
AUTOMATIC CREATION OF SEMANTICALLY RICH 3D BUILDING

MODELS FROM LASER SCANNER DATA

Antonio Adan
1
, Xuehan Xiong

2
, Burcu Akinci

3
, and Daniel Huber

2*

1
Department of Electrical Engineering, Electronics, and Automation,

Castilla La Mancha University, Ciudad Real, Spain

2
The Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA

3
Department of Civil and Environmental Engineering, Carnegie Mellon University, USA

* Corresponding author (dhuber@cs.cmu.edu)

ABSTRACT: Laser scanners are increasingly used to create semantically rich 3D models of buildings for civil engineering

applications such as planning renovations, space usage planning, and building maintenance. Currently these models are

created manually – a time-consuming and error-prone process. This paper presents a method to automatically convert the

raw 3D point data from a laser scanner positioned at multiple locations throughout a building into a compact, semantically

rich model. Our algorithm is capable of identifying and modeling the main structural components of an indoor environment

(walls, floors, ceilings, windows, and doorways) despite the presence of significant clutter and occlusion, which occur

frequently in natural indoor environments. Our method begins by extracting planar patches from a voxelized version of the

input point cloud. We use a conditional random field model to learn contextual relationships between patches and use this

knowledge to automatically label patches as walls, ceilings, or floors. Then, we perform a detailed analysis of the

recognized surfaces to locate windows and doorways. This process uses visibility reasoning to fuse measurements from

different scan locations and to identify occluded regions and holes in the surface. Next, we use a learning algorithm to

intelligently estimate the shape of window and doorway openings even when partially occluded. Finally, occluded regions

on the surfaces are filled in using a 3D inpainting algorithm. We evaluated the method on a large, highly cluttered data set of

a building with forty separate rooms yielding promising results.

Keywords: interior modeling, 3D modeling, scan to BIM, lidar, object recognition, wall analysis, opening detection.

1. INTRODUCTION

In the Architecture, Engineering, and Construction (AEC)

industry, semantically rich 3D models are increasingly

used throughout a building’s lifecycle, from the design

phase, through construction, and into the facility

management phase. These models, which are generally

known as building information models (BIMs), are used

for many purposes, including planning and visualization

during the design phase, detection of mistakes made during

construction, and simulation and space planning during the

management phase. Unfortunately, the BIM created at

design time vary significantly from what is actually built,

due to ensuing renovations, for example. For most

buildings, no design BIM exists at all. As a result, there is

an increasing interest in creating BIMs of the actual “as-

built” or “as-is” state of a building (both terms are referred

to as “as-is” hereafter).

Currently, as-is BIMs are created through a manual

process, typically using data from laser scanners as input

(Figure 1) [1]. Laser scanners are placed in various

locations throughout and around a building, and 3D

measurements from each location are registered and

combined to form a cloud of 3D points in a common

coordinate system. Geometric surface or volumetric

primitives are fitted to the 3D point cloud to model walls,

floors, ceilings, columns, beams, and other structures of

interest. The modeled primitives are annotated with

identity labels (e.g., wall) and meta-data, such as the

mailto:dhuber@cs.cmu.edu

surface material (e.g., concrete), and spatial and functional

relationships between nearby structures and spaces are

established. Together, this information forms the BIM.

The as-is BIM creation process is a labor-intensive and

error-prone operation. Even with training, the result

produced by one modeler may differ significantly from that

produced by another person. Our goal is to develop tools to

help automate this process using techniques from computer

vision and machine learning [2, 3]. In this paper, we

summarize our work on automatically creating as-is BIMs

from laser scan data. Our method takes as input a set of

registered 3D point clouds obtained from various locations

in a room, and automatically identifies and models the

walls, floor, ceiling, and any significant rectangular

openings (e.g., doorways and windows). Applied to all the

rooms in a building, our method will automatically produce

a compact, semantically rich, 3D model which, while not

strictly a BIM in the traditional sense, contains the

geometric and identity information that substantially makes

up the BIM. The remaining steps of labeling windows and

doorways and converting the model from a surface

representation to a volumetric representation are the

subject of ongoing work.

One of the key challenges to automating the as-is BIM

creation process is the problem of occlusions. Building

modeling algorithms are frequently demonstrated on

simple examples like hallways that are devoid of furniture

or other objects that would obscure the surfaces to be

modeled. To be practical, modeling algorithms need to be

capable of functioning in natural, unmodified environments,

since it is usually not feasible to remove the furniture prior

to scanning. Not only do occluding objects block visibility

of the surfaces of interest, they may also be inadvertently

interpreted as parts of the model themselves. For example,

a large cabinet against a wall may look very similar to a

wall. An automated modeling algorithm must be capable of

reliably distinguishing between such “clutter” objects and

the target surfaces.

Our algorithm addresses the challenges of clutter and

occlusion by explicitly reasoning about them throughout

the process. To distinguish clutter from non-clutter, we

learn a model of what clutter “looks like” and how it is

different from walls, ceilings, and floors. To understand

occlusions, we use a ray-tracing algorithm to identify

regions that are occluded from every viewpoint and to

distinguish these regions from openings in the surface (e.g.,

due to doorways or windows).

