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Malignant Mesothelioma (MM) is a very aggressive cancer with low survival rates and often diagnosed at an
advanced stage. Several players have been implicated in the development of this cancer, such as asbestos, erionite
and the simian virus 40 (SV40). Here, we have reviewed the involvement of erionite, SV40, as well as, the role of
several genes (p16INK4a, p14ARF, NF2, LATS2, SAV, CTNNB1 and among others), the pathways (RAS, PI3K, Wnt, BCL
and Hippo), and their respective roles in the development of MM.
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1. An introduction to Malignant Mesothelioma

Malignant Mesothelioma (MM) is a slow-growing solid tumor
arising frommesothelial cells that can develop in the pleural space, peri-
cardium, peritoneum, tunica vaginalis testis and ovarian epithelium. In
its early stage, it is not common for these tumors to suffer metastasis
[1]. MM is divided into three categories according to its histological
morphology: epithelial, biphasic, and sarcomatoidwithmedian survival
period of 18, 11, and 8 months, respectively [2]. Moreover, MMdisplays
a long latency period that can take up to 40 years [3]. During this period,
there is an accumulation ofmutations on several key genes [4]. In theUS
alone, it is expected 70,000 new cases of MMover the next 20 years [5].

TheMalignant PleuralMesothelioma (MPM) is an aggressive form of
cancer that affects the pleura. MPM is known to be very aggressive, and
it is often diagnosed at a very advanced stage, which contributes to its
very poor prognosis with a median survival of 11 months [6].

It has been more than 50 years since the first study correlating
asbestos to the development of MM [7]. Evidence has shown a strong
relationship between asbestos exposure andMM[8]. Exposure to simian
virus 40 (SV40) [9], erionite [10], and genetic predisposition have been
also implicated in the development of MM [11].

1.1. An overview of molecular biology of MM

MM frequently displays chromosomal loss involving the chromo-
somes 1, 3, 4, 6, 9, 13, 14 and 22 [12]. The most common genetic alter-
ations in MM are the homozygous deletion of p16INK4a and p14ARF

genes. It was found a homozygous deletion of p16INK4a and p14ARF in
72% of MM [13]. In addition, homozygous deletion of the p16INK4a was
present in approximately 75% of MM, and it was associated with a
more aggressive cancer, and with a reduction on survival [14].

The tumor suppressor Neurofibromatosis type II (NF2) has been
reported to be altered in MM. NF2 inactivation is a frequent event in
MM with rates ranging from 20% to 60% [15]. The NF2 gene encodes
for the Merlin protein that is associated with the inhibition of several
mitogenic signaling pathways [16].

The guardian of the DNA, the protein p53, is encoded by the TP53.
The p53 plays a crucial role in the cellular response to DNA damage,
and its expression is lost in many advanced cancers [17]. However, in
MM only 20–25% of the tumors display mutations on TP53, a fairly low
rate when comparing to other cancers [18]. In recent studies using
MM samples, it was reported an overexpression of p53 in 58.2% [19],
and in 81% of the cases [20].

The phosphatase and tensin homolog (PTEN), also known asMMAC
(mutated inmultiple advanced cancers) is a dual lipid and protein phos-
phatase encoded by the PTEN, which is a tumor suppressor gene (TSG)
located on chromosome 10q23. PTEN is known to negatively regulate
the AKT pathway; thus the loss of PTEN expression increases AKT path-
way activation, which ultimately leads to an uncontrolled cell growth
[21–23].
New studies have demonstrated that other genes play important
roles inMM. Germlinemutation of BAP-1 has been identified in a cancer
syndrome predisposing individuals to cancer, including MM; further-
more, it has also been shown BAP-1 somatic mutations in MM samples
[24]. Likewise, the LATS2 has been recently implicated in the develop-
ment of MM [25]. DNAmethylation andMicroRNA (miRNA) expression
have exhibited significant roles in MM, as it is described later on.

The PI3K/AKT/mTOR pathway is altered in MM and plays an impor-
tant role in cell proliferation, survival and motility in many cancers. In
62% of MM cell lines, AKT activation was reported [26]. In another
study, it was shown that 65% of human MM species displayed elevated
levels of AKT activity [22].

Furthermore, other pathways are dysregulated inMM. The Receptor
Tyrosine Kinases (RTKs) drive cell proliferation, survival, differentiation
and cell cycle control. Several mechanisms can activate this pathway in
cancer providing a good therapeutic option. The overexpression of the
epidermal growth factor receptor (EGFR) plays an important role in
the progression of several cancers [27]. In a study, the EGFRwas present
in 44% of MM samples; however, it is not found to be an independent
prognostic factor [28].

The Vascular Endothelial Growth Factor Receptors (VEGF) are a
potent inducer of the angiogenesis, and its role in the cancer is well
established [29]. High levels of VEGF in MM have been demonstrated,
being associated with a worse patient survival [30]. Moreover, the
importance of this receptor in regulating the angiogenesis, and tumor
progressionwas established; thusmaking this pathway as a therapeutic
target in MM [31].

The retinoblastoma protein (pRb) pathway plays an important role
in apoptosis and cell cycle regulation. Mutation on pRb is common in
many cancers, but not in MM [32]. Nevertheless, the pRb and p53 path-
ways play an important role in MM. The p16INK4a and p14ARF exert
effects on the pRb and on p53 pathways. The p16INK4a inhibits the cyclin
dependent kinases (CDks), preventing the inactivation of pRb; on the
other hand, the p14ARF promotes degradation of MDM2, leading then
to the stabilization of p53 [33]. Indeed, mutations on TP53 and on RB
are not a common event in MM; however mutations and/or alterations
on p16INK4a/p14ARF are very common. Thus, alterations and/ormutations
on p16INK4a/p14ARF have the potential to disrupt key cell cycle control
pathways.

The BCL-2 family of genes exerts a critical role in the apoptosis pro-
cess. There are several proteins, which are divided into proapoptotic and
antiapoptotic proteins. The proapoptotic proteins are thought to pro-
mote the permeability of themitochondrialmembranes, thus promoting
the apoptosis; on the other hand, the antiapoptotic proteins are thought
to inhibit cells from undergoing programmed death. Studies have found
that BCL-2 expression is inversely associated with apoptosis; however
this protein is not frequently expressed in MM [34,35]. High levels of
BCL-XL are a common event in MM; however, downregulation of
BCL-XL increases apoptosis and the cystostatic effects of cisplatin and
gemcitabine [36].
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The hippo pathway controls cell proliferation, growth, differentia-
tion and death [37], and it has been implicated in the development of
MM [38,39]. TheWnt pathway plays a fundamental role in the determi-
nation of cell fate, proliferation, polarity, and cell death during embry-
onic development [40]. The Wnt signaling pathway has been reported
in MM [41]. Therefore, it is clear that there are several players, genes,
and pathways involved in MM, all of which are described in depth in
the following sections.

1.2. Asbestos and MM

We have recently reviewed the role of asbestos in MM and its
carcinogenic mechanisms, which are summarized in Fig. 1. In this
same work, we have also reviewed the roles of PTEN and TP53 in the
development of MM [42].

1.3. SV40 and MM

The Simian virus 40 (SV40) is a DNAmonkey virus that was present
in contaminated polio vaccines produced from 1955 to 1978. It is
believed, that this is the most likely route of SV40 transmission into
humans [43]. Furthermore, the SV40 has been implicated in MM [44].
It was observed that specific SV40 viral sequences were present in 57%
of epithelial invasiveMM[45]. In another study, initially, it was reported
the presence of SV40 in 60% ofMM samples; then later on, it was shown
that these findings were incorrect due to plasmid contamination, and
that only 6% of the positive samples had the presence of SV40 DNA
[46]. Recently, an Italian study in a hyperendemic area of MM has
detected SV40 DNA in 22% of theMM tumors with a low viral load [47].

