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A Personal Reflection on J. Sutherland Frame 
by Eileen L. Poiani, Saint Peter's College 

Dr. J. Sutherland Frame- quintessential research mathematician and 
professor; the humanizer of mathematics. It was Dr. Frame who, at every 
opportunity, recognized and challenged all Pi Mu Epsilon students, whether from 
a large prestigious university or a small local college. As he wrote in a letter to 
me in August 1993: "Almost all of our future research mathematicians start their 
lives of discovery as students and should be encouraged to present their ideas in a 
public forum." 

Throughout my years as Pi Mu Epsilon Councilor, beginning in 1972, 
and as president, Dr. Frame was always there to encourage and to mentor. He 
was responsible for encouraging many of us to remain an active part of the PME 
network. How pleased he was when, on the 75th anniversary of PME, the 
American Mathematical Society gave special recognition to PME, as the 
Mathematical Association of America had done earlier. 

The writings of great communicators invite pleasant reading and 
rereading. Always a great communicator, Dr. Frame leaves us with a legacy of 
rich research articles published throughout his lifetime and with thoughtful 
letters often written on vintage Pi Mu Epsilon stationery and, more recently, on 
email. 

His sharpness and precision spanned broad interests. Early this year, he 
even wrote to me about a Sports Illustrated article in which the President of 
Saint Peter's College was quoted. And just three years ago, Dr. Frame wrote and 
reminded me again that I knew him well enough to call him "Sud." 

Attending almost every Joint and Summer Mathematics Meeting, usually 
with his beloved spouse, Emily, Sud must have captured the mileage record for 
driving to meetings. I was always amazed at the lengths of his motor journeys. 

For this strong and gentle educator and friend, I - like so many in the 
mathematics community - have enonnous admirahon and gratitude. I shall 
continue to safeguard the C. C. MacDuffee Distin., · Service plaque awarded 
to Sud in 1964 and passed on to me in 1995_ and lO eojo} rereading those 
beautiful letters from a legend 

j. Sutherland Frame 

DEDICATION 

This issue of the Pi Mu Epsilon Journal is dedicated to "Sud" Frame. 
James Sutherland Frame, Pi Mu Epsilon President 1957 - 66 and Secretary ~ 951 
_ 54, died on February 27, 1997. He was 89 years old. He is survived by hts 
wife of 58 years, Emily, a daughter, Barbara, three sons. Paul, Roger and Larry , 

and seven grandchildren. 

In 1949 he was instrumental in the founding of the Pi Mu Epsilon 
Journal. He promoted the growth of Pi Mu Epsilon, personally installing more 
than fifty Chapters, and in creating and developing i~ 1952_ the ~ighly_ successful 
Pi Mu Epsilon Summer Student Paper Conference~ m conJu~ct_wn wtth the_ 
American Mathematical Society and the Mathemattcal Assoctatwn of Amenca. 
He was widely respected and known as "Dr. Pi Mu Epsilon." At the 1975 
summer AMS/MAA meetings he presented the first J. Sutherland Frame 
Lecture, named in his honor. Professor Frame faithfully attended the student .# 

presentations, raising questions and making personal comments to ~ost_ of the 
voung members on how to improve their papers and on the future ~trec_uons 
iheir research might follow. His primary interest had always been tn hts 
students, their professional growth and their eventual success. 



"Sud" earned his Bachelor's (1929), Master's (1930), and Doctorate (1933) 
at Harvard; his main research interest was in the theory of representation of finite 
groups, a field where he published over forty of his more than one hundred 
papers. He taught at Harvard University, Brown University, Allegheny College, 
and Michigan State University and had appointments at the Institute for 
Advanced Study and as a Consultant for Graduate Mathematics Programs in 
Thailand. He has served at the local, regional, national and international level 
holding positions on the Board of Governors of the MAA and as chair or 
member of many, many scholarly and civic organizations ranging from the 
Presidency of the Michigan Academy of Arts and Letters to membership on The 
East Lansing Board of Education and The National Council of the AAUP. 
Membership in Phi Beta Kappa, inclusion in Who's Who in America, and the 
Senior Research Award of Sigma Xi at Michigan State are among his many 
honors . 

In 1994, J. Sutherland Frame was awarded the Yueh-Gin Gung and Dr. 
Charles Y. Hu Award for Distinguished Service, the highest honor given by the 
Mathematical Association of America. A quote (with a few modified verbs) 
from the award narrative, written by David Ballew, Western Illinois, in The 
American Mathematical Momhly, Volume 101, Number 2, February, 1994, is 
an excellent conclusion to this dedication: 

"Almost every summer, "Sud" attended as many of the student paper 
presentations as possible. He immediately grasped the student's message and 
afterwards spoke to each student in a non-intimidating way to help the student 
gain deeper insight to improve his or her results. The students were amazed that 
this grand old gentleman could see to the core of the problem so quickly and then 
see further and clearer than they, who worked so long and so hard. As one 
student said to David Ballew after the 1992 Summer Conference, 'That man 
really loves students, doesn't he?' At the bottom, that says it all. J. Sutherland 
Frame simply loved students and had spent his life proving that." 

"Sud" will be missed as a mathematician, as an inspiring teacher and 
mentor, and as a friend. 

Heather Gavlas 
='ick Sousanis 
Ken Stauffer 

"estem Michigan 
niversity 
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The authors are grateful 
to Gall Gough of Lucas film 
Ltd. for her helpfulness 
with this project. 
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Stepping carefully over the skeletal remains of a failed treasure hunter, 
Professor Indiana Jones made his way deeper into the ancient African 
temple, his goal nearly at hand. He stopped and peered at the carving on 
the nearby wall. Although the inscription was of a form not seen on Earth 
for the past two millenia, Dr. Jones was able to decipher its meaning. 
Reaching out for an indentation in the wall, Jones pushed and the floor gave 
out below him. Sliding, tumbling, plunging through the void his fall came 
to a jarring halt at a cold, stone floor deep beneath the temple. Looking for 
his extinguished torch, Indy realized the room was already filled with the 
light of several torches. He spotted the resting spot of his prize. Suddenly, 
out of the darkness behind him came a familiar voice, "About time you made 
your way here. " Whirling about, Indiana came face to face with Professor 
Henry Jones, "Dad!?! What the heck are you doing here?" 

