that are optimal
given a linear interpolation assumption. As the reso-
lution of the grid increases, the solutions returned by
the algorithm improve, approaching true optimal
paths.

3. IMPROVING COST ESTIMATION THROUGH
INTERPOLATION

The key to our algorithm is a novel method for com-
puting the path cost of each grid node s given the
path costs of its neighboring nodes. By the path cost
of a node we mean the cost of the cheapest path from
the node to the goal. In classical grid-based planning
this value is computed as

g(s)= min [c(s,s") +g(s")], (1)

s" enbrs(s)

where nbrs(s) is the set of all neighboring nodes of s
(see Figure 2), c(s,s") is the cost of traversing the edge
between s and s’, and g(s’) is the path cost of node s’.

This calculation assumes that the only transitions
possible from node s are straight-line trajectories to
one of its neighboring nodes. This assumption results
in the limitations of grid-based plans discussed ear-
lier. However, consider relaxing this assumption and
allowing a straight-line trajectory from node s to any
point on the boundary of its grid cell. If we knew the
value of every point s, along this boundary, then we
could compute the optimal value of node s simply by
minimizing c(s,s;)+g(s,), where c(s,s;) is computed
as the distance between s and s, multiplied by the tra-
versal cost of the cell in which s resides. Unfortu-
nately, there are an infinite number of such points s,
and so computing g(s;) for each of them is not
possible.

It is possible, however, to provide an approxima-
tion to g(s;) for each boundary point s, by using linear
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(i) (i)

(iii) (iv)

Figure 5. Computing the path cost of node s using the path cost of two of its neighbors, s; and s,, and the traversal costs

c of the center cell and b of the bottom cell. Illustrations (ii)—(iv) show the possible optimal paths from s to edge 57)32

interpolation. To do this, we first modify the graph
extraction process discussed earlier. Instead of as-
signing nodes to the centers of grid cells, we assign
nodes to the corners of each grid cell, with edges con-
necting nodes that reside at corners of the same grid
cell [see Figure 2(b)].

Given this modification, the traversal costs of any
two equal-length segments of an edge will be the
same. This differs from the original graph extraction
process in which the first half of an edge was in one
cell and the second half was in another cell, with the
two cells possibly having different traversal costs. In
the modified approach the cost of an edge that resides
on the boundary of two grid cells is defined as the
minimum of the traversal costs of each of the two
cells.

We then treat the nodes in our graph as sample
points of a continuous cost field. The optimal path
from a node s must pass through an edge connecting

two consecutive neighbors of s, for example ST)SZ [see
Figure 2(c)]. The path cost of s is thus set to the mini-
mum cost of a path through any of these edges, which
are considered one at a time. To compute the path cost

of node s using edge ST)SZ, we use the path costs of
nodes s; and s, and the traversal costs c of the center
cell and b of the bottom cell (see Figure 5).

To compute this cost efficiently, we assume the
path cost of any point s, residing on the edge between
s; and s, is a linear combination of g(s;) and g(s,):

g(s,) =yg(s2) + (1 —y)g(s1), (2)

where y is the distance from s; to s, (assuming unit
cells). This assumption is not perfect: the path cost of

s, may not be a linear combination of g(s;) and g(s,),
nor even a function of these path costs. However, this
linear approximation works well in practice, and al-
lows us to construct a closed form solution for the
path cost of node s.

Given this approximation, the path cost of s given
51,57, and cell costs ¢ and b can be computed as

min[bx + c\(1 - x)? + y? + yg(s,) + (1 - y)g(s1)],

Xy

(3)

where x € [0, 1] is the distance traveled along the bot-
tom edge from s before cutting across the center cell
to reach the right edge a distance of y €[0,1] from s;
[see Figure 5(i)]. Note that if both x and y are zero in
the above equation, the path taken is along the bot-
tom edge but its cost is computed from the traversal
cost of the center cell.

Let (x',y) be a pair of values for x and y that
solve the above minimization. Because of our use of
linear interpolation, at least one of these values will
be either zero or one. Intuitively, if it is less expensive
to partially cut through the center cell than to traverse
around the boundary, then it is least expensive to
completely cut through the cell. Thus, if there is any
component to the cheapest solution path from s that
cuts through the center cell, it will be as large as pos-
sible, forcing x"=0 or y =1. If there is no component
of the path that cuts through the center cell, then
y =0. We prove this below.

Lemma 1: Let {x",y }=argmin, ,[bx+cy(1-x)*+y>
+yg(52) + (1 _y)g(sl)]/x € [Orl]r]/ € [0/ 1]/ where 51, S,
b, and c are as defined in the text, and g(s;) and g(s,) are

Journal of Field Robotics DOI 10.1002/rob
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(a) Imagine the blue path is the optimal path, traveling along the bottom edge to s,, then across the center cell

to s, then up the right edge to s,. Notice the triangle formed between vertices s,, s1, and Sy- (b) We can create a scaled
version of this triangle with a vertical edge length of 1-y. (c¢) Combining the hypotenuses of the two triangles shown in
(b) produces a lower-cost path than the one shown in (a), forcing a contradiction.

optimal path costs for s; and s, given our linear interpo-
lation assumption. Then x" €{0,1} or y" {0, 1}.

Proof: To prove this, it is useful to transform our
original path planning problem. If we pretend that

the cost of traversing the edge s;s, is the difference in
cost between the two nodes s; and s,, then our origi-
nal problem can be solved by finding the cheapest
path from s through s,. To see this, let f=g(s;)
—g(s,). Then Eq. (3) can be written as

min[bx + c\(1 - x)?+ 2+ (1 —y)f +g(s)].  (4)
xy

This is equivalent to computing the minimum-
cost path from s through s,, where portions of the

path traveled along the edge S_l)Sz (e.g., between s, and
5,) use a traversal cost of £." If f<0, then it is always
cheapest to take a direct route to sy, then travel along

the entirety of the edge sT)sz

Now, assume the optimal path involves traveling
along parts of both the bottom and right edges and
cutting across part of the center cell [i.e., x" €(0,1)
andy" € (0,1)]. Thus, the path travels from s along the
bottom edge some distance x € (0,1) to point s,, then
cuts across the center cell to arrive at a point s, on the
right edge some distance y € (0,1) from s;, then trav-
els along the right edge to s, [see Figure 6(a)]. Since
this path is optimal, the cost of taking the straight-line
path from s, through the center cell to s, must be
cheaper than going from s, along the bottom edge to

Yf f>r, where r is the traversal cost of the right cell, then the path
cost g(s;) is clearly suboptimal. This is a contradiction.

Journal of Field Robotics DOI 10.1002/rob

s1 then up the right edge to s,. Thus, we have the fol-
lowing relationship:

VA -x)*+y> < (1-x)b+yf. (5)

The straight-line path between s, and s,, along
with the line between s, and s; and the line between
s1and s, define a right angled triangle. We know that

since the cost of the weighted hypotenuse s,s, is
cheaper than the combined costs of the weighted

sides sj)sl and s?s)y, this will be the case if we were to
scale the size of the triangle by any amount (main-
taining the same ratios of side lengths).