Negative results have also been published. In a study, the authors
have reported that SV40 was absent in 69 (100%) MM tumors [9].
Another study has reached the similar conclusion [48]. Recently, no
SV40was detected in KoreanMM samples [49], and similar conclusions
has reached a recent study in Slovenia [50]. Thus, these contradictions in
Fig. 1. It is represented themost commonplayers involved in the development ofMM. Asbestos
plays an important role in the development of MM through the involvement of TNF-α, Nf-K
important role as a co-carcinogenic factor in MM. Lastly, germline mutation on BAP-1 confers p
the literature have caused a huge controversy regarding the role of SV40
inMM. Until now, at least 50 laboratories have detected the presence of
SV40 in human tumors using a great variety of molecular biology tech-
niques; and thus raising even more the controversy about the role of
SV40 in MM [51]. For instance, 100% of animals injected with SV40 in
the pleural tissue developed MM within 6 months [52], thus showing
a relationship between SV40 andMM, at least in animal studies. Besides,
the relationship and the controversy between SV40 and MM have been
extensively addressed by Qi et al. [51].

However, an animal study has shown that SV40 alone was not able
to cause MM, only asbestos exposure caused 20% of MM, and remark-
ably, asbestos and SV40 together caused 90% of MM in hamsters. This
study has shown that lower amounts of asbestos may cause MM in
animals infected by SV40 [43], and similar conclusions have been
found by another study [53]. Therefore, these studies indicate that the
levels of asbestos exposure that are considered “safe” for the whole
population, may not be for those who were previously exposed to
SV40. Lastly, a recent study has shown that long-term exposure to
asbestos in SV40 infected cells generates resistance to chemotherapy-
induced apoptosis [54].

Themechanisms behind SV40 carcinogenic activity are indeed com-
plex, and not fully understood. The SV40 oncogenic activity rests on the
production of twomajor proteins: the small t antigen (tag) and the large
T antigen (TAG). It is known that TAG is able to inactivate several tumor
suppressor genes, such as TP53 and RB. These genes encode key proteins
to the cell cycle checkpoints, and the loss of these proteins leads to
uncontrolled cell proliferation [53]. Furthermore, the tag protein
inhibits the cellular phosphatase 2A (PP2A), which is involved in the
dephosphorylation of many protein substrates, including elements of
the MAPK pathway (Fig. 1). Consequently, the loss of PP2A by tag may
alter the activity of several phosphoproteins [55]. In addition to these
classical mechanisms, it was recently shown that TAG-p53-pRb-p300
complex regulates the transcription of the insulin-like growth factor I
(IGF-1) gene by binding to the IGF-1 promoter. In other words, there
causesDNA damage, apoptosis resistance, chronic inflammation and genotoxicity. Erionite
b and IL-1β. The oncoproteins of SV40 interact with p53 and pRb pathways playing an
redisposition to MM.
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is an increase of IGF-1 production, which leads to enhanced cell growth
[56]. Moreover, it has also been shown the involvement of SV40 in the
expression of VEGF [57], and in the increase of telomerase activity in
MM cells [58].

Taken altogether, it is still not clear the direct carcinogenic effects of
SV40 in MM in humans; however, it is widely accepted the role of SV40
as a co-carcinogenic player in association with asbestos in the develop-
ment of MM [51,59].

1.4. Erionite and MM

It has been reported cases of MM without any previous known
contact with asbestos particles, in other words, not all MM cases are eti-
ologically related to asbestos exposure [60]. Indeed, it is often wrongly
assumed that only asbestos causes MM, but in fact, other agents have
been implicated in the development of MM, among these agents, the
mineral erionite.

The erionite is a fibrous form of the zeolite group of minerals, which
is several times more carcinogenic than crocidolite asbestos in causing
MM[10,61]. The relationship between erionite andMMwasfirst studied
in some villages in Turkey, where a strong correlation between erionite
exposure and MM incidence was found [62,63]. The names of the
villages first described were Karain, Tuzköy and Sarihidir, and at that
time, there were approximately 5000 people living in these villages.
The mortality rate due to MPM among Karain village was 8 deaths/
1000 inhabitants/year; in addition to 52% of deaths related to MM
from 1970 to 1994 [64]. Therefore, these studies have shown that
erionite is a strong inducer of MM in humans.

Until recently, erionite exposure was believed to be a health prob-
lem only in Turkey; however, this has changed dramatically with the
discovery of the first erionite related MM case in the US [65], and also
with the first reported case of a patient with erionite-associated pleural
mesothelioma in North America [66]. Astonishing evidence has shown
that over the past 30 years more than 300 miles of road was surfaced
with erionite-containing gravel in Dunn County, North Dakota, USA. In
this same study, it has been reported that the airborne concentration
Fig. 2. The role and function of p16INK4a/p14ARF in the cell cycle control, apop
of erionite in several places was equal or exceeded the concentrations
found in Turkish villages known to have a high incidence of MM
induced by erionite [67].

Consequently, asbestos and erionite likely share the mechanisms of
toxicity and carcinogenesis [68,69]; in addition, erionite is able to
induce the transformation of human mesothelial cells (MET5-A), but
on the other hand, asbestos is not able to cause such transformation
[70]. Furthermore, it has been speculated that theHMGB1 (Highmobility
group box 1) (Fig. 1) is a critical initiator of the chronic inflammation in
erionite exposed individuals with the release of IL-1β and TNF-α [69]. It
has been reported that erionite activates NLRP3 inflammasome in
human mesothelial cells, which is associated with the release of IL-1β,
IL-6, IL-8 and VEGF, and with the activation of an autocrine feedback
loop modulated via the IL-1 receptor. Likewise, it has been shown that
IL-1 receptor blocking may play an important role in inhibiting MM
growth and progression [71].

2. Genes and MM

2.1. p16INK4a/p14ARF

Located at the 9p21 chromosome, the p16INK4a/p14ARF (also known
as CDKN2A/ARF) are important tumor suppressor genes, which encode
two functionally unrelated proteins, the p16INK4a and the p14ARF (also
known as p19ARF in mice). These proteins have unique first exons (1α
and1β), but share exons 2 and3,which are translated fromanalternative
reading framewith no amino acid homology [72]. The same locus harbors
another tumor suppressor gene (TSG) called p15INK4B (also known as
CDKN2B), which encodes the protein p15INK4B, a CDK (cyclin-dependent
kinase) inhibitor known to be induced by TGF [73].

The p16INK4a is a CDK inhibitor, and acts by inhibiting the CDK-
mediate hyperphosphorylation that leads to pRb inactivation, while
p14ARF regulates p53 function by inhibiting p53 degradation through
MDM2 interaction [27,74]. p16INK4a maintains pRb in its active
hypophosphorylated form by disrupting the CDK4/6-cyclin D complex,
leading to G1-phase cell cycle arrest (Fig. 2). Thus, both p16INK4a and
tosis and their interaction with other key regulatory cell cycle proteins.

image of Fig.�2
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p14ARF are key cell cycle regulators due to their role in the p53 and the
pRb pathways [75]. Therefore, genetic defects in the p16INK4a/p14ARF are
able to lead to loss of function on both p53 and Rb pathways, which are
key players to a regulated cell cycle control (Fig. 3).

2.1.1. Role of p16INK4a/p14ARF and MM
The p16INK4a/p14ARF have been implicated in the development of

human cancers [76–78]. This is no different in MM, in which these
genes have been extensively shown to be inactive. It has been shown
homozygous deletions of p16INK4a in 85% of mesothelioma cell lines
[79], abnormal p16INK4a expression in all primary mesothelioma speci-
mens and cell line [32], and codeletion of p16INK4a and p15INK4B in 72%
of primary mesotheliomas [13]. Regarding the histological type, MM
epithelioid samples have shown approximately 70% of p16INK4a/p14ARF

homozygous deletions; the sarcomatoid and biphasic have shown
approximately 100% of homozygous deletions [80–83]. Loss of the
9p21 locuswasobserved in 32% ofMMcases. Furthermore, intermediate
methylation values were observed in the promoter region of the
p16INK4a/p14ARF in MM samples with no changes on the prognosis [84].
Further studies are summarized in Table 1.