"Looking for the same thing you are," the elder Jones replied. "And 
now that you're finally here we need to find our way out. " 

Indiana was accustomed to the sharp tone of his father's speech, but he 
knew that his dad was much more comfortable digging for relics in a 
museum than procuring them out in the field. The presence of his son was 
more of a relief than he would have cared to make known. "Well, Dad, 
according to the documents I brought back from Egypt, we should be at the 
center of a great maze. Apparently, each pathway in this labyrinth lies 
between rotating, stone doors. Each segment of the maze has the capability 
to be filled with deadly traps, but these doors trigger on/off switches. We 
pass through a door, and any passageways that were in the active deadly 
mode now become safe to cross, while those previously safe paths become 
unpassable. The doors only open in one direction so once we're in a section 
we can 't turn back, which means we can 't choose the wrong path at any 
time. "Of course, according to this," and now Indy brought forth his map 

of the maze, "there is only one correct sequence of paths to get us out 

safely." 
"And I suppose you have already figured out that route before trapping 

yourself in here?" the older Jones queried. 
"Now, Dad, you didn't even know about the maze. What was your plan 

ro escape?" But the look on his father's face said it all. Right or wrong Indy 
knew it was useless to argue with Henry Jones. "All right Dad, here's the 
layout. We're at this spot, "pointing to a large circular area in the center 

of the map. 
The elder Jones frowned and glanced at the map. He drew out his note 

pad and pencil, "So what do you make of it, Junior?" 
Indy had absolutely no idea ofwhat to make of it, when inspiration hit 

him. "Dad, remember how we used to discuss mathematics and we talked 

some about the field of Graph Theory?" 
"Junior, what do charts and tables have to do with the situation you've 

gotten us into?" Henry Jones asked his son. 
"No, Dad! Graph Theory was started by Euler and has since become a 

subject all its own," Dr. Jones was beginning to lose his patience with his 

father. 
"Ah yes, exactly! 1 remember it as if it were yesterday! Now if 1 could 

only find my notebook, we could jot down some ideas to refresh our 

memory." 
"It's in your hand Dad," Indy announced with a smirk. 
"Ah, so it is. Well no more dawdling boy, let's get to work." 
Indy sighed and began, "You explained graphs as a set of vertices with 

edges between them, the order and size of a graph indicating the number of 

vertices and edges respectively. " 
Henry Jones began to sketch a graph, while Indy continued. They 

continued for some time recalling definitions and examples they had not 
discussed in almost twenty years. The elder Jones carefully wrote down each 

definition and example as they recalled them. 

So, a graph G is a set of vertices, denoted by V(G), and a set of edges, 
denoted by E(G), between pairs of distinct vertices where at most one edge 
is allowed between a pair of vertices. The number of edges incident with a 
vertex v in G is called the degree of v. If ab is an edge in a graph G, then 
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the vertices a and b are adjacent. For the graph G of Figure 1, the degree 
of vertex v1 is 2 and vertices v1 and v2 are adjacent. The order (number of 
vertices) of G is 8 while the size (number of edges) of G is 10. A graph is 
complete if every two of its vertices are adjacent. Every vertex of a 
complete graph of order n has degree n - 1. 

An alternating sequence of vertices and edges of a graph G beginning 
with a vertex u and ending with a vertex v such that every edge joins the 
vertex immediately preceding it to the vertex immediately following is called 
a u-v walk. If a u-v walk does not repeat any vertex, then it is called u-v 
path. A u-u walk containing at least three edges and not repeating any 
~ertex other than u is called a cycle. For example, v1, e

1
, v

2
, e

9
, v

6
, e

9
, v

2 
IS a v1-v2 walk in the graph G of Figure 1 that is not a v1-v2 path. A v

1
-v., 

path is v1, e1, v1. Since the edges of a walk are completely determined by 
the vertices of the walk, we will list only the vertices of the walk. So, 
vl,v2,v3,v4,v8,vl is a v1-v1 cycle in the graph GofFigure I. A graph G is 
said to be connected if for every pair u, v of vertices, there is a u-v path in 
G. (If any such paths are absent, then G is disconnected.) A graph G is 
hamiltonian if a cycle exists in G containing every vertex of G. This cycle 
is known as an hamiltonian cycle. Thus the graph G of Figure 1 is 
connected and hamiltonian since v1,v2 ,v3,v4,v5 ,v6 ,v7 ,v8,v1 is a hamiltonian 
cycle. 

G: 

Figure 1 

A directed graph or digraph is a set of vertices where connections 
between vertices are represented with directed edges or arcs. Two vertices 
u and v of a digraph D are adjacent if D contains at least one of the arcs 

(directed edges) (u,v) and (v,u). If (u,v) is an arc of D, then u is adjacent 
10 v while vis adjacent from u. The underlying graph G of a digraph D has 
the vertices of D as its vertex set and if an arc (u, v) is present in D, then the 
edge uv is present in G. A digraph D is connected if the underlying graph 
of D is connected. An orientation of a graph G is an assignment of 
directions to the edges of G. A tournament Tis a digraph resulting from 
assigning directions to the edges of a complete graph. 

After some rime, Indy interJected, "Dad, 
I enjoy this, bur we have only so long to 
survive in here. We need ro make some 
progress towards figuring out our escape and 
do it quickly. " 

"Ah, Junior, you always were the 
impatient one." Henry Jones had become so 
excited by this rediscovery of mathematics that 
he too had forgotten the situation they were 
in. But admitting this to his son was just nor 
his style. And so he remarked to Indy, "I think 
if we recall the work of our friend and 
colleague Branko Griinbaum we may find the 
clue that we will need. " 

"I see where you're headed Dad! From this point we can establish a 
great many conjectures about graphs in general that may help us get out of 
here in a hurry! Let's put together what we know about digraphs in 
general." 