Assume without loss of generality that (1-y)
<x, so that s, is closer to s, than s, is to s. Consider
a scaled version of this triangle with a vertical edge of
length (1-y) [see Figure 6(b)]. The horizontal edge of
this triangle will have length (1-y)[(1-x)/y]. Since
this is a scaled version of our original triangle, the
weighted cost of the hypotenuse of this new triangle
is cheaper than the combined weighted costs of the
horizontal and vertical edges.” But this means we
could combine the hypotenuse of this new triangle
with our previous hypotenuse and construct a path
that went from s along the bottom edge a distance of
x—(1-y)[(1-x)/y] then straight to s,, and the cost of

*Note that we have drawn this new triangle above our previous
triangle only to show how they could be combined to form a
single triangle. The costs of the vertical and horizontal edges of
the new triangle are derived from the values f and b, respectively.
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this path would be less than the cost of our original
(optimal) path [see Figure 6(c)]. This is a contradic-
tion. Thus, it is not possible that both x* and y* will be
in the range (0, 1). O

From our proof, we know that no optimal path
involves traveling along sections of both the bottom
and right edges and a component cutting across part
of the center cell.? Instead, the path will either travel
along the entire bottom edge to s; [Figure 5(ii)], or
will travel a distance x along the bottom edge then
take a straight-line path directly to s, [Figure 5(iii)], or
will take a straight-line path from s to some point s,
on the right edge [Figure 5(iv)]. Which of these paths
is cheapest depends on the relative sizes of ¢,b, and
the difference f in path cost between s; and s,:f
=g(s1)—g(s,). Specifically, if f<0, then the optimal
path from s travels straight to s; and will have a cost
of [min(c,b) +g(s;)] [Figure 5(ii)]. If f=b, then the cost
of a path using some portion of the bottom edge [Fig-
ure 5(iii) ] will be equivalent to the cost of a path using
none of the bottom edge [Figure 5(iv)]. We can solve
for the value of y that minimizes the cost of the latter
path as follows.

First, let k=f=b. The cost of a path from s through

edge 515, is

eVl + yz +k(1-y)+g(sy). (6)

Taking the derivative of this cost with respect to
y and setting it equal to zero yields

* k2
V=\z )

Whether the bottom edge or the right edge is
used, we end up with the same calculations and path
cost computations. So all that matters is which edge
is cheaper. If f<b, then we use the right edge and
compute the path cost as above (with k=f), and, if
b<f, we use the bottom edge and substitute k=b and

*Note that it may be possible that the optimal path to s, involves
traveling along the vertical edge from s for some distance, then
cutting across to s,. However, this possibility is examined when
computing the path cost from s to neighbors s, and s; (see Figure
2). We can thus restrict our attention when computing the path
cost of s using neighbors s; and s, to paths that fully reside within
the triangle defined by vertices s, s;, and s,.

ComputeCost(s, 5., 53]

if {8, is a diagonal neighbor of s)

1
2 8] = 81 82 = 8g}
3 else

4 81 = 8, 82 = 8y}

5 ¢ is traversal cost of cell with corners s, 51, 523

6 b is traversal cost of cell with corners s, 81 but not sz
T if (min(e, ) = oa)

8 U = 00

9 else if (gls1) < gls2))

10 te = minfe, b) + gls1);

11  else

12 f=gis1) — g(s2);

13 if(f<b)
14 if (e << f)

15 s = cv'2 + glsa);

16 else

17 y = min{ \,fr-—'r—_r” 1)

18 ve = e/ T+ 42 + f(1 —y) + gls2);
19 else

20 it(e<h)

21 U = o2 + gls2);

22 elze

23 r=1—min| \f-;b—h-’ 1);

24 vs = o4/ + (1 — x)F + bar + g{s2);

b

5 return ve;

Figure 7. The interpolation-based path cost calculation.

y =1-x" into the above equation. The resulting algo-
rithm for computing the minimum-cost path from s
through an edge between any two consecutive neigh-
bors s, and s, is provided in Figure 7. Given the
minimum-cost paths from s through each of its eight
neighboring edges, we can compute the path cost for
s to be the cost of the cheapest of these paths. The as-
sociated path is optimal given our linear interpola-
tion assumption.

4. FIELD D*

Once equipped with this interpolation-based path
cost calculation for a given node in our graph, we can
plug it into any of a number of current planning and
replanning algorithms to produce low-cost paths.
Figure 8 presents our simplest formulation of (uni-
form resolution) Field D, an incremental replanning

Journal of Field Robotics DOI 10.1002/rob



key(s)
1 return [min(g{s), rhs(s)) + il sapare, 80 minlgls), rha(s])];

UpdateNode|s)
2 if 2 was not visited before, g{s) = oo
3 if (8 # sgaat)
| rhsls) = ming e ooy ,_I..“__.,;{'|;.‘|||;||I|'{‘|:hl|_~__-."..-.HI
5 if (s € OFPEN) remove s from OPEN;
6 if (gls) # rhs(s)) ingert & into OPEN with key(s):

ComputeShortestPath()
7 while (min.: opeEy (koy(8)1)< keyi(Saa ri ) OR vha(ssiare) 7 9l8atart))
bl remove node s with the minimum key from GFPEN;
a if (gls) = rhs(s))
10 g{s) = rhs(s);
11 for all s € nhrs(s) UpdateNodels');
12 else
13 g{s) = oot
14 for all 8" € nbrs(s) U {s} UpdateNode(s");

Maini )
15 glssrare) = rhslsaare) = 005 gl 8gout) = 06
16 rha{sga.) =0 OFPEN = #;

17 insert 8guq0 into OPEN with key(s,001):
18 forewver

19 ComputeShortest Pathi);

20 Wait for changes in cell traversal costs
21 for all cells x with new traversal costs
22 for each node 5 on a corner of

23 UpdateNade(2):

Figure 8. The Field D" algorithm (basic D" Lite version).

algorithm that incorporates these interpolated path
costs. This version of Field D" is based on D" Lite.*
In this figure, connbrs(s) contains the set of con-
secutive neighbor pairs of mnode s:connbrs(s)
={(s1,52),(52,53),(53,54),(54,85),,(55,56) , (56,57), (57,58) ,
(sg,s1)}, where s; is positioned as shown in Figure 2(c).
Apart from this construction, notation follows the D’
Lite algorithm: g(s) is the current path cost of node s
(its g value), rhs(s) is the one-step lookahead path cost
for s (its rhs value), OPEN is a priority queue contain-
ing inconsistent nodes [i.e., nodes s for which g(s)
# rhs(s)] in increasing order of key values (line 1), s,
is the initial agent node, and s,,, is the goal node.
h(Sgiare,5) is a heuristic estimate of the cost of a path

*Differences between Field D" and D" Lite appear on lines 4 and
20-23. As opposed to the original, graph-based version of D" Lite,
lines 20-22 tailor Field D" to grids. Also, because paths intersect
edges and not just nodes, the heuristic value h(sg,;,s) must be
small enough that when added to the cost of any edge incident on
s it is still not greater than a minimum cost path from sy, to s.
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Figure 9. A close-up of a path planned using Field D’
showing individual grid cells. Darker cells have larger tra-
versal costs. Notice that the path is not limited to entering
and exiting cells at corner points.

from sy, to s. Because the key value of each node
contains two quantities a lexicographic ordering is
used: key(s) <key(s’) iff the first element of key(s) is
less than the first element of key(s’) or the first ele-
ment of key(s) equals the first element of key(s’) and
the second element of key(s) is less than the second
element of key(s’). For more details on the D" Lite al-
gorithm and this terminology, see Koenig &
Likhachev (2002b, a). Also, the termination and cor-
rectness of the Field D" algorithm follow directly from
D’ Lite and the analysis of the cost calculation pro-
vided in Section 3.