Genetic engineering has been a great asset in better understanding
the functions of these genes. Thus, a knockout mouse for p19ARF, but
expressing p16INK4a develops tumors early in life [85]. Similar results
have been found using knockoutmice for p16INK4a [86]. Not surprisingly,
knockoutmice for both p16INK4a/p19ARFweremore prone to the sponta-
neous development of tumors at an early age, and highly sensitive to
carcinogenic treatments [87].

Although, several studies have shown loss of p16INK4a/p14ARF in MM,
only recently a knockout mice model for p19ARF have been developed,
showing that the inactivation of this gene plays a significant role in
driving MM pathogenesis [88]. Furthermore, an interesting study has
shed more light on the role of both genes in the development of MM
related to asbestos exposure. In this study, mice deficient for
p16INK4a(+/−), p19ARF (+/−), and those with double deficiency
(p16INK4a(+/−)/p19ARF (+/−)) were exposed to asbestos. The mice
p16INK4a (+/−)/p19ARF (+/−) displayed accelerated asbestos-induced
MM in comparison to p16INK4a(+/−) or p19ARF (+/−) mice alone. The
Fig. 3. The involvement of key genes and their respective proteins in the development of M
modulation, respectively. The NF2 encodes the protein Merlin, LAST2 encodes the protein LAST
play an important role in the hippo pathway. BAP-1 encodes theprotein BAP-1 that plays an imp
are key players responsible for regulating the circadian rhythm control.
p16INK4a (+/−) mice displayed bi-allelic inactivation of p16INK4a, loss of
the p14ARF or p53 expression, and frequent loss of p15INK4b; on the
other hand, mice p19ARF (+/−) exhibited loss of p19ARF expression, but
no loss of p16INK4a or p15INK4b [89].

Thus, this study clearly shows that both genes play significant, and
not redundant roles in MM, and their inactivation increases the tumor-
igenesis causedby asbestos exposure. Another interestingfindingof this
study was that p53 remained functional even in the absence of p19ARF,
thus showing that p19ARF loss contributes to MM progression via p53-
independent pathway(s) [89], as it has been confirmed by other studies
[36,88].

2.1.2. p16INK4a/p14ARF gene therapy
Gene therapy has been growing considerably in the last decade

especially in Mesothelioma due to the poor response to the tradi-
tional chemotherapy. It has been shown previously, that loss of the
p16INK4a/p14ARF is themost common event in MM, and thus therapies
targeting the re-expression of these genes in mesothelioma cell lines
have shown interesting results. It has been demonstrated, that the
transduction of p16INK4a expressing adenovirus in mesothelioma
cells resulted in cell cycle arrest, inhibition of pRb phosphorylation,
diminished cell growth, and eventual death of the transduced cells
[90]. Likewise, in a human mesothelioma xenografts study, the re-
expression of the p16INK4a led to: an increase in survival [91]; an in-
crease in p53 protein levels; a reduction on the phosphorylation of
pRb, as well as G1-phase cell cycle arrest and apoptotic cell death [12].
The re-expression of p16INK4a/p14ARF using different vectors did not
show better results in comparison to the single re-expression of the
p16INK4a [92]. Taken altogether, gene therapy targeting both genes
seems to have promising results. The clinical gene therapy trials for me-
sothelioma has been recently revised elsewhere [93].

2.2. NF2

TheNeurofibromatosis type 2 (NF2) is a dominantly inherited tumor
predisposition syndrome characterized by the development of bilateral
vestibular schwannomas of the eighth cranial nerve, and by other brain
M. The proteins p16INK4a and p14ARF are involved in pRb pathway activation and in p53
2, β-catenin is encoded by CTNNB1, and SAV encodes the protein SAV, thus these proteins
ortant role inDNAdamage response and in cell cycle control. The genes Cry, Per and Bmal-1
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Table 1
Methods in each study vary with different sensitivity/specificity rates, and definitions of mutations. The methodologies described in the table are the main methods used, but
more methods may have been applied. Fish = Fluorescence in situ hybridization; MM = Malignant Mesothelioma; HMM = Human Malignant mesothelioma; SSCP = single-strand
conformation polymorphism.

Evaluation of p16INK4a/p14ARF expression in MM

Study Methodology Main results

p16 alterations and deletion mapping of 9p21–p22
in Malignant Mesothelioma [79]

Southern Blot and PCR.
40 cell lines and 23 primary tumors.

Homozygous deletion of p16INK4a in 34 (85%) cell lines
and in 5 (22%) of primary tumors

p16 deletion in sarcomatoid tumors of the lung and pleura [249] FISH
Sarcomatoid malignant mesotheliomas samples

Deletion of 9p21 in 26 of 32 (81%) in malignant
mesotheliomas

Codeletion of p15 and p16 in primary malignant
mesothelioma [13]

FISH
Primary mesotheliomas samples

Codeletion of p15INK4b and p16INK4a in 72% of
mesotheliomas

Genomic profiling of malignant pleural mesothelioma
with array-based comparative genomic hybridization shows
frequent non-random chromosomal alteration regions including
JUN amplification on 1p32 [247]

Genome-wide array-based CGH, RT-PCR
9 MPM cell lines and 17 MPM samples;

p16INK4a/p14ARF deletion was found in 7 (41%) MPM
samples and in 9 (100%) MPM cell lines.

Diagnostic importance of 9p21 homozygous deletion in malignant
mesotheliomas [83]

FISH
Pleural mesothelioma and Peritoneal mesothelioma
samples

Homozygous deletion of the 9p21 in 35 of 52 cases
(67%) of pleural mesothelioma and in 5 of 20 cases of
peritoneal mesothelioma (25%)

Establishment and characterization of four malignant pleural
mesothelioma cell lines from Japanese patients [248]

PCR, SSCP analysis and Western Blot
4 HMM cell lines

p16INK4a/p14ARF in all four HMM cell lines

9p21 deletion in the diagnosis of malignant mesothelioma
in serous effusions additional to immunocytochemistry,
DNA–ICM, and AgNOR analysis [81]

FISH
Malignant mesothelioma patient samples

9p21 homozygous deletion in 48.5%, heterozygous
deletion in 36.4%

Promoter methylation of RASSF1A, RARÎ2 and DAPK predict
poor prognosis of patients with malignant mesothelioma [84]

Nested methylation-specific PCR DNA of mesothelioma
patients

p16INK4a and p14ARF promoter region methylation
in 28.2% and 44.2%, respectively

Morphology of 9p21 homozygous deletion-positive pleural
mesothelioma cells analyzed using fluorescence in situ
hybridization and virtual microscope system in effusion
cytology [250]

FISH
15 epithelioid MPM

12 positive for a homozygous deletion and 3 positive for
both homozygous and heterozygous deletions
with a predominantly heterozygous pattern

9p21 deletion in the diagnosis of malignant mesothelioma,
using fluorescence in situ hybridization analysis [82]

FISH
Malignant mesothelioma patient samples

9p21 deletion in 35 of 40 (88%) cases with MM

Genomic gains and losses in malignant mesothelioma
demonstrated by FISH analysis of paraffin-embedded
tissues [249]

FISH
Malignant mesothelioma patient samples

Loss p16INK4a/p14ARF in epithelioid 23/30 (77%) and
biphasic/sarcomatoid 12/12 (100%) mesotheliomas

Immunohistochemical analysis of the p16INK4
cyclin-dependent kinase inhibitor in malignant
mesothelioma [32]

Immunohistochemical analysis and Immunoblot.
Primary thoracic mesotheliomas and mesothelioma
cell lines

Abnormal p16INK4a protein expression in 12 of
12 primary mesothelioma specimens and in 15 of
15 mesothelioma cell lines

Homozygous deletion of CDKN2A/ARF and codeletion of the
methylthioadenosine phosphorylase gene in the majority
of pleural mesotheliomas [247]

FISH
Pleural mesothelioma samples

p16INK4a/p14ARF homozygous deletion in 70 samples
(74%). Homozygous loss of p16INK4a/p14ARF in 49
of 71 epithelial (70%), 16 of 19 biphasic (89%)
and 5 of 5 sarcomatous (100%) mesotheliomas.
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tumors, includingmeningiomas and ependymomas [94]. This syndrome
is caused by mutations and lack of expression of the tumor suppressor
gene NF2 (Fig. 3), which is located on chromosome 22q12, and encodes
the 595 amino acid protein called Merlin (Moesin-ezrin-radixin-like
protein) [95].
Table 2
Methods in each study vary with different sensitivity/specificity rates, and definitions of mu
methodsmay have been applied. MM=Malignant Mesothelioma; HMM= Humanmalignant
hybridization (CGH).