For vertices u and v in a digraph D, a u-v semipath Pis an alternating 
sequence u = v0 , e1, v1, e2 , ... , vk-l, ek, vk = v of vertices and arcs such 
that the vertices v0 , v1, ... , vk are distinct and either e; = (vi-I, V;) or e; = 

(v;, V;_ 1) for each i ( 1 d s kl . If e; = (v;_1, v;) for each such i, then Pis a 
(directed) u-v path, while if every pair of consecutive arcs of P are 
oppositely directed, then Pis an antidirected u-v path or a u-v antiparh. 

"Grunbaum proved that, with the exception of three tournaments (s~ 
Figure 2), every tournament has an antipath containing all vertices of the 
tournament (a hamiltonian antipath), "Indy remarked. 
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Figure 2 

Henry Jones added, "A digraph is antihamiltonian 
if it contains a hamiltonian anticycle. It is not difficult to 
see, Junior, that e~·ery antihamiltonian tournament has 
even order. Granbaum found two non-antihamiltonian 
tournaments (of orders 6 and 8) and conjectured that 
every tournament of even order n ~ lOis 
antihamiltonian. The brilliant Danish graph theorist 
Carsten Thomassen later proved Granbaum 's conjecture 

for tournaments of order at least 50. The following year, 
Moshe Rosenfeld .funher decreased this bound to 28. " 

A digraph D is anticonnected if for every pair u, v of vertices of D 
there exis~ a u-v antipath in D. If a digraph contains a u-v antipath, then i; 
also contai~s a v-u. antipath. Thus, if Dis an anticonnected digraph, then its 
co~verse D (obtatned by replacing every arc (x,y) with (y,x)) is also 
antlconnected. Recall that an orientation of a graph G is an assignment of 

directions to the edges of G. If an orientation of a graph is anticonnected, 
then the orientation is referred to as an anticonnected orientation. ln.[2] it 
was shown that although every connected graph bas an anticonnected 
orientation, it is not the case that every orientation of a connected graph is 
anticonnected. However, it was also shown in [2] that if G is a graph of 
order n ~ 3 such that deg v ~ (3n- 1)/4 for every vertex v of G, then every 
orientation of G is anticonnected. Furthermore, this bound is sharp. 

For a fixed positive integer n, the complete symmetric digraph x; is that 
digraph where for every pair u, v of vertices the arcs (u, v) and (v,u) are 
present. Every digraph x; is anticonnected. Thus if the size of a digraph D 
of order n is sufficiently large, then D is anticonnected. 

"Okay Dad, I think we can state a formal theorem giving the precise 
bound now." 

"Good Junior, you really must have paid attention at some time while 
we were studying. " 

Theorem 1. If D is a digraph of size m ~ (n-1)(n-2) + 1 and order 
n ~ 3 then Dis anticonnected. 

Proof. Let D be a digraph of order n ( ~ 3 > and size m that is not 
anticonnected. Then there exist vertices u and v of D for which there is no 
u-v antipatb. Certainly neither (u, v) nor (v,u) are arcs of D. Also for every 
vertex w (¢u, v> of D, the arcs (u,w) are (v,w) are not both present in D, 
and similarly (w,u) and (w, v) are not both arcs of D. Since the maximum 
size of Dis n(n- 1), it follows that m ~ n(n- 1)- 2(n- 1) = (n-1)(n- 2). 
0 

Theorem 1 is best possible since for n ~ 3, the digraph x;_1 u K1 is of 
order n and size (n - 1)(n - 2), but is not anticonnected. 

"Remember we have already mentioned that a connected digraph need 
not be anticonnected. However, some connected digraphs are closer to being 
anticonnected than others. Now let's look at two measures of 
anticonnectedness for connected digraphs. " 

·~ 

The (anticonnected) reversal number ar(D) of a connected digraph D is 
the minimum number of arcs the reversal of the directions of which 
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produces an anti connected digraph. 

Henry Jones continued, "We must first show that ar(D) exists for every 
connected digraph D and then present a bound on this parameter. Before 
continuing, we 'II need the following definitions. " 

A tree is a connected graph containing no cycles. A bipartite graph is 
a graph G whose vertex set can be partitioned into two sets U and V such 
that every edge joins a vertex of U to a vertex of V. It is well-known (see 
[1], for example) that a tree of order n has size n - 1 and that every tree is 
bipartite. A spanning tree of a connected graph G is a tree that is a subgraph 
of G and has the same vertex set as G. Every connected graph has a 
spanning tree. 

Theorem 2. For a connected digraph D of order n, the (anticonnected) 
reversal number ar(D) ~ L (n - 1 l /21. 

Proof. Let D be a connected digraph of order p and let The a spanning 
directed tree of D. Then Tis bipartite with partite sets U and V. Suppose 
that T has m1 arcs from U to V and ~ arcs from V to U. Then m = 
min{m1 ,~} ~ L(n-1) /21. Reversing the direction of these m arcs will 
produce an anticonnected directed tree and hence an anticonnected digraph. 
Thus, ar(D) ~ L (n - 1) /21. 0 

"Now notice Dad, that the bound in Theorem 2 is sharp in the sense that 
for every positive integer n, the directed path of order n has (anticonnected) 
reversal number L(n - 1) /2J." 

For a connected graph G, the (anticonnected) reversal number ar(G) is 
defined as ar(G) = max {ar(D)}, where the maximum is taken over all 
orientations D of G. So, by Theorem 2, for a connected graph G of order 
n, the reversal number ar(G) ~ L(n - 1) /2J . It was already noted that the 
directed path of order n bas reversal number L (n - 1) /21. Thus, for the path 
Pn of order n, it follows that ar(Pn) = L(n - 1) /21. It was also noted that if 
G is a graph of order n ~ 3 such that deg v ~ (3n - 1)/4 for every vertex 
v of G, then every orientation of Gin anticonnected. Hence ar(G) = 0 for 
each such graph G. 
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"With what we know now we should be able to determine the reversal 
IUII7Iber of a tree. "Henry Jones continued to scrawl out theoretical. results. 