This is an unoptimized version of Field D". In Ap-
pendix A we discuss a number of optimizations that
significantly improve the overall efficiency of plan-
ning and replanning with this algorithm.

Once the cost of a path from the initial node to the
goal has been calculated, the path can be extracted by
starting at the initial position and iteratively comput-
ing the cell boundary point to move to next. Because
of our interpolation-based cost calculation, it is pos-
sible to compute the path cost of any point inside a
grid cell, not just the corners, which is useful for both
extracting the entire path and calculating accurate
path costs from noncorner points. See Section 5 for
more details concerning path extraction.

Figures 9-12 illustrate paths produced by Field
D’ through three uniform resolution grids. In each of
these figures, darker areas represent regions that are
more costly to traverse. Notice that, unlike paths pro-
duced using classical grid-based planners, the paths
produced using Field D" are not restricted to a small
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Figure 10. Paths produced by D" Lite (top) and Field D°
(bottom) in a 150X 60 uniform resolution grid. Again,
darker cells have larger traversal costs.

set of headings. As a result, Field D" provides lower-
cost paths through both uniform and nonuniform
cost environments.

5. PATH EXTRACTION

The linear interpolation assumption made by Field D"
generally produces accurate path cost approxima-
tions. However, this assumption is clearly not perfect,
and there are situations in which it is seriously vio-
lated. In order to avoid returning invalid or grossly
suboptimal paths in these cases, the path extraction
process must be performed carefully.

In particular, we have found that we can reduce
errors due to our interpolation-based approximation
by using a one-step lookahead when computing the
next waypoint in the path. Basically, before transi-

. * o
Ve * e

Figure 11. Field D" planning through a potential field of
obstacles.

tioning to an edge point p for which we have com-
puted a simple interpolated path cost, we calculate a
more accurate approximation of the path cost of p. We
do this by looking to its neighboring edges and com-
puting a locally optimal path from p given the path
costs of the endpoint nodes of these edges and inter-
polated path costs for points along the edges (as in
Figure 7). Then, given this new path cost for p, we
check if it is still the best point to use as the next way-
point in the path. This simple step reduces the effects
of interpolation error on our path, particularly in
pathological cases such as the one discussed in Sec-
tion 6.

Figure 12. Paths produced by D" Lite (left) and Field D" (right) in a 900 X 700 binary cost grid. Here, obstacles are shown

in dark gray and traversable area is shown in black.
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Figure 13. A robot navigation example using Field D". The robot starts at the top of the environment (about two-thirds
of the way to the right edge) and plans a path (in white) to the bottom left corner, assuming the environment is empty. As
it traverses its path (shown in light gray), it receives updated environmental information through an onboard sensor
(observed obstacles shown in dark gray, actual obstacles shown in gray, traversable area shown in black). At each step it
repairs its previous solution path based on this new information. Notice that the path segments are straight lines with

widely varying headings.

One other small modification we have found use-
ful is to make sure that if one point in the path resides
within some grid cell g, then the next point in the path
can only be a corner of g if the computed path from
the node at that corner does not transition back
through g. Again, due to our use of interpolation this
is not always naturally the case.

In practice it is most effective to use Field D" to
compute the cost-to-goal value function over the
grid, and use some local planner to compute the ac-
tual vehicle trajectory, as described in Section 2.

6. FIELD D’ RESULTS

The true test of an algorithm is its practical effective-
ness. We have found Field D" to be extremely useful
for a wide range of robotic systems navigating
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through terrain of varying degrees of difficulty (see
Figure 1). Figure 13 shows a simulated example of
Field D" being used to navigate a robot through an
initially unknown environment.

To provide a quantitative comparison of the per-
formance of Field D" relative to D" Lite, we ran a num-
ber of replanning simulations in which we measured
both the relative solution path costs and runtimes of
the optimized versions of the two approaches. We
generated 100 different 1000 X 1000 nonuniform cost
grid environments in which each grid cell was as-
signed an integer traversal cost between 1 (free space)
and 16 (obstacle). With probability 0.5 this cost was
set to 1, otherwise it was randomly selected. For each
environment, the initial task was to plan a path from
the lower left corner to a randomly selected goal on
the right edge. After this initial path was planned, we
randomly altered the traversal costs of cells close to
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Table I. The time and quality of solution associated with
initial planning and replanning for Field D* and D" Lite.
Also shown is the amount of time required to update the
traversal cost of areas of the environment that have
changed between replanning episodes. All values are av-
eraged over 100 random environments with changes to the
traversal cost of 10% of the environment. Reported run
times are in seconds for a 1.5 GHz Powerbook G4
Processor.

D’ Lite Field D
Initial planning time (s) 0.83 1.46
Initial path cost (relative) 1.00 0.96
Traversal cost update time (s) 0.06 0.01
Replanning time (s) 0.04 0.07
Replanned path cost (relative) 1.00 0.96

the agent (10% of the cells in the environment were
changed) and had each approach repair its solution
path. This represents a significant change in the in-
formation held by the agent and results in a large
amount of replanning.

The results from these experiments are shown in
Table L. During initial planning, Field D" generated
solutions that were on average 96% as costly as those
generated by D" Lite and took 1.7 times as long to
generate these solutions. During replanning, the re-
sults were similar: Field D" provided solutions on av-
erage 96% as costly and took 1.8 times as long. The
average replanning runtime for Field D" on a 1.5 GHz
Powerbook G4 was 0.07 s. In practice, the algorithm
is able to provide real-time performance for fielded
systems.

Although the results presented above show that
Field D" generally produces less costly paths than
regular grid-based planning, this is not guaranteed. It
is possible to construct pathological scenarios where
the linear interpolation assumption is grossly incor-
rect [for instance, if there is an obstacle in the cell to
the right of the center cell in Figure 5(i) and the op-
timal path for node s, travels above the obstacle and
the optimal path for node s; travels below the ob-
stacle]. In such cases, the interpolated path cost of a
point on an edge between two nodes may be either
too low or too high. This in turn can affect the quality
of the extracted solution path. However, such occur-
rences are very rare, and in none of our random test
cases (nor any cases we have ever encountered in
practice) was the path returned by Field D" more ex-

pensive than the grid-based path returned by D" Lite.
In general, even in carefully constructed pathological
scenarios the path generated by Field D" is very close
in cost to the optimal solution path.

Moreover, it is the ability of Field D to plan paths
with a continuous range of headings, rather than sim-
ply its lower-cost solutions, that is its true advantage
over regular grid-based planners. In both uniform
and nonuniform cost environments, Field D pro-
vides direct, sensible paths for our agents to traverse.

