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sultant bacterial translocation add a new element to the bi-
directional interactions of the gut-brain axis; new evidence 
implicates these pathways in the patho-aetiology of MDD. In 
addition, abnormalities in the gut-brain axis are associated 
with several chronic non-communicable disorders, which 
frequently co-occur in individuals with MDD, including but 
not limited to irritable bowel syndrome (IBS), chronic fatigue 
syndrome (CFS), obesity, and type 2 diabetes mellitus 
(T2DM).  Methods:  We searched the PubMed/MEDLINE data-
base up until May 1, 2016 for studies which investigated in-
testinal dysbiosis and bacterial translocation (the ‘leaky gut’) 
in the pathophysiology of MDD and co-occurring somatic 
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 Abstract 

  Background:  Persistent low-grade immune-inflammatory 
processes, oxidative and nitrosative stress (O&NS), and hy-
pothalamic-pituitary-adrenal axis activation are integral to 
the pathophysiology of major depressive disorder (MDD). 
The microbiome, intestinal compositional changes, and re-
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comorbidities with an emphasis on IBS, CFS, obesity, and 
T2DM.  Results:  The composition of the gut microbiota is in-
fluenced by several genetic and environmental factors (e.g. 
diet). Several lines of evidence indicate that gut-microbiota-
diet interactions play a significant pathophysiological role in 
MDD and related medical comorbidities. Gut dysbiosis and 
the leaky gut may influence several pathways implicated in 
the biology of MDD, including but not limited to immune 
activation, O&NS, and neuroplasticity cascades. However, 
methodological inconsistencies and limitations limit com-
parisons across studies.  Conclusions:  Intestinal dysbiosis 
and the leaky gut may constitute a key pathophysiological 
link between MDD and its medical comorbidities. This 
emerging literature opens relevant preventative and thera-
peutic perspectives.  © 2016 S. Karger AG, Basel 

 Introduction 

 Persistent low-grade immune-inflammatory process-
es are an integral part of the pathophysiology of a sub-
stantial subset of patients with major depressive disorder 
(MDD)  [1, 2] . Among various immune-inflammatory 
marker elevations in MDD, meta-analytic evidence indi-
cates that peripheral levels of interleukin (IL)-1β, IL-6, 
C-reactive protein (CRP), and soluble IL-2 receptor (sIL-
2R) are higher in individuals with MDD compared to 
healthy controls  [3, 4] . Integrative theoretical frameworks 
for MDD propose that environmental triggers such as 
psychosocial stress, sleep disruption, poor diet, physical 
inactivity, and smoking, together with medical factors 
such as autoimmune disorders and inflammatory medi-
cal conditions, activate neuroprogressive, low-grade in-
flammatory, oxidative and nitrosative stress (O&NS) 
pathways  [5–8] . The role of these systems in structural 
brain changes, cognitive deterioration, and treatment re-
fractoriness in a subset of individuals has been thorough-
ly reviewed  [5, 9] . A recent addition to this literature is 
the emerging role of the microbiome and the possibility 
of microbiota-brain interactions being active in depres-
sion  [10, 11] . The microbiota-gut-brain axis, which in-
cludes both commensal and pathogenic bacteria in the 
gut, may influence behaviour in several ways, including 
but not limited to putative interactions with the vagus 
nerve, changes in central nervous system functioning, the 
enteric nervous system, brain plasticity  [12] , and the im-
mune system  [13, 14] . In addition, experimental data in-
dicate that the gut microbiota regulates blood-brain bar-
rier permeability throughout life  [15] .The composition of 

microbiota in the intestine influences barrier integrity 
and an increase in gut permeability (also referred to as the 
‘leaky gut’) and its role in the translocation of bacteria 
(and their products) into tissue  [16] ; this process has been 
implicated in the pathophysiology of MDD. Further-
more, this bacterial translocation is associated with sev-
eral conditions that are frequently comorbid with MDD 
and are characterized by their psychosomatic symptoms, 
including irritable bowel syndrome (IBS)  [17, 18] , chron-
ic fatigue syndrome (CFS)  [19, 20] , obesity, and type 2 
diabetes mellitus (T2DM)  [21–23] .

  Here, we review extant literature on the role of intesti-
nal dysbiosis and the leaky gut in the pathophysiology of 
MDD and its medical comorbidities. In addition, resul-
tant preventative and therapeutic perspectives are criti-
cally discussed.

  Search Strategy 

 For this narrative review we searched the PubMed/
MEDLINE database up until May 1, 2016 for studies with 
the following search terms: ‘gut dysbiosis’, ‘microbiota’, 
‘leaky gut’, ‘probiotics’, ‘prebiotics’ cross-referenced with 
‘depression’, ‘irritable bowel syndrome’, ‘chronic fatigue 
syndrome’, ‘type 2 diabetes’ and ‘obesity’. We included 
peer-reviewed original articles written in English that in-
vestigated microbiota dysbiosis and the leaky gut in MDD 
and related somatic comorbidities, namely CFS, IBS, obe-
sity, and T2DM. In addition, clinical trials that investi-
gated dietary interventions as well as prebiotics and pro-
biotics as a treatment for MDD and these aforementioned 
comorbidities were considered.

