UNSOLVED PROBLEMS

We start with this number a new
section of this journal: that of unsolved

blems. In this section unsolved prob-
Eﬁm will be proposed, at the same time
some information about previous results
in the direction of the problem in question
will be given. Problems for this section
as well as comments on published problems
should be sent to G. x1T8, editor of
the section, to the address of the redac-
tion of the journal (Budapest, V. Redl-
tanoda u. 13—15.).
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HAaMpaBuTbL MO0 afpecy pefaKiys KYPHana
(Budapest, V. Reédltanoda utca 13—15.)
LA pegakropa pasgena G. ALEXITS.

SOME UNSOLVED PROBLEMS

by
Pavr ERDOS

In this paper I shall discuss some unsolved problems in number theory
combinatorial analysis, set theory, elementary geometry, analysis and pro-
bability. The choice of problems is purely subjective, I discuss problems on
which I worked myself or which interested me and it is certainly not claimed
that all or most of the problems discussed here are very important;, but I
hope the reader will find them challenging and amusing; most of them will
have a combinatorial character. Classical and wellknown problems are-
avoided as much as possible.

I gave several talks on unsolved problems at various places (Moscow,
Leningrad, Peking, Singapore, Adelaide). In the autumn of 1959 I gave a
series of talks on unsolved problems at the Mathematical Institute of the
Hungarian Academy of Sciences and most of the problems discussed here
were discussed in my lectures.

My first talk on unsolved problems was given on November 16, 1957
at Assumption University Windsor, Ontario, Canada, a paper on this talk
appeared in the Michigan Mathematical Journal 4 (1957), 291—300, and
there is a considerable overlap between this paper and the present one.

¢, €y, €y, ..., C will denote positive absolute constants. i. o. is an
abreviation for infinitely often.

L Problems in number theory

First some problems on prime numbers.
1) Denote by m(z) the number of primes not exceeding z. It has been
conjectured that

(.1.1) 2z + y) < (@) + wiy).

It is easy to verify (I. 1.1) for small values of y (P. Unxgir informed
me that he verified it for ¥ < 41). For 2 > z,, 2 = y (I. 1.1) was proved by
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Laxpav. Harpy and LrirTLEwoop proved by BrRUN's method that

(L. 1.2) n(z + y) — n(z) < —L-
logy
and A. SELBERG proved that
(I. 1.3) ‘Jl:(:t -+ y) — n(m) <2 ..ﬂ_ + 0 [3’ lOg log y] .
logy (log y)?

A conjecture weaker than (I. 1.1) but stronger than (I.1.8) would be: To
every & > 0 there exists a y, so that for y > y,
Y

(I.1.4) @ +y) — n@) < (1 + 2)
log y

The replacement in (I. 1.3) of 2 by a smaller constant would be of great
importance.

Instead of considering n(x + y) — #(z) one could define f(x, y) as the
greatest integer & so that there exist k integers ¢ <a; <a;, <... <@g, <
=< @ + y satisfying (a;, @;) = 1. The proof of Harpy and LrrTLEWOOD
gives f(z, y) < cyflog y (trivially f(z, y) = a(z + y) — n(z)) and one could

conjecture that f(z,y) < =(y) or that flz,y) < (1 + ¢)

Y_ for ¥ > Y,
logy
Following Harpy and LiTTrLEWOOD put

e(y) =lim sup (n(x + y) — n(x)) .

One would conjecture that lim p(y) = oo and perhaps even

Yo 2

e(y) > (1—e) y/log y for y > y,,
but it is not even known that o(y) = 2 for ¥ > y,.

G. H. Harpy and J. E. LitrLEwoon: “Some problems of partitio numerorum.”
Acta Mathematica 44 (1923) 1—170.

E. Lawpav: Handbuch der Lehre von der Verteilung der Primzahlen. Vol. 1.

A. SELBERG: ,,0n elementary methods in prime number theory and their limitaiions.”
Den 11-te Skandinaviske Matematikerkongress (1952) 13—22.

2) Denote by 2 = p; < p, < ... the sequence of prime numbers. Put
d, = Pns1 — P, TURAN and I proved that for infinitely many » and m,
dy, >d, . and d, 4, > d,. It is not known if 4, =d,,, holds i. 0. We could
not prove that i. 0. d, > d,, > d,,,, in fact we could not even prove that
i. 0. either d, > d, 4y > d, ,0or d, <d, ., < d,,,

It seems very likely that the sequence d,/log » is everwhere dense and
that it has a distribution function (in other words the density of integers
n satisfying d, flogn < ¢ exists and if we denote it by f(c) then f(0) =0,
f(e0)=1). R1cor and I proved that the set of limit points of ,/log » has positive
measure, but co is the only known limit point (theorem of WESTzZyNTHIUS).
Analogous questions can be asked about d,/d, ;.
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P. Erpbs and P. TuriAwn: “On some sequences of integers.” Bull. Amer. Math.
Soc. 54 (1948) 371 —378.

P. Erpds: On the difference of consecutive primes.” Ibid. 885—889.

P. Erpnés and A. RENnvr: “Some problems and results on consecutive primes.”
Simon Stevin 27 (1950) 1156—125.

@. Rroor: “Recherches sur I'allure de la suite p,+; — p,/log p,.”" Colloque sur la
Théorie des nombres, Bruxelles (1955) 93—1086.

E. WestzyNTaIUS: »Uber die Verteilung der Zahlen die zu den ersten Primzahlen

teilerfremd sind.”” Commentationes Phys.-mat. Sec. Sci. fenn. 5, Nr. 25, 1—37.
3) Sharpening the result of WesTzy~NTHIUS I proved that i. o.

; log n loglog n

(L.3.1)
(logloglog n)?

and RANEKIN proved that i. o.

. log n loglog n loglogloglog n

1.3.2 d, >
{ ) (logloglog n)?

It seems to be very difficult to improve (I. 3.2).

IneHAM proved d, < n*s (d, < n'—* was first proved by HoHEISEL
for & = 32999/33000) and the Riemann hypothesis would imply d, < n'>te.
CraMER conjectured that

(I. 3.3) lim sup d,/(log n)® = 1.

The old conjecture on prime twins states that i. o. d, = 2, but it is
not even known that

(L. 3.4) lim inf d, flogn = 0.
I proved using Brun’s method that
(L. 3.5) lim inf d,/log n < 1.
I further proved that
(I. 3.6) lim sup min (d,, d,,,)/log n = oo,
but I can not prove that

(I.8.7)  liminf max (d,, d,,,)/logn < 1orlim sup min @Ei]"-L—’d"“) = oo,
ogn

also I can not prove

d‘n+dn+l+“' +dn+k—1<1_c

klogn

lim

where ¢ does not depend on n.

P. Erpls: “On the difference of consecutive primes.” Quarterly Journal of Math.

6 (1935) 124 —128. See also T. H. Ceane: “Uber aufeinanderfolgende Zahlen, von denen

ﬁe mindestens einer von n linearen Kongruenzen geniigt, deren Moduln die ersten n

imzahlen sind.« Schriften Math. Sem. w. Inst. Angew. Math. Univ. 4 (1938) 35—55.

R. A. RawngrN: ,,The difference between consecutive prime number.” Journal
London Math. Soc. 13 (1938) 242 —247.
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A. E.IngaaM: “‘On the difference between consecutive primes.” Quarterly Journal
of Math. 8 (1937) 255—266.

H. Cramrr: “On the order of magnitude of the difference between consecutive
prime numbers.” Acta Arithmetica 2 (1936) 23 —486,

G. HomesgL: ,,Primzahlprobleme in der Analysis.” Sitzungsber. der Preuss.
Akad. der Wiss phys. Math. Klasse, (1930), 580— 588.
" P. Erpds: “The difference of consecutive primes,” Duke Math. Journal 6 (1940)
438 —441.

R. A. RANgIN, Proc. Amer. Math. Soc. 1 (1950) 143 —150.

P. Erpds: “Problems and results on the differences of consecutive primes.”
Publ. Math. Debrecen 1 (1949) 37—39.

4) R#NYI and I proved by Brun’s method that to every ¢, there exists
a ¢, so that there exists r >¢, logn d’s d, ..., d,,, satisfying

(1. 4.1) k<n, d,; >0, 0<i<r,

but we can not prove that (I. 4.1) holds for every ¢; and ¢, if n > ng (¢, c,).
Denote by a, < a, < ... the sequence of integers having not more
than two prime factors. I proved that

(I. 4.2) lim sup (@, ,—a,)/logk > ¢

but can not prove that the lim sup in (I. 4.2) is infinite, I can not prove that
the limit in (L. 4.2) is positive if the a’s are the integers having not more than
three prime factors. (Erp(s — R¥NYI, see problem 2.) (I. 4.2) was a problem
in Elemente der Mathematik, 1955.

5) CraMER (see problem 3) proved, assuming the Riemann hypothesis
that

(L.5.1) 2 (Prer— Py)? < ca(log z)? -
Pr=x
It is possible that

(L.5.2) Z (Pryr — D)? < cxlogz

Pe<x

holds. (Perhaps even lim 11 S (P —pi)? exista] . (L. 5.2) seems hope-
zlogx

less at present, but perhaps ﬁ:f(;c following conjecture of mine can be

attacked. Let 1 =a; < @4,< ... < @, be the integers relatevely prime to

n. Then

I mf'l g2
.53 Ay, —a): < O——ro.
(1.5.3) s (@2 — @) s
I can not even prove that
p(n)—1
(I.5.4) f (@41 — a;)? < € n(loglog n)=
k=1

((I. 5.4) follows easily by Brux’s method with 7 (logn)e.
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SIVASANKARANARAYAMA Prirar conjectured that

(I.5.5) N 4, = LR o(l)]p,,.
KmO(mm0d 2) 2
k<n

(. 5.5) seems very difficult but again one can conjecture that
: 1
(1.5.6) N (@ —a) = {5 +o(l)|n.

k mod2)
k<wp(n)

We mentioned already (the probably hopeless) conjecture that d,/log »
has a distribution function. Let n; be the product of the first ¢ primes. Denote

by f(c, 7) the number of solations of a’,, —a}’ < %’i (@1 = k=< gn) are
pin;
the integers < n, relatively prime to »). Is it true that
lim f(c, 0)/g(n;) = g(c)

exists? It is not difficult to show that the numbers
al, —af

nfp(n,)
are everywhere dense in (0, oo).