Evaluation of NF2 expression in MM

Study Methodology

Frequent mutations of NF2 and allelic loss from
chromosome band 22q12 in malignant mesothelioma:
Evidence for a two-hit mechanism of NF2 inactivation [251]

Western blot and DNA seque
25 MM cell lines

Heterogeneity of mesothelioma cell lines as defined by altered
genomic structure and expression of the NF2 gene [252]

Northern blot, RT-PCR and P
18 HMM cell lines

Establishment and characterization of four malignant pleural
mesothelioma cell lines from Japanese patients [248]

PCR, SSCP analysis and West
4 HMM cell lines

Genomic profiling of malignant pleural mesothelioma with
array-based comparative genomic hybridization shows
frequent non-random chromosomal alteration regions
including JUN amplification on 1p32 [247]

Genome-wide array-based C
9 MPM cell lines and 17 MPM
2.2.1. NF2 and MM
In 1995, two groups first demonstrated that this gene was mutated

in approximately 40–50% of MM, and its inactivation was important in
the tumorigenesis of MM [95,96]. Follow-up studies have confirmed
the importance of this gene in the development of MM, and are
tations. The methodologies described in the table are the main methods used, but more
mesothelioma; SSCP= single-strand conformation polymorphism; Comparative genomic

Main results

nce analyses 14 of 25 (56%) showed no NF2 expression; 18 of 25 (72%) showed
losses at one or both loci tested.

CR. NF2 alterations were identified at a genomic level in 7 (39%) cell lines
and were associated with a marked decrease in the concentration of the
NF2 transcript.

ern Blot A point mutation of NF2 was observed in 1 cell line.

GH, RT-PCR
samples;

Small deletions resulting in frameshift mutation were found in 3 (18%)
MPM samples.
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summarized in Table 2. Furthermore, recent studies have strengthened
this data. A study has found that 38% ofMPM samples displayedNF2mu-
tation, and 29.4% displayed deletions, while no NF2mutation was found
in non-small cell lung cancer patients [97]. It has been shown that 38% of
MMsamples display chromosomal loss at 22q12 [82];moreover, theNF2
was hypothesized to be an early molecular alteration due to loss of het-
erozygosity in a well-differentiated papillary mesothelioma of the peri-
toneum (WDPMP), a rare type of mesothelioma [98]. Not surprisingly,
miRNA expression targeting NF2 has been reported in MM [99].

In order to better understand the role of NF2 in MM development,
animal models have shed some light on the role of this gene. Altomare
et al. [22] developed a NF2 (+/−) knockout mice and an environmental
carcinogenesis model. The asbestos-exposed NF2 (+/−) mice exhibited
an increase in tumor development, in comparison to the wild-type
mice; in addition, it was observed biallelic inactivation in all nine
asbestos-induced MM from NF2 (+/−) mice. Lastly, it was shown that
tumors from NF2 (+/−) mice frequently showed homozygous deletion
of the p16INK4a, p14ARF and p15INK4B, which is a similar feature of human
MM. Following this line, Jongsma et al. [100], using a conditional knock-
out animalmodel, showed the importance ofNF2, TP53 and p16INK4a and
p14ARF on the development of MM.

Taken altogether, these animal studies resembling molecular
features of human MM are important to better understand the roles of
these genes, and also to design better treatment approaches targeting
relevant pathways.

2.2.2. NF2 gene therapy
The overexpression ofNF2by viral vectors has been shown in several

other cancers with interesting results on the cell cycle control and pro-
liferation [101–104]. In MM, the re-expression of NF2 led to significant
inhibition on cellular proliferation and invasiveness [105], cell prolifer-
ation inhibition, G1 phase arrest, reduction on cyclin D1 expression,
inhibition of CDK4 activity, and dephosphorylation of pRb [106].

2.3. BAP-1 and MM

Genetic susceptibility has been related to the development ofMM. In
a study in Turkish villageswith high incidence ofMM, it was shown that
MM was genetically transmitted likely in an autosomal dominant way
[107]. Another study has found that family members genetically
predisposed to MM, when raised outside the villages did not seem to
develop MM; in addition, when high-risk MM family members married
into families with no history of MM, MM appeared in the descendants
[108]; however, the effects of genetic factors on MM have been
questioned [109].

On the other hand, very recently more solid evidence has been
reported. The BAP1 (BRCA1-associated protein 1) is a tumor suppressor
gene located on chromosome 3p21 and encodes the BAP1, which is a
deubiquitinating enzyme that seems to regulate deubiquitination
during DNA damage response, and the cell cycle (Fig. 3). In recent
times, it has been shown BAP1 germline mutations in two families with
high incidence of MM, and thus characterizing the existence of a BAP1-
related cancer syndrome known by the presence of MM, uveal melano-
ma, [11,24,110], and possibly other types of cancer [111]. Furthermore,
BAP1 somatic mutations have been identified in 23% of sporadic meso-
thelioma [112]. Interestingly, the lack of BAP1 activity has been shown
to be more specifically involved in the pathogenesis of epithelioid MM
rather than non-epithelioid MM [113]. A recent clinical study has
shown that indeed 20% of MPM tumors harbor BAP1 somatic mutations;
however, no difference in survival was found when comparing with
BAP1 mutation status [114]. On the other hand, conflicting data has
been reported, in which high levels of BAP1 (non-mutated form) expres-
sion was related to shorter overall survival in MPM tissue samples [115].

The role of BAP1 in the development of MM and other cancers, as
well as its mutations have been recently addressed [116]. Furthermore,
germline mutation on BAP1 confers increased susceptibility for the
development of MM and among other tumors [117], while somatic
mutations have been shown to implicate transcriptional dysregulation
in the pathogenesis of MPM. Taken altogether, genetics have been
extensively implicated in the development and predisposition of MM,
and in a near future the outcomes from these studies will help not
only to better treat, but also to prevent more cases of MM, especially
in those individuals more prone to its development.

2.4. LATS2

LATS (Large Tumor Suppressor)wasfirst foundas a tumor suppressor
inDrosophila [118]. In humans the LATS1 and LATS2 have been identified,
the latter one residing in a region (13q11-12), which frequently displays
loss of heterozygosity in primary cancers [119,120]. The human LATS2
(Fig. 3) is a centrosomal protein, known to play an important role in
themitotic division [121], inmediatingHippo growth-inhibitory signal-
ing [37], and to activate p53 [122]. The function of LATS in the cancer
realm has been recently reviewed, and will not be further discussed
here [123].