  The Gut Microbiota 

 In human adults, the intestinal microbiota consists of 
approximately 100 trillion organisms in a dynamic, sym-
biotic, mutualistic relationship with the host. This micro-
bial community is very diverse, developing from the near-
ly sterile gut of a newborn to an adult composition, 90% 
of which is comprised of the phyla  Bacteroidetes  and  Fir-
micutes   [24] . Over 3.3 million genes are jointly encoded 
by the intestinal microbiota, with over 1,000 bacterial 
species identified as part of this ecosystem  [24] . Advanc-
es in understanding the microbiome have in large been 
attributable to new methodologies in metagenomics, 
metatranscriptomics, proteomics, and metabolomics, 
each of which have been able to elucidate a portion of 
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host-microbiota interactions. However, in spite of large-
scale studies (e.g. the National Institutes of Health Hu-
man Microbiome Project, MyNewGut, the Canadian Mi-
crobiome Initiative, and the European MetaHIT initia-
tive), much remains to be elucidated in characterizing a 
‘normal’ microbiome in humans, its immune and bio-
chemical functions, and the changes that occur in patho-
genesis.

  In addition, it is worthy to note that several limitations 
still hamper the comparability of findings across studies, 
which have been investigating changes in microbiota 
composition across disease states. These methodological 
inconsistencies include differences in methodology, vari-
ations in sample source, significant inter-individual dif-
ferences, comorbidities, previous exposure to antibiotics, 
and potential confounders (e.g. differences in dietary 
habits), as well as differences in sample selection. Consid-
ering the heterogeneity in the clinical population with 
MDD and several of its co-morbid disorders, it is impor-
tant to better understand how microbiota composition, 
diversity, and function might aid the stratification of in-
dividuals into different clinical subtypes.

  A multitude of factors influence the composition of 
the microbiome. For instance, compelling data have indi-
cated differences in the gut microbiota composition be-
tween babies born via Caesarean section versus natural 
birth  [25, 26] , while the microbiome of breast-fed infants 
differs from that of formula-fed babies  [27, 28] . Diet 
shapes the composition of the gut microbiome through-
out life [for review, see  29 ]. For example, in mice, a high-
fat diet was associated with a decrease in  Bacteroidetes  
and an increase in both  Firmicutes  and  Protebacteria   [30, 
31] , although results have been conflicting  [32] . In addi-
tion, a recent seminal study illustrates the influence of 
diet and exercise on microbiota diversity. In this study, 
protein consumption was associated with elevated micro-
bial diversity (across 22 phyla), and athletes with a lower 
BMI had higher levels of  Akkermansia , which has been 
inversely correlated with obesity in both mice  [33]  and 
humans  [34] . Finally, a recent animal study has found, 
using a novel approach (multi-taxon insertion sequenc-
ing method), that the host genotype may influence diet-
microbiome interactions  [35] .

  Insights into the role of the microbiome and its inter-
actions with the host immune system have provided some 
details into its numerous functions in the human gut and 
at distant organs. Healthy gut microbiota contribute to 
normal intestinal homeostasis through immune signal-
ling, for example, commensals can activate toll-like re-
ceptors (TLRs) in a manner that triggers heat shock pro-

tein (member of a family of protective factors) – produc-
tion by the host, thereby responding to disruptions in 
epithelial homeostasis and injury  [36] . Importantly, cer-
tain gut microbiota produce short-chain fatty acids
(ScFAs) like acetate, propionate, and butyrate, which are 
derived from the fermentation of undigested and un-
absorbed carbohydrates. Butyrate modulates intestinal 
epithelial proliferation, apoptosis, and cell differentiation 
in the bowel, and also inhibits NF-κB, thus supporting 
mucosal barrier integrity  [37, 38] . ScFAs have neuroac-
tive properties, while several classical neurotransmitters 
like GABA (γ-ami nobutyric acid) are also produced by 
the microbiota  [39] . Microbiota also produce gasses such 
as hydrogen and ammonia, which are potentially neuro-
active  [40, 41] . Whether or not these neuroactive chemi-
cals are produced in sufficient quantity to extend beyond 
the local intestinal environment and influence the central 
nervous system is not yet clear. In the sections below, we 
overview evidence that gut compositional changes and 
intestinal inflammation related to a leaky gut may con-
tribute to the pathophysiology of MDD and also to com-
mon non-communicable medical comorbidities. Here, 
we consider IBS, CFS, obesity, and T2DM as exemplars, 
although other non-communicable disorders such as car-
diovascular disease and osteoporosis would probably be 
similarly impacted.

  Microbiota and Gut-Derived Inflammation in MDD 

 The pathophysiology of MDD is typified by complex 
interactions with the following events in subsets of indi-
viduals: (1) increased low-grade inflammatory response, 
including raised peripheral levels of pro-inflammatory cy-
tokines namely tumour necrosis factor-α (TNF-α), IL-1β, 
IL-6, sIL-2R, and CRP, an acute phase protein and inflam-
matory marker  [3, 4] ; (2) hypothalamic-pituitary-adrenal 
(HPA) axis dysregulation  [42, 43] ; (3) O&NS, marked by 
an imbalance between systemic antioxidants and harmful 
reactive oxygen species (ROS) and reactive nitrogen spe-
cies (RNS), which damage lipids, proteins, and nucleic ac-
ids  [5] , and (4) aberrations in cell-mediated immunity  [9] . 
This cascade can have downstream detrimental effects on 
mitochondrial bioenergetics, which is of relevance to 
mood disorders as well as disorders such as CFS and dia-
betes  [44] . These pathophysiological events appear to be 
influenced by perturbations in the equilibrium of the gut 
microbiota and by disruptions in the gut barrier.

