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ABSTRACT: Laser scanners are increasingly used to create semantically rich 3D models of buildings for civil engineering 

applications such as planning renovations, space usage planning, and building maintenance. Currently these models are 

created manually – a time-consuming and error-prone process. This paper presents a method to automatically convert the 

raw 3D point data from a laser scanner positioned at multiple locations throughout a building into a compact, semantically 

rich model. Our algorithm is capable of identifying and modeling the main structural components of an indoor environment 

(walls, floors, ceilings, windows, and doorways) despite the presence of significant clutter and occlusion, which occur 

frequently in natural indoor environments. Our method begins by extracting planar patches from a voxelized version of the 

input point cloud. We use a conditional random field model to learn contextual relationships between patches and use this 

knowledge to automatically label patches as walls, ceilings, or floors. Then, we perform a detailed analysis of the 

recognized surfaces to locate windows and doorways. This process uses visibility reasoning to fuse measurements from 

different scan locations and to identify occluded regions and holes in the surface. Next, we use a learning algorithm to 

intelligently estimate the shape of window and doorway openings even when partially occluded. Finally, occluded regions 

on the surfaces are filled in using a 3D inpainting algorithm. We evaluated the method on a large, highly cluttered data set of 

a building with forty separate rooms yielding promising results. 
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1. INTRODUCTION 

In the Architecture, Engineering, and Construction (AEC) 

industry, semantically rich 3D models are increasingly 

used throughout a building’s lifecycle, from the design 

phase, through construction, and into the facility 

management phase. These models, which are generally 

known as building information models (BIMs), are used 

for many purposes, including planning and visualization 

during the design phase, detection of mistakes made during 

construction, and simulation and space planning during the 

management phase. Unfortunately, the BIM created at 

design time vary significantly from what is actually built, 

due to ensuing renovations, for example. For most 

buildings, no design BIM exists at all. As a result, there is 

an increasing interest in creating BIMs of the actual “as-

built” or “as-is” state of a building (both terms are referred 

to as “as-is” hereafter).  

Currently, as-is BIMs are created through a manual 

process, typically using data from laser scanners as input 

(Figure 1) [1]. Laser scanners are placed in various 

locations throughout and around a building, and 3D 

measurements from each location are registered and 

combined to form a cloud of 3D points in a common 

coordinate system. Geometric surface or volumetric 

primitives are fitted to the 3D point cloud to model walls, 

floors, ceilings, columns, beams, and other structures of 

interest. The modeled primitives are annotated with 

identity labels (e.g., wall) and meta-data, such as the 
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surface material (e.g., concrete), and spatial and functional 

relationships between nearby structures and spaces are 

established. Together, this information forms the BIM. 

The as-is BIM creation process is a labor-intensive and 

error-prone operation. Even with training, the result 

produced by one modeler may differ significantly from that 

produced by another person. Our goal is to develop tools to 

help automate this process using techniques from computer 

vision and machine learning [2, 3]. In this paper, we 

summarize our work on automatically creating as-is BIMs 

from laser scan data. Our method takes as input a set of 

registered 3D point clouds obtained from various locations 

in a room, and automatically identifies and models the 

walls, floor, ceiling, and any significant rectangular 

openings (e.g., doorways and windows). Applied to all the 

rooms in a building, our method will automatically produce 

a compact, semantically rich, 3D model which, while not 

strictly a BIM in the traditional sense, contains the 

geometric and identity information that substantially makes 

up the BIM. The remaining steps of labeling windows and 

doorways and converting the model from a surface 

representation to a volumetric representation are the 

subject of ongoing work. 

One of the key challenges to automating the as-is BIM 

creation process is the problem of occlusions. Building 

modeling algorithms are frequently demonstrated on 

simple examples like hallways that are devoid of furniture 

or other objects that would obscure the surfaces to be 

modeled. To be practical, modeling algorithms need to be 

capable of functioning in natural, unmodified environments, 

since it is usually not feasible to remove the furniture prior 

to scanning. Not only do occluding objects block visibility 

of the surfaces of interest, they may also be inadvertently 

interpreted as parts of the model themselves. For example, 

a large cabinet against a wall may look very similar to a 

wall. An automated modeling algorithm must be capable of 

reliably distinguishing between such “clutter” objects and 

the target surfaces. 