AZk<en), 1Si< oo

6) Let f(n) be a real valued multiplicative function, ie. fa.b) =
= f(a)-f(b) if (a, b) = 1. Assume |f(n) | = 1. Is it true that

(1.6.1) Tim L N (k)
S

always exists? It is easy to prove that if

(1.6.2) N L oo,
e P

hen the limit (I.6.1) always exsists and is different from 0. It can be con-
ectured that if (I.6.2) diverges, then (I.6.1) is 0. If f(p®)=—1, then the
conjecture is equivalent with the prime number theorem. I conjectured
(I. 6.1) about 20 years ago, but quite possibly the conjecture is much older.

WintyeER observed that if |f(n)| = 1 can be complex valued, the
limit (I. 6.1) does not have to exist.

A WINTNER: “T'he theory of measure in arithmetical semigroups. Baltimore, 1944.
See also N. G. TcHUDAROFF: “Theory of the characters of number semigroups.’’ Journal
Indian Math. Soc. 20 (1956) 11— 15,

7) OsTmMaNN conjectured that there do not exist two sequences of
integers @; <@y < ...; b, <by<... each having at least two elements so
that all but a finite number of primes are of the form @, + b, and there are
only a finite number of composite numbers of this form.

15 A Matematikai Kutaté Intézet Kozleményei VI, 1—2.
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HorNrECK proved, using BRUN’s method that both sequences must be
infinite.

It seems certain that OsTMANN's conjecture is true, but the proof
may well be difficult.

8) A. WinTNER once asked me if I can prove the existence of an infinite
sequence of primes p;, 1 < i<oo so that if @, <a,< ... are the integers
composed of the p's, then lim (a;, —a;) = oo. 1 was unable to prove the

existence of such a sequence of primes. A well-known theorem of Pélya states
that if the a’s are all composed of py, p,, ..., p, then lim (a,,; —a;) = <.
=
For several problems and conjectures on prime numbers see A. ScHINZEL
and W. SierpINSKI: “Sur certaines hypothéses concernant les nombres
premiers.” Acta Arithmetica 4 (1958) 185—207.
Now we consider some problems on additive number theory.

9) Can one give k + 2 integers 1 < a; <@, <... <@,,, < 2¢ 50 that
k42

the sums _> &a, & =O0orl, are all distinct? The sequence 2,0 < i < k
i=1

shows that one can give k& + 1such integers and 3, 5, 6, 7 shows that a, , < 2!
is possible. Very recently Conway and Guy answered this question affir-
matively, independently of each other. The problem, wether one can find
k 4+ 3 such integers < 2* remains open.

More generally one can ask what is the maximum number of integers
k

a; <ay,<...<a, < so that the sums > ¢ a;, & =0 should be all
i=1
different? Moser and I proved that

log % loglog =
I.9.1 kE, < 1+ ——=—.
( ) x_10g2+( + )2]0g2
Probably (I.9.1) is very far from being best possible, k, = 10g:;+ o).
og :

is quite possibly true.

P. Erpds: “Problems and results in additive number theory.” Colloque sur la
théorie des nombres, Bruxelles (1955) 136 —137.

10) Denote by f(n) the maximum number of positive integers a; < a,<. ..
not exceeding » for which the sums a, + a; are all different. Sipox asked
1o estimate f(n). TurAx and I proved that

(I 101) f('n) < n% -+ n'h,
and SiNgEr proved that for infinitely many =»
(1. 10.2) f(n) > n*.

It is possible that f(n) = n% + O(1).

SingERr’s proof is based on his construction of a perfect difference
set i.e. a set of residues ay, a,, . . ., @, (mod n) so that every residue mod n
except 0 can be uniquely represented in the form a, —a;. Clearly a perfect
difference set is only possible if n=1Fk + k 4 1 and SiNgErR proved that a
perfect difference set exists if & is a power of a prime. It has been conjectured
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if k is not the power of a primes a perfect set can not exist. Special cases of
this conjecture have been proved by Bruck and Ryser. The case ¥ = 10
is not yet decided.

From (I. 10.1) and SiNe¢ER’s result one can in fact deduce

(I. 10.3) f(m) = (1 + o(1))n%.

Denote by fs(n) the maximum number of a’s not exceeding » so that
all the sums @; + a; -+ a; are all distinct. Bost recently asked me if I can
prove analogously to (I.10.1) and (L. 10.3)

(1.10.4) fs(m) = (1 + o(1))n'h

The proof of (I1.10.4) seems difficult, the method we used in the proof
of (I.10.1) does not work.

Sipox also asked what can be said about an infinite sequence for which
the sums a; + a; are all different. Turin and I proved that for such a
sequence

(I.10.5) lim sup a,/k? = oo (or lim inf f(n)/|n = 0),

but we constructed a sequence for which lim inf a,/k? < oo.
One can show that there exists such a sequence for which

(I.10.6) a, < ck? for all % .

There is a considerable gap between (I.10.5) and (I.10.6), which at present
I can not fill.

REényr and I proved by using probabilistic methods that to every &
there exists an I = I(¢) and a sequence a, < a, <... for which g, < k?+¢
and the number of solutions of n = a; + a; is less than I.

Erpés —TURAN: “On the problem of Sidon in additive number theory and on some
related problems.” Journal London Math. Soc. 16 (1941) 212—215.

J. SmvgER: “A theorem in finite projective geometry and some applications to
number theory.” Trans. Amer. Math. Soc. 43 (1938) 377—385.

R. H. Bruck and H. J. RysEr: “The nonexistence of certain finite projective
planes.” Canadian Journal of Math. 1 (1949) 88—93.

P. Erpés and A. REnvyI: ,,Additive properties of random sequences of positive
integers.”” Acta Arithmetica 6 (1940) 83—110.

For the problems considered in 10. and 11. see also A. ST6HR “Geldste und ungeloste
Fragen iiber n der natiirlichen Zahlenreihe, 1. and 11.* Journal fiir die reine und
angewandte Math. 194 (1955) 40 —65 and 111 —140, many interesting problems can be
found in this paper.

Of the many problems discussed in SToHR's paper I just wish to mention
the following problem of RorrBACH: What is the smallest number of integers
a; < @y <...< a, 80 that every integer < n should be of the form
a,+a;. The estimate k,> }/2n is trivialand RoERBACH improves this to (1+4-¢)}/2n
for a fixed &> 0. Recently MosEgr obtained a better value for ¢ (L. Mosgr, Acta
Arithmetica 6 (1960) 11—13). Trivially k,<2}/n and perhaps %, = 2|/n + O(1).

For a review of additive number theory see H. H. Ostmann: Additive
Zahlentheorie, Ergebnisse der Math. Heft 7. (two volumes).

11) Another problem of Sipox asked if there exists an infinite sequence
of integers so that if g(n) denotes the number of solutions of n =a; + a;,

15*
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then to every & > 0 there exists an ny so that for z > n,

(I.11.1) 0 < g(n) < ne.

I proved by probabilistic arguments that such a sequence exists, in
fact I proved the existence of a sequence with

(I.11.2) ¢; log n < g(n) < ¢, log n.

The existence of a sequence with g(n)/log » = ¢ > 0 is an open problem.
An older conjecture of TURAN and myself stated that if g(n) > 0 for all n > n,
then lim sup g(n) = oo (Iperhaps even g(n) > ¢ log » for infinitely many =,
which would show that (I.11.2) is best possible). Our conjecture seems rather
difficult. A stronger conjesture would be: if a, < ck® for all £ then lim sup
g(n) = oo. This would imply our original conjecture, but is perhaps easier
to attack; all we can show is that lim sup g(n)>1 (see ST6HR's paper quoted
in 10.1).

TurAN and I conjectured that if @; < @, <. .. is any infinite sequence
of integers then

L
(1. 11.3) 2> glk) = en + 0(1)
k=1
is impossible. Fucas and I proved the following stronger theorem:
17,
(L.11.4 k)= on+4o|-—
) ge( s [

is impossible for ¢ > 0. In the case @, = k* HArRDY and LANDAU proved that

(I.11.5) 2 g(k) — —n + of(nlog n)*).

k=1

In the case @, = k* (this is the classical problem of the lattice points
in the circle) it has been conjectured that for every & > 0

n 7 e
(I. 11.6) gg(k)=zﬂ+0{n ),

(I.11.8) is very deep. It is very likely that (I.11.4) is very close to being best
possible, but we have not been able to prove this. Very recently JurraT
improved the error term in (I.11.4) to o(n').

It would be of interest to show that the number of solutions of ¢; + a; +
+ @, < n can not be of the form ¢ n 4 O(1), but this, and possible generah
zations in the direction of (1.11.4) have not yet been done.

Very recently H. E. RicHErT proved the following result:

Let a; < a, <. .. be any sequence. Then
(L. 11.5) 2 a,a; = nlog n + cn 4 O(n°)

ki=n

and

(I.11.6) Za,=n+ 0%
k=1
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can not both hold ifa < —i—. Perhaps the condition (I.11.6) is superfluous

[perhaps the error term in (I.11.5) has to be changed].

P. Erp6s: “On a problem of Sidon in additive number theory,” Acta Szeged
11 (1954) 255—259, see also the paper quoted in I. 9).

P. Ern6s and W. H, J. Fuons: “On a problem of additive number theory.”
Journal London Math. Soc. 31 (1956) 67—73.

E. Lanpav: Vorlesungen itber Zahlentheorie, Vol. 2.

12) Lorenz proved the following conjecture of STraUS and myself: to
every infinite sequence of integers a; < a, <. .. there exists a sequence of
density 0, b, < b, <. . .so that every sufficiently large integer can be expressed
in the form @, + b;. In particular he proved that if the a’s are the primes
then the b’s can be chosen so that B(z) < ¢ (log)®. I improved this to

B(z) < ¢ (logz)? (B(z) = > 1). Perhaps such a sequence exists satisfying
h=x

B(x) < ¢ logw. From the prime number theorem ¢ = 1. I can not prove
that ¢ > 1. This would follow from the following general conjecture of H.
HanaNt (oral communication): Let a; <ay < ...; by <b, < ... be two
infinite sequences of integers so that every sufficiently large n can be written
in the form a; + b;. Then

(I.12.1) lim sup A(z) B(z)/x > 1.

Does there exist a sequence b; <b, < ... satisfying B(z) < iim— 80
ogx
that every sufficiently large integer can be written in the form 2*g—|- b; ¢
Lorenz’s result only gives B(x) < cz loglogz/logz.