7. MULTI-RESOLUTION FIELD D’

Thus far, we have focused on algorithms appropriate
for planning through uniform resolution grids. Al-
though such grids are a common representation in
mobile robotics, they can be very memory intensive.
This is because the entire environment must be rep-
resented at the highest resolution for which informa-
tion is available. For instance, consider a robot navi-
gating a large outdoor environment with a prior
overhead map. The initial information contained in
this map may be coarse. However, the robot may be
equipped with onboard sensors that provide very ac-
curate information about the area within some field
of view of the robot. Using a uniform resolution grid-
based approach, if any of the high-resolution informa-
tion obtained from the robot’s onboard sensors is to
be used for planning, then the entire environment
needs to be represented at a high resolution, includ-
ing the areas for which only the low-resolution prior
map information is available. Storing and planning
over this representation can require vast amounts of
memory.

7.1. Multi-Resolution Grid Representations

A number of techniques have been devised to rem-
edy this problem. One popular approach is to use
quadtrees rather than uniform resolution grids
(Samet, 1982; Kambhampati & Davis, 1986).
Quadetrees offer a compact representation by allow-
ing large constant-cost regions of the environment to
be modeled as single cells. They thus represent the
environment using grids containing cells of varying
sizes, known as nonuniform resolution grids or
multi-resolution grids.

However, paths produced using quadtrees and
traditional quadtree planning algorithms are again
constrained to transitioning between the centers of
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adjacent cells and can be grossly suboptimal. More
recently, framed quadtrees have been used to allevi-
ate this problem somewhat (Chen, Szczerba, &
Uhran, 1995; Yahja, Singh, & Stentz, 2000). Framed
quadtrees add cells of the highest resolution around
the boundary of each quadtree region and allow
transitions between these boundary cells. As a result,
the paths produced can be much less costly, but the
computation and memory required can be large due
to the overhead of the representation (and in patho-
logical cases can be significantly more than is re-
quired by a full high-resolution representation).
Also, segments of the path between adjacent high-
resolution cells suffer from the same limitations as
classical uniform resolution grid approaches, since
interpolation is not used.

As with uniform resolution grids, path planning
through a multi-resolution grid is another special
case of the Weighted Region Problem, and the gen-
eral, purpose algorithms discussed in Section 2 are
applicable. However, as the number of cells in-
creases (e.g., as the agent observes information at a
high resolution through its sensors and updates its
representation), these algorithms become very com-
putationally expensive. Ideally, we would like a
planning algorithm that is as efficient as traditional
multi-resolution grid-based algorithms but produces
better paths.

In multi-resolution grids, interpolation has the
potential to be of huge benefit, since it can eliminate
the requirement that paths transition between the
center points of adjacent grid cells. Further, it can be
used without adding any extra cells or modifications
to the grid.

In the following sections, we present an ap-
proach that combines the ideas of interpolation and
nonuniform resolution grid representations to pro-
vide very cost-effective paths for a fraction of the
memory and, often, for a fraction of the fime re-
quired by uniform resolution grid approaches.

7.2. Combining Interpolation with
Multi-Resolution Grids

We can use the same basic interpolation approach
used by Field D" in uniform resolution grids to pro-
vide accurate path costs for nodes in multi-
resolution grids. To begin with, we assign nodes to
the corners of every grid cell, as in the uniform reso-
lution case. We define the neighboring edges of a
node s to be all edges that can be reached from s via
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a straight-line path for which s is not an endpoint
[see Figure 14 (left)]. We allow each node to transi-
tion to any point on any of its neighboring edges.
The rationale here is that the optimal path from s
must pass through one of these neighboring edges,
so if we knew the optimal path cost of every point
on any of these edges we could compute the optimal
path cost for s.

The main difference between the uniform reso-
lution and nonuniform resolution grid scenarios is
that, in the uniform resolution case, each node s has
exactly eight neighboring edges of uniform length,
while in the nonuniform case, a node may have
many more neighboring edges with widely varying
lengths. However, linear interpolation can still be
used to approximate the path costs of points along
these edges, exactly as in the uniform resolution
case.

As a concrete example of how we compute the
path cost of a node in a multi-resolution grid, we
now focus our attention on a grid containing cells of
two different resolutions: high and low resolution.
This two-resolution case addresses the most com-
mon navigation scenario we are confronted with: a
low-resolution prior map is available and the robot
is equipped with high-resolution onboard sensors.
Although we restrict our attention to this scenario,
the approach is general and can be used with arbi-
trarily many different resolutions.

In a grid containing two different resolutions,
each node can reside on the corner of a low-
resolution cell, the corner of a high-resolution cell,
and/or the edge of a low-resolution cell. Examples
of each of these possibilities can be seen in Figure
14(b): the white node is the corner of a low-
resolution cell and the gray node is the corner of a
high-resolution cell and on the edge of a low-
resolution cell. Let us look at each of these possibili-
ties in turn.

First, imagine we have a node that resides on the
corner of a low-resolution cell. We can calculate the
least-cost path from the node through this cell by
looking at all the points on the boundary of this cell
and computing the minimum cost path from the
node using any of these points. We can approximate
the cost of this path by using linear interpolation to
provide the path cost of arbitrary boundary points,
exactly as in uniform resolution Field D". However,
some of the boundary may be comprised of high-
resolution nodes. In such a case, we can either use
interpolation between adjacent high-resolution
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(Left) The neighboring edges (dashed in dark gray, along with their endpoints in gray) from a given node

(white) in a grid containing cells with two different resolutions: low resolution and high resolution. (a, b) Some of the
possible paths to a neighboring edge/node from a low-resolution node. On the left are the possible optimal path types (in
dark gray) through the top low-resolution edge (dashed in dark gray) and its endpoint nodes (in gray). Linear interpo-
lation is used to compute the path cost of any point along the top edge. On the right are the possible optimal path types
(in dark gray) to one neighboring high-resolution corner node (in gray). (c, d) Some of the possible paths (in dark gray)
from a high-resolution corner node (white) to a neighboring low-resolution edge (c) and to a high-resolution node (d, left)

and edge (d, right).

nodes and allow the path to transition to any point
on an adjacent high-resolution edge, or we can re-
strict the path to transitioning to one of the high-
resolution nodes. The former method provides more
accurate approximations, but it is slightly more com-
plicated and less efficient. Depending on the relative
sizes of the high-resolution cells and the low-
resolution cells, either of these approaches may be
appropriate. For instance, if the high-resolution cells
are much smaller than the low-resolution cells, then
interpolating across the adjacent high-resolution
edges when computing the path from a low-
resolution node is not that critical, as there will be a
wide range of heading angles available just from di-
rect paths to the adjacent high-resolution nodes.
However, if the high-resolution cells are not signifi-
cantly smaller than the low-resolution cells, then this
interpolation becomes important, as it allows much
more freedom in the range of headings available to
low-resolution nodes adjacent to high-resolution
nodes. In Figure 14 we illustrate the latter, simpler
approach, where interpolation is used to compute
the path cost of points on neighboring, strictly low-
resolution edges [e.g., the top edge in (a)], and paths
are computed to each neighboring high-resolution
node [e.g., the gray node on the right edge in (b)].