  A recent study has found that the microbiota of pa-
tients with MDD is significantly different compared to 
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healthy controls and is characterized by a relative abun-
dance of  Firmicutes ,  Actinobacteria , and  Bacteroidetes  
 [10] . In addition, this study found that faecal transplanta-
tion of germ-free mice with microbiota from MDD pa-
tients but not from healthy controls led to depressive-like 
behavioural alterations, which appeared to be driven by 
disturbances of microbial genes and host metabolites in-
volved in carbohydrate and amino acid metabolism  [10] . 
Previous investigations have consistently observed mi-
crobiota compositional changes in patients with MDD 
compared to healthy controls, notwithstanding the fact 
that specific differences in microbial composition have 
varied across studies  [10, 11, 45] . Online supplementary 
table S1 (see www.karger.com/doi/10.1159/000448957), 
which accompanies the online version of this article, 
presents differences in gut microbial composition ob-
served in clinical studies of MDD compared to healthy 
controls. Linking specific bacterial to clinical phenotypes 
is a necessary step in order to better understand how to 
target microbiota in treatment and in drug development.

  Evidence of increased bacterial translocation has now 
surfaced in the pathophysiology of depression, wherein 
bacterial translocation, marked by the serum presence of 
lipopolysaccharide (LPS)-respondent IgM and IgA has 
been observed  [14] . LPS is a component of cell walls of 
Gram-negative bacteria. Cells of the gut mucosa are 
bound by tight junctions, which in homeostatic, healthy 
conditions provide a barrier between luminal bacteria 
from the interstitium. The disruption of tight junctions 
and barrier integrity may thus cause normally non-inva-
sive bacteria to translocate to the mesenteric lymph 
nodes, the lamina propria,   and the peripheral blood. In 
mesenteric lymph nodes and peripheral blood, the trans-
located Gram-negative bacteria and related bacterial 
products such as LPS may cause immune activation, 
binding to TLR-2/4 complexes and causing increased 
production of pro-inflammatory cytokines and ROS/
RNS  [46, 47] .

  Heightened IgA and IgM-mediated immune respons-
es to LPS from  Hafnia alvei ,  Pseudomonas aeruginosa , 
 Morganella morganii ,  Pseudomonas putida ,  Citrobacter 
koseri , and  Klebsiella pneumoniae  in MDD are consistent 
with increased bacterial translocation of gut microbiota 
due to a leaky gut  [14] . Furthermore, disruptions in the 
gastrointestinal mucosa could then contribute to im-
mune activation and O&NS in the pathophysiology of 
MDD  [48] . The administration of LPS to humans may 
affect mood and elevate anxiety, while increasing periph-
eral levels of several cytokines  [49] . Indeed, the infusion 
of inflammatory cytokines is arguably good evidence that 

cytokines contribute to depression as depressive symp-
toms are observed clinically with the therapeutic admin-
istration of interferon  [50, 51] .

  Changes in gut barrier function can occur as an effect 
of dysbiosis and immune-inflammatory responses, 
whereby permeability of the intestinal mucosa may be 
amplified, and bacteria, along with toxic compounds, 
translocate into the nearby capillaries  [14] . The move-
ment of Gram-negative bacteria into mesenteric lymph 
nodes and the bloodstream is particularly important to 
these pathogenic processes because this pathway may 
cause amplified immune-inflammatory responses. Fur-
ther, Gram-negative bacteria translocation is linked
to inflammatory mechanisms by a pathway induced
by LPS (and other pathogen-associated molecular pat-
terns) via the activation of TLR-2/4, which leads to the 
induction of immune mechanisms, ROS/RNS, and sub-
sequent low-grade inflammation and activated O&NS 
processes  [52] . The latter in turn may produce redox-
derived DAMPs (damage-associated molecular pat-
terns), which further activate TLR-2/4 complexes, lead-
ing to a vicious cycle referred to as the TLR-2/4 radical 
cycle  [52] , which has been proposed to be a major driv-
er of chronic immune activation and O&NS processes in 
several neuro-immune disorders. Immune activation 
can include the synthesis of TNF-α  [53]  and the activa-
tion of NF-κB and MAPK, which trigger the production 
of pro-inflammatory cytokines and result in gut-derived 
systemic inflammation  [54] . Immune-inflammatory re-
sponses also include the production of inflammatory 
mediators such as antibacterial lysozyme, an inflamma-
tory mediator secreted by monocytes  [55, 56] . Inflam-
mation may contribute to the translocation of commen-
sal bacteria via transcytotic pathways. The translocation 
of Gram-negative bacteria from the gut has been linked 
to rising levels of O&NS and autoimmune responses 
secondary to O&NS, including peroxides and antibodies 
against oxidized LDL and IgM-mediated autoimmune 
responses to malondialdehyde, azelaic acid, phophatidyl 
inositol, nitro-tryptophan, and nitro-tyrosine in indi-
viduals with MDD  [57] . Pro-inflammatory cytokines 
can also disrupt tight junctions, aiding these translocat-
ing processes  [58] . In addition, LPS can enhance the ex-
pression of inducible nitric oxide (NO) synthase, which 
triggers the formation of NO by macrophages through a 
process involving IFN-γ activation  [53, 59] . LPS also 
stimulates nicotinamide adenine dinucleotide phos-
phate-oxidase, which generates ROS and inflammatory 
markers, including superoxide, peroxide, cyclooxygen-
ase-2 expression, and NF-κB activation  [55, 60–62] . Mi-
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croglia, when activated by LPS, synthesize ROS, which 
initiate oxidative processes to proteins and may lead to 
proteolysis  [63] .