2.4.1. LATS2 and MM
Using CGH (Comparative genomic hybridization) analysis in 14 MM

cell lines, three MM cell lines displayed homozygous deletion at
13q12.11, which was confirmed by PCR analysis; moreover, in 20 MM
cell lines, 7 genetic mutations of LATS2 were found; in addition, 3 of
25 (12%) primary tumors displayed genetic alterations that led to inac-
tivation. In the same study, the transduction of LATS2 in MM cells carry-
ing mutations in this gene led to MM cell proliferation suppression.
Therefore, LATS2 seems to play an important role in cell proliferation
and survival; however further studies are needed in order to confirm
whether this gene is important in the development of MM [25].

2.5. DNA methylation and MM

In MM, DNAmethylation studies have brought interesting results. It
has been shown that methylation profile can discriminate between
normal pleura from mesothelioma [124]. Likewise, another study has
found a unique methylation profile in MM, which eventually could be
used as diagnostic markers [125]. The analysis of themethylation status
of nine genes in serum DNA of mesothelioma patients demonstrated
interesting results on patient survival [126]. Several other studies ana-
lyzing patient outcome, diagnosis, as well as epigenetic therapy, were
extensively revised by other authors [15,127].

2.6. MicroRNA and MM

The miRNA expression is another important mechanism in the
development of cancer due to its ability to control several biologic pro-
cesses. Not surprisingly, it has been shown differences between the
expression profile of miRNA in MM, in comparison to normal pleura;
in addition, in each histopathological subtype of MM, specifically
miRNA patterns have been found [99].

It has been shown that MM cell lines derived from patients with
more aggressive cancer do not express mirR-31; moreover, the re-
introduction of miR-31 led to suppression on cellular growth; thus
showing a potential therapy for MM tumors that fail to express
miR-31 [128]. Likewise, the miR-15/16 has been demonstrated to be
downregulated inMPMcell lines in comparison toMET5-A. The restora-
tion ofmiR-15/16 levels led to growth inhibition inMPMcell lines [129].
In addition, the relationship between miRNA expression, patient diag-
nosis and outcome has been extensively revised by other authors [15].

Therefore, miRNA have been proposed as diagnostic tool [130–132],
as prognostic makers [163,164], and as treatment target option
[129,133] for MM.
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2.7. Other genes and MM

The salvador gene (SAV), component of Hippo cascade (Fig. 3), was
first discovered in a Drosophila [134], and it has been suggested to be a
tumor suppressor gene in some cancers [16,135]. Recently, it was
shown that SAV had a homozygous deletion at chromosome 14q22 in
one (5%) MM cell line; however the function of this gene has yet to be
established in MM [25].

Furthermore, it has been found a homozygous deletion in the
gene β-catenin (CTNNB1) (Fig. 3) in one (10%) MM cell line [136];
in addition, it was shown that CTNNB1 is a positive growth-stimulating
factor for many human cancers [137]; however its role in MM has not
been fully addressed.

A recent study has suggested that the Hedgehog signaling pathway
is active in MM cell lines [138]; in addition, it has been shown that 13
genes regulate this pathway in cancer; however only three of these
genes (PTCH1, SMO and SUFU) were indeed mutated in 2 of 11 MM
cell lines [138]. Regarding MM patient tumors, only one patient
(7.15%) showed a mutation in SMO [139]. Recently, new genomes tech-
niques have been applied showing new potential TSGs in MM [140].
Therefore, further studies are needed in order to confirm whether
these genes are indeed important to MM tumorigenesis.

The circadian rhythms are generated by several genes and proteins,
which ultimately regulate several biologic processes, such as: sleep
regulation, body temperature, hormones, immune system response,
and others [141]. It has been shown a correlation between a disruption
of circadian rhythms and incidence of breast cancer [142]. Likewise, it
has been shown that chronomodulated anticancer regimes in male
patients display an increase on survival rates, in comparison to traditional
chemotherapy [143]. In MM, more evidence has emerged showing that
Fig. 4. Themost common alterations inMM. a) the receptors tyrosine kinase (RTK) are frequentl
whichphosphorylatesMEK. The latter one phosphorylatesMAPK thatmigrates to thenucleus an
the presence ofWnt ligand, a complex involving Dvl, Axin, Fz and LRP5/6 leads to inhibition of β
complexwith TCF/LEF leading toWnt responsive genes activation. c)Merlin protein is encoded
PP1d. In addition, Merlin also acts as an inhibitor of PI3K and mTOR pathways. This protein play
stimuli,MST 1/2, phosphorylates SAV1, LAST 1/2 andMOB1. The complexMST1/2 and SAV1dire
2 and MOB1 directly interacts and phosphorylates YAP/TAZ. The latter one, when phosphoryla
mainly binding to the transcription factors TEAD1–4 to regulate genes involved in cell prolifera
PIP3 by PI3K; however PTEN acts as an antagonist of this activation. PDK1 and mTOR phospho
mTOR leads to protein synthesis and G1 cell cycle progression and it is inhibited by rapamycin
the clock genes PER (period), CRY (cryptochrome) BMAL1 (aryl hydro-
carbon receptor nuclear translocator-like) (Fig. 3) were expressed in
favor of tumor growth [144]. More recently, a therapeutic target
approach inhibitingBMAL1 expression has beenproposed showing a re-
duction on tumor growth in MM cell lines expressing high levels of
BMAL1 [145].

3. Important pathways in MM

3.1. Receptors tyrosine kinases

The RTKs regulate cell cycle control and proliferation and are
frequently activated in MM [146], leading to upregulation of RAS/RAF/
MEK/MAPK and PI3K pathway (Fig. 4) [147].

The EGFR is often overexpressed in MM [148]. EGFR has been
detected in 44% of MPM [28], and its expression has been correlated
with long term survival [149]; however conflicting data has also been
published [150]. Despite that MM displays high expression of EGFR,
gefitinib [151] and Erlotinib [152], both EGFR inhibitors, were not active
in MM in phase 2 clinical trials.

The VEGF and their specific transmembrane receptors (VEGFR-1 and
VEGFR-2) are a potent inducers of angiogenesis, and are expressed in
MM [30,153,154], being associated with a reduction on patient survival
[30,155]; however, a study did not find a correlation between VEGF
expression and an improvement on patient survival [156]. Likewise, it
has been shown that SV40 induces VEGF expression in MM cell lines,
which enhances their proliferation. VEGF may not only stimulate the
tumor angiogenesis, but also tumor growth [157]. According to Lee
et al. [27], prolonged survival rates in animals were observed in MPM
cell lines treated with the antibody Bevacizumad in combination with
y activated inMMand lead to an upregulation of RAS and PI3Kpathway. RAS activates RAF,
d regulates gene expression. b) TheWntpathway controls several cellular processes. Upon
-catenin phosphorylation and degradation. Thus β-catenin migrates to the nucleus where
byNF2 and it is negatively regulated by PAK1 and PKA, and positively regulated byMYPT1-
s an important role as an upstream regulator of the hippo pathway. Thus, upon upstream
ctlyphosphorylates LAST 1/2,which is required for LAST1/2 activation. The complex LAST/
ted leads to protein degradation, while its dephosphorylated form enters into the nucleus
tion and cell death. d) PI3K/AKT/mTOR pathway is activated by the conversion of PIP2 into
rylate AKT, which then exerts important roles on cell proliferation, survival and motility.
and by PI-103.
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Pemetrexed. Regarding anti-VEGF therapy, erlotinib and bevacizumab
in combination with chemotherapy were also evaluated in MM [158].

Insulin growth factor (IGF) and Insulin growth factor receptors
(IGFR) are expressed by MM [159], and by normal mesothelial cell
lines [27]; however, dysregulation of IGF pathway may lead to malig-
nant transformation [27]. Stimulation by IGF-I resulted in enhanced
activation of IGFR leading to cell proliferation [160]. A study has found
that IGF-I was overexpressed in 11 MPM cell lines and in 4 primary
tumors [161];moreover, a recent study has demonstrated an interesting
finding. The authors assayed the expression of IGF-I receptors (IGF-IR),
and found considerable variability among several MM tumor samples
and cell lines. Furthermore, in this same study, the IGF-I surface recep-
tors were quantified by flow cytometry, confirming the previous results
mentioned, and more remarkably, the anti-tumor efficacy with
cixutumumab and inhibition of IGF-IR downstream signaling were
highly correlated with IGF-IR sites per cell [162].