G. G. LoreNz: ,,On a problem of additive number theory.” Proc. Amer. Math.
Soc. 5 (1954) 838—841.

P. Ernds: ,,Some results on additive number theory.” Ibid. 847—853., see also
my paper quoted in L. 9).

W. Narkmmwrcz: ,,Remarks on a conjecture of Hanani in number theory.”
Coll. Math 7 (1960) 161—165.

13) A sequence b; < b, < ... was called by KEINTCHINE an essential
component if for every a; < a, < ... of positive density a the ScENIREL-
MANN sum of the two sequences has density greater than a. By density we
mean here ScHNIRELMANN density i.e. the greatest lower bound o-
A(n)/n, 1 £ n < oo. The SCHNIRELMANN sum of @, and b, 1 < 4, j < oo is
the set of integers of the form {a, b;, a; + b;}. I proved, extending previous
results of KuintcaiNe and BuceSTAB, that every hbasis is an essential
component, a sequence b, < b, < ... is called a basis if there exists an
integer k so that every integer is the sum of k or fewer b’s. Linnik proved
that an essential component does not have to be a basis, in fact he constructed
an essential component for which B(z) = o(@¢) for every & > 0. Linnik
informed me that he can construct an essential component satisfying B(z) <
< exp [(logz)'—]. It seems to me that if b, /b, > ¢ > 1 then the sequence b,
can 1ot be an essential component, but I have not been able to show this
(it is easy to show this for b, = 2i). Perhaps B(x)/logx - oo holds for every
essential component.

Does there exist an essential component b, for which there does not
exist a function f(a), satisfying f(a) > 0 for 0 < a < 1, so that if a; has
ScHNIRELMANN density o the ScENIRELMANN sum of the two sequences
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has density = a + f(a)? (I was recently informed by E. Wirsing that
he proved in his unpublished dissertation 10 years ago that such an essential
component does not exist).

P. Erpds: “On the arithmetical density of the sum of two sequences one of which
forms a basis for the integers.” Acta Arithmetica 1 (1936) 197 —200,

U. V. Lmwvix: “On Erdds’s theorem on the addition of numerical sequences.”
Mat. Sbornik 10 (1942) 67— 178, see also A. Sténr and E. WirsinG: “Beispiele von wesent-
lichen Komponenten die keine Basen sind.« Journal reine und angewandie Math. 196
(1956) 96—98.

14) Romanorr proved that for every integer a > 1 the density of
integers of the form p + a* is positive (p runs through the primes). L. KarmAr
asked me a few years ago if for every A > 1 the density of integers of the form
p + [4¥] is > 0. The answer no doubt is affirmative, but I have not been
able to prove it.

I proved that if g(n) denotes the number of solutions of p 4 2¢ = n,
then lim sup g(n) = oo, in fact g(n) > ¢ loglog 7 i. 0. It seems that 105 is the
largest integer n for which all the integers n — 2k, 2 < 2k < n are primes.

Let now 1<a,<a,<... be a sequence of integers satisfying
A(z) > ¢ log z. Denote by g(n) the number of solutions of ¢, + p =n. Is it
true that lim sup g(n) = oo? Clearly analogous questions could be asked
if the primes are replaced by other sequences.

N. P. Romaxorr: »Uber einige Sitze der additiven Zahlentheorie.« Math. Annalen
109 (1934) 668 —678. r

P. Erp§s: “On integers of the form 2z 4 p and some related problems.” Summa
Brasil. Math. 2 (1947—51) 113—123,

15) Denote by 4, (x) the number of distinet integers not exceeding
which are of the form @; + a;. I conjectured that if lim A(z)/z = 0 then

(1.15.1) lim sup A,(z)/A(x) = 3.

It is easy to see that (1.15.1) holds with 2 instead of 3 and that if (1.15.1)
18 true it is best possible.

H. Maxn: “A refinement of the fundamental theorem on the density of the sum
of two sets of integers.” Pacific Journal of Math. 10 (1960) 909 —915.

16) RoTr conjectured that there exists an absolute constant ¢ so that
to every k there exists an ny = ny(k) which has the following property: Let
n > m,, split the integers not exceeding n into k classes {af’}, 1 <j < k.
Then the number of distinct integers not exceeding n which forsome j,1 < j <k
can be written in the form a4 a{) is greater than cn.

17) Let (a, b) = 1. I conjectured and Brrcm proved that every suffi-
ciently large integer can be expressed as the sum of distinet integers of the
form a*b!, 0 £ k, I < oo.

Let a; < a; < ... be an infinite sequence satisfying a, ,;/a;, — 1, I con-
jectured that if every arithmetic progression contains infinitely many integers
which are the sum of distinct a’s then every sufficiently large integer is the
sum of distinet a’s. This was disproved by CasseLs, who also proved a weaker
sufficient condition that every integer should be the sum of distinct a’s.

Cassers’s beautiful work (which incidentally contains BIrcH's result
as a special case) leads one to the following conjecture: Let a; < a, < . ..
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be an infinite sequence of integers satisfying
(L. 17.1) A(2z) — A(@) >0 and S{a,a}= o, 0<a<l
fe=1

where {na} is the distance of a from the nearest integer. Then every suffi-
ciently large integer is the sum of distinct a’s. Cassrrs proved this under
the assumption of (¢ sufficiently large)

A(2x) — A(x)
loglog 2

I conjectured that for every B, 1 < B < 2 every sufficiently large

integer is the sum of distinct integers of the form [f*]. CasseLs observed

that this fails to be true if [B*] gets replaced by the nearest integer to fS*.

B. J. BircH: ,,Note on a problem of Erdés.’” Proc. Cambridge Phil. Soc. 55 (1959)

370—373.
J. W. S. Cassers: ,,On the representation of integers as the sums of distinct
summands taken from a fixed set.” Aecta Szeged 21 (1960) 111—124.

18) Let a; < 4y < ... < @, < 2n be n arbitrary integers. Denote by
by < by < ... < b, the other integers =< 2n. Denote by M, the number
of solutions of a; —b; = k. Put

(1.17.2) >0, Z{a,a) = o, 0<a<l
k=1

M = min max M,
—2ngk<2n

where the minimum is taken over all sequences a,, a,, ..., @,.

I proved M > ii, Scurrx improved this to ll — —171-2; n and SWIERCZ-

4—ﬁﬂ
5

KOWSKI proved
MosEer proved in a very simple and ingenious way that
M > ? (n—1)

and by more complicated arguments he can prove

M> lf4_}f1_5(n—1) > 03570 (n — 1).

SELFRIDGE MoTzEIN and RaArston showed that M < %n, which disproved

my conjecture M = -;3 The problem of determining the exact value of M is

open.

P. Erpds: “Some results in number theory.” (In Hebrew) Riveon Lematematika
9 (1955) 48. '
S. Bwigrozgowski: “On the intersection of & linear set with the translation
of its complemeunt.” Coll. Math. 5 (1957) 185—197.
y lL. osER: “On the minimal overlap problem of Erdés.” Acte Arith. 5 (1959)
117—119.
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T. 8. Morzein, K. E. RawsToN and J. L. Serrripgr: “Minimal overlap under
translation.” Abstract. Bull. Amer. Math. Soc. 62 (1956) 558.

Now I state various problems on different topics of number theory-

19) Denote by r,(n) the maximum number of integers not exceeding
n which do not contain an arithmetical progression of ¥ terms. The first
publication on r,(n) is due to Turix and myself where the conjecture
r(n) < n'~% was enunciated (the problem may be older but I can not
definitely trace it. SoHUR gave it to HiLpEgcarp ILLe around 1930).

Sarem and Spexcer disproved r(n) < n'~%. In fact they shoved

(I.19.1) r4(n) > nl—c/loglogn
BeHREND improved this to
(I. 192) rs(n) > pl—=x/iiogn

and Mosgr constructed and infinite sequence which satisfies (I.19.2) for every
n. RoTH proved ry(n) = o(n), more precisely he showed

(I.19.3) rs(n) < cnfloglogn .

For k > 3 the plausible conjecture 7,(n) = o(n) is still open.

The inequality, r(n) < (1—e)nflogn, 1 <k < oo, n > ny(k), would
imply that for every k there are k primes in an arithmetic progression. Recently
W. A. GoruBIierr observed that 23143 - 7. 300 30 is a prime for 0 <7< 11.
CrowraA proved that there are infinitely many triplets of primes in an
arithmetic progression.

Vax der WAERDEN proved that to every k there exists an f(k) so that
if we split the integers < f(k) into two classes at least one of them contains
an arithmetic progression of % terms. If we could show that for some n

rn) < %2’3, we clearly would have f(k) < », and in fact this observation

led TurAN and myself to the problem of estimating 7,(n). VAN der WAERDEN’s
upper estimate for f(k) is very bad, and unfortunately nobody succeeded in

giving a better one. Rapo and I proved that f(k) > ((k — 1)2¥)% (W. Schmidt
just showed f(k) > 2k—ck'™og k see Am. Math. Soc. Notices June 1961 p. 261.)

P. Erpds and P. Turdx: ,,0n some sequences of integers.” Journal London Math.
Soc. 11 (1936). 261 —264.

R. SareM and D. C. SPENOER: “On sets of integers which contain no three terms
in an arithmetic progression.” Proc. Nat. Acad. Sci. USA 28 (1942) 561 —563.

F. A. BEaREND: “On sets of integers which contain no three terms in arithmetical
progression.”” Ibid. 32 (1946) 331 —332.

L. Moser: “On non-averaging set of integers.” Canadian Journal of Math. 5
(1953) 245—252,

. CrEowrA: “There exists an infinity of 3-combinations of primes in A. P.,”

Proe. Lahore Philos. Soc. 6 (1944) no. 2 15—16.

B. L. vax pEr WAERDEN: “Beweis einer Baudet’schen Vermutung.” Nieuw
Archiv Viskunde (2) 15 (1928) 212—2186.

P. Erp6s and R. Rapo: “Combinatorial theorems on classifications of subsets
of a given set.” Proc. London Math. Soc. (3) 2 (1952) 438 —439.

20) Scaur proved that if we split the integers < en! into n classes
the equation # + y =z is always solvable in integers of the same class.
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Denote by f(n) the smallest integer with this property. It seems likely that
f(n) is very much less than en!, in fact it has been conjectured that f(n) < ¢
and f(n)tn —C .

TurAN proved (unpublished) that if one splits the integers n < k<5n + 3
into two classes then in at least one of them the equation z +y =2z z &y
is solvable, and that this is not true for n< % < 5r» + 2. The analogous
problem for three classes is not yet solved.

1. Sorur: Jahresbericht der Deutschen Math. Ver. 25 (1916) 114.
R. Rapo: “Studien zur Kombinatorik” Matk. Z. 36 (1933) 424 480.

In his interesting paper Rado considers very much more general problems.

21) Let f(n) be an arbitrary number theoretic function which only
assumes the values 4 1. Is it true that to every ¢, there exists a d and an
m so that

(I 21.1) g(m, d) = ;‘me(kd)} >0, ?