  LPS injections in experimental animals led to increased 
levels of malondialdehyde, nitrite, and nitrate and re-
duced levels of glutathione within the brain – the latter 
finding evident across many psychiatric disorders  [64, 
65] . Furthermore, the administration of antioxidants 
such as quercetin reduce LPS-induced O&NS  [66] , indi-
cating the reversible nature of these processes. O&NS 
processes exacerbate disruptions in tight junction integ-
rity in the gut, further driving gut-derived inflammation 
in a vicious cycle  [67] . Thus, bacterial translocation from 

the gut may play a role in O&NS among individuals with 
MDD. In addition, bacterial translocation may trigger the 
generation of neo-antigenic determinants in patients 
with MDD, thereby contributing to the propensity to-
wards autoimmunity observed in this illness  [57, 68] .

  Gut Dysbiosis and Bacterial Translocation as a Link 

between MDD and Its Medical Comorbidities 

 Many of the aforementioned pathways appear to be 
involved in the pathophysiology of somatic diseases that 
frequently co-occur in patients with MDD. Further, some 

  Fig. 1.  Gut dysbiosis disrupts tight junctions of the gut epithelia, 
leading to bacterial translocation. LPS from the wall of Gram-neg-
ative bacteria is recognized by pattern recognition receptors (e.g. 
TLR-4); this activates a signalling pathway relayed by myeloid dif-
ferentiation protein 88 (MyD88), which recruits the IL-1 receptor-
associated kinase (IRAK-1), which is activated via phosphoryla-
tion and associated with TNF receptor-associated factor 6 (TRAF-
6), driving the activation of NF-κB and the production of 
inflammatory cytokines by macrophages and other immune cells 

(e.g. TNF-α, IL-1β, and IL-6). In addition, LPS activates inducible 
NO synthase and NADPH oxidase, leading to O&NS. LPS also ac-
tivates the microglia and disrupts the blood-brain barrier. These 
pathophysiological events are shared to some extent between 
MDD and related somatic comorbidities such as IBS, CFS, obesity, 
and T2DM. Conversely, a healthy microbiota produces several 
neuroactive mediators, including serotonin (5-HT) and ScFAs 
such as butyrate, which may aid in the maintenance of an intact 
gut barrier. 
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medical comorbidities of MDD exhibit disruptions in in-
testinal barrier integrity and microbiota composition and 
express O&NS and immune-inflammatory aberrations. 
 Figure 1  provides a wide-angle lens view of these patho-
etiological interactions. 

 Irritable Bowel Syndrome  
 IBS is the paradigmatic disorder of the brain-gut axis, 

presenting with abdominal pain and discomfort as well as 
alterations in bowel habits  [69, 70] . IBS is associated with 
significant deficits in psychosocial function and impaired 
quality of life  [71] . While its specific pathophysiology is 
currently unknown, gut-brain axis dysfunction has been 
implicated  [72] . IBS is highly comorbid with MDD, with 
up to 30% of IBS patients presenting a diagnosis of MDD, 
while psychosocial variables appear to predispose indi-
viduals to IBS  [73] . Patients with comorbid IBS and MDD 
are less likely to respond to treatment with either psycho-
therapy or antidepressants  [74, 75] .

  Similarly to MDD, increased gut permeability has been 
noted in IBS  [76, 77] . Histological changes in IBS include 
upregulation of intraepithelial lymphocytes, lamina pro-
pria CD3+ and CD25+ cells, and neutrophils and mast 
cells  [78] . In addition to immune cell activation in the dis-
tal bowel, peripheral low-grade inflammation appears to 
play a major role in the pathophysiology of IBS. Further-
more, evidence of chronic gut dysbiosis in IBS is substan-
tial, which may lead to changes in gut motility and nocicep-
tion  [79] . Microbiota composition is distinctively different 
between those with IBS and healthy controls, characterized 
by a 2:   1 ratio of  Firmicutes  to  Bacteroidetes , an increase in 
 Dorea  sp.,  Ruminococcus  sp.,   and  Clostridium  spp.,   and a 
decrease   of  Bifidobacterium  sp.   and  Faecalibacterium  sp.  
  [80] , consistent with findings of composition studies in 
MDD (suppl. table S1). Mast cells that are upregulated in 
IBS appear to have a higher expression of inducible NO 
synthase, an enzyme that produces large amounts of NO. 
Further, levels of IL-1β are upregulated in IBS, where NO 
may also drive the production of numerous cytokines, in-
cluding IL-1β, IL-1, IL-13, TNF-α, and monocyte chemo-
tactic protein-1, sustaining the inflammation observed in 
IBS  [81] . Increased peripheral levels of cytokines in IBS, 
including IL-6, TNF-α, and IL-1β  [82] , overlap with the 
cytokine profile seen in MDD. Moreover, exaggerated 
HPA axis activity in both IBS and MDD add to the overlap-
ping pathophysiology of these disorders  [83–85] .