For nodes that reside on the corner of a high-
resolution cell, we can again use interpolation as
presented in Section 3 to approximate the cost of the
cheapest path through the high-resolution cell [see
the paths to the right edge in (d)]. Finally, for nodes
that reside on the edge of a low-resolution cell, we
can use a similar approach as in our low-resolution
corner case. Again, we look at the boundary of the
low-resolution cell and use interpolation to compute
the cost of points on strictly low-resolution edges
[e.g., the top edge in (d)], and for each high-
resolution edge we can choose between using inter-
polation to compute the cost of points along the
edge, or restricting the path to travel through one of
the endpoints of the edge. The latter approach is il-
lustrated for computing a path through the left edge
in (d).

Thus, for each node, we look at all the cells that
it resides upon as either a corner or along an edge
and compute the minimum path cost through each
of these cells using the above approximation tech-
nique. We then take the minimum of all of these
costs and use this as the path cost of the node.

Pseudocode of this technique is presented in
Figure 15. In this figure, P, is the (infinite) set of all
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ComputePathCost{s)
1 v = o0
2 for each cell © upon which s resides
3 if x is a high-resolution cell
4 for each neighboring edge e of & that is on the boundary of =
5 vy = min{v,, minge g, {els; p) + e
i else

T for each neighboring edge ¢ of s that is on the boundary of =

3 if & 15 a low-resolution edge

a Ve = min{vs, minge p, (el p) + g ik
10 else

11 vy = min(vs, minge gp, (s, p2) + glp)));

12 return wa;

Figure 15. Computing the path cost of a node s in a grid
with two resolutions.

points on edge ¢, EP, is a set containing the two end-
points of edge e, ¢'(p) is an approximation of the
path cost of point p (calculated through using linear
interpolation between the endpoints of the edge p
resides on), c(s,p) is the cost of a minimum-cost path
from s to p, and g(p) is the current path cost of corner
point p. We say an edge ¢ is a “low-resolution edge”
(line 8) if both the cells on either side of ¢ are low
resolution. An efficient solution to the minimizations
in lines 5 and 9 was presented in Section 3.

7.3. The Multi-Resolution Field D* Algorithm

The path cost calculation discussed above enables us
to plan direct, low-cost paths through nonuniform
resolution grids. We can couple this with any stan-
dard path planning algorithm, such as Dijkstra’s, A",
or D". Because our motivation for this work is ro-
botic path planning in unknown or partially known
environments, we have used it to extend the Field D*
algorithm to nonuniform resolution grids. To distin-
guish it from the uniform resolution version, we call
the resulting algorithm Multi-resolution Field D’. By
coupling the low-cost paths generated by
interpolation-based planning with the memory effi-
ciency of nonuniform resolution grid representa-
tions, Multi-resolution Field D is able to provide ex-
tremely effective paths for a fraction of the memory
and computational requirements of current
approaches.

A basic version of the algorithm is presented in
Figure 16. Here, the ComputePathCost function (line
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kew(s)

I return [min(g{s), rhs(8)) + RiSaiare, 80 minlgis), rhal(s))];

UpdateNode|s)
2 if 8 was not visited before, g(s) = oo
3 if (& # sg0al)
1 rhsi(s) = ComputePathCaost(s);
5 it (s € CPEN) remove s from QFEN,;
6 if (g(&) # rhs(s)) nsert s into OPEN with key(s):

ComputeShortest Pathi)
7 while (mingc opanl kl'_\'[;i]:lea_' keyi(satars ) OR rhs(Satare] #F 9(8atare))

] remove node & with the minimum key from QFEN;

9 if (g{s) > rhs(s))

10 gi{s) = rhs(s);

11 for all 8" € nbrs(s) UpdateNode{s");

12 e

13 gls) = oo,

14 for all 8" € nbrsi(s) U {s} UpdateNode(s");
Main()

15 glastart) = rhslfsiart) = 00 @{8g0a ) = 003

16 rhs{sgea) = 0; OPEN =@,

17 insert 8,00 Into OPEN with key{sg..):

18 forever

19 ComputeShortest Path ()

20 Wait for changes to grid or traversal costs;

21 for all new cells or cells with new traversal costs =
23 for each node 5 on an edge or corner of =

23 UpdateMode{s):

Figure 16. The multi-resolution Field D algorithm (basic
version).

4) takes a node s and computes the minimum path
cost for s using the path costs of all of its neighbor-
ing nodes and interpolation across its neighboring
edges, as discussed in Section 7 and presented in
Figure 15. Other notation is consistent with the algo-
rithm presented in Section 4: g(s) is the current path
cost of node s,7hs(s) is the one-step lookahead path
cost for s, OPEN is a priority queue containing in-
consistent nodes [i.e., nodes s for which g(s) # rhs(s)]
in increasing order of key values (line 1), sy, is the
initial agent node, and s, is the goal node. (s, 5)
is a heuristic estimate of the cost of a path from s,
to s.

As with other members of the D" family of algo-
rithms, significant optimizations can be made to this
initial algorithm. In particular, several of the optimi-
zations discussed in Appendix A are applicable and
were used in our implementation.
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(a)

(b)

Figure 17. Multi-resolution Field D* produces direct, low-cost paths (in black) through both high-resolution and low-
resolution areas. Each filled circle represents the lower-left corner node of a low-resolution cell (if the circle is large) or a
high-resolution cell (if the circle is small). The detailed textures that appear in the right illustration are for visualization
purposes only; the traversal cost is constant within each grid cell.

8. MULTI-RESOLUTION FIELD D" RESULTS

Multi-resolution Field D" was originally developed to
extend the range over which unmanned ground ve-
hicles (such as our outdoor vehicles in Figure 1) could
operate by orders of magnitude. We have found the
algorithm to be extremely effective at reducing both
the memory and computational requirements of
planning over large distances and at producing di-
rect, low-cost paths. Figures 17 and 18 show example
paths planned using the algorithm.

To quantify its performance, we ran experiments
comparing Multi-resolution Field D" to uniform reso-
lution Field D*. We used uniform resolution Field D’
for comparison because it produces less costly paths
than regular uniform grid-based planners and far bet-
ter paths than regular nonuniform grid-based
planners.

Our first set of experiments investigated both the
quality of the solutions and the computation time re-
quired to produce these solutions as a function of the

Figure 18. Multi-resolution Field D" used to guide an agent through a partially known environment. On the left is a
section of the path already traversed showing the high-resolution cells. These data were taken from Fort Indiantown

Gap, PA.
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Figure 19. Computation time and solution cost as a function of how much of the environment is represented at a high
resolution. The x axis of each graph depicts the percentage of the map modeled using high-resolution cells, ranging from
0 (all modeled at a low resolution) to 100 (all modeled at a high resolution). (Top) Initial planning. A path was planned
from one side to the other of 100 randomly generated environments and the results were averaged. (Bottom) Replanning.
5% of each environment was randomly altered and the initial paths were repaired.

memory requirements of Multi-resolution Field D".
We began with a randomly generated 100 X 100 low-
resolution environment with an agent at one side and
a goal at the other. We then took some percent p of the
low-resolution cells (centered around the agent) and
split each into a 10 X 10 block of high-resolution cells.
We varied the value of p from 0% up to 100%. We then
planned an initial path to the goal. Next, we ran-
domly changed 5% of the cells around the agent (at a
low-resolution) and replanned a path to the goal. We
focused the change around the robot to simulate new
information being gathered in its vicinity. The results
from these experiments are presented in Figure 19.
The x axis of each graph represents how much of the
environment was represented at a high resolution.
The left graphs show how the time required for plan-
ning changes as the percent of high-resolution cells
increases, while the middle and right graphs show
how the path cost changes. The y values in the middle
and right graphs are path costs, relative to the path
cost computed when 100% of the environment is rep-
resented at a high resolution. The right graph shows
the standard error associated with the relative path
costs for smaller percentages of high-resolution cells.
As can be seen from these results, modeling the en-
vironment as mostly low-resolution produces paths
that are only trivially more expensive than those pro-
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duced using a full high-resolution representation, for
a small fraction of the memory and computational
requirements.