It is perhaps even true that

(L.21.2) max g(m,d) > c,logn .
v
If we assume that f(a.b) = f(a)f(b) then (1.21.1) would imply
(L. 21.3) lim sup | ' f(k)| = oo .
n=oe k=1 |

This conjecture is similar to the conjecture of VaAx per Corpur on
the discrepancy of sequences. Let |2, =1, 1 < k < co. Denote by N(n ;a, b)
the number of 2,1<i<n on the arc (g, b). The discrepancy
Dz, 2, ..., 2,) is defined as follows:

b—a

n

Dz, 25, ...,2,) = max|N(n;a,b) —

1

27

where the maximum is taken over all the arcs (a,b) of the unit circle.
Vax pEr CorPur conjectured and Mrs. VAN AARDENNE — EHRENFEST

proved that for every infinite sequence z; 1 < i < o0, |2 | =1
(L. 21.4) lim sup D(2y, 25, ...,2,) = o0.
A=t
(in fact she proved that D(z,z, ..., z,) > c log log n/log log log 7 i. 0.).
Rorr proved that i. o.
(I.21.5) Dizy, 25, . . ., 2,) > cy{log m)h.

It is easy to see that there exists an infinite sequence for which
D(zl, Ry e vy u) <6 log n

for every » and it seems possible that in (I.21.5) ¢,(log #)% can be replaced
by ¢ log n.
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As far as I know the following two problems are still unsolved: Let
|2;]=1, 1 < i< co be any infinite sequence. Does there exist a fixed arc
(a, b) of the unit circle so that

| - |
(L. 21.6) lim sup‘N(n; N W
Is it true that
(I1.21.7) lim sup max [[ |z — 2| = oo?

n=w  |z=1 i=1
If (I.21.7) and (I.21.6) hold one could try to determine how fast the
left sides tend to infinity.

N. G. TcHUDAKOFF, quoted in problem 6.

Van AARDENNE—ERRENFEST: “On the impossibility of a just distribution.”
Indag. Math. 11 (1949) 264 —269.

K. F. Rorr: “On irregularities of distribution.” Matematika 1 (1954) 73—-79)

22) Let 1 <a, <a, <...<a, be n arbitrary integers. Denote:

I[l—z“'

where the minimum is to be taken over all sequences a,, a,, . . . , @,. SZERERES
and I proved that

Ma,, ..., n)_max , f(n) =min M(a,, ...a,)

z}=1

1.22.1) lim f(n)1/" = 1, f(n) > }2n.
Recently I proved (unpublished) that for some ¢; > 0
(I.22.2) f(n) < exp (nl—a).

It is quite possible that for some ¢, f(n) > exp (n)1~%), but we were not even
able to prove that f(n) > n* for every k if n > ny(k)

My proof of (1.22.2) used probabilistic arguments. Very recently ATRIN-
soN proved f(n) > exp (cn*:logn) in a surprisingly simple way, in fact
he proved that

max | [J (1 — 2)"*+1| < exp(cn logn) .
zl=1 | k=1

n
P. Erpés and G. SzexERES: “On the product JJ (1 — Zax).” Acad. Serbe des
k=1
Sei. 13 (1959). 29—34.
” )F. V. ArgrNsoN: “On a problem of Erdés and Szekeres”. Can. Math, Bull. 4
(1961) 7T—12.

23) Denote by f(k) the minimum number of terms in the square of a

polynomial 2 a,z%. Sharpening a result of Rfnyr and Riper I proved

that f(k) <k1 ¢ for a suitable ¢ > 0. RNy and I conjectured that
f(k) — oo as k — co. This seems most plausible, but we have not yet been
able to prove it.
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A. Réxvi, Hungarica Acta Math. 1 (1947) 30— 34.

P. Erpnds: <“On the number of terms of the square of a polynomial.” Nieuw Arch.
Wiskunde (1949). 63—65.

W. VErDENTUS: “On the number of terms of the square and cube of polynomials.”
Indag. Math. 11 (1949) 459—465.

24) Does there exist to every ¢ a system of congruences
(1.24.1) amod n;), c< <N <...< My (k = k(c))

so that every integer satisfies at least one of them? Dmax Swirr and SELF-
RIDGE constructed such congruences for ¢ < 8.

Similarly one can ask if a system (I.24.1) exists where all the =, are
>1 and odd (or not divisible by the first 7 primes)?

Strrn and I asked the following question: What is the maximum num-
ber of congruences g, (mod »;), 7, < My < ... < my, < & so that no integer
should satisfy two of them (i. e. the arithmetic progressions a, 4+ In;, 1<i<k,
should be disjoint). We proved (unpublished) k, > #'-¢ for every ¢ > 0 if
z > z,(e). We conjecture k, = o(z).

P. Erp(s: <On a problem on systems of congruences”. (In Hungarian) Malematikai
Lapok 4 (1952) 122—128.

25) Let 1<a, <ay, < ... be an infinite sequence of real numbers

satisfying
(1.25.1) |ka;—a;| =1
for every k and i 5& 4. Is it then true that

. 1
(I. 25.2) lim Z‘ —=0,

x== log x &= a,
and
(I.25.3) 2 LA

— log a;

If the a's are integers (1.25.1) means that no a divides any other, in this
case (1.25.2) was proved by BrErEND and (I.25.3) by me.

F. BEHREND: ,,0n sequences of numbers not divisible one by another.” London
Math. Soc. Journal 10 (1935) 42—45.

P. Erpds: ,,Note on sequences of integers no one of which is divisible by any
other.” Ibid. 126—128.

26) Let a; <a, < ... be an infinite sequence of integers, denote
by b, < by < ... the sequence of integers no one of which is a multiple of
any of the a’s. BrsicoviTcH constructed a sequence a; for which the b ’s
do not have a density. DavEnrort and I proved that the b's always have a
logaritmic density, i.e. that

1 1

b

b<x i

lim
logz
always exists.
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Make correspond to each a4, a set of residues u#/®, 1 < j < 4,. Denote
now by b, < b, < ... the integers which do not satisfy for any ¢

(I.26.1) b=u{"(moda), 1 <j<4, b=aq;.
Is it then true that

(1. 26.2) lim ‘S‘—l-
logx — b,

exists? (1.26.2) if true is a generalization of (1.26.1), (¢, = 1, w{’ = 0 for
all ).

Daveneorr and I also proved that if a4, a,, . . . is a sequence of pos-
itive density, we can select an nfinite subsequence @; (1 < k < co) satis-
fying a;|a;, . It is an open problem if three distinct a’s exist satisfying
[a;a }-] = a,.

A. 8. BesicovircH: “On the density of certain sequences of integers.” Math.
Annalen 110 (1934) 336— 341,

H. Davexport and P, Erpfs: ““On sequences of positive integers.” Acta Arithme-
tica 2 (1937) 147—151, see also Indian Journal of Math. 15 (1951) 19—24,

P. ErpOs: “Density of some sequences of integers.” Bull. Amer. Math. Soc.
64 (1948) 68B5—692.

27) Is it true that the density of integers having two divisors &, and d2
for which d; < dy, < 2d,is 1? In my paper just quoted in 26) I prove that
this density exists, but I can not show that it is 1.

Let a; < ay < ... < n be any sequence of integers, b, < b, < ... the

integers no one of which is a multiple of any a. B(x) = > 1. Ts it true that
BiSx
for every m >n
(I 27.1) 2im 28w,
m n

It is easy to see thatin (1.27.1) 2 can not be replaced by any smaller
constant, to see this let the a’'s consist of a;,, n=2a,—1, m=2a,.

28) BamBam and CHOwWLA proved that for sufficiently large C the
interval (n, n+ Cn's) always contains in integer of the form a? 4 32 It has
been often conjectured but never proved that this holds every C if n > n4(C).
In fact it seems likely that for every & > 0 the interval (», n - n*) contain
in integer of the form 2% + y2. I proved that for a suitable ¢ > 0 and infinitely
many n the interval (n,n -+ clogmn/(loglog n)%) does mot contain any
integers of the form a* + 32

Denote by s, 8,, ... the squarefree integers. It is easy to prove (I do
not know who did it first) that i. o.

(1.28.1) 8;.1—8 > (1 + o(1))7?/6 log s,/log log ;.

The question if (1 + o(1)) in (I.28.1) can be replaced by I + ¢ has not yet
been decided. I proved that

(1. 28.2) lim—:; S (801 — 8)?

s<n
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exists. More generally one could ask the following question: Let a; < a, <

be any sequence of integers satisfying a,/k? — oo and denote by b, < b, < ...
the sequence of integers no one of which is a multiple of any of the a’ s.
Is it then true that

(I 28.3) llm 2' (bi1—

exists and is finite (in (1.28.2) a; = p})? It is easy to see that if we only require
a, < ck? then (1.28.3) does not hold in general.

R. P. BamBas and 8. CHOwLA: *“On numbers which can be expressed as a sum
of two squares.” Proc. Nat. Inst. Sci. India 13 (1947} 101—103.

P. Erpfs: “Some problems and results in elementary number theory.” Publ.
Math. Debrecen 2 (1951—52) 103—109.

As far as I know the best upper bound for s; ;—s; is due to RicHERT,
who improved a previous result of K. F. Rota. RICHERT proved §; ,; — 8 <
< ¢ s log s;.

H. E. Bicaerr: “On the difference between consecutive squarefree numbers.”
London math. Soc. Journal 29 (1954) 16— 20.

29) Denote by A(n) the number of integers not exceeding » which are
the product of two integers not exceeding n% I proved that for every ¢ > 0
if n > nyle)

(log n)—* —~
log n
(L 29.1)

(e IDg g)loglognflogz s A(ﬂ) < (log ’ﬂ)’ L (8 ng 2)Iog log nflog 2 >
log n

Leta, <a, <...<a,<|n;b <by<...<b,<|nbetwo sequen-
ces of integers so that all the products a;b; are distinct. Is it then true that

Ty < ¢

: ? This if true is certainly best possible, to see this choose the
ogn

a’s to be the integers not exceeding% n*and the b’s the primes in l% n', n%] ;

P. Erpfs: ,,00 ogHOM acHMOTOTHYECKOM HEpAaBeHCTBE B TeopHH uMcels.” Becmuux
Jlenunzpadckozo yHusepcurera 3 (1960) 41—49; for a weaker result see P. Erpos:
»Some remarks in number theory” ( Hebrew) Riveon Lematematika (19566) 456—48.

30) Let f(n) be an additive function, i. e. f(ab) = f(a) + f(b) if (a, b) = 1.
Assume that |f(n + 1)—f(n) | < ¢;. Is it true that f(n) = ¢, log n 4 g(n),
where | g(n) | < ¢;. I proved that if f(n + 1)—f(n) - 0 or if f(n 4 1) = f(n)
then f(n) = ¢ log n.