  Evidence of bacterial translocation in IBS is also pro-
vided by higher peripheral levels of LPS as well as higher 
concentrations of anti-flagellin antibodies  [86] . More-
over,  Escherichia coli  LPS-induced IL-6 secretion is ele-

vated in IBS, indicating an enhanced response against 
Gram-negative bacteria in this disorder  [82] . Changes in 
cell-mediated immunity may additionally contribute to 
the pathophysiology of IBS. For instance, Th1, Th2, Treg, 
and B cells are key elements in the progression of IBS  [87, 
88] . Critically, the probiotic administration in IBS reduc-
es levels of pro-inflammatory cytokines and T-cell func-
tion and preserves the integrity of the gut mucosa  [89–
91] . This reconciliation of intestinal dysbiosis by probi-
otic treatment, which is associated with improved gut 
integrity, immune function, and IBS symptoms, suggests 
that the underlying cause of this disorder may be rooted 
in intestinal dysbiosis and its consequences, including the 
leaky gut. Bacterial products interact with TLRs and nu-
cleotide oligomerization domain receptors, further driv-
ing mucosal immune activation  [92] .

  Chronic Fatigue Syndrome  
 CFS is a disorder characterized by persistent and un-

explained fatigue that is worsened by physical and mental 
exertion. Psychosocial factors play a role in CFS, which is 
frequently diagnostically comorbid with and difficult to 
disentangle from MDD  [93, 94] . MDD is thus highly 
prevalent among those with CFS and involves overlap-
ping symptomatology  [95] .

  Several shared pathophysiological mechanisms can 
explain the associations between CFS and MDD. There is 
a growing body of literature describing immune dysfunc-
tion in CFS  [96, 97] . ‘Flu-like’ symptoms and virus and 
bacterial infections frequently precede CFS  [98] . In addi-
tion, higher peripheral levels of IL-1, IL-6, and TNF-α are 
also observed in CFS patients compared to healthy con-
trols  [20, 98] . Finally, CFS (like depression) is accompa-
nied by mitochondrial dysfunction  [99]  and increased 
O&NS  [100, 101] , which play a key role in CFS.

  Evidence of changes in gut permeability and resultant 
bacterial translocation as a source of shared pathophysi-
ology of CFS and MDD comes from observed IgA and 
IgM responses against LPS from enteric bacteria, includ-
ing  H. alvei ,  P. aeruginosa ,  M. morganii ,  P. mirabilis ,  P. 
putida ,  C. koseri , and  K. pneumoniae   [102] . In addition, 
IgA responses to LPS are linked to increased levels of IL-
1, TNF-α, and neopterin  [103] . Furthermore, changes in 
microbiota composition have been noted in CFS; for in-
stance, levels of  Dialister  appear to be decreased in CFS 
 [104] , similarly to findings observed in samples with 
MDD  [11] , whereas levels of  Alistipes  are increased in 
both diseases, though less consistently so in MDD  [11, 45, 
105] . It is noteworthy that CFS frequently co-occurs with 
IBS, and gut inflammation and endotoxemia may play a 
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patho-etiological role in both diseases  [100, 106, 107] . 
Similarly to MDD, CFS is characterized by a propensity 
towards O&NS-induced autoimmune responses  [108] .

  Furthermore, CFS is accompanied by inducible NO 
synthase activation and peripheral markers of O&NS like 
thiobarbituric acid reactive substances (indicative of lipid 
peroxidation) and oxidized LDL  [100, 109] . As in MDD, 
antioxidant levels are diminished in CFS, including zinc 
and dehydroepiendrosterone sulphate  [110, 111] . Im-
mune reactivity indexed by IgM antibodies against fatty 
acids, including oleic, palmitic, and myristic acid, malon-
dialdehyde, and phosphatidyl-inositol, is also observed in 
CFS; these are by-products of oxidative damage to lipids 
 [110] . Antibodies against nitrogen monoxide derivatives, 
including nitro-tyrosine, nitro-phenyl-alanine, nitro-
tryptophan, and other nitrosative stress markers are also 
seen  [110] . Finally, LPS induces an exaggerated produc-
tion of TNF-α and IL-6 in CFS patients, further strength-
ening the evidence for an association of CFS with disrup-
tions in the intestinal mucosa and resultant bacterial 
translocation  [112] .

  Obesity and Type 2 Diabetes 
 There is a vast pathophysiological overlap between 

obesity, T2DM, and depression, with bidirectional rela-
tionships being consistently reported  [113, 114] . These 
disorders also share common risk factors such as poor 
diet and physical inactivity  [115, 116] . In addition, these 
epidemiological associations are further illustrated by the 
recent proposal of a distinct metabolic-mood syndrome, 
characterized by changes in mood and metabolism after 
chronic stress exposure, and possibly cognitive dysfunc-
tion  [117] . These conditions have been consistently re-
lated to immune activation and aberrations in HPA axis 
function  [118–120] .

  Obesity, T2DM, and MDD share increased peripheral 
levels of cytokines like IL-6, TNF-α, and IL-1β  [1, 121, 122] . 
Type 2 diabetes and obesity are also marked by higher con-
centrations of acute-phase proteins such as CRP, plasmin-
ogen activator inhibitor, and serum amyloid A  [123–126] . 
Furthermore, increased peripheral levels of CRP, IL-6, and 
IL-1β levels may predispose individuals to T2DM  [127, 
128] . Obesity predispose immune cells towards a Th17 cell 
profile  [126] , and T2DM patients also have a skewed bal-
ance of Treg to Th17 cells and Treg to Th1 cells  [129] , a 
finding that has also been observed in MDD  [130] . It is 
worth noting that the infiltration of abdominal adipose tis-
sue by macrophages and other immune cells may play a 
significant role in the patho-aetiology of T2DM and obe-
sity, driving the production of adipokines  [131, 132] .