Broadly, our algorithm consists of two phases. In the

first phase, planar patches are extracted from the point

cloud and a context-based machine learning algorithm is

used to label the patches as wall, ceiling, floor, or clutter.

These patches are intersected with one another to form a

simple surface-based model of the room. In the second

phase, each planar surface is analyzed to identify and

model the occluded regions and openings. A learning

algorithm is used to encode the characteristics of opening

shape and location, which allows the algorithm to infer the

shape of an opening even when it is partially occluded. An

inpainting algorithm is used to fill in the occluded regions

with a realistic surface for visualization purposes. These

(a) (b) (c)(a) (b) (c)

Figure 1. As-is BIM creation. a) The input data from a single scanner location – reflectance image (top), range image

(bottom), and close up of highlighted region (right). b) The point data is aligned and combined into a cloud of points. Data

from four scans was combined to form this point cloud. c) Geometric primitives are modeled to form the BIM. This BIM

was created manually by a professional service provider.

two phases are described in more detail in the next two

sections. Further details may be found in [4] and [5].

2. CONTEXT-BASED MODELING

We hypothesize that context can play an important role in

recognizing the structures in a building. Distinguishing

between different types of objects and between clutter and

non-clutter can be difficult or impossible if those objects

are seen only in isolation. The context of an object within

the room can provide the clues needed to recognize it

successfully. For example, a vertical surface may be a wall

or an open door (which is considered clutter in this case).

Both surfaces are large and planar, but a door typically

does not connect to the ceiling, whereas a wall does.

Furthermore, a wall is more likely to be parallel or

perpendicular to other walls in the room. In this way, the

more easily recognized structures can provide the

scaffolding that enables the recognition of other, more

challenging instances.This phase of the algorithm consists

of four steps (Figure 2).

Step 1 – Voxelization. The input point cloud is

discretized in a uniformly spaced 3D grid data structure,

which is known as a voxel space (Figure 2a). This

discretization serves to reduce the density of data in areas

where it is overly dense while maintaining the original data

density in sparse areas.

Step 2 – Patch detection. Planar patches are extracted

from the voxelized data (Figure 2b). Patches are found

using a region growing algorithm to connect nearby points

that have similar surface normals and that are well-

described by a planar model. The boundary of a patch is

described by the minimum area bounding rectangle of the

constituent points.

Step 3 – Patch classification. The modeled patches are

classified according to the possible labels – wall, ceiling,

floor, or clutter – using a context-based algorithm that is

modeled using a conditional random field (CRF). The

classifier uses local features computed on each patch in

isolation as well as features describing the relationship

between each patch and its nearest neighbors. We

experimented with a number of local features, including a

patch’s orientation with respect to the vertical axis, surface

area, and height. The contextual relations we considered

include orthogonal, parallel, adjacent, and coplanar (Figure

2c).

(a) (b)

(c) (d)

(a) (b)

(c) (d)

Figure 2. The context-based modeling algorithm consists of four steps, shown for the point cloud from Figure 1: a)

voxelization; b) patch detection; c) patch classification; d) patch intersection and clutter removal.

Step 4 – Patch intersection. Finally, the boundaries of

the patches are cleaned up by intersecting adjacent patches,

and patches labeled as clutter are removed (Figure 2d).

The result of this process is a compact model of the

walls, floor, and ceiling of a room, with each patch labeled

according to its type.

3. DETAILED SURFACE MODELING

The surfaces produced by the first phase represent

idealized surfaces that are perfectly planar and unoccluded

and with no openings. Real surfaces in unmodified

environments, particularly walls, are usually heavily

occluded, and it is important to understand where those

occlusions occur. For example, if an engineer wants to

measure a dimension of a room, he or she would likely

prefer to make the measurement at a location that was

actually observed, rather than at an occluded position,

which might be incorrectly modeled.

The detailed surface modeling phase of the algorithm

operates on each planar patch produced by the context-

based modeling process, detecting the occluded regions

and regions within openings in the surface. The process

involves three steps for each patch (Figure 3).

Step 1 – Occlusion Labeling. A voxel space

encompassing the patch and oriented with it is established.

A corresponding uniform 2D grid is also established on the

surface of the planar patch. Information stored in this 2D

grid can be treated like an image consisting of pixels. The

pixels in this image are classified into one of three

categories using a ray-tracing algorithm. By tracing a line

from the origin of the laser scanner to a detected

measurement, a pixel is classified as empty if the ray

passes through the plane of the patch, as occupied if the ray

stops approximately at the plane, and occluded if the ray

stops before reaching the plane. The labels from each

scanner position that observes the patch are combined into

a single labeling in which a pixel is labeled as occluded if

it is occluded from every viewpoint (Figure 3a).

Additionally, some pixels may be unobserved due to the

sampling resolution of the sensor. These unobserved pixels

are inferred using an iterative region growing algorithm,

resulting in a high-resolution labeled image (Figure 3b).

Step 2 – Opening detection. Detecting openings in

unoccluded surfaces can be achieved by analyzing the data

density and classifying low density areas as openings.