P. Erpss: ““On the distribution funetion of additive functions.’’ Annals of Math.

47 (1946) 1—20. My proofs of the above theorems were unnecessarily complicated and
have been simplified by various authors.

Many interesting problems and results on additive functions can be
found in the following three papers :

M. Kac: ““Probability methods in some problems of analysis and number theory.”
Bull. Amer. Math. Soc. 55 (1949) 641 —665.

Kusirius, Uspehi Matem. Nauk. 11 (1956) 31—66.

P. Erpds, Proc. International Congress of Math. Amsterdam (1954) Vol. 3, 13—19.
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31) The following problem is due to W. Lz VequE: Let a, < a, < . ..
be an infinite sequence tending lo infinity satisfying a;.,/a; > 1. Let

@, S x, <@, put y,= ;" _—%—, 0<y,<1. We say that the sequence
i+1 — Y%

r,, 1 £ n< o is uniformly distributed mod a;, a@,,...if y, 1 S n< oo is

uniformly distributed.Is it true that for almost all « the sequence na, 1<n < oo

is uniformly distributed mod a,, a,,...? LE VEQUE proved this in some

s pecial cases.

W. J. Le VeqUue: “On uniform distribution modulo a subdivision.” Pacific .J.
of Math. 3 (1953) 7567—771.

32) Stravus and I conjectured that for every integer n > 1

4 1 1 1

"= Tyt
is solvable in positive integers z, ¥, z. ScHINZEL conjectured that for every
a > 0if n > nya) %=%+%+—:~ is solvable in positive integers z, y, 2.

ScHINZEL conjectured that there exists a k so that every sufficiently
large integer can be written in the form (a; are integers)

k k
Ila— o, ,22, 15isk.
i=1 i=1

33) Problem of SerFripGE and StrAUS. Let Z,, Z,, . . . , Z, be n complex
numbers, oy, 0, ..., 9(ny are the products of Z’s taken k at a time. The

k.

authors prove that if k = 2, n 5= 2! and the ¢’s are given, there can be at
most one set of Z, 1 < ¢ < n which generate them. For n = 2! this is not
true, here they conjecture that there can be at most two sets of Z's which
generate the o’s.

If £ > 2 they conjecture the Z’s (if they exist) are determined uniquely
by the ¢’s and they prove this in many cases, but the general problem is
unsolved.

J. L. Sexrripee and E. Straus: ,,On the determination of numbers by their
sums of a fixed order.” Pacific Journal of Math. 8 (1958). 847 —856.

34) Problem of Lrrrewoop. Let a and § be two real numbers. Is
it true that

(L. 34.1) liminfa(na)(nf) =0

where (na) denotes the distance of na from the nearest integer? (1.34.1) is
trivial except if both a and g have bounded partial quotients in their con-
tinued fraction development. (I.34.1) seems very deep, even if a = }/2, f = |/3
say.

Another very difficult problem in the theory of diophantine approxim-
ation is the following one: Davesrorr and HEmBRONN proved the
inequality

(I.34.2) <e

5
2“& ng
k=1
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is solvable for every e > 0 in positive integers n, if not sll the ¢, are of the
same sign and at least two of them have irrational ratios.
It is not known if for every irrational « and € > 0 the inequalities

i(x2+?]2)0-—22]<6 and |m3+y2_zsa]<s

are solvable in integers. The case a = J/2 is also undecided .

H. Davenrorr and H. HeiLBroNN: “On indefinite quadratic forms in five
variables,” London Math. Soc. Journal 21 (1946) 185—193.

Several unsolved arithmetical problems are stated in a recent paper of
SterrINsKI L Enseignement Mathématique 5 (1960) 221—235, an English
version appeared in Scripta Math. 25 (1960) 125—136.

IL Problems in combinatorial analysis and set theory

1) Let a;, ay, . . ., a, be n elements. 4;, 4,,..., 4, are k sets formed
from the a’s so that no A can contain any other. SPERNER proved that

(IL1.1) maxk:( B )
L&
5]

(I.1.1) has several applications in number theory, e. g. BEHREND's result
{1.25.1) is proved by using (I1.1.1).

The question has been considered that in how many ways can one
select sets 4, so that no 4 should contain any other. Denote this number
by A(n). From (II.1.1) we have

2[[%]]< Am) < [;‘::] where T,,:( "]] .

n
. 2 -

It seems that A(n) < exp (¢T,), perhaps ¢ can be chosen to be
(1 + &) log 2 for every & > 0 if n > ng(e).

How many sets 4;, 4,,..., 4, can one give so that the union of two
of them never equals a third? (all three sets are supposed to be distinct i. e.
A, C A;, AlUA; = 4, is not permitted). I conjectured for a long time that
! = o0(2"). If I could prove this the following result in number theory would
follow: Let a; <a, < ... be an infinite sequence of positive density, then
there are infinitely many triplets of distinct integers a;, a;, a, satisfying
la; a;] = a; (see problem I 26).

It is possible that I < (1 + o(1)) T,,.

Several other problems can be asked e. g. How many sets can one give
so that the union of any two of them never contains a third? How many setg
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A; can one give so that the symmetric difference of any two sets should con-
tain at least r elements?

E. SeerNER: »Ein Batz itber Untermengen einer endlichen Menge.¢ Math. Zeit-
schrift 27 (1928) 544 — 548,

2) As far as I know R. PELTESOEN and SUTHERLAND (unpublished)
were the first to construct an infinite sequence formed from the symbols
0, 1, 2 where no two consecutive blocks were identical. It is easy to.see that
in a sequence of length four formed from the symbols 0 and 1 two consecutive
blocks will be identical, I understand that Evwe proved that in an infinite
sequence formed from 0 and 1 there will be arbitrarily large identical conse-
cutive blocks, but that there do not have to be three consecutive identical
blocks.

Let us now call two consecutive blocks ,,identical”’ if each symbol
ocours the same number of times in both of them (i.e. we disregard order).
I conjectured that in a sequence of length 2*—1 formed from % symbols
there must be two “identical” blocks. This is true for ¥ < 8, but for k =4
de Bruwax and I disproved it and perhaps an infinite sequence of four symbols
can be formed without consecutive ““identical” blocks.

3) Lirreewoop and OrrForDp proved the following result: Let Z,
1 < i< n be n complex numbers. Then there exists an absolute constent
¢ so that the number of sums

(I1.3.1) 262, &==1
i=]

which fall into the interior of an arbitrary circle of radius 1 is less than

n
02 logn . I proved that if Z; > 1, 1 <7 < n (i. e. the Z,’s are real) then

nk
the number of sums (II.3.1) which fall into the interior of any interval of

length two is at most : ) and this estimation is best possible. The proof

2
uses the theorem of SPERNER (see problemI1.1.). I donot know if this inequality
remains true if the Z, are complex numbers (my proof gives for complex z
¢2')/n), or more generally vectors of Hilbert space of norm = 1. In this case
I can only prove that the number of summands (I[.3.1) falling into an
arbitrary unit sphere is o(2").
J. E. Lirttewoop and C. Orrorp, Mat. Sbornik. 12 (1943) 277 —285.

P. Erp6s: “On a Lemma of Littlewood and Offord.” Bull. Amer. Math. Soc.
31 (1945) 898 —902.

4) Ramsay proved that there exists a function f(7, ¥, ) so that if we
split the i-tuples of a set of f(i, k, {) elements into two classes then either
there are k elements all whose i-tuplets are in the first class or ! elements
al whose ¢-tuples are in the second class. Szexeres and I proved that
E+i—2

Bl f

The best estimation for f(¢, %, &), ¢ > 2 is due to Rapo and myself.

L41) 22 <fkh< [2: - 12] D kD)< [
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It would be interesting to determine f(i, k, I) explicitely, this seems
very difficult even for i = 2.1 have not even be able to prove that lim f(2, &, k)
exists. I can prove that i=

(II. 4.2) f(2, 3, k) > ck?/(log k)

but could not decide whether f(2, 3, k) > c,k? is true.

I do not wish to mention here the many problems connected with the
generalisations of RAmMsAY’s theorem to cardinal and ordinal numbers and
just state one of the simplest unsolved problems in this subject.

Let ¢ be & well ordered set of ordinal number w? a < Q. Split the
pairs @ € ¢, b €¢ into two classes so that thereis no triplet all whose pairs are
in the first cless. Does there then exist a set ¢’ C ¢ of type w® all whose
pairs are in the second class?

For a = 2 this was proved by SPECKER, for 2 < a < @ it was dis-
proved by him, for @ = ® the problem is open. The most interesting unsolved
case is a = .

E. P. Ramsay: “On a problem of formal logic.” Collected papers, 82—111. See
also T. H. SkoreEm: »Ein komgina.torischer Satz mit Anwendung auf ein logisches Ent-

scheidungsproblem.« Fund. Math. 20 (1933) 254 —261.
P. Erpnés and G. Szexeres: “A Combinatorial Problem in geometry.** Compositio

Math. 2 (1935) 463 — 470.
P. Ernds: “Remarks on a theorem of Ramsay.” Bull. Res. Council. Israel (1957)

21— 24, See also ““Graph theory and probability.” Can. Journal of Math.Iand II, 11 (1859)

34—38, 13 (1961) 346—352.
E. SpecEEr: »Teilmengen von Mengen mit Relationen.« Comm. Math. Helv.

31 (1956—-57) 302—314.
P. Ernds and R. RApo: ,,A partition caleulus in set theory.’’ Bull. Amer. Math.

Soc. 62 (1956) 427—489. (See also the forthcoming triple paper of Erpds—HaAiNaL—RADO.)

5) Let ay, ay, . . ., a, be n elements 4;, 4,, ..., 4,, k> 1 sets whose
elements are the a’s. Assume that each pair (a;, a;) is contained in one and
only one A. Then k =n. This is a result of de BRutIN and myself (also proved
by SzegERES and HAnani). We can not determine the smallest I so that
there should exist sets 4,, 4,,..., 4, I > 1 sothat every triplet (e, a;, a,)
is contained in one and only one A4.

N. G. pe BrupN and P. ErDés: “On a combinatorial problem.” Ind. Math.
(1948) 421-—423.

C. SteiNEr conjectured that if » = 6k + 1 or 6k + 3 there exists a
system of triplets of » elements so that every pair is contained in one and
only one triplet (if = is not of the above form it is easy to see that such a
system can not exist). STEINER's conjecture was first proved by REiss and
later independently by Moore.

Let now 2 < r < s be any two integers. For which n is there a system
of combinations taken s at a time formed from n elements so that all r tuples
should be contained in one and only one ¢ tiuple. The case r = 2, s =3 is
SteINER's. The only other case which has been settled is r =3, s =4
H. HawAN1 recently proved that such a system exists if and only if » = 2
or 4(mod 6). (Very recently HANANI settled the cases r=2, s=4 and
r=2, §=235).