  A number of O&NS pathways are activated in both 
T2DM and obesity. For instance, in T2DM the activation 
of NADPH oxidase, NO synthase, and oxidative phos-
phorylation may contribute to the production of ROS and 
RNS  [133] . Hence, several oxidative stress markers ap-
pear elevated in T2DM, including but not limited to an 
increased ratio of GSH to glutathione levels, nitrotyro-
sine, S-glutathionylated proteins, advanced glycoxida-
tion end products, and F2-isoprostane levels  [134] . In 
obesity, elevated F2-isoprostane, malondialdhyde, and 
thiobarbituric acid reactive substance (a marker of lipid 
peroxidation) are observed  [135] . Antioxidant levels, in-
cluding vitamins E and C, are reduced in T2DM  [136] , 
while in obesity, the total antioxidant capacity is de-
creased  [135] .

  Intestinal dysbiosis also appears to be involved in the 
patho-aetiology of obesity and T2DM  [32] . In addition, 
increased peripheral levels of LPS are observed in indi-
viduals with T2DM, and this endotoxemia may contrib-
ute to adipose tissue inflammation via the activation of 
TLRs  [137, 138] . Furthermore, the role of inflammation 
induced by Gram-negative bacteria in T2DM is evidenced 
by the fact that human abdominal adipocyte induction 
with LPS leads to enhanced IL-6 and TNF-α production 
 [137] . The precise alterations in microbiota composition 
in T2DM have varied across studies  [32] , although a large 
Scandinavian cohort has found a higher frequency of
butyrate-producing bacteria ( Roseburia   intestinalis  and 
 Faecalibacterium prausnitzii ) among postmenopausal 
women with T2DM compared to women with impaired 
glucose tolerance  [139]  (suppl. table S1). Butyrate con-
tributes to the homeostasis and survival of colonocytes 
(see above), and thus these alterations may contribute to 
abnormalities in the gut barrier.

  Higher peripheral levels of LPS in obese compared to 
lean individuals have also been demonstrated  [140] . In 
addition, 4 h after the ingestion of a high-fat diet, obese 
individuals displayed higher peripheral increments in 
LPS compared to healthy controls  [141] . Evidence from 
both animal and human research has consistently dem-
onstrated that obesity is associated with microbiota dys-
biosis  [141] .

  A recent fascinating study illustrated the role of the 
microbiota in the patho-aetiology of obesity. In a cohort 
of female twins discordant for obesity, the transplanta-
tion of germ-free mice with an ‘obese microbiota’ trans-
mitted an increase in total body and fat mass. Further-
more, co-housing humanized mice with the ‘obese mi-
crobiota’ with mice transplanted with a ‘lean microbiota’ 
prevented the development of obesity; the invasion of 
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specific members of the  Bacteriodetes  phylum derived 
from the ‘lean microbiota’ prevented the development of 
obesity in co-housed mice transplanted with the ‘obese 
microbiota’  [142] . In addition, microbiota invasion and 
phenotypic change in mice transplanted with an obeso-
genic microbiota was dependent on dietary fibre and fat 
content  [142] . Thus, diet and environment may interact 
with the gut microbiota to drive the progression of differ-
ent metabolic phenotypes.

  Mechanistic Insights into Microbiota Changes in 

MDD and Its Comorbidities 

 Recent studies have started to elucidate putative mech-
anisms underlying changes in the composition of micro-
biota as a pathophysiological aspect of MDD and related 
comorbidities. For instance, changes in phylum-level 
composition or the presence of particular species such as 
a decrease in  Bacteroidetes  (observed in MDD)  [10, 143] , 
IBS  [80] , obesity  [144] , impaired glucose tolerance  [145] , 
and CFS  [105]  could represent a consistent finding across 
these disorders. Nevertheless, another study found an in-
crease in  Bacteroidetes  MDD patients  [11] , rendering 
these findings not entirely consistent.

  Specific pathogenetic mechanisms of members of dif-
ferent genera of intestinal microbes have recently emerged. 
For example, an increased abundance of the  Clostridium 
 XIVB cluster is associated with decreases in serum levels 
of BDNF  [11] , a plasticity-associated neurotrophic factor 
whose peripheral levels appear to be decreased in MDD 
 [146] , and has also been implicated in the pathophysiol-
ogy of IBS  [147] , CFS  [148] , and obesity  [149] .

  Furthermore,  Faecalibacterium  – a genus of the Rumi-
nococcaeceae family and an abundant commensal (ap-
prox. 5% in humans) – was found to be decreased in the 
faecal microbiota of MDD patients compared to healthy 
controls  [11] , while  Faecalibacterium  spp.   are lowered by 
1.5 in faecal samples of individuals with IBS in compari-
son to controls  [80] . the presence of  Faecalibacterium  
bacteria within the gastrointestinal tract is linked to anti-
inflammatory activities. For instance,  F. prausnitzii  
downregulates the synthesis of the pro-inflammatory cy-
tokines IL-12 and IFN-γ and increases production of IL-
10 by mononuclear cells. The effects of  F. prausnitzii  can 
be in part attributable to the termination of NF-κB signal-
ling and IL-8 synthesis  [150] .  F. prausnitzii  is addition-
ally associated with the fermentation of digestion-resis-
tant carbohydrates into ScFAs, including butyrate, for-
mate, and lactate  [151] . Numerous taxa (e.g.  Roseburia 