Lastly, Hepatocyte Growth Factor Receptor (MET) is a proto-
oncogene that is commonly expressed in MM and it is not mutated
[165,167]. Inhibition of MET has been proposed as therapeutic strategy
option for MM [166,168]. Combined inhibition of MET and EGFR led to
strong inhibition on cell proliferation and invasionofMPMcell lines [167].

3.2. Ras/Raf/MEK/MAPK pathway

The RAS/RAF/MEK/MAPK signaling pathway comprises cell surface
receptors, transcription factors, which regulates gene expression. This
pathway is one of themost dysregulated in cancer and regulates critical
cellular function, such as: proliferation, growth and senescence. The
RAS/RAF/MEK/MAPK pathway influences the regulation of apoptosis
through interaction with BAD, Caspase 9 and BCL-2 [169].

RAS is a singleGTPasemolecule and it has tree isoforms (H-Ras, K-Ras
andN-Ras). In its “off” state, RAS is bound toGDP; however, upon stimuli,
RAS binds to GTP (“on” state) [170]. In its “on” state, RAS, combines with
RAF andmobilizes the inactive protein from the cytoplasm recruiting the
RAF kinases (ARAF, BRAF and CRAF) to the plasma membrane [171].
Onto the cell membrane, RAS activates the RAF, which then acts as a
MAP kinase kinase kinase (MAPKKK) activating MEK1 and MEK2. The
latter two, catalyze the activation and translocation into the nucleus of
MAPK1 and MAPK2. Thus, once activated, MAPK1 and MAPK2 kinases
phosphorylate several genes involved in several important cellular re-
sponses (Fig. 4) [171,172]. Also, it is known that RAS can activate other
downstream pathways, such as: PI3K, RAC and RHO [171].

In cancer, point mutation of the RAS family gene comprises at about
30% of all human cancer [171]. The gene BRAF that encodes the BRAF is
also frequentlymutated in human cancer [173]. Therefore, this pathway
is indeed important to the development of cancer, and several inhibitors
have been tested or are under clinical trial, which were extensively
revised by Santarpia et al. [171].

3.2.1. Ras/Raf/MEK/MAPK pathway in MM
It has been shown in MM that the expression of phosphorylated

MAPK1/2 was increased in comparison to normal lung tissue [174];
however, it has also been shown that MAPK activation was not able to
differentiate between benign and MM cells [175].

In an animal study, it was shown prolonged MAPK1/2 activation after
exposure to asbestos, in comparison to animals exposed to similar and
nonpathogenic particles [176]. Interestingly, MAPK1/2 phosphorylation
also occurs in distal bronchioles in a murine model of fibrogenesis [177].
Recently, an in vitro study showed thatMAPK2 is critical to transformation
and homeostasis of epitheliodMM; thus showing different roles between
MAPK1 and MAPK2 in epitheliod MM, at least in vitro studies [178].

3.3. PI3K/AKT/mTOR pathway

The phosphatidylinositol 3-kinase (PI3K) pathway regulates several
cellular processes, such as survival, metabolism, proliferation, vesicle
trafficking, apoptosis, growth and cellmigration, and among other func-
tions in specific cellular contexts [179].

Phosphoinositide 3-kinase is part of a family of intracellular lipid
kinases that phosphorylate the 3′-hydroxyl group of phosphoinositides
and phosphatidylinositols. One of the products of this reaction is the
PIP3 (phosphatidylinositol-3,4,5-triphosphate), which is a second
messenger lipid [180] essential for the translocation of AKT to the
plasma membrane, where it is phosphorylated, and activated by
phosphoinositide-dependent kinase 1 (PDK1). The phosphorylated
AKT (p-AKT) conveys downstream signals promoting cellular prolifera-
tion and survival over apoptosis (Fig. 4) [22].

According to the structure, substrate specificity and lipid products,
the PI3Ks are subdivided into 3 categories (classes I, II and III). Class I
is subdivided into IA and IB. The first class is activated by tyrosine kinase
receptors, G-protein coupled receptors and oncogenes, and it has been
widely implicated in cancer. This class is composed of heterodimers,
comprising regulatory p85 and catalytic p110 subunits. The class IB
members consist of a p101-regulatory subunit and are activated by G
protein-coupled receptors [180]. The classes II and III use phos-
phatidylinositol (PI) as a substrate to generate PIP3 [181].

The PIK3CA gene encodes the catalytic subunit p110α, which has
been shown to increase the activity of this pathway [180]. This subunit
phosphorylates the phosphatidylinositol biphosphate (PIP2) into PIP3
[182]. This second messenger is essential to translocate the serine/
threonine kinase AKT (also known as PKB) onto the plasma membrane
[26,183]. AKT activation regulates along with PI3K, a large number of
cellular processes, including cell proliferation, survival and motility
[184]. When PIP3 binds to AKT, the recruitment occurs onto the mem-
brane, which is followed by phosphorylation by the mammalian target
of rapamycin (mTOR) [185].

The mTOR pathway has an important role in the energy balance of
mammalian cell growth and size, and therefore, it is a relevant thera-
peutic target for dysregulated cellular growth, including cancer [186].
Activation ofmTOR leads to the phosphorylation of eukaryotic initiation
factor 4E (eIF4E)-binding protein-1 (4E-BP1), thereby dissociating
4E-BP1 from the mRNA cap binding protein eIF4E to promote protein
synthesis [187]. Also, mTOR regulates the activity of the ribosomal pro-
tein S6 kinase (p70S6K), that is required for cell growth andG1 cell cycle
progression [188].

3.3.1. PI3K/AKT/mTOR pathway and MM
Alterations on the PI3K/AKT/mTOR are associatedwithmore aggres-

sive diseases, such as cancer. This pathway is a major survival pathway
in several tumors, and it has been shown to be active in mesothelioma
cell lines [189]. When the signaling cascade is dysregulated, there is a
disrupted translation of mRNAs that are involved in cellular processes,
such as cell cycle progression, growth stimulation, cell survival, invasion
and interactionwith extracellularmatrix [190], and apoptotic resistance
[191].

AKT has a central role in a signaling pathway of which many of its
components have been linked to tumorigenesis. AKT can be activated
by a variety of mechanisms: loss or downregulation of PTEN [192],
activation of PI3K in autocrine or paracrine stimulation of the RTK
[192,193]; mutation of the PI3K catalytic or regulatory subunits [194],
and/or Ras activation [195].

There are 3 isoforms of AKT: AKT-1, 2 and 3. Gene amplification of
AKT-1 and AKT-2 are infrequent, but it has been reported in some
types of cancers [196–198]. In MM, there is an increased activity of
this kinase, which can be a pharmacological target used in order to
increase the effectiveness of chemotherapy [22]. The lack of PTEN
expression leads to elevated levels of p-AKT [199].

mTORmediates survival inMM, thusWilson et al. [23] reported that
rapamycin (an mTOR inhibitor) was able to reduce the apoptosis resis-
tance in more than 50% of MM tumors samples. Kim et al. [200] demon-
strated a reduction on cell resistance to apoptosis due to inhibition of
mTOR, by rapamycin.
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One of the components of this pathway is the lipid phosphatase pro-
tein, PTEN, that dephosphorylates PIP3 into PIP2, thus acting as a central
negative regulator of PI3K [181], by inhibiting AKT activation. PTEN also
regulates chemotaxis and cell motility, both mechanisms that promote
tumor invasion [84,85]. FewMMstudies have shown PTEN homozygous
deletion [22,26] or alteration on the expression [201,202], and their
relationship with the suppression of cellular growth by AKT blockade.
Therefore, these findings suggest that the protein phosphatase activity
of PTEN may contribute to its tumor suppressor function in a subset of
MMs.