Iy has )be-en known for a long time that if » = p* + p' 4- 1 (p prime),
r=2, s = p'-}- 1, then there exist n (p' + 1) — tuplets so that every pair
is contained in one and only one (p' + 1)-tuplet. f n =2+ b + 1, k 5 p°

16 A Matematikai Kutaté Intézet Kozleményei VI. 1—2,
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it has been conjectured that such a system of (k -+ 1)-tuplets does not exist.
Special cases of this conjecture have been proved by Bruck and Ryser, the
first unsettled case is & = 10 (see 1.10).

Connected with this problem is the following conjecture of SyrLvesTER:
For every n =0 (mod 4) there exists an orthogonal matrix of order » all
whose elements are 41 (it is easy to see that if n =5 0 (mod 4) such a matrix
does not exist.) If » = 2% SyLvesTer showed that such a matrix exists,
if p= — 1 (mod 4). Paury proved that such a matrix exists for p + 1, the
general case is still unsolved.

Denote by M, the maximum value of an » by » determinant whose
elements are - 1. From Hapamarp’s theorem it follows that M, < n"2
and if a SyLvESTER matrix exists M, = n™2. It follows easily from the prime
number theorem for arithmetic progressions that for every n > ny(e)

(I1.6.1) M, > (1—e&)" n"2,
Coruvccr and BarBa proved that if » 550 (mod 4) then

(IL. 6.2.) Mn<wn—lw@%-wmw%=0+mnﬂ3ﬁnm.
&

M. Ress: »Uber eine Steinersche kombinatorische Aufgabe.« J. reine und an-
gewandte Math. 56 (1859) 326—344.

E. H. Moorr: “Concerning triple systems.” Math. Annalen 43 (1893) 271 285.
See also ,,Practical memoranda.” Amer. J. Math. 18 (1896) 264 —303.

H. HANANI “On quadruple systems.” Can. J. Math, 12 (1960) 145—157.

J. H. Syrvester: “Thoughts on inverse orthogonal matrices.”” Phil. Mag. (4)
24 (1867) 461—475.

?0 E. A. C. Pazry: “On orthogonal matrices.” Journal of Math. and Phys (1933)
311—320.

Oam:ccx: «Sui valori massimi dei determinanti ad elementi + 1.» Gior. di Matem.
di Battaglini 54. See also G. Bamsa ibid. T1.

See also G. SzekERrES and P. TURAN: ,,An extremal problem in the theory of
determinants.” (In Hungarian, German summary) Sitzungsber. I11. Klasse Ung. Akad.
54 (1937) 796—806.

7) Problem of Vawx der WAERDEN Let ]a,k] be an n by » doubly

stochastic matrix [i. e. a; =0 and Za”‘_ 2“& = 1for every ¢ and k]

Then the value of the permanent is > —l, equality only fora,, = —. The
n n

permanent (a terminology of SYLVESTER) is the sum of the expansion terms
of the determinant. The fact that the permanent of a doubly stochastic
matrix can not be 0 is a theorem of FrRoBENIUS—KGN16. VAN der WAERDEN'S
problem seems to be difficult.

I made the following two weaker conjectures: The value of at least

one term of the permanent is > —1,-1, and the still weaker one: There is at
n

least one non-zero expansion term of the permanent where the sum the
factors is = 1. This was proved by R. REr and S. Marcus (in fact they prove

that the sum is = —;— = ol
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R. REE and 8. Marcus: ,,Diagonals of doubly stochastic matrices.”” Quarterly
Journal of Math. 10 (1959) 296 —301.

8) A special case of a theorem of TURAN states that if in a graph of »

vertices the number of edges is greater than % 1;— + 1], then the

graph always contains a triangle. He points out that the following analogous
problem is unsolved: Let there be given » elements what is the smallest
number f(n) so that to every system ¢ of f(n) triplets formed from the =
elements there are always four elements all four triplets of which occur in ¢.

P. Turdx: “On the theory of graphs.” Coll. Math. 3 (1954) 19—30.

D. Kéx16: Theorie der endticzn und unendlichen Graphen.

9) Hasnar and I proved the following theorem: To every real * make
correspond a bounded set of real numbers f(x) whose outer measure is less
than 1. Then for every finite k there exists an independent set of kelements
% e. a set @y, ¥, ..., @ so that for every 1 <74 j <k i57j, «; ¢f(z)).

e can not prove that there always exists an infinite independent set (not
even if we also assume that the sets f(z) are compact.)

If we assume that the sets f(z) are closed and of measure < 1, we can
not even prove that there are two independent points. (Recently GLapysz
proved in a very ingenious way the existence of two independent points.
The existence of an independent triplet is open).

P. Erpés and A. HasNaL: ,,Some remarks on set theory, VIIL.” Michigan
Math Journal T (1960) 187—191, for further problems in this direction see P. ERD6s and

A, HasnaL: #“On the structure of set mappings. Acta Math. Hung. 9 (1958) 111—131.
and P. Erpds: ‘Some remarks on set theory.” 3 (1953) 51 —57.

IIL. Problems in elementary geometry
1) Let #;, @,, . . . , %, be n points in the plane. Denote by M (zy, 7, . . ., 2,)
the number of distinct distances between any two of the points. Put
f(n) = min M, (z,, 2, . . ., 2,),
where 2;, ®,, ..., o, ranges over all sets of n distinct points of the plane.

It seems to be difficult to get a good estimate for f(n), the best results (due
to Moser and myself are)

(IT. 1.) an’s < f(n) < can/)log n.

I would guess that the upper bound is the right one and perhaps even
the following result holds: There is one point ; so that amongst the distances

(z;, ;) there are at least ¢yn/[/logn distinct ones.

If the set zy, @y, ..., x, is convex it seems that f(n) = %] ; despite
its seeming simplicity I have not been able to prove this. A somewhat stronger
conjecture is: In every convex polygon there is a vertex which has no three
vertices equidistant from it.

How often can the same distance oceur between 7 points of the
plane? Denote this maximum by g(n). I proved

nl+allogoEn < g(n) < n¥2,

I believe that the lower bound is close to being the correct one.

16*
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CoxeTER asked me how many points does one have to have in n-dimen-
sional space so that one should be sure to have more than two distinct distances
between them. I stated that for ¢; sufficiently large n points suffice, but
my proof was wrong and if corrected it only gave exp (nl—¢).

One can show that from 7 points in the plane one can always find three
of them which do not determine an isosceles triangle, it is easy to see that
this is false for 6 points. How many points does one have to have in n-dimen-
sional space to be sure that one can find three of them which do not determine
an isosceles triangle? This is not even known for n = 3.

P. Erpds: ““On sets of distances of n points.” Amer. Math. Monthly. 54 (1946)
248 —250.

L. Mosgr: “On the different distances determined by n points.” Ibid. 59 (1952)
85—91.

P. Erpés: “On some problems in geometry.” (In Hungarian) Mat. Lapok (1954)
86—02. Many further problems are stated in this paper.

2) BLuMENTHAL's problem. Let there be given n points in the plane,
denote by A(x,, x,, ..., x,) the largest angle (< z) determined by the n
points, and define

¢, =inf A(z,, 2, ...,x,)

where the minimum is taken over all sets of n points. SzEKERES proved
that agy ) >7 (1 — -L + ——l-——] and that for every & > 0,2" points can be
n w24 1)

given with A(zy, €, . . ., Tp) > n[l s ) + s} (this implies ax < :t(l .
n n

Szexkeres and I recently proved that o, == (l — -?% and in fact for

every 2" points A(x), 2y, ...,%p) > 7 [1 — %] , we also showed ax. ;=

=n [l — l] "
n
Let there be given 2" 4+ 1 points in n dimensional space. I conjectured
that there are always three of them which determine an angle > i;- This

is trivial for n = 2, for n = 3 it was proved by (unpublished) N. H. Kareer
and A. H. BoErpwik. For n >3 the problem is open. (Recently this con-
jecture was proved by L. DANzer and G. GRUNBAUM in a simple and
ingenious way.)

G. SzgxEREs: “On an extremum problem in the plane.”” Amer. Journal of Math.
53 (1941) 208—210. Our paper with SzexerEs will appear in the Annales of the Univ.
of Budapest 3 (1961).

3) Borsuk’s problem. Is it true that every set of diameter one in n
dimensional space is the union of » 4 1 sets of diameter < 1? This is trivial
for n = 1, easy for n = 2. For » = 3 it was first proved by Eggleston and
later simultaneously and independently GrRUNBaUM and pES found a
considerably simpler proof. The problem is open for n > 3.

Borsuk and Uram proved that the » dimensional sphere is not the
union of n sets of smaller diameter.
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K. Bomrsuk: »Drei Sitze iiber die n-dimensionale euklidische Sphire.« Fundamenta
Math. 20 (1933) 177—190.

H. G. EcgrestoN: “Covering a three dimensional set with sets of smaller dia-
meter.” Journal of Lond. Math. Soc. 30 (1955) 11 —24.

B. GrtnBaUM: ,,A simple proof of Borsuk’s conjecture in three dimensions.”
Proc. of Cambridge Phil. Soc. 53 (1957) T76—T78.

A. Herres—P. RevEsz: »Zum Borsukschen Zerteilungsproblem.” Acta Math.
Acad. Sci. Hung. 7 (1956) 159—162.

. Herpes: ,,Térbeli ponthalmazok felosztésa kisebb arméréji részhalmazok

osszegére.” MTA III. Oszt. Kézl. 7 (1957) 413 —416.

H. Hapwicer: »Uber die Zerstiickung eines Eikérpers.« Math. Zeitschr. 51
(1949) 161—165.

H. Lenz: “Zur Zerlegung von Punktmengen in solche kleinerent Durchmessers. «
Arch. Math. 6 (1955) 413—416.

4) SYrLvesTER conjectured and Garrpatr first proved that if we have
n points, not all on a line then there is at least one line which goes through
exactly two of the points. Denote by G, the minimum number of such lines,
de Brutsy and I conjectured that G, — o as n — eo. This was proved
by Morzrix (his paper contains many more problems and results in this

direction). Moser and KerLy proved that G, = ls—;i] and this is best pos-

sible for n = 7. For n > ng perhaps &, = n — 1. For large n perhaps there
always is a triangle all whose lines goes through only two of our points (except
it #—1 of them are on a line).

SyLvesTER asked: Let there be given n points no four on a line. What
is the maximum number of lines which goes through three of them? He proved

that this maximum is greater than —;- ‘:] — ¢n on the other hand the maximum

) 1l(n
s<—|[ |-

312

Let there be given n points not all on a line I observed that it easily
follows from GALLAT's result that these points determine at least » lines
(see also I1.5). G. Dmac conjectured that there always exists a point which
is connected with the other points by more than cn lines.