 spp.,  Bacteroides  spp.    [152, 153] )   are associated with the 
production of butyrate, which may have beneficial func-
tions, including but not limited to an increment in mucin 
synthesis, a decrease of bacterial translocation across the 
intestinal barrier, and the maintenance of the integrity of 
tight junctions within the intestinal epithelium in addi-
tion to the intrinsic signalling properties of ScFAs  [154, 
155] . ScFAs may additionally contribute to endocrine sig-
nalling through their effects on hormones such as gluca-
gon-like peptide-1 (GLP-1), which are closely linked to 
metabolic disorders  [156] . A number of taxa, disruptions 
of which are common in MDD, IBS, CFS, and metabolic 
disorders, are also linked to bile acid metabolism  [157] . 
Bile acids can induce ONS and damage  [158] , which can 
disrupt the intestinal barrier  [159–161] .

  A higher abundance of  Alistipes  in MDD  [11, 143]  may 
lead to changes in tryptophan levels, as  Alistipes  species 
are able to convert tryptophan to indole  [162]  and subse-
quently serotonin availability within the intestine, as 
tryptophan is its precursor. Such increases in  Alistipes  
taxa have been additionally linked to gut inflammation 
and to abdominal pain in IBS  [163] , and have addition-
ally been found to be elevated in patients with CFS  [105] . 
Dietary changes, particularly animal-based diets, can fur-
ther elevate  Alistipes  bacteria in the gastrointestinal tract 
 [164] . Differences in the abundance of several bacterial 
taxa have been observed in MDD, including but not lim-
ited to  Enterobacteriaceae, Erysipelotrichaceae  spp.,   and  
Prevotellaceae .   These bacteria may promote both muco-
sal and systemic immune activation  [46, 57, 165–169]  
through mechanisms including an increase in intestinal 
permeability and the presence of inflammogenic flagellin 
components in particular.

  Notwithstanding that several microbiota-mediated 
pathophysiological mechanisms could be involved in 
MDD, many of these have yet to be thoroughly investi-
gated. Online supplementary table S1 outlines overlaps in 
microbiota composition at the level of phyla, family, and 
genera, which have been reported across studies in indi-
viduals with MDD, IBS, CFS, obesity, and T2DM, as well 
as putative pathophysiological mechanisms related to 
specific bacteria.

  Clinical Implications 

 Probiotics 
 The term probiotics refers to ‘live microorganisms 

that, when administered to adequate amounts, confer a 
health benefit to the host’  [170] . The idea of treating psy-
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chiatric disorders with probiotics is not new; in 1910 Dr. 
George Porter Phillips reported that although  Lactobacil-
lus  tablets and powder were ineffective, a gelatin-whey 
formula comprised of lactic-acid-producing bacteria im-
proved depressive symptoms in melancholic adults  [171] . 
Preclinical studies and clinical trials have increasingly in-
vestigated a role for probiotics in the treatment of depres-
sive-like behaviours [for an extensive review, see  172 ]. 
Several studies have demonstrated effects of probiotics in 
healthy volunteers; however, the benefit of these changes 
is not yet clear. For example, orally consumed  Lactobacil-
lus casei  milk had no significant mood-elevating effects in 
healthy volunteers, while also impacting two measures of 
memory  [173] . A recent randomized controlled trial 
(RCT) found that a multispecies probiotic composed of 
 Bifidobacterium bifidum  W23,  Bifidobacterium lactis 
 W52,  Lactobacillus acidophilus  W37,  Lactobacillus brevis  
W63,  L. casei  W56,  Lactobacillus salivarius  W24, and  Lac-
tococcus lactis  (W19 and W58) reduced cognitive reactiv-
ity to sad mood via a reduction in rumination and aggres-
sive thoughts in healthy individuals  [174] . This small 
RCT provided a proof of concept for probiotic supple-
mentation as a potential preventative strategy for MDD.

  A recent systematic review and meta-analysis of 15 
RCTs on the use of probiotics for IBS  [175]  found that 
although probiotics varied in strain composition, these 
compounds reduced abdominal pain after 8 and 10 weeks 
of treatment. Furthermore, probiotics improved the se-
verity of IBS symptoms, although not significantly com-
pared to placebo  [175] , providing preface to probiotics as 
a conjunctive treatment for both disorders.

  The treatment of individuals meeting formal criteria 
for CFS with the  L. casei  strain Shirota resulted in signifi-
cant improvements in anxiety symptoms; these beneficial 
effects on anxiety correlated with an increase in  Lactoba-
cillus  and  Bifidobacteria  in those taking the  L. casei  strain 
Shirota  [176] . The finding of a rise in  Bifidobacteria  was 
significant considering that levels of this microorganism 
could be low in CFS  [106] . In addition, preclinical data 
suggest that  Bifidobacteria  may contribute to the mainte-
nance of gut barrier integrity (thus preventing endotox-
emia)  [177] .

  The therapeutic potential of probiotics for the man-
agement of obesity and T2DM has been extensively re-
viewed elsewhere  [32, 178] . A recent meta-analysis found 
that treatment with probiotics (especially when com-
posed by multiple strains) led to a reduction in several 
cardiovascular risk factors, including total cholesterol, 
LDL cholesterol, BMI, waist circumference, and inflam-
matory markers, compared to placebo  [179] . ScFAs (e.g. 

butyrate) appear to be a promising target for the probi-
otic treatment of T2DM; SCFAs bind to G-protein-cou-
pled receptors, namely GPR41 and GPR43  [180, 181] , to 
influence the host enteroendocrine system, driving the 
synthesis of proglucagon, GLP-1, peptide YY, and leptin 
 [32] . Interestingly, GLP-1 analogues are effective ap-
proved treatments for T2DM  [182] , and preclinical data 
indicate that these drugs could be novel targets for cogni-
tive improvement in MDD  [183] .