The activated p110α catalytic subunit, which is encoded by the
PIK3CA is a frequently mutated gene in cancer. Mutations in the
p110α have been identified in about 12% of all human cancers [203].
Thus, there are three “hot spots” mutations identified on PIK3CA:
E542K, E545K (helical domain) and H1047R (kinase domain) [204].
Several studies have linked the role of PTEN in negatively regulating
the expression of AKT, and today, it is well accepted that the PI3K-AKT
pathway is overexpressed in MM [22,26,201]. Furthermore, it has
been shown that the overexpression of PTEN by transfecting cells with
an adenoviral vector increased apoptosis in mesothelioma cell lines,
due to AKT hypophosphorylation [201].

A study has found a reduction on mRNA levels of PIK3CA in patients
withmalignant peritonealmesothelioma, whichwas correlatedwith an
improvement on survival rate [205]. In another study, Suzuki et al. [26]
demonstrated a dysregulation of PI3K-AKT pathway in MM cell lines.
Furthermore, it has been shown AKT activation, and low or no expres-
sion of PTEN in MM cells lines [200].

As described above, several survival or anti-apoptotic mechanisms
have been identified in MM, and they have been shown to influence
survival and resistance to chemotherapy; however, it is not fully under-
stood the role of mutations and mechanisms on the activity of AKT and
PI3K, and their relationship with the development of MM.

3.3.2. Therapeutic targets
MM is a very aggressive tumor, but advances in the treatment of this

disease have emerged. The tumor is highly resistant to chemotherapy,
mainly due to resistance to apoptosis [206]. MM remains an unusual
tumor, and thus it is difficult to study it in large clinical trials. Some
animal and cellular models have been proposed for the study of this
cancer.

PI3K/AKT/mTOR pathway is involved inMM carcinogenesis, and the
elucidation of the downstream targets that dictate cellular response to
this signaling pathway may have important implications for the devel-
opment of MM treatment therapies. The treatment with PI3K inhibitors
has been shown to inhibit the growth of many types of cancer cells by
inducing cell cycle arrest and apoptosis [207,208].

Rapamycin treatment is able to inhibit activity of both mTOR and
AKT, suggesting that it may be an effective therapeutic blockade of
PI3K signaling [181]. It has been found that inhibitors of the PI3K and
mTOR pathways were successful in enhancing apoptosis in human
mesothelioma spheroids [200,209].

There is also a proposal to inhibit several targets of the PI3K pathway:
Knight and Shokat [210] have developed a dual inhibitor of p110α and
mTOR called PI-103. It has been effective in blocking proliferation of
Glioma and other tumor cells in vitro. Furthermore, inhibition of other
targets, including AKT and PDK1 has also been investigated [211]. Re-
garding inhibiting AKT activity, in addition to Rapamycin, the triciribine
has been used to inhibit the phosphorylation of all 3 AKT isoforms, and
tumor growth of cells overexpressing AKT in mouse xenograft models
[212]. Several inhibitors of PI3K/AKTmTOR have been developed. How-
ever, these inhibitors may have limited effectiveness in human cancers.

3.4. The BCL-family and MM

In general, the majority of cancers, including MM [206], show resis-
tance to apoptosis [213]. The BCL-2 family of proteins is important in
controlling this process. This family is subdivided into pro- and anti-
apoptoticmembers. All these proteins have at least one BCL-2Homology
(BH) domain. The BCL-2, BCL-XL, BCL-W andMCL-1 are among the anti-
apoptotic members that inhibit cells from undergoing programmed
death. On the other hand, the pro-apoptotic proteins members are
BAD, BID andBIM [214],which inducepermeability of themitochondrial
membrane, resulting in caspase activation [20]. There are also themulti-
domain pro-apoptotic proteins, such as BAX and BAK, which contain
BH1–BH3 domains [20].

MM cell lines rarely express BCL-2, but often express BCL-XL [35,36],
and a normal contingent of pro-apoptotic BCL-2 family genes [35,215].
Due to great resistance to apoptosis, low BCL-2/BAX ratio has been
reported in mesothelioma cells, which implicates into a mechanism
other than BCL-2 in regulating apoptosis [4,215].

Few studies have shown modulation of BAX, BAD, BIM, BAK and
MCL-1 in MM. Yuan et al. [225] observed that MCL-1 was the major
survival player in regulating MG132-induced apoptosis in MPM cell
lines. Moreover, BAX and BAK require a subset of pro-apoptotic BCL-2
family proteins for activation, two of them (BID and BIM), induce oligo-
merization and activation of BAX. It has been reported inMM, the loss of
expression of BID (37%) and BIM (18%) [20]. Lastly, in a study using
immunohistochemical analysis, it was found that 100% of a series of
35 mesothelioma samples expressed BAX [35].
3.4.1. Therapeutic targets
Few studies have shown therapeutic strategies that target activation

or blockade of the BCL-2 family members. Following this line, Zhang
et al. [216] and Raisova et al. [217] have shown that the ratio BAX/
BCL-2 or BAX/BCL-XL in tumor cells is an important determinant of
susceptibility to apoptosis, with more sensitive cells having higher
BAX/BCL-2 or BAX/BCL-XL ratio.

The BCL-XL/BCL-2 inhibitors have been developed to disrupt the
balance between pro-apoptotic and anti-apoptotic stimuli [218]. Several
small-molecular ligands for BCL-2 and/or BCL-XL have also been identi-
fied [219].

Moreover, a study has demonstrated that pharmacological
inhibition of BCL-XL expression by exposure to a histone deacetylase
inhibitor, sodium butyrate (NaB), led to apoptotic cell death in MM. A
recombinant adenoviral vector expressing pro-apoptotic Bax, has
been shown to be effective in inducing apoptosis in human MM
[220]. An antisense oligonucleotide therapy directed at Bcl-xl mRNA
was used in vitro to downregulate the BCL-XL expression, and resulted
in apoptosis and viability decrease in human mesothelioma cell
lines [221]. Another therapy that has shown good outcomes was
the combination of antisense oligonucleotide in combination with
cisplatin, which reduced growth of established tumor xenografts in
mice [222].

Furthermore, Varin et al. [223] showed that the simultaneous
inhibition of BCL-XL and MCL-1 by small interfering RNA (siRNA) was
able to induce massive cell death in the absence of chemotherapy, and
was enough to avoid treatment resistance in MSTO-211H, a MM cell
line; thus showing a strong molecular basis for the clinical evaluation
of therapies targeting both BCL-XL and MCL-1, alone or in combination
with traditional chemotherapy in the treatment of MM.

The JY-1-106 protein induces cancer cell death regardless of MCL-1
expression levels through the intrinsic apoptosis pathway, sensitizes
tumor cells to chemotherapeutic agents and to metabolic stress; in
addition, it induces apoptosis by disrupting BCL-XL and MCL-1
protein–protein interactions with BAK [224]. Another study has
demonstrated that 2-methoxy antimycin A3 is able to induce apoptotic
cell death without altering BCL-2 family protein expression [218].

Given the findings, we believe that more studies are needed to
elucidate and/or discover possible therapeutic strategies to inhibit or
activate the BCL-2 family members in MM, mainly focusing on the
mechanisms that induce apoptosis.
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3.5. The Merlin protein

TheNF2 encodes the proteinMerlin. There are at least 10 known iso-
forms of Merlin protein, and the isoforms I and II are themost common.
Merlin structural conformation is important to its activation. The “close”
conformation is required for tumor suppressor activity, while the
“open” conformation leads to loss of the tumor suppressor activity.
Moreover, Merlin is phosphorylated by p21-activated kinase 1 (PAK1)
or cAMP-dependent kinase A (PKA) on serine 518, and thus leading to
its inactive form; on the other hand, the myosin phosphatase (MYPT1-
PP1d) dephosphorylates Merlin (Fig. 4), which leads to its activation
[226,227].