Let there be given n points not all on a circle. What is the minimum
number of circles these points determine? This problem is unsolved (see also
11.5).

T. H. Morzkin: “The lines and planes connecting the points of a finite set.”
Trans. Amer. Math. Sec. 70 (1951) 451 —464. This paper contains many more problems
and resulis and also the history of this problem and many references to the literature.

5) Miss KLEiN asked: Does there exist for every n» an f(n) so that if
f(n) points in the plane are given no three on a line then there always exist
n of them which are the vertices of a convex polygon. She proved f(4) = 5
and Maxga1 and TurAN proved that f(5) — 9. SZERKERES conjectured f(n) =
=2"-2 1 1. He and I proved
(IIL 5.1, 212 < f(n) < [2“ 4] :

n— 2
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P. Ernds and G. SZERERES: “A combinatorial problem in geometry”, Compositio
Math. 2 (1935) 463—470. The proof of the lower bound in (III. 5. 1) will appear in
the Annales of the Univ. of Budapest.

6) HermsroxN’s problem. Let there be given n points in the unit
circle. Denote by A(z,, a,, . . . , @,) the smallest area of all the triangles deter-
mined by the z;,. Estimate max A(z,,...,x,) where the maximum is taken
over all the a; in the unit circle. 4, <¢/n is trivial. RoTH proved

1
-— o(;} , more precisely

A, < cyfn(loglog n)* ,

and I observed that 4, > ¢,/n®. It seems to be a difficult and interesting
problem to improve these inequalities for 4,.

K. F. Rors: “On a problem of Heilbronn.” London Math. Sec. Journal 26 (1951
198 —209.

T) Recently it was asked if the plane can be split into four sets ¢, 1 < i <4
so that no ¢; should contain two points whose distance is 1. Several
mathematicians observed that this certainly can not be done with three sets.
(I can not trace the origin of this problem.)

8) AnNine and I proved that if in an infinite set of points in the plane
all the distances between the points are integers then the points all are on
a line. On the other hand it is known that one can give an infinite set of points,
not all on a line so that all the distances should be rational. Uram asked:
Does there exist a set ¢ dense in the plane so that all the distances between
points of ¢ are rational? I think the answer is no, but the question seems
very difficult. ScHorNBERG asked if to every polygon and every e there
exists a polygon whose vertices are at distance < ¢ from the corresponding
vertices of the original polygon and all whose sides and diagonals have rational
length. Clearly if Uram’s problem has an affirmative answer, then the same
holds for ScHOENBERG's problem. Bmsrcovircm dealt with some special
cases of this problem.

P. Erpbs and A. Annine: “Integral distances.”” Bull. Amer. Math. Soc. (1945)
598—600 and 996.

A. 8. BesicoviroH: “Rational polygons.” Mathematika 6 (1959). 98.

Further literature on these similar problems and results: L. Fesgs TétH: Lagerun-
gen in der Ebene auf der Kugel und im Raum. Berlin, 1953 and H. HapwicEr and H.
DesrunNER: sKombinatorische Geometrie in der Ebene.« L’Enseignement Math. 1
(1955) 56 —67. The paper also appeared in French a more detailed version of this paper
recently appeared in book form Monographies de L'Enseignement Mathématique No 2.
See also a forthcoming book of HADWIGER on these subjects.

IV. Problems in analysis

1) Let 2" + ... be a polynomial of degree n. H. CARTAN proved that
the set | f(z) | £ 1 (which we will call E{® can be covered by a set of circles
the sum of whose radii is < 2 e. It seems likely that 2 ¢ can be replaced by
2 (which if true is known to be best possible). If E{™ is connected this was
proved by PoMMERENKE, and in the general case he recently proved this
with 2.59 instead of 2.
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Assume that EJ is connected. Is it true that

2
V. 1.1) max |f(2)] < —?
2CEP 2

PoMMERENKE proved this with -g—ns. (IV.1.1) if true is best possible as is

shown by the n-th TcHEBICHEFF polynomial 7',(2).

Is it true that to every ¢>0 there exists an A(c) independent of »
so that EY” can bave at most A(c) components of diameter > 1+ ¢2,

Is it true that the length of the curve |f,(z)| = 1 is maximal for f,(z) =
=2"—1

Let |z, | < 1. Estimate from below the area of Ef®. HErzoG, PIRANIAN
and I prove that for every & there exists an n, so that for n > ny(e)
the area of Ef” can be made to be < ¢, but we have not succeeded in getting
an a good estimate of the area from below.

Let -1 <o, <x, < ... <2, <1. Is it true that the measure of the
set on the real line for which |f(z) | < 1is < 2 V27 (We can prove that the
diameter of this set is less than 3). Most of these problems are discussed in
our paper with Herzog and Piranian.

P. Ernés, F. Herzoc and G. PrrANIAN: “Metrie properties of polynomials.”
Journal d’Analyse Math. 6 (1958) 125—148.

CarisTiay PoMMERENKE: “On some problems of Erdés, Herzog and Piranian.’
Michigan Math. Journal 6 (1959) 221—225; ,,0n the derivative of a polynomial.” Ihid.
373—375; “On some metric properties of polynomials with real zeros.” Ibid. 377—380;
+Einige Siitze tiber die Kapazitit ebener Mengen.« Math. Annalen 141 (1960) 143 —152.

2) Littlewood conjectured that for every sequence of integers n, <

<l < o0 <MYy,
2

(IV.2.1) J ! zk'cos n; T

i=1
0

dz > cloghk

n; = ¢ shows that if true this is best possible. It was not even known that
the integral (IV.2.1) tends to infinity with £. Recently P. ComEN proved
(IV.2.1) with ¢ (log k/loglog k)* and Davexporr improved this to
¢ (log k/loglog k)''s.
ANRENY and CHOWLA conjectured that to every ¢ > 0 there exists a
kso that for
k

(IV. 2.2) min > cosnx < —¢.
0<x<2m i=1

(Iv.2.2) immediately follows from the result of CoHEN.
CrowrA observed that if n; < n, < ... < m, is a sequence for which

k 2
i |
I.e.(zcmfm]

the sums n; 4 n; are all distinct then
i=1

2 cos (n; &= n;) @
1si<j<k



248 ERDOS

gives a trigonometric polynomial of 4 — & terms whose minimum is > -»VF;_
He then asked : is it true that the minimum of (IV.2.2) is less than —¢ |k
for a suitable absolute constant ¢ > 0%

Pavr Comrn: “On a conjecture of Littlewood and idempotent measures.” Amer.
Journal of Math. 82 (1960) 190—212.
H. DAVENPORT: ,,0n a theorem of P. J. Gohen.” Mathematika 7 (1960) 93—97.

3) Let f,(©) be a trigonometric polynomial of degree n all whose roots
are real. Is it true that

2
(IV.3.1) (NACIESY
0
fa(@) = cos n@ shows that if (IV.3.1) is true, it certainly is best possible

For similar problems see P. Erpnds: “Note on some elementary properties of
polynomials.”” Bull. Amer. Math. Soc. 46 (1940) 954 — 958.

4) Tt is known that there exists a polynomial 3 ¢, 2% ¢,= 4 1 for which
k=1

n | -
Zekz*] <elfn.

ka=]

(IV.4.) max

l2]=1

As far as I know it is not known if there exists a polynomial of the above
form which besides (IV.4.1) also satisfies

I
D2k

k=1

(IV. 4.2) min

j2[=1

>e)n.

In fact it is (as far as I know) not known if a polynomial satisfying
(IV.4.2) exists.
Does there exist an absolute constant ¢ > 0 so that

n
&, 2*
1

(IV. 4.3) max >(14+c¢))n?

Jz|=1

k=

(IV.4.3) is trivial for ¢ = 0 (PARSEVAL’s inequality).
I can prove (my paper will appear in Annales Polonici Math.)
the analogous inequality for trigonometric polynomials i. e.

n {
Zekeoské!’ >1+CV§E.

=1 15}

(IV. 4.4) max
0g0<2n

A generalisation of (IV.4.3) would be

n
(IV. 4.5) max g2l > (140) )n.
lz|=1 | k=1
Here I can not even prove
n
(IV. 4.8) max | > & cosn, 0| > 158 Jn.
0=50<2m | k=1 VE
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J. Crunie: “The minimum modulus of & polynomial on the unit cirele.” Quarterly
Journal of Math. 10 (1959) 95— 98.

5) Let f(z) = ﬁ'a,,z“ be an entire function

n=0

M(r)= 1In[ax /@], m(r) = max |a,r"|.

Is it true that if lim m(r)/M(r) exists it must be 0? CLUNIE (unpublished)

=0

proved this if a, = 0. Determine
max limm(r)/M(r) =c.
¢

1 < ¢ < 1 is trivial. K6vAr: observed ¢ >% , but the exact value of ¢

is not known.

S. M. Sman: ,,The behavior of entire and a conjecture of Erdés” Amer. Math.
Monthly 68 (1961) 419—425.

6) Let f(z) be an entire function. I conjectured and Boas proved (un-
published) that there exists a path L so that for every n

(IV.6.1) lim |f(2)/2"] — oo

where z - oo on L. Can one estimate the length of this path in terms of
M(r)? Does there exist a path along of which |f(2) | tends to oo faster than
a fixed function of M(r) e. g. M(r)s?

Huser proved the following theorem: Let f(z) be an entire function,
not a polynomial. Then to every A >0 there exists a locally rectifiable
path C, tending to infinity, such that

(IV. 6.2) §1H@)| | dz] < oo .
Ca
Does there exist a path C independent of A so that for every 1 > 0
(IV. (6.3) [ 1f2)| 7| |dz| < oo ?
c

A. Husger: “On subharmonic functions and differential geometry in the large.”
Comment. Math. Helv. 32 (1957) 13—72.

7) Pélya’s problem. Let f(2) = > a,z"be an entire function of finite
k

=1
order. Assume that lim n,/k = co. Does it then follow that
ket o

(IV.7.1) lim log m(r)/log M(r) = 1?

Pérya remarks that Wiman’s results ( Acta Math. 37 (1914) 305—326,
and 41 (1916)1—28) imply that if

(IV.7.2) log (n;., — ny)flog n, > 1/2,
then

(IV.17.3) limm(r)/M(r) = 1
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holds (dlso for functions of inifinite order). MaciNTYRE and I proved that if

& < oo then (IV.7.3) holds and that if L = oo there
k=2 Tyeqy — Ty k=2Tyyy — By

always exists an entire function > g,z for which
k=1

lim m(r)/M(r) = 0.