Our algorithm addresses the challenges of clutter and 

occlusion by explicitly reasoning about them throughout 

the process. To distinguish clutter from non-clutter, we 

learn a model of what clutter “looks like” and how it is 

different from walls, ceilings, and floors. To understand 

occlusions, we use a ray-tracing algorithm to identify 

regions that are occluded from every viewpoint and to 

distinguish these regions from openings in the surface (e.g., 

due to doorways or windows).  

Broadly, our algorithm consists of two phases. In the 

first phase, planar patches are extracted from the point 

cloud and a context-based machine learning algorithm is 

used to label the patches as wall, ceiling, floor, or clutter. 

These patches are intersected with one another to form a 

simple surface-based model of the room. In the second 

phase, each planar surface is analyzed to identify and 

model the occluded regions and openings. A learning 

algorithm is used to encode the characteristics of opening 

shape and location, which allows the algorithm to infer the 

shape of an opening even when it is partially occluded. An 

inpainting algorithm is used to fill in the occluded regions 

with a realistic surface for visualization purposes. These 
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Figure 1. As-is BIM creation. a) The input data from a single scanner location – reflectance image (top), range image 

(bottom), and close up of highlighted region (right). b) The point data is aligned and combined into a cloud of points. Data 

from four scans was combined to form this point cloud. c) Geometric primitives are modeled to form the BIM. This BIM 

was created manually by a professional service provider. 



two phases are described in more detail in the next two 

sections. Further details may be found in [4] and [5]. 

2. CONTEXT-BASED MODELING 

We hypothesize that context can play an important role in 

recognizing the structures in a building. Distinguishing 

between different types of objects and between clutter and 

non-clutter can be difficult or impossible if those objects 

are seen only in isolation. The context of an object within 

the room can provide the clues needed to recognize it 

successfully. For example, a vertical surface may be a wall 

or an open door (which is considered clutter in this case). 

Both surfaces are large and planar, but a door typically 

does not connect to the ceiling, whereas a wall does. 

Furthermore, a wall is more likely to be parallel or 

perpendicular to other walls in the room. In this way, the 

more easily recognized structures can provide the 

scaffolding that enables the recognition of other, more 

challenging instances.This phase of the algorithm consists 

of four steps (Figure 2).  

Step 1 – Voxelization. The input point cloud is 

discretized in a uniformly spaced 3D grid data structure, 

which is known as a voxel space (Figure 2a). This 

discretization serves to reduce the density of data in areas 

where it is overly dense while maintaining the original data 

density in sparse areas.  

Step 2 – Patch detection. Planar patches are extracted 

from the voxelized data (Figure 2b). Patches are found 

using a region growing algorithm to connect nearby points 

that have similar surface normals and that are well-

described by a planar model. The boundary of a patch is 

described by the minimum area bounding rectangle of the 

constituent points.  

Step 3 – Patch classification. The modeled patches are 

classified according to the possible labels – wall, ceiling, 

floor, or clutter – using a context-based algorithm that is 

modeled using a conditional random field (CRF). The 

classifier uses local features computed on each patch in 

isolation as well as features describing the relationship 

between each patch and its nearest neighbors. We 

experimented with a number of local features, including a 

patch’s orientation with respect to the vertical axis, surface 

area, and height. The contextual relations we considered 

include orthogonal, parallel, adjacent, and coplanar (Figure 

2c).  
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Figure 2. The context-based modeling algorithm consists of four steps, shown for the point cloud from Figure 1: a) 

voxelization; b) patch detection; c) patch classification; d) patch intersection and clutter removal. 



Step 4 – Patch intersection. Finally, the boundaries of 

the patches are cleaned up by intersecting adjacent patches, 

and patches labeled as clutter are removed (Figure 2d).  

The result of this process is a compact model of the 

walls, floor, and ceiling of a room, with each patch labeled 

according to its type.    

3. DETAILED SURFACE MODELING 

The surfaces produced by the first phase represent 

idealized surfaces that are perfectly planar and unoccluded 

and with no openings. Real surfaces in unmodified 

environments, particularly walls, are usually heavily 

occluded, and it is important to understand where those 

occlusions occur. For example, if an engineer wants to 

measure a dimension of a room, he or she would likely 

prefer to make the measurement at a location that was 

actually observed, rather than at an occluded position, 

which might be incorrectly modeled. 

The detailed surface modeling phase of the algorithm 

operates on each planar patch produced by the context-

based modeling process, detecting the occluded regions 

and regions within openings in the surface. The process 

involves three steps for each patch (Figure 3).  

Step 1 – Occlusion Labeling. A voxel space 

encompassing the patch and oriented with it is established. 