Theorem 3. For a tree T of order n ~ 3 , the reversal number 

ar(1) = L(n - 1) /21. 
Proof. Let T be a tree of order n. Then T is bipartite with partite sets 

U and V. Obtain an orientation D of Thy directing r<n - 1) /21 edges ofT 
from U to V and the remaining L (n - 1) /2J edges from V to U. It will be 
shown that ar(D) = L(n - 1) /2J so that ar(1) .. L(n - 1) /21. If the 
l(n - 1) /2J arcs from V to U are reversed, then the resulting digraph is 
anticonnected. So, ar(D) ~ L<n - 1) /21. To see that ar(D) ~ L<n - 1) /2J, 
suppose, to the contrary, that ar(D) < L(n - 1) /21. Let D' be an 
anti connected digraph obtained from D by reversing fewer thanl (n - 1 > /2J 
arcs. Since there are at least L ( n - 1 l /2J arcs from U to V and from V to U 
and since D' was obtained from D by reversing at mostl(n - 1) /2J - 1 
arcs, there exist arcs (u1,v1) and (v2,u2) ofD' such that u1, u2 e Uand vt,vze 
V. Since D' is an orientation ofT, either u1 "' u2 or v1 "' vz. Suppose that 
u "' u

2
. (The proof is similar if v1 "' v2.) Since D' is anticonnected, there 

1 • D'. b' . is a u
1 

- v
2 

antipath P: u
1 

= w0 , w1 , ••• , wt = v2 • Also smce ts tparttte 
and u

1 
= w

0
,, if i (1 < i ~ k) is even, then w1 e u while if i (1 ~ i ~ k) is 

odd, then w1 E v. Thus, since wk = v,P it follows that k is odd. We 
consider two cases, depending on whether u1 = w0 is adjacent to or from W1. 

Case 1. Suppose that (w0,w1) is an arc of D'. Then for i odd 
(1 ~ i < k), (w

1
_
1

, w
1
> and (w1• 1 , w1> are arcs of D'. For i = k, the arc 

<w.H, wk> is present in D'. Thus wk_1 "' u2 and furthermore u2 is not a 
vertex of P for otherwise P together with (v2,u2) produces a cycle in T. So, 
P together with (v

2
,u

2
) is a u1-u2 semipath Q that is not an antipath. Since 

D' is an orientation of a tree, Q is the unique u1-u2 semipath in D'. Thus, 
there is no u

1
-u2 antipath in D', producing a contradiction. 

Case 2. Suppose that (w1, w0) is an arc of D'. Fori odd ( 1 ~ i < k) , the 
arcs (w

1
, w

1
_
1

) and (w
1

, w1•1 ) are present in D'. When i = k, the arc 
( wk, wk_

1
) is present in D'. Then w1 "' v1 and, as before, v1 is not a vertex 

of P for otherwise P together with (u1, v1) produces a cycle in T. So, P 
together with (v

1
,u

1
) is the unique v1-v2 semipath Q in D'; yet Q is not an 

antipath. Thus D' is not anticonnected. 
Therefore ar(D) ~ L(n - 1) /2J and thus ar(D) = L<n - 1) /21. Hence 
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ar(7) = l<n- 1)/21. 0 

Although a general lower bound for ar( G) has not been found when G 
is a connected graph, such a bound does exist if G has cut-vertices. Let G 
be a connected graph containing a cut-vertex v. Suppose that G - v has k 
components, where k ~ 2, say G1,G2, ..• ,Gk. Obtain an orientation D of G 
by directing all edges from V(G;) to v for 1 s i s lk/21, directing from v to 
V(q) for lk/21 < j s k, and directing the remaining edges of Garbitrarily. 

Let V; be a vertex of G; for i = 1 ,2, ... ,k. Then for i = 1 ,2, ... , lk/21 and 
j = lk/21 + 1, ... , k, every V;- vj semipath contains v. Thus at least one arc 
from V(G;) to v or from v to V(G) must be reversed. Therefore, ar(D) 
~ lk/21 and hence ar(G) ~ lk/21. Maximizing k(G - v), the number of 
components of G- v, we have the following theorem. 

Theorem 4. Let v be a cut-vertex of a connected graph G such that 
k(G- v) is maximum. Then ar(G) ~ l.k(G- v> /21. 

Indy interjected, "Let's look at another measure of anticonnectedness." 

For a digraph D, the (anticonnected) addition number ad(D) is the 
minimum number of arcs that can be added to D to produce an 
anticonnected digraph. Certainly if every arc not present in D is added to D, 
the resulting digraph is anticonnected. Consequently, ad(D) is well-defined 
for every digraph D. 

For a given connected digraph D, let D' be some anticonnected digraph 
obtained from D by reversing ar(D) arcs. Then the digraph D", obtained 
from D by adding the ar(D) reversed arcs in D', that is E(D") = E(D) U 
E(D '), i~ anticonnected. Therefore ad(D) s ar(D). For a connected graph G, 
the (anttconnected) addition number ad(G) is defined as ad(G) = max 
{ad(D)}, where the maximum is taken over all orientations D of G. So, 
since ad(D) s ar(D) for every digraph D, it follows that ad(G) s ar(G) 
s l(n -1) /21. 

"From this we can show that for every positive integer n ~ 3, there 
exists a connected graph G of order n such that ar(G) = 
ad(G) = l (n - 1) /21." 