2 N S implies (IV.7.2)].
e Pt — T

G. PoLva: “Liicken und Singularititen der Potenzreihen.” Math. Zeitschrifi

29 (1929) 549—640.
P. Erpfs and A. J. MACINTYRE “Integral functions with gap power series.’

Edinburgh Math. Proc. Ser. 2. 10 (1954) 62— 70.

8) Fryfr proved that if 2 1/n, < oo then the entire function 2 @, 2

assumes every value at least once and BIERNACKS proved that it assumeq
every value infinitely often. Frjfr and Pérva conjectured that if n,/k — «

then 2 a, 2" assumes every value infinitely often.
k=]

L. Frsfr: “Uber die Wurzel vom kleinsten absoluten Betrage einer algebraischen

Gleichung.« Math. Annalen 65 (1908) 413 —423.
M. Brernackr: ‘SBur les equations algébrigques contenant des parametres arbitra-

ires.” Thése, Paris, 1928.

9) Let ¢, 1 < k& < oo be a set of complex numbers which has no limit
point in the finite part of the plane. Does there exist an entire function f(z)
and a sequence 1, < 1, < . . .so that for every ZEQ, f(2) =0,1 <k < oo
(i. e. the set of zeros of f("t){z) contains ¢,?)

10) Haxan: and I proved (unpublished) that if ja,[> ¢ > 0,lim |a, |/Jn =
=0, a, real, then to every real o there exists a sequence &, = +1

so that the series > ¢,a, is C;-summable to o. It is easy to see that
n=1

{a,|/Yn — 0 can not be replaced by |a,|<e|n. But we conjectured that if
la,| > ¢ > 0 and the series Zan is C)-summable to a finite number then
the conclusion of our result r’gxllains true. We were unable to prove this, even
if we assume |a,| < & |n.

Let a,, 1 < n < oo be a sequence of real numbers. Assume that 3a,

n=1
is Cy-summable. Denote by ¢ the set of values to which some rearrangement

of 3'a, is C-summable. BAceMiHL and I proved that ¢ either consists of
ne=1
a single number, or is the whole real axis or is the set of all number
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a+vf,v=0,4+1, 4+ 2, ... It would be interesting to extend this for C,
summability and for series with complex terms.

P. Egp@s and F. BaAeemiat, “Rearrangements of C, -summable Series.” Acta Math.
92 (1954) 35— 53. The problem has been considered previously by 8. Mazur, Soc. Sav.
Sci. Lett. Twow 4 (1929) 411—424. See also K. ZeriEr and G. G. LoreENTZ: *“Series
rearrangements and analytic sets.” Acta Math. 100 (1958) 144 —169.

11) Turdn’s problem. Let 2, =1, 2,, ..., 2, be any complex numbers
Put s, = Zn' 2%, TurAN conjectured that there exists an absolute constant ¢
80 that =
(IV.11.1) max [s,| >c.

1=Sk=n

About 20 years ago TURAN proved max |s,| > % this was improved by
1ksn n

, by TorAN to log 2/log » and by de BrunN and Ucmigama

2logn
to ¢, loglog n/log n. Very recently ATrinsox proved TURAN's conjecture

with ¢ :é. The best value of ¢ is unknown.

For problems of this type and their application see P. TurAN’s book:
Eine neue Methode in der Analysis und deren Anwendungen. The book also
appeared in Hungarian and there is a Chinese edition which contains new
material. A new American edition of the book will appear soon. I would like
to mention just one problem I proved (see TURAN’s book) that one can find
n complex numbers z; = 1,{2z,| < 1, 2 < ¢ < n for which

(IV. 11.2) max |§|<(l4ecy)™
2=ksn+1

where ¢, > 0 is an absolute constant. Can one find » complex numbers z;
satisfying (IV.11.2) and |z, | =21, 1 £ 7 < n?

F. V. Arginson: On sums of powers of complex numbers.” Acta Math. Hung.
12 (1961) 185—188.

V. Problems on probability
1) Let r,(t) be the sequence of Rademacher functionsi. e. r,(f)=- 1 with
probability % and the r,(f) are independent functions. The well known law

of the iterated logarithm states that for almost all ¢

(V.1.1) lim sup > 7(t)/J2nloglogn = 1.
n=oo k=1

Assume now that ¢,(f) (p prime) is a sequence of independent functions
¢,(t) = & 1 with probability —;- Further assume that for n =a * b, @,(f) =
= @ (t) @4(t). Thus if the ¢’s are defined for all primes they are defined for
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all integers. WinTNER proved that for all ¢ and almost all ¢

n
V.1.2 1li t)ntite =0,
( ) lim g«m )i

@

and I improved this (unpublished) to

(V.1.3) lim zn‘qak(t)[n’ﬁ (logn)t =0 .

n—+® k=l

It would be interesting to prove a result analogous to (V.1.1). I can
not even prove that
n
(V.1.4) lim sup 3 ¢, (f)/n% = oo
n—«= k=1

I was unable to locate the paper of WINTNER.
The next few questions deal with random polynomials and power series.

2) Let ¢,= -+1. Completing previous results of LirTLEwoobp,

‘)
Orrorp and Kac, Orrorp and I proved that if we neglect a( '1n—~—]
(loglog n)*%

polynomials > ¢, 2% the number of real roots of the remaining polynomials
k=0

is of the form Elogn + o((log n)*s loglog n) .
by 4

Our result was not quite strong enough to prove the following conjecture
(which as far as I know is still open): Put 0 < ¢ < 1,let the binary expansion

of thet = > %&Q . Denote by R,(t) the number of real roots of the n-th

partial sum of 20‘ g,(t) z*. Then for almost all ¢
e

(V.21) lin B, @) 2 log i = 1.
n=m bt 4

Denote by Rj(f) the number of roots in the unit circle of the n-th
partial sum of > ¢,(t) 2k Is it true that
frams

(V.2.2) Ryt)n _>_;.

for almost all ¢? Here I can not even prove that for all but o(27) polynomials

n
> &, 2 the number of roots in |2| <1 is g-—i- o(n).
k=0
J. E. Lirruewoop and C. OFrorD, Proc. Cambridge Phil. Soc. 35 (1939) 133 — 148.
M. Kac, Bull. Amer. Math. Soc. 49 (1943) 314 — 320 and 938, see also Proc. London
Math. Soc. 50 (1948) 390—408.
P. Erpés and C. OrForD: “On the number of real roots of a random algebraic
equation.” Proc. London Math. Soc. 139—160.
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3) SarLEMm and ZyeMUND proved the following theorem: For almost
all ¢ and n > ng (t)

Z elt) 2 ‘ < cy(nlogm)%.

(V.3.1) c,(nlogn)h < mlax
Jz=1

The proof of the upper bound in (V.3.1) is easy, the difficult part was
the proof of the lower bound. One would except that for almost all ¢

23::(5) &
(V:3:2 P g

==

where C does not depend on ¢. The following weaker statement has also not
n

heen proved so far: For every ¢ if we neglect 0(2") polynomials 3 e, 2% we have
k=0

(V.3.3) (C —e¢)(nlogn)% < max
1z]=1

2%2"‘ < (C+ &) (nlogn)h.

im0
Denote

e, (t) ¥ | .
k=0

The upper bound for M (¢) is given by the law of the iterated logarithm,
but the lower bound is much more difficult. I proved (unpublished) that
for almost all ¢ and every £>0
(V.3.4) lim M, () [n¥%—* = oo .

n=w

M, @) = lnsl:?;

A theorem of CruNG implies that for almost all ¢ there are infinitely
many n for which

(V.3.5) M) <ec

n %

loglogn
The exact lower bound for M, (t) seems very difficult (the problem is
due to SALEM and ZyeMUND).

Is it true that for all but o(2") polynomials 3 &, z*
k=0

(V.3.6) min ZEkz“ | <1?

|z}=1 | k=0
or more precisely how can one estimate the minimum (V.3.6) as accurately
as possible.

R. Sarem and A. ZvaMunDp: “Some properties of trigonometric series whose
terms have random signs.” Acta Math 91 (1954) 245—301.

4) DVORETZKY's problem. Let
(V.4.1) @, 20,8,—>0, >a,=occ.
n=1_

Place on the circle of circumference 1 at random ares of length a,. It
is easy to see that if (V.4.1) is satisfied then with probability one almost all
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points of the unit circle are covered by the arcs. DvorETZKY showed that
for suitable choice of a, all points of the unit circle are covered for almost
all choices of the arcs of length a, (satisfying (V.4.1)], and that for suitable
choice of the a, for almost all choices of the arcs there are points not covered
by them. The first case we shall call the case of covering, the second of not

14-¢

covering. @, = ——— where ¢>0 was shown by KaAHANE to be in the case of
n
covering. I proved (unpublished) that a, = L] is in the case of covering but
n

—c ; ;
in the case of not covering. At present no necessary and suffi-

n

cient condition for the case of covering is known.

n

Let > |b,|* = co. It is well known that for almost all choices of
n=1

e, =+ 1, e, b, 2" diverges for almost all points of the unit circle. Sharpen-
k=1

[

ing previous results of DvorETZKY, he and I proved that if | b, |> Vo then
n

for almost all choices of &, = 41, 3¢, b,2" diverges for all points |z|= 1.
n=1

We have an example of a series 3 [b,[2 = oo, |b, 1| < |b,| so that for
A=l

almost all choices of e, = 1 1 there exists a 2, |2,| =1, (2, depends on
the sequence &,) so that > e,b, 27 converges. Perhaps every series satisfying
n=1

n% | b, | — 0 has this property.

A. DvoreTzEY: “On the covering of the circle by randomly placed ares.” Proc.
Nat. Acad. Sci. USA 42 (1956) 1990—203.
J. P. Kauang: “Sur le recouvrement d'un cercle par des ares disposés au hasard.*

Comptes rendus 248 (1959) 184—186.
A. DvorerzEY and P. Ernds: “Divergence of random power series.” Michigan

Math. Journal 6 (1959) 343 —347.

5) Denote by f(n, k) the number of random walk paths of n steps in
k dimensional space where we assume that the path does not intersect itself.
Tt has been obeserved that lim f(n, k)!'™ = C, exists, but no sharper inequalities

Nn=c
are known for f(n, k) even for k = 2.

The expected position and distribution of the point after » steps has
also not been determined. It has often been conjectured that for k = 2 the
expected distances from the origin divided by n% tends to co and divided
by n tends to 0, for k¥ = 3 the expected distance was supposed to be O(n%).

I do not know the origin of these problems (probably applications in
polymer chemistry, I first heard of them in 1949). See the forthcoming paper
of B. Rennie in the Publications of the Mathematical Irstitute of the Hun-
garian Academy of Sciences, Series A.

(Received October 5, 1960.)
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