  In conclusion, promising mechanistic experimental 
data indicate that manipulation of the gut microbiota 
with probiotics may open a new avenue for the preven-
tion and treatment of MDD and associated comorbidi-
ties. These beneficial effects could attenuate metabolic 
endotoxemia. However, clinical trials have methodologi-
cal inconsistencies and variations in protocol. Therefore, 
the field awaits the design of large-scale and well-designed 
clinical trials.

  Prebiotics 
 The Food and Agricultural Organization (FAO) of the 

United Nations define prebiotics as ‘a nonviable food 
component that confers a health benefit on the host mod-
ulated by the microbiota’  [184] . These ‘functional foods’ 
escape absorption in the small bowel and enter the colon, 
providing nutrients to specific bacteria, including  Bifido-
bacteria  and  Lactobacilli . Several prebiotics are non-di-
gestible carbohydrates: monosaccharides (e.g. fructose), 
disaccharides (e.g. lactose), oligosaccharides (e.g. fruc-
to-oligosaccharides and galacto-oligosaccharides), and 
polyols, and the fermentable oligo- di- and monosaccha-
rides and polyols or FODMAPs (e.g. inulin)  [185] . A re-
cent systematic review found that no RCT to date has 
evaluated prebiotics as a treatment strategy for MDD 
 [186] . In addition, clinical trial data have been inconsis-
tent for IBS  [92] . Some positive signals have been ob-
served for metabolic disorders, although clinical findings 
remain inconclusive  [187] .

  The Potential of Dietary Change to Benefit Gut 
Permeability and Disease Status 
 Diet quality profoundly influences immune function, 

systemic inflammation, and antioxidant capacity [for re-
view, see  7  and  5 ]. Moreover, both short- and long-term 
diet is a key driver of microbiome composition and gut 
health. Individual gut microbiome enterotypes are linked 
to long-term dietary patterns  [188] , while in a key inter-
vention study, only 2 weeks of dietary change had a pro-
found impact on gut microbiota composition and mark-
ers of mucosal inflammation  [189] . There are also exten-
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sive data from animal models to show that high-fat diets 
induce intestinal permeability and inflammation [for re-
view, see  190 ]. Specifically, high-fat diets can alter the in-
testinal barrier structure and increase inflammation via a 
reduction of tight junction proteins  [191] . However, key 
issues in the field relate to the lack of clarity regarding the 
potential differential impact of differing dietary fats as 
well as carbohydrate intake on gut health, immune and 
metabolic outcomes, and whether the impact of high-fat 
diets and similar paradigms is the same in humans as it is 
in animals. These issues are currently subject to intense 
investigation due to their likely relevance to public health 
and clinical approaches.

  While it is well established that diet is of critical impor-
tance to the development of cardiovascular diseases, 
T2DM and obesity, it is increasingly clear that diet is also 
of substantial relevance to depression  [192] . Indeed, two 
recent meta-analyses report that diet quality is inversely 
related to the likelihood of or risk for MDD  [193] , while 
emerging intervention data suggest a beneficial impact of 
dietary improvement on depression risk  [194]  and symp-
toms of depression  [195] . In addition, preliminary pro-
spective data indicate that the consumption of certain nu-
trients like red meat  [196]  and even milk  [197]  may con-
fer a higher risk of developing depression. The recognition 
that diet is a key driver of gut health, as well as inflamma-
tion and oxidative stress, highlights the likely importance 
of the gut in mediating the association between diet and 
MDD  [198]  and points to the utility of targeting dietary 
quality to improve gut health and resulting disease states, 
including MDD  [199, 200] , IBS  [201] , and metabolic dis-
orders  [202, 203] . For instance, alterations in the abun-
dance of  Roseburia , which has been noted in MDD, IBS, 
CFS, and obesity  [10, 105, 204, 205] , can be decreased by 
low-fat, high-complex carbohydrate diets  [206] .

  Conclusions 

 The influence of commensal microbiota in the patho-
physiology of MDD and its associated medical comor-
bidities is only beginning to be uncovered. Here we de-
scribe evidence that microbiota composition changes, 
bacterial translocation from a disrupted gut barrier, and 
metabolic endotoxemia may play a significant shared 
pathophysiological role in MDD and somatic comorbid-
ities. The leaky gut (and resulting metabolic endotox-
emia) in particular may contribute to immune activation, 
HPA axis imbalances, and O&NS. This cascade of inter-
acting events could be attenuated by several promising 

strategies targeting gut-related inflammation, including 
but not limited to dietary interventions and treatment 
with probiotics. However, large-scale, well-designed 
RCTs are awaited. An inherent limitation of these re-
search efforts relies on the phenotypic heterogeneity of 
MDD and co-morbid diseases, and thus these mecha-
nisms may distinctively contribute to the pathophysiol-
ogy of different subsets of patients, who otherwise seem 
deceptively similar as they may share the same categorical 
diagnoses  [207] . There is an unmet need in the field to 
translate these fascinating findings into preventative and 
therapeutic advances for MDD and related medical co-
morbidities.
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