"Obviously, Junior. Now let's write this one out." 
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Theorem 5. For every positive integer n ~ 2, 
ad(K1,n) = ar(K1,n) .. ln/21. 
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Proof. By Theorem 3, ar(K1,n) = ln/21. It remains to show that ad(K1,n) 
• ln/ 21. Let G = K 1 nand let v be the vertex of degree n and v1, v2, ••. , 

vn be the remaining ~ertices of G. Obtain an orientation D of G by directing 
the edges V;V from V; to v fori = 1 ,2, ... ,ln/21 and the edges vjv from v to 
v. for j = ln/21 + 1, ... ,n. We show that ad(D) = ln/21. Let D' be a 
~graph obtained from D by adding fewer than ln/21 arcs and suppose, to 
the contrary, that D' is anticonnected. Then there exist integers i (1 s i 
s ln/2l) and j(ln/21 + 1 s j s n) such that (v;. v) and (v, v) are the only 
arcs of D' incident to V; and vj respectively. Since D' is anticonnected, there 
exists a v;-vj anti path P : V; = w0 , w 1, ••• , wk_ 1, wk = vj" Sine~ deg V; = deg 
v. = 1, it follows that w1 = v and wk_ 1 = v, so necessanly P : V;, v, vj" 
Aence P is not an antipath, producing a contradiction. Therefore ad(D) 
~ ln/21 and hence ad(D) = ln/21. Thus ad(K1 n> = ln/21. 0 . 

"Now Junior, we have seen that a.d(D) s ar(D) for 
every connected digraph D and that we have an infinite 
class of graphs for which the addition number equals the 
reversal number. Next let's show that the addition number 
and the reversal number can be arbitrarily far apart. " 

Theorem 6. For every positive integer k, there exists a connected 
digraph D such that ar(D) - ad(D) ~ k. 

Proof. Fork= 1, consider the directed tree D1 shown in Figure 3. By 
the proof of Theorem 3, it follows that ar(D1) = 3. Let D'1 be the digraph 
shown in Figure 3, which is obtained from D 1 by adding the two arcs 
indicated in Figure 3. Since D} is anticonnected, ad(D1) s 2 and hence 
ar(D1) - ad(D1) ~ 1. 

For k = 2, consider the digraph D2 shown in Figure 4. Now D2, ~lso 
shown in Figure 4, is obtained from D2 by adding four arcs. Since D2 is 
anticonnected, ad(D2) s 4. Let V1 = {v1, v2 , v3 , v4 , v7 , v10, v11 , v12, v13} 

and let V2 = {v5 , v6, v8, v9}. Then there are six arcs from V1 to V2 and six 
arcs from V2 to V1• As in the proof of Theorem 3, to produce an 
anticonnected directed tree, we must reverse all arcs of D2 from V1 to V2 or 
all arcs of D2 from V2 to V1• Thus ar(D) = 6 and so ar(D2) - ad(D2) ~ 2. 
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D'· ]· 

Figure 3 

D'· 2• 

Figure 4 
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:ina11y, let k 2! 2 be a positive integer and consider the digraph Dk 
obtamed from D.., by adding the vertices u u u w w 
and fori= 1, 2,-... , k- 2, adding the arcs 1 (ui~~~)·~nJ-{~9 , ~-). ~s.~f:~~ 
let V - { v v v v 1 

1 - I• 2• 3• 4• V7, VIO• VII• Vl2• Vl3• ul, u2, ... , Uk-2• WI, w2, ... , 
w.t-2} and let V2 = {vs, v6, Vg, vg}. There are k + 4 arcs from v

1 
to V., and 

k +. 4 arcs from V2 to V1• Hence, ar(Dk) = k + 4. Also the digraph Di 
obtamed. from_ DJ: by adding the four arcs (v1, v10), (v3, v

1
), (v

8
, vp), and 

(vg, v6) ts anttconnected. Thus ad(Dk) s 4 and so ar(Dk) - ad(D~;) ; k. 0 

"This has been great Dad, but I think we really need to make use of it 
all and get out of here. " 

"What's your hurry Junior? The maze has been here three thousand 
years and I am not that hungry yet. " The elder Jones still had visions of 
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more theorems that the rwo could work out. 
"Well," Indiana responded sheepishly, "I didn't want to mention it 

INjore, but the map mentions that the maze will eventually fill with water 
once its most valued possession is removed, and I just started to notice a 
slight rrickle from the walls. " 

"How convenient! We're just about to get to the part of our work that 
I have been looking forward to the most and you decide we've got to get out 
of here." 

"Dad, I promise I will work with you until we get this finished after we 
get out of here. " 

"All right, " Henry Jones grumbled, "pay attention now, and we will 
ascertain the correct solution to our predicament. " 

Returning to Indy's map of the maze, the two men scoured over the 
document, searching for a connection to their mathematics and a path to 
freedom. "Look what happens, Dad, if we reduce the paths of the maze to 
oriented edges on a digraph. Knowing the initial conditions of the labyrinth 
should allow us to deduce the correct antipath to safety. " 

"You've done it Indiana! All my years of educating you have paid off!" 
Henry Jones was beaming with pride towards his son. 

Indiana began placing arrows on the graph in 
directions matching the symbol "+ "for a safe path 
and "-"for a deadly path. "Now from this Dad, we 
would be able to find an antipath of alternating 
directed edges so that we will always be on a 
segment of the path when it is safe to do so. " 

"Exactly! We start on a dangerous path, which 
means when we open the first door to leave this room 
lhe maze will be reversed and it will be safe to pass. The next path we take 
will originally have been rraversable but will then be currently dangerous. 
But as we open the next door the maze will switch again and we will be able 
ro pass freely. " Henry could barely contain his excitement. 

"Right Dad. We just continue in this manner of alternating safe and 
deLully paths and we can map out a route that will lead us to an exit." They 
mode short work of deciphering the rest of the path from the maze dnd 
plotted a course to their freedom. 

"Well here goes nothing. " 
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"I have the utmost confidence in you son. " 
"So you'd like to go first?" Indiana jokingly asked. 
"Harumph. " Henry made a half-laugh, half-cough sound and replied, 

"Ach, Junior, you've come so far, but still some things ... " 
"Never change. I know Dad. And you either. Let's go. " 
Following their prescribed route, with grumbling and bickering along 

the way, after what seemed an eternity, they found themselves once again 
under the African blue sky. Henry Jones piped up, "Ah, I can't wait to get 
back home and we continue to study and formalize our results on graphs. 
You know, it would be nice to write up the results we found into a paper and 
submit it for publication to the Pi Mu Epsilon Journal so that many math 
students can see what we've done and perhaps even find more theorems. " 

[\y'.;t;:·~ / //'!;:~,.<'' -. ' ,-,~-,:~, 
) ~\'~--....---:->-.. c..,:::{/ ,I ·'_ •• L1 I 

I ;:' : "~ -.' ~\. 'j } '-..~'J.:::-~d 

~!J.~iJ! ~ lb-~- ~ 1 . ,-~-~_- ~-- -
. ' ==T:· ~ (\! 