A corresponding uniform 2D grid is also established on the 

surface of the planar patch. Information stored in this 2D 

grid can be treated like an image consisting of pixels. The 

pixels in this image are classified into one of three 

categories using a ray-tracing algorithm. By tracing a line 

from the origin of the laser scanner to a detected 

measurement, a pixel is classified as empty if the ray 

passes through the plane of the patch, as occupied if the ray 

stops approximately at the plane, and occluded if the ray 

stops before reaching the plane. The labels from each 

scanner position that observes the patch are combined into 

a single labeling in which a pixel is labeled as occluded if 

it is occluded from every viewpoint (Figure 3a). 

Additionally, some pixels may be unobserved due to the 

sampling resolution of the sensor. These unobserved pixels 

are inferred using an iterative region growing algorithm, 

resulting in a high-resolution labeled image (Figure 3b).  

Step 2 – Opening detection. Detecting openings in 

unoccluded surfaces can be achieved by analyzing the data 

density and classifying low density areas as openings. 

Occlusions make this problem more difficult, since we 

must infer the state of the unseen data. Furthermore, some 

regions within an opening may be labeled as occupied, for 

example, due to a window-mounted air-conditioner. We 

address this problem by learning a model of the appearance 

of openings from training examples. We use a support 
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Figure 3. The detailed surface modeling algorithm, shown for one wall using the results of Figure 2: a) occlusion labeling; 

b) iterative region growing; c) opening detection; d) occlusion reconstruction.  



vector machine (SVM) classifier to label candidate 

openings based on features derived from the label image 

(Figure 3c). Candidate openings are enumerated from 

essential vertical and horizontal lines extracted from a 

composite depth image of the data within the patch. We use 

a number of features as input to the SVM, including 

opening width, height, and distance from the boundaries of 

the patch (sides, and top, and bottom). The resulting 

detections are grouped and a prototype representative is 

selected by averaging the boundary estimates within each 

cluster. 

Step 3 – Occlusion reconstruction. Once the openings 

are determined, the occluded regions of the wall are filled 

in with an inpainting algorithm. This step is not strictly 

necessary, but it improves the visualization of the results 

(Figure 3d). 

4. EXPERIMENTAL RESULTS 

We conducted experiments using data from a building that 

was manually modeled by a professional laser scanning 

service provider. The facility is a two-story schoolhouse 

containing 40 rooms. The facility was scanned from 225 

locations resulting in over 3 billion 3D measurements. 

We evaluated the context-based modeling algorithm 

using this data set. The patch detection resulted in 389 

patches in the interior of the building. The labeling 

algorithm achieved 89% classification accuracy on this 

data.  The highest confusion was between walls and 

clutter. Our experiments suggest that the context aspect of 

our algorithm improves recognition performance by about 

6% and that the most useful contextual features are 

coplanarity and orthogonality. Figure 4 shows some 

example results. The main failures occur in the interiors of 

low built-in closets and in stairwells, both of which are 

atypical situations. Detailed experiments can be found in 

cite [4]. 

We also evaluated the detailed wall modeling algorithm 

using the patches produced by the context-based modeling 

algorithm. The algorithm was able to detect window and 

door openings with 88% (61/69) accuracy. We also 

evaluated the accuracy of the sizes of the modeled 

openings and found that the average error in opening size 

was 4.35 cm.  Figure 5 shows some example results, and 

Figure 6 shows one floor of the entire reconstructed model.  

Further experiments may be found in [5]. 

5. FUTURE WORK 

We are currently working on completing the points-to-BIM 

pipeline by implementing an automated method to convert 

the surface-based representation produced by our algorithm 

into a volumetric representation that is commonly used for 

BIMs. We are also working on extending the algorithm to 

distinguish windows, doorways, and other openings.  

(a) (b)(a) (b)
 

Figure 4. Examples of the context-based modeling algorithm for some other rooms. The right example is a top view of a 

bathroom, in which the stalls and some large cabinets were all successfully distinguished from the walls. 
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Figure 6.  Results for all rooms on the second floor. The 

color scheme is the same as in Figure 5a.  
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Figure 5. Example results of the detailed surface modeling algorithm for entire rooms. a) The room shown in Figure 2. 

Walls, ceilings, and floors are outlined in blue, and windows and doors are outlined in red. b) Another room. c) An example 

where the opening detection failed due to an arched window, which violates the assumptions of the algorithm.  