Occlusions make this problem more difficult, since we

must infer the state of the unseen data. Furthermore, some

regions within an opening may be labeled as occupied, for

example, due to a window-mounted air-conditioner. We

address this problem by learning a model of the appearance

of openings from training examples. We use a support

(a) (b)

(c) (d)

(a) (b)

(c) (d)

Figure 3. The detailed surface modeling algorithm, shown for one wall using the results of Figure 2: a) occlusion labeling;

b) iterative region growing; c) opening detection; d) occlusion reconstruction.

vector machine (SVM) classifier to label candidate

openings based on features derived from the label image

(Figure 3c). Candidate openings are enumerated from

essential vertical and horizontal lines extracted from a

composite depth image of the data within the patch. We use

a number of features as input to the SVM, including

opening width, height, and distance from the boundaries of

the patch (sides, and top, and bottom). The resulting

detections are grouped and a prototype representative is

selected by averaging the boundary estimates within each

cluster.

Step 3 – Occlusion reconstruction. Once the openings

are determined, the occluded regions of the wall are filled

in with an inpainting algorithm. This step is not strictly

necessary, but it improves the visualization of the results

(Figure 3d).

4. EXPERIMENTAL RESULTS

We conducted experiments using data from a building that

was manually modeled by a professional laser scanning

service provider. The facility is a two-story schoolhouse

containing 40 rooms. The facility was scanned from 225

locations resulting in over 3 billion 3D measurements.

We evaluated the context-based modeling algorithm

using this data set. The patch detection resulted in 389

patches in the interior of the building. The labeling

algorithm achieved 89% classification accuracy on this

data. The highest confusion was between walls and

clutter. Our experiments suggest that the context aspect of

our algorithm improves recognition performance by about

6% and that the most useful contextual features are

coplanarity and orthogonality. Figure 4 shows some

example results. The main failures occur in the interiors of

low built-in closets and in stairwells, both of which are

atypical situations. Detailed experiments can be found in

cite [4].

We also evaluated the detailed wall modeling algorithm

using the patches produced by the context-based modeling

algorithm. The algorithm was able to detect window and

door openings with 88% (61/69) accuracy. We also

evaluated the accuracy of the sizes of the modeled

openings and found that the average error in opening size

was 4.35 cm. Figure 5 shows some example results, and

Figure 6 shows one floor of the entire reconstructed model.

Further experiments may be found in [5].

5. FUTURE WORK

We are currently working on completing the points-to-BIM

pipeline by implementing an automated method to convert

the surface-based representation produced by our algorithm

into a volumetric representation that is commonly used for

BIMs. We are also working on extending the algorithm to

distinguish windows, doorways, and other openings.

(a) (b)(a) (b)

Figure 4. Examples of the context-based modeling algorithm for some other rooms. The right example is a top view of a

bathroom, in which the stalls and some large cabinets were all successfully distinguished from the walls.

ACKNOWLEDGEMENTS

This material is based upon work supported by the

National Science Foundation under Grant No. 0856558 and

by the Pennsylvania Infrastructure Technology Alliance.

Any opinions, findings, and conclusions or

recommendations expressed in this material are those of

the authors and do not necessarily reflect the views of the

National Science Foundation. We thank Quantapoint, Inc.,

for providing experimental data.

REFERENCES

[1] P. Tang, D. Huber, B. Akinci, R. Lipman, et al.,

“Automatic Reconstruction of As-built Building

Information Models from Laser-Scanned Point

Clouds: A Review of Related Techniques,”

Automation in Construction, vol. 19, pp. 829-843,

November 2010.

[2] D. Huber, B. Akinci, P. Tang, A. Adan, et al., “Using

Laser Scanners for Modeling and Analysis in

Architecture, Engineering, and Construction,” in

Proceedings of the Conference on Information

Sciences and Systems (CISS), Princeton, NJ, 2010.

[3] B. Okorn, X. Xiong, B. Akinci, and D. Huber,

“Toward Automated Modeling of Floor Plans,” in

Proceedings of the Symposium on 3D Data

Processing, Visualization and Transmission, Paris,

France, 2010.

[4] X. Xiong and D. Huber, “Using Context to Create

Semantic 3D Models of Indoor Environments,” in

Proceedings of the British Machine Vision

Conference (BMVC), 2010.

[5] A. Adan and D. Huber, “3D Reconstruction of

Interior Wall Surfaces Under Occlusion and Clutter,”

in in Proceedings of 3D Imaging, Modeling,

Processing, Visualization and Transmission

(3DIMPVT), Hangzhou, China, 2011 (in press).

Figure 6. Results for all rooms on the second floor. The

color scheme is the same as in Figure 5a.

(a) (b) (c)(a) (b) (c)

Figure 5. Example results of the detailed surface modeling algorithm for entire rooms. a) The room shown in Figure 2.

Walls, ceilings, and floors are outlined in blue, and windows and doors are outlined in red. b) Another room. c) An example

where the opening detection failed due to an arched window, which violates the assumptions of the algorithm.