\\ ~~t·==· ·~\ 
lf:--==--1~~----''=o:;~::::L 

"Umnvn. .. " Indy had the sheepish look again. "You were serious about 
that Dad? Oh, forget that, of course you were. You realize that was the 
kind of promise a son makes to his father when he realizes there's a good 
chance they may not make it out of the situation they are in, don 't you? I 
mean you aren't really going to hold me to that?" Indy prodded his horse 
into motion. 

"Junior!" Henry shouted, but his son was already on the go and he had 
naught to do but to follow. He would make Indy see the virtues of his 
methods yet. But probably not this day. The pair charged off across the 
landscape and finally disappeared as fading specks melting into the African 
setting sun. 
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ANALYTICAL FORMULAS FOR 

1:=1 r !1 AND 1:=1 l!J 
R. Sivakumar, N.J. Dinwpoulos, and W.-S. Lu 
PMC - Sierra, Inc., and University of Victoria 

Introduction 
Given a real number x, denote by r X l the least integer that is no less 

than x and denote by LxJ the greatest integer that is no larger than x. The 
functions r X l and LxJ are often referred to as the ceiling and floor values of 
x, respectively [1,2]. In this note, we present two analytical formulas for 
computing the sums I: •1 r ll and I: •1 ll j. where n and p are arbitrary 
positive integers. These fummations ocfur in many areas of applied 
mathematics/engineering and to the best of the authors' knowledge, no 
closed-form solution exists in the open literature. The formulas derived here 
stem from an analysis of basic number theory and should prove interesting 
for undergraduate students in particular. 

Discussion 
For given integers p and i ~ 1, we write 

i = px1 + I 1 

where xi and I i are integers such that xi ~ o and 1 ~ I 1 ~ p. 

such a representation of i is unique. It follows that 

fil = x 1 + 1 

lij {xi if1SiiSp-1 
p = xi + 1 if I 1 = p 

Therefore, 

~ fil =~(Xi + 1) 

n i- I =n+Y' ___ i 
!':{ p 

= n + n(n+1) - ..! f Ii. 
2p p !':{ 
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(1) 
Note that 

(2) 

(3) 

(4) 
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In order to evaluate the term ~ I:.
1 

Ii, we consider the following cases: 

Case 1: nip is an integer. _ - . 
It can be observed that for 1 ~ i ~ p, we have x 1 = o and I1 = ~. 

Hence ~"' I = P (p + 1 > • Similarly, for (p + 1) ~ i ~ 2p, we have 
L.Ji•1 i 2 

d _ · so 'r'2P r = P (p + 1 > . In general, we obtain x1 = 1 an I1 - ~-p. L..,l•p+l 1 2 

~J r = p(p+1) for j e {1,2, ..• ,E}· Therefore 
L..,jo,r;l(j-:) +1 j ( p 2 2p D~ D 1 

1 r =..! Ii+ Ii+,,,+ L ri+ L ri p}.; 1 P }.; 1~1 i•n-2p+1 J.•n-p+l 

Case 2: 

= (~) 

= l~J 

(p +1) 
2 

(p + 1) 
2 

Let i = pl ~ J + j where j e { 1, 2 , ... , n -l ~ jP} . Since n -l ~ jP = 

<n mod p) < p, we have 1 ~ j < p. Furthermore, since . . 
i = px

1 
+ r 

1 
= pl ~ J + j, the uniqueness of the representation oft as 

given by (1) implies that 
x 1 = l~J and I 1 = j . 

Therefore, 

(5) 

(6) 
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(7) 

Substituting (7) into (6), we obtain 

n (n-!~JP)(n+1-!~JP) ..!. l"' Is = l~J (p+1) +PP . 
p~ p 2 2p (8) 

Note that the second term on the right hand side of (8) vanishes when 
nip is an integer and (8) in such a case becomes (5). Hence (8) can be used 
to evaluate i E;. 1 ri for the two discussed cases. Substituting (8) into (4), 
we obtain 

2. R.L. Graham, D.E. Knuth, and 0. Patashnik, Constructive 
Mathemalics: A Foundation to Computer Science, Addison-~esley, 
Reading, Massachusetts, 1989, pp. 67-94. 

Radhakrishnan Sivakumar received the B.Eng. degree in Computer Science 
Engineering from the University of Madras, Madras, India in 1989 and the 
~f.A . Sc. and Ph.D. degrees in Electrical Engineering from the University 
of Victoria, Victoria, Canada in 1991 and 1995 respectively. 

~ikitas J. Dimopoulos received the B.Sc. degree in Physics from the 
University of Athens, Athens Greece in 1975 and the M.Sc. and Ph.D. 
degrees in Electrical Engineering from the University of Maryland, College 

~ fil=n+ n(~;l) -l~J(~)- 2~[(n-l~]P)(n+l-l~r)] 
= n + (n-~)l~J-1l~r (9) Park, MD in 1976 and 1980 respectively. 