This first experiment shows the advantage of
Multi-resolution Field D" as we reduce the percentage
of high-resolution cells in our representation. How-
ever, because there is some overhead in the multi-
resolution implementation, we also ran uniform reso-
lution Field D" over a uniform, high-resolution grid to
compare the runtime of this algorithm with our
Multi-resolution version. The results of uniform reso-
lution Field D" have been overlaid on our runtime
graphs. Although uniform resolution Field D" is more
efficient than Multi-resolution Field D" when 100% of
the grid is composed of high-resolution cells, it is far
less efficient than Multi-resolution Field D” when less
of the grid is made up of high-resolution cells.

Our second experiment simulated the most com-
mon case for outdoor mobile robot navigation,
namely where we have an agent with some low-
resolution prior map and high-resolution onboard
sensors. For this experiment, we took real data col-
lected from Fort Indiantown Gap, PA, and simulated
a robotic traverse from one side of this 350 X320 m
environment to the other. We blurred the data to cre-
ate a low-resolution prior map (at 10X 10 m accu-
racy) that the robot updated with a simulated



96 « Journal of Field Robotics—2006

Table Il.

Results for uniform resolution Field D" versus Multi-resolution Field D" on a

simulated robot traverse through real data acquired at Fort Indiantown Gap. The robot
began with a low-resolution map of the area and updated this map with a high-resolution
onboard sensor as it traversed the environment. The map was 350 X 320 meters in size.

Field D’ Multi-res Field D
Total planning and replanning time (s) 0.493 0.271
Initial planning time g) 0.336 0.005
Average replanning time (s) 0.0007 0.0012
Percent high-resolution cells 100 13

medium-resolution sensor (at 1 X1 m accuracy with
a 10 m range) as it traversed the environment.

The results from this experiment are shown in
Table II. Again, Multi-resolution Field D" requires
only a fraction of the memory of uniform resolution
Field D', and its runtime is very competitive. In fact,
it is only in the replanning portion of this final experi-
ment that Multi-resolution Field D" requires more
computation time than uniform resolution Field D",
and this is only because the overhead of converting
part of its map representation from low resolution to
high resolution overshadows the trivial amount of
processing required for replanning.

9. CONCLUSIONS

We have presented Field D* and Multi-resolution
Field D’, two interpolation-based path planning algo-
rithms that address two of the most significant short-
comings of grid-based path planning.

The first shortcoming they address concerns the
quality of paths produced over grids. Almost all grid-
based planners are limited to finding paths that tran-
sition only between adjacent grid points. This creates
unnatural and often costly paths. Both Field D" and
Multi-resolution Field D" use linear interpolation to
approximate the path costs of points not sampled on
the grid. This allows paths to transition between any
two points on adjacent grid cell edges, rather than just
between grid cell centers or corners. Thus, the paths
produced are less costly and involve less unnecessary
turning than those produced using current grid-
based approaches.

The second shortcoming concerns the memory
and computational requirements of grid-based path
planning and is addressed by Multi-resolution Field
D'. In large environments, planning over a uniform

resolution grid requires significant amounts of
memory and computation. Further, robots often have
information concerning different parts of the environ-
ment at different resolutions, but many planners re-
quire that the entire environment be represented at
the highest resolution for which any information is
available. In contrast, Multi-resolution Field D" plans
and replans over nonuniform resolution grids. The
nonuniformity of the grids allows us to represent at
a low resolution areas of the environment for which
only low-resolution information exists. This signifi-
cantly reduces the memory and often the runtime re-
quirements of the planning task. Furthermore, be-
cause of its use of linear interpolation, the paths
provided by Multi-resolution Field D" are compa-
rable in quality to those of uniform resolution Field
D’. Consequently, Multi-resolution Field D" is cur-
rently being used to extend the range of one of our
outdoor mobile robots by one to two orders of mag-
nitude. It is our belief that, by combining interpola-
tion with nonuniform representations of the environ-
ment, we can “have our cake and eat it too,” with a
planner that is extremely efficient in terms of both
memory and computation while still producing very
direct, low-cost paths.

We and others are currently extending these al-
gorithms in a number of ways. First, a 3D version of
the Field D" algorithm has been developed for ve-
hicles operating in the air or underwater (Carsten,
2005). We are also developing a version that interpo-
lates over headings, not just path costs, to produce
smoother paths when turning is expensive. Finally,
interpolation is currently being incorporated into the
TEMPEST mission-level path planner, which takes
into account time and energy constraints while gen-
erating paths (Tompkins, Stentz & Whittaker, 2004).
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10. APPENDIX A: OPTIMIZATIONS

As with other members of the D" family of algo-
rithms, there are a number of optimizations that can
be made to the basic (uniform resolution) Field D" al-
gorithm to significantly improve its efficiency. First,
we can reduce the amount of computation required
when updating the neighbors of a popped node (Fig-
ure 8, lines 9-14) by only considering those nodes ac-
tually affected by the new value of the popped node
and how these nodes are affected.

To do this, we keep track of a backpointer for
each node specifying from which nodes it currently
derives its path cost. Since, in Field D", the successor
of each node is a point on an edge connecting two of
its neighboring nodes, this backpointer needs to
specify the two nodes that form the endpoints of this
edge. We use bptr(s) to refer to the most clockwise of
the two endpoint nodes relative to node s. For ex-
ample, if the current best path from node s intersects

edge sT)sz (see Figure 2), then bptr(s) =s;. We also make
use of two new operators, cknbr(s,s’) and ccknbr(s,s’),
that, given a node s and some neighboring node s’ of
s, return the next neighboring node of s in the clock-
wise and counter-clockwise directions, respectively.
Thus, using the node labels from Figure 2,
cknbr(s,s,)=sg, cknbr(s,sg)=sy, etc., and ccknbr(s,s;)
=5,, ccknbr(s,s,)=s;3, etc. Thus, if bptr(s)=s,, then
ccknbr(s,bptr(s)) =s,.

This gives us the algorithm presented in Figure
20. Some sections of the algorithm are clearly not as
efficient as they could be (e.g., the repeated path cost
calculation in lines 12-13 and again in lines 15-16 and
23-24) and have only been presented in the current
form for clarity.

We can also save a significant amount of compu-
tation by optimizing how changes to the traversal
costs of individual cells are dealt with. In the naive
implementation of the algorithm, when the traversal
cost of a cell changes we recompute the path cost for
any node that resides at one of the corners of the cell.
This can be hugely expensive, often far more so than
replanning once the traversal costs have been
updated.