Furthermore, it has been shown that Merlin regulates cytoskeleton
remodeling, cell motility, cell proliferation, morphology and motility
[228]. Merlin also negatively regulates several signaling pathways,
such as PI3K [229], mTOR [230], (EGFR) [231], and cyclin D1 expres-
sion [106]. In MM,Merlin phosphorylation has been reported, resulting
in its inactivation [232]. Lastly,Merlin plays a crucial role as an upstream
regulator of the hippo pathway [25].

3.5.1. The hippo pathway
Initially first identified inDrosophila, the hippo pathway controls cell

proliferation, growth, differentiation and death [37]. The core compo-
nents of this pathway are MST1/2, SAV, LATS 1/2, MOB and YAP/TAZ.
A brief summary of the activation of this pathway is further described.
Upon upstream stimuli, MST 1/2, phosphorylates SAV1, LATS 1/2 and
MOB1. The complex MST 1/2 and SAV1 directly phosphorylates LATS
1/2, which is required for LATS 1/2 activation. The complex LATS/2
and MOB1 directly interacts and phosphorylates YAP/TAZ. The latter
one, when phosphorylated leads to protein degradation, while its
dephosphorylated form enters into the nucleus mainly binding to the
transcription factors TEAD1–4 to regulate genes involved in cell prolif-
eration and cell death (Fig. 4) [37,228].

3.5.2. Merlin-hippo pathway and MM
The hippo pathway has been implicated in the development of MM.

Loss of LATS2 has been reported in MM (see LATS2 and MM section).
YAP, an oncogene candidate, had its expression detected in more than
70% of MM tissues [25]. The SAV, which is a component of the hippo
pathway, has been found altered in one MM cell line [see Other genes
and MM section]. Furthermore, Merlin has been shown to inhibit the
YAP nuclear function, the main downstream effector of Hippo pathway,
through phosphorylation at serine 127 [233]. Another study has found
that YAP-knockdown inhibits cell motility, proliferation, invasion and
anchorage-independent growth in MM cell lines; in addition, it was
found inMM cell lines with constitutive YAP-activation, that YAP activa-
tion promotes cell cycle progression, which results in more aggressive
MM cells [38]. Lastly, the hippo pathway has been shown to interact
with TGF-β pathway in regulating the connective tissue growth factor,
which is associated with abundant extracellular matrix formation in
MM tissues [39].

Taken altogether, theMerlin-hippo pathway plays an important role
in driving MM tumorigenesis; however further studies are needed in
order to better understand the role of LATS and SAV as tumor suppressor
genes in regulating this pathway inMM, aswell as to better understand
the downstream consequences evoked by mutations on these genes.

3.6. Wnt pathway

Wnt signaling pathway plays a fundamental role in the determina-
tion of cell fate, proliferation, polarity, and cell death during embryonic
development. This pathway was discovered more than 30 years ago
[40], and it has been implicated in the development of human diseases
[reviewed in 234], and in cancer [reviewed in 235].

Activation of Wnt signaling that alters transcription is called canon-
ical, on the other hand, non-transcriptional Wnt signaling is called
noncanonical. β-catenin is the essential downstream transcriptional
effector of this pathway. Thus, in the absence of Wnt ligand, cyto-
plasmic β-catenin is degraded by the action of the Axin complex,
which is composed of the scaffolding protein Axin, the tumor sup-
pressor adenomatous polyposis coli gene product (APC), casein ki-
nase 1 (CK1), and glycogen synthase kinase 3 (GSK3). The latter
two phosphorylate β-catenin leading to proteosomal degradation,
which inhibits β-catenin transcriptional activity (Fig. 4) [40].

On the other hand, upon the presence ofWnt ligand, Wnt/β-catenin
canonical pathway is activated due to a complex formation between
seven-pass transmembrane Frizzled (Fz) receptor and low-density lipo-
protein receptor-related protein 5 or 6 (LRP6/LRP5). This complex
together with the scaffolding protein Dishevelled (Dvl), leads to LRP6
phosphorylation, activation and recruitment of Axin complex to the
receptors, which leads to inhibition of β-catenin phosphorylation and
degradation by Axin complex (Fig. 4). Thus β-catenin migrates to the
nucleus, where it forms a complex with TCF/LEF leading to Wnt-
responsive gene activation [236].

3.6.1. Wnt pathway and MM
The Wnt signaling pathway has been reported in MM, through Dvl

overexpression [41]. It has been shown that secreted frizzled-related
proteins (sFRPs) antagonize, and act as a negative regulator of Wnt
signaling pathway; in addition, it has been shown downregulation of
sFRPs in approximately 85% of primary MM tumors due to promoter
methylation. The re-expression of sFRP in MPM cell lines lacking sFRPs
expression resulted in apoptosis and growth suppression [237].

The protein inhibitory factor-1 (WIF-1) antagonizes Wnt signaling,
and it has been shown to be downregulated in MM cell lines, and in
primary tumors due to promoter hypermethylation [238]. Promoter
methylation of WIF-1 was observed in 73.9% of mesothelioma tissues
and in all 8 MM cell lines. SFRP1, 2 and 4 promoter methylation was
observed in 21 of 37 (56.8%), 26 of 42 (61.9%) and 17 of 36 (47.2%)
MM tissues, respectively [239]. Furthermore, nuclear accumulation of
β-catenin has been reported in MM [240]; however conflicting data
has also been published regarding nuclear accumulation of β-catenin
[239,241].

A recent study has shown altered expression levels of a number of
Wnt/Fzd signaling molecules in MM, and it has been proposed that
the modulation of Wnt signaling in MM may sensitize it to cytotoxic
drugs [242]. Likewise, it has been shown a lower overall survival rate
of patients expressing tumors with high levels of Wnt2B, in comparison
to tumors expressing low expression levels of Wnt2B [243]. Inhibition
of Wnt2 by siRNA or by monoclonal antibody induced cell death in
MPM cell lines [244], another study has found similar findings [245].
Lastly, β-catenin staining has been proposed as a marker in the diagno-
sis of mesothelial lesions [246].

Therefore, Wnt pathway has an important role on the development
of MM and it is a good candidate for new therapeutic approaches
targeting Wnt pathway inhibition.

4. Conclusions

As we have seen, once the diagnosis is made, most of the MM
patients are left with a short life expectancy of less than a year; in
addition, this cancer can take up to 40 years to manifest. Thus, this dis-
crepancy between the start of the carcinogenic process and the diagno-
sis could be used in favor of the patient, since unlike other cancers, MM
takes a long time to manifest. Moreover, the risk factors are of great
importance in the development of this cancer, such as erionite, asbestos
and SV40; however, more studies are needed in order to better compre-
hend how these players influence the development of MM, as well as
the levels of exposure that are indeed dangerous for the population.
Fortunately, the majority of the population is not exposed to such risk
factors, something that extensively reduces the likelihood of developing
MM.
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However, early diagnostics, especially in the population at risk, such
as people directly or indirectly expoused to asbestos, erionite or SV40,
should beundertaken periodically. Yet, aswehave seen, a lot of research
is ongoing in order to create good and trustworthy diagnostic markers,
which would eventually help many people. This fact in association with
an ever-increasing knowledge on the biochemical and genomic path-
ways to drive the tumorigenesis of MM, gives us valuable clues, which
would ultimately result in the production of more specific molecules
and drugs, which would be used to fight against the process of
malignant transformation, establishment and metastasis. Taken alto-
gether, our work shows that several genes and pathways are involved
in the development of MM; however, more studies are needed in
order to better understand, prevent, diagnose, and treat this very
aggressive cancer.
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