By. a similar approach, one can obtain a closed formula for E;.
1 

l.:!.J. 
Us10g (3), we can express P 

n • l~j l~J 
l"' l2.J = l"' (x.P1 + 1) + r 1:1 p 1:1 t:'t 

= l~J + ~ X 1 

=IEJ + f ~ 
lP ~ P 

= lEJ + n(n+1) _ ..!. ~n 
P 2 Ii. p p •1 

(10) 

Substituting (8) into (10), we obtain 

D • 

~ l~J = (n + 
1 

- ~)l~J- ~l~r (11) 

It can be observed that the formulas given by (9) and (11) are 
computationally efficient as n asymptotically increases. 
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THE QUADRATIC FORMULA REVISITED AGAIN 

Peter A. Lindstrom 
Nonh lAke College 

By "completing the square" on the quadratic equation aX! + bx + c = 
0, one can derive the quadratic formula, 

2 . 
v.ilere a, b, and c are real numbers with a ~ 0. If b - 4ac < 0, then tbe 
quadratic equation has two nonreal complex conjugate solutions and if b2 -



462 
PI Mu EPSILON JOURNAL 

~c ~ 0, then the solutions are two real numbers. The purpose of this note 
ts to show how to derive the quadratic formula by assuming the solutions 
are complex numbers expressed in trigonometric form 

x = I(cosO + i sinO), where I> o and i2 .. -1. 

Assuming that x = I(cos 0 + i sinO) is a solution of ax2 + bx + c = o 
then ' 

a[I(cosO + i sin0)]2 + b[I(cosO + i sinO)] + c = o 
so that ' 

[2a(Icos0)
3
-ai 2 +b(Icos0) +cJ +[(IsinO) (2arccos0+b)J i=O+Oi. 

Equating the real and imaginary parts, then 
2a (I cos 0) 2 

- ai 2 + b(Icos 0) + c = o 
and (I sin 0) (2arccos 0 + b) = o. ' 
Now consider the two possible cases for {2). 

(1) 
(2) 

Case 1. If I sin 0 = o, then sin 0 = o since I > o. 
This yields real number solutions of~ + bx + c = 0 and is discussed 

later. 

Case 2. If 2 arccos 0 + b = o, then 
IcosO = -b 

2a' and {1) becomes 

so that 

Since (I sin 8) 
2 = I 2 - (I cos 8) 2 , using (3) and (4), then 

or, 

(I sin 0) 2 = .E. - ( -b}2 

a 2a ' 

(Isin0)2 = 4ac- b2 
4a 2 ' 

IsinO = :./4ac- b2 
2jaj 

(3) 

(4) 

(5) 

{6) 

Using (3) and (6), the complex solutions of~ + bx + c = 0 become 
X = I COS 8 + (I sin 0) i, 

x = -b + :f4ac - b2 . 
2a 2jaj ~. 
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a ,. o, then 
x = -b : (i4ac - b 2) i 

2a 
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(7) 

the numerator of (5) is positive, or b2 - 4ac < 0, this indicates that the 
coots expressed in (7) are two nonreal complex conjugates. If the numerator 

(5) in nonpositive, or b2 - 4ac ~ 0, then the solutions of ~ + bx + c 
= 0 are two real numbers and (7) can be rewritten as 

x= -b: (./C-1) (b2 - 4ac)) i 
2a 

-b ± CE!l (./b 2 - 4ac) i 
2a 

-b ± ( i) 2 (./b 2 - 4ac) 
2a 

-b • .jb2 - 4ac 
2a 

Exercise. Derive the quadratic formula by assuming that the solutions 
are complex numbers expressed in rectangular form, x = ex + Pi, where ex 
and p are real numbers. This approach is similar to what was previously 
done. 

Dr. Lindstrom is retired from North Lake College, Irving, Texas. 

COMMUTATIVITY OF MATRIX MULTIPLICATION 

Gee Yoke l..An (student) 
1he Wichita State University 

In this paper, we will discuss the importance for commutativity. of 
matrix multiplication. We know that, for two n x n matrices A and B, it is 
not always true that AB=BA. We will show that Hirsch & Smale's method 
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[1, page 109] of solving the system x'=Ax, where A is ann x n matrix and 
x = (x1, ••• ,x,.)T, depends heavily on the commutativity of matrix 
multiplication of two appropriate matrices. 

Before we go further, we recall two definitions. An n x n matrix Y is 
said to be diagonalizable if there exists a nonsingular matrix X and a 
diagonal matrix D such that x-lyx. =D. Ann x n matrix Cis said to be 
nilpotent if ck = 0 for some positive integer k. Now consider the system 
x' = Ax of differential equations, where A is an n x n matrix and x = 
(x1, ... ,x,.JT. Hirsch & Smale [1, page 109] indicate the following method 
of solving this system. 

Let A = B + C where B is diagonalizable, C is nilpotent, and BC = 
CB. Then the solution is e-4' = e (B+C)t = ,Jlt ec1• Here ,/l' and ec' are 
easily determined. The following examples illustrate the importance of the 
condition BC = CB in solving systems of equations of this form. 

{

X'l = Xz +Xl 
Example 1. Consider the system X' 2 = - X2 + X3 • 

x'l = -xl 

Let A"~~ -~ -~l • C+Bwhere C" ~~ -~ -~l and B "~~ ~ ~]· 
Here, B 2 = ~~ ~ ~1 and B 3 = ~~ ~ ~]. Thus, B is nilpotent. 

000 000 

Consider eAt = e <c•Bl t = 8 ct 8 st. 

ect =I+ (Ct) + (1/21) (Ct) 2 + .•• + (1/ml) (Ct)'"+ ..• 

=I~~ ~l ·I~ _ot ~l. _!_I~ (-~)2 ~ l 
0 0 1 0 0 - t 

2
' 0 0 (- t) 2 

m! 

0 

(- t),. 0 + + ... +...!.. ~~ 
0 0 

0 ] 

(-t)., 

0 

(1+(-t)+(1/2!) (-t)2+ ..• ) 

0 (1+(-t)+(l/2~) (-tl'+ ..• J 

UTATIVITY OF MATRIX MULTIPUCATION 

[

1 0 0 l = 0 e-t 0 . 

0 o e-c 

~ = I + (Bt) + (1/2 I) (Bt) 2 + 0 

. [~ 

. [~ 

0 t2] 
0 0 + 0 

0 0 

eccesc = ~~ e~t ~ l ~~ ~ t+ (1~2!) t2l = ~~ e~t t+ (~~~:) tzl 
o o e-t o 0 1 0 0 e-t 
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As a result,:,~ ~r:" [·;+ and~ "[t+ ~~:~:) <']. 
However, calculations show that neither X2 nor X3 is a solution of this 
system. The reason for this is that BC"' CB. 