However, we can reduce this computation con-
siderably by making two alterations to the algorithm.
First, when the traversal cost of a cell increases, we
only need to update the rhs value of nodes that relied
upon the old cell cost. Second, when the traversal cost
of a cell decreases, we can avoid recomputing the rhs
value for any node (at least initially) by making one
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keyia)

I return [minfg{s), rhs(s)) + M saeare, 8); min{g(s), rhs{=)]];

UpdateMNaode(s)
2 if (g(a) # rha{s)) insert s into OPEN with key{s):
3 else if (s € OFEN) remove s from OFPEN;

ComputeShortestPathi)
4 while (min,c pppyikey(s))< key(asea ) OR rha{ssare) # glsstare))

o peek at state s with the minimum key on OFEN;

6 if (g(#) > rhs(s))
7 gis) = rhsls);
& remove s from OPEN;
9 for all 5' £ nibrs(s)
10 if #" was not visited before
11 al&') = rha(s') = oo
12 if (rha{s") > ComputeCost(s', 5, coknbr(s', 5]})
13 rhsis") = ComputeCast(s’, s, ccknbr(s’ &));
14 bptr(s') = =;
15 if (rha{s") > ComputeCost(s’ s, chknbr{s’, 5]
16 rhsis’) = ComputeCost(s’, cknbr(s’, &), s);
17 bpir(s") = cknbr{s', s):
18 UpdateNodel s’ );
19 else
20 ule) = o
21 for all 8" € nbrs(s)
22 il Ifhrafr'-'\-r"] =% OR lel.l.l'r'l:.-.'fl = f!ﬁ'lJ[J."l;_ﬁ'r._‘i]:l
23 rhe(s"] = Ml o hesre) ComputeCost (&, 8", coknbr(a’, 8''));
24 bptr(s") = argming e o ComputeCost{ s, 8", coknbr (s, "))
5 UpdateNode{s");

26 UpdateNaode s);

Mlaini )
27 glsstart) = rhe{aatart) = 00t g(850a1) = 0oy
28 rhs(sgeat) = 0 OFEN = i
29 insert 8,047 into OPEN with key{s,.0 0
an  forever
31 ComputeShortestPath();
32 Wait for changes in cell traversal costs;
33 for all cells x with new traversal costs

34 for each node & on a corner of x

35 if 5 was not visited before, g(s) = oo;

a6 it (a# .ﬁ,],,,,,l_\

ar rhsis) = ming e gpeaps) ComputeCost (s, s coknbr(s, &)
a8 UpdateNode(s);

Figure 20. The Field D’ (after initial

optimizations).

algorithm

small approximation to the algorithm. Basically, in-
stead of recomputing rhs values for each of the corner
nodes, we simply put the node with the minimum
current rhs value onto the OPEN list. Since this node
may have its rhs value equal to its g value, we need
to modify the algorithm so that such nodes are pro-
cessed as if their path costs have decreased (i.e., as if
their rhs values were in fact lower than their g values).
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Then, when this node is popped off the OPEN list, it
will have a chance to update the rhs values of the
other corner nodes based on the new traversal cost of
the center cell.

Unfortunately, it turns out that this second
method no longer guarantees optimal path costs
given our linear interpolation assumption. This is be-
cause it is possible in theory that one of the corner
nodes of the cell does not use the node with mini-
mum rhs value for one of its backpointers, yet still
uses the traversal cost of the cell for its optimal action.
As an example, consider Figure 5(iii) and imagine the
traversal cost of the bottom cell has decreased and the
corner node of that cell with minimum rhs value is
not s or s;. Fortunately, the probability of this situa-
tion arising is extremely low and, if it does, the dif-
ference in path cost for the affected node s is not ex-
treme [and is bounded by the maximum difference
between path (iii) and the cheapest of paths (ii) and
(iv)]. For our results, we ran both this optimized ver-
sion and the original and found there to be no dif-
ference in the overall path cost for any of our runs.

There is also a novel, significant optimization we
can make to the D" Lite and Incremental A" algo-
rithms. In the optimized version of D’ Lite, when a
node s is popped whose cost has increased [so that
rhs(s) > g(s)], each affected neighbor of s recomputes
its rhs value. However, there is a chance that some of
these neighbors will recompute their ris values sev-
eral times, as their new successor nodes may later be
popped with increased costs, and so on. We can avoid
these multiple rhs-value updates by just setting the
new rhs value of the neighbor node to infinity, rather
than recomputing its true value. Since the node will
be inserted into the OPEN list with a key value based
on its g value, not its rhs value, this will not affect its
priority. The one exception to this is when the node is
already in the OPEN list with its ¢ value greater than
or equal to its his value. To account for this possibility,
we thus check if this is the case, and, if so, we recom-
pute a new rhs value for the node. Nodes that are
popped with increased path costs then recompute
new rhs values, as in the basic version of the algo-
rithm. We have found this optimization to be ex-
tremely useful, both in updating traversal costs of
cells and during replanning.

This final, optimized version of the algorithm is
presented in Figures 21 and 22 and was used for gen-
erating the results presented in this paper. As with
our earlier versions of the algorithm, some sections of
this version are not as efficient as they could be (e.g.,

key(s)

1 return [min{g(s), rhe(s)) + R saars, 8); mindgiz), vhais))]:

UpdateMNode =)
2 if (g8} # rha(z)) insert s into CWPEN with key(s);
3 else if (s & OPEN) remove s from OPEN;

ComputeShortest Path()

4 while (min,e opgnikey(e))< key(saare) OR rhs(@agare) # 0800t}
5 peck at node s with the minimum key on OFPEN;
[ if [gle) = rha(e))

T gla) = rhala);

& vemove & from OPEN,

9 for all 5" & nbra(s)

10 if &' was nat visited before
11 g{8") = rha{s") = ooy

12 rhsgg = vha(s');

13 if {rha(s") = ComputeCost(s", &, coknbris’, )]
14 rhsi(s") = ComputeCost(s’, 5, coknbr{s’, 5));
15 bptr(a') = a3

16 if {rhs(s") > ComputeCostis', s, cknbr{s’, 5]}
17 rha(s") = ComputeCost( &', chubie(s', &), 8):

15 bptr(s") = chnbr(s’, a);

14 i (rhs(s) # ehsarg)
20 UpdateState(s'}:
21 el

22 rials) = miliyr ¢ b o) ComputeCost(a, 8", ecknbr(s, a') )
23 bptr(s) = argming e g ComputeCost(s, s°, ockmbr(s, 5'11;

et if (g(s) < rha(s]]

25 gls) = oo;

20 for all &' € nbrais)

.o if {bptr(s') = s OR bptr(s") = chknbr{s’, s])

25 If [rhe(s") # ComputeCost( s’ bpdr{s"), coknbr{s’ bpte{s'1)))
20 if (g{s'} = rha(s’) OR &' @ OPEN)

an rls{s’) = oo

31 UpdateMaode(2");

32 else

33 rhala’) = ming: g e o ory ComputeCost(s”, &, coknbr(a’, 211

34 bptr(s') = argminge s at) ComputeCaost(s’, 5", cokmbr(s”, s"));
A5 UpdateModel s");

36 UpdateMNaodes);

Figure 21. The Field D" algorithm (optimized version):
ComputeShortestPath function.

there are repeated path cost calculations in lines
13-14 and again in lines 16-17, 22-23, 33-34, and 45—
46). This is solely for ease of presentation; these
sources of inefficiency should not appear in any
implementation.

It is also possible to avoid the bulk of the process-
ing involved in the ComputeCost() function at
runtime by precomputing the result of the minimiza-
tion step (Figure 7, lines 13-24) for every combination
of ¢, b, and f and storing these values in a lookup
table. If we use integers to represent our g values, and
we have a discrete set of possible cell traversal costs,
the number of elements in this table will be finite. In
fact, the number of elements in the table will be
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UpdateCellCost(x, ¢)
37 i (e is greater than current traversal cost of =)

38 for each node s on & corner of ©

30 if either bptr(s) or ccknbr(s, bpir(s)) s a corer of =

A0 if [rha(z) # CompureCost (8, bptris), ceknbr(a, bptr(s])))

41 if {g(s) < rhs(s) OR = € OPEN)

42 rhs(s)] = o0}

43 UpdateNode(s);

44 else

45 rha(s) = ming o) ComputeCost(s, 8, coknbr(s, 10
46 bptr(s] = argming: - g, ='[_q]lr_.‘t1|11]311t.n(,'.'n|_-;t{.~<,.ﬁ:". eoknbr(s, 81);
47 UpdateNode(s);

48  else

4% rhanin =00;

] for each node s on a cormer of ®

5l if # was not visited hefore, g(a) = rhs(s) = oo
52 else if (rha(s) < rhspn)
53 rAsmin = ris(s); s* = 5;
54 if [rhamin # oo)
it insert =% into QPEN with key(s*);
Main()

56 gl{Sstart) = rhs(satart) = 00; §{8g0a1) = 02
8T rhs(sgoat) = 0; OPEN = W;
5
i

w

insert 8g.,) into OPEN with key(sgoa);
]

forever

G0 ComputeShortest Pathi):
fil Wait for changes in cell traversal costs;
G2 for all cells & with new traversal costs ¢

[} UpdateCellCost(z, );

Figure 22. The Field D" algorithm (optimized version):
main function.

N X M., (8)

where M, is the number of distinct traversal costs (in-
cluding the infinite cost of traversing an obstacle cell)
and M, is the maximum traversal cost of any travers-
able, i.e., nonobstacle, cell.

The construction of this lookup table and the al-
tered version of ComputeCost() are shown in Figure
23. In this figure, NV, and M, are as described above,
and cellcosts is an array specifying, for each distinct
traversal cost identifier, the actual traversal cost as-
sociated with that identifier. The interpolation costs
are stored in the lookup table 7.

We have also used this approach to create an ef-
ficient implementation of Field D" for the Mars Ex-
ploration Rovers (see Figure 24). However, for this
application we ignored the possibility of using the
bottom cell b [Figure 5(iii)] and only considered paths
involving the center cell, so that our lookup table was
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ConstructInterpolationTable( N, M., cellcosts)
1 =10

while (e; < N

by =1
while (b; < .a'\u}

2
3 e = celleasts|o;];
1
5

[ b = celleasts|b;:

7 F=1

] while (f < M.)

9 if (f < b)

10 if (e =< f)

11 Tlei, bi, f] = cv'Z;

12 else

13 Yy = min[vh. 1}:

14 Tlei b f1 = en/1+ 42 + f{1 = u);
15 else

16 if (e < b)

17 Tlei by, f] = ev'Z:

18 else

19 x =1 — min( v,r_"’ »1);

20 Tlei by f] = e4/1 4+ (1 — )2 + bx;
21 F=r+1

22 by = b +1;

23 ci=ei+1;

ComputeCost(s, 5., 54)
24 if (s, iz a diagonal neighbor of =)

25 8] = 8] 52 = 8,;

26 else

27 8] = 8a; 82 = 5}

28y is traversal cost index of cell with corners s, 51, s2;

200 b is traversal cost index of cell with corners s, 51 but not ss;
30 = celleosts[e;]; b = celleosts[hy):
31 if (m'ml:c, b= "x_)

3z vy = o

33 else if (g{s1) < g(s2))

34 we = min{e b) 4 g(s1);

35 else

36 f=gls1) —g(s2);

aT if (f = min(e, b))

a8 vy = Ty, by, Me] + glaz);

39 else

40 vy = L[, by, f] + g{s2);

41 return wg;

Figure 23. Using a lookup table to store the interpolation-
based cost calculation.

indexed by just ¢ and f. We also used a small set of
nonlinearly spaced cell traversal cost values (e.g., val-
ues of 255, 375, 510, 640, 1020, 1275, and 1785). The
memory required for storing the corresponding inter-
polation table was quite small (on the order of 25 KB)
and the resulting implementation was very fast.
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Figure 24. One of the Mars Exploration Rovers in the
testing sandpit at NASA’s Jet Propulsion Laboratory. An
optimized implementation of Field D" has been created for
these vehicles.

As a final note, as with all heuristic-based algo-
rithms, the efficiency of Field D" depends heavily on
the heuristic used to focus the search. For the results
discussed in this paper, we used the standard
Euclidean-cost metric and subtracted from this the
maximum traversal cost of any (traversable) cell. This
heuristic guarantees that the resulting solution will
be optimal given our linear interpolation assumption.
However, in practice we have found that using the
standard Euclidean-cost metric and dividing it by
two is often much more efficient and produces solu-
tions that are not noticeably different from the opti-
mal solutions. The reason this latter approach tends
to be more efficient, even though it often produces
less informed heuristic values for each node, is be-
cause it reduces the number of times each node needs
to be processed. With the former approach, it is not
uncommon for a node to be popped off the queue and
processed before one of its optimal successor nodes.
This is rather inefficient, as the same node will have
to be reprocessed when its successor is finally pro-
cessed and updates its path cost. With the latter ap-
proach, however, it is much less likely that this will
occur. As a result, even though more nodes are often
processed, these nodes are usually processed fewer
times.

11. APPENDIX B: MEDIA FILES

There are three media files accompanying this paper:
D’-run, Field-D"-run, and PerceptOR-run.

D’-run: This animation illustrates regular D" be-
ing used to guide an agent from the top-right to the
bottom-left of a binary-cost environment. The agent
began with an empty map, represented as a uniform
resolution grid. The obstacles in the environment ap-
pear in red, known obstacles appear in blue as they
are observed by the agent. Notice that the path is re-
stricted to heading increments of 45 degrees.

Field-D"-run: This animation illustrates Field D’
being used to guide an agent through the same en-
vironment shown in the D'-run file. Notice that the
path consists of straight-line segments with widely-
varying headings.

PerceptOR-run: This animation shows part of a
run conducted by an autonomous ATV at a site near
the Pittsburgh Airport. The yellow ATV was given a
single goal point on the opposite side of a wooded
area. There were no initial map data. The vehicle fol-
lowed a trail until it was obstructed by a fallen tree,
at which point it left the trail and drove through the
woods. Eventually, it rejoined the trail and achieved
the goal point in a field on the other side of the
woods. This animation shows the laser data, local
map, and video of the vehicle for the first part of this
traverse. The laser data and local map run at three
times the speed of the video. This run was conducted
as part of the DARPA-sponsored project “Perception
for Off-Road Mobility (PerceptOR)” (Contract No.
MDA972-01-9-0016).
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