{

X'l ,. Xl + Xz 

Example 2. Consider the system X' 2 = X, . 
X'3 = -2X3 

Let A = ~~ ~ 
0 0 

~1 = B + c where B = ~~ ~ ~1 and C = ~~ ~ ~01· -2 0 0 -2 0 0 

Here, C' "~~ ~ ~1- Thus C is nilpotent. Since BC = CB, 

0 0 
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A VISUAL REPRESENTATION OF 
THE SEQUENCE SPACE 

Marc Fusaro (student) 
University of Scranton 

Introduction 
In an undergraduate course on chaotic dynamical systems based on 

Devaney's text [1], one encounters a strange metric space called the 
sequence space, CE , doo). This is a very difficult space to visualize. In 
fact, it can easily be shown that this space cannot be embedded isometrically 
in Rn for any n. In this paper we develop a geometric model of L which 
gives a very good impression of the geometric structure of the space. The 
model consists of a subset of the Euclidean plane and an unusual, but easy 
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visualize, metric on these points making the model isometric to CE . doo). 
Definition 1.1. The sequence space on two symbols is the set 

L = {s0 s 1 SzS3 ••• I s 1 E {011}} 

• the distance between two elements of this set defined by 

d..,(a ~) = ~ lsi- til 
I ~ 2j 

a = s
0
s

1 
Sz. • • and ~ = t 0 t 1 t 2 • • • • That is, L is the set of all 

sequences of zeros and ones. . . . 
While the points and distances are clearly defined, 1t IS very dtfficult to 

ize the geometric structure of the space as a whole. The goal of this 
s-P!r is to construct a geometric model of the sequence space as an aide to 

visualizing its geometry. 
In order to gain some insight into the geometry of E we begin by 

considering a family of finite subspaces of I: . 
Definition 1.2. Define the family of metric spaces (En 1 dn) by 

En = {s0 s1 s 2 ••• sn-1 1 s 1 E {0~1}}, 

n-1 lsi- tll 
dn (a 1 ~) = ~ j ) 

~ 2 

;here a = s
0 

• •• sn-l and ~ = t0 • •• tn_1 • That is En , is what we get if we 
consider only the first n terms of an element of E . 

Clearly doo and dn are metrics and (En 1 dn) and (E 1 doo) are metric 

spaces . . . 
Perhaps the simplest model one could make for a gtven metnc space 

v.'Ould be to embed it isometrically into some Euclidean space (preferably 
or R2 or R3). We will show in Section Four that even the tiny subspace Ez 

of L can not be isometrically embedded in R0
, no matter bow large we 

dloose n. Thus R0 with the Euclidean metric fails to contain an embedded 

model for L. . 
However, if we switch to the grid metric (often called the taxtcab 

metric) we can construct a model of En in R". 
Definition 1.3. Consider R0 with the grid metric 

:. 
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Define Yn: (En, d.,) - (R", dG) by 
y n (a0 a1 ••• a.,_J = (s0 , s 1 , ••• , sn_ 1 ) 

h ai w ere s 1 = 1 . 
2 

We will prove that y n is an isometry and thus that its image is a model 
of :E.. in (It", dG) • 

For example, consider El . The image of L
1 

contains only two 
points, as pictured in Figure l(a.). 

l D D 
Figure 1 

Now let us consider ~ . Its image consists of four points in the plane 
arranged as shown in Figure l(b.). y 3 (L3

) is pictured in Figure l(c.). 
Continuing this way we could easily model Ln in n-space. However this 
n-dimensional model is more difficult to visualize for large n, and the 
analogous model for :E would be a subspace of Reo, hardly an easy thing 
to visualize. So we would like to find a way of "compressing" the entire 
space into three or fewer dimensions. In fact we will be able to fit it into 
two dimensions. 

To do this we should first consider y 3 (L3
). Think of it as a box sitting 

on the floor in front of you. The box has length one unit, width one half 
unit, and height one quarter unit. You can find the distance between any 
two points in ~ by measuring the length of any shortest path which travels 
along the edges of the box between the corresponding points in y 3 (L3 

)· 

Now take your Swiss Army knife out of your pocket and cut off the 1/2 by 
1.4 sides. Step on the box gently. Don't bend the sides; let it bend at the 
edges. You have just transformed a three dimensional model into a two 
dimensional model. In an analogous manner we can "crush" our higher 
dimensional models of :E.. into R2• 
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In this paper we develop a model which "crushes" :E into the real 
e in an analogous manner. However, before we consider this model we 
look at a model for a much simpler space to develop our intuition for 
we mean by a "geometric model." 

Modeling the Discrete Metric 
To illustrate the kind of geometric model we have in mind, let us first 
ider a similar model for a simpler metric space: the discrete metric on 

a set X. Under the discrete metric the distance between any two distinct 
- ts of X is one. Our model will have four key ingredients: 1) a set of 
• ts, p (corresponding to the points of X),2) a set of line segments 

viding paths between any two points),3) a definition of a unique 
per" path between any two points, and 4) a metric induced on P (by 

ring the Euclidean lengths of the line segments in the proper path 
·een two points). In the case of the discrete metric we can define these 

items as follows. 

Points 
Let the set of points, P C R2, consist of the n equally spaced points on 

circle of radius 1/z (that is, in polar coordinates 
p = { ( t , 6) I t = ~ and 6 = 2: , x E 0, 1, ... , n - 1}) 

shown in Figure 2(a.) for x = 8. 

• 
• • 

• • 

• • 
• 

(a.) p (b.) P and S 

Figure 2 ·. 
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The Line Segments 
Define a set of line segments, S, to consist of all those segments 

connecting points of P to the center of the circle, as shown in Figure 2(b.). 
The Paths 

We define a proper path between the points of P, to be the shortest path 
(in the Euclidean metric) from one point to another along line segments of 
s. 
The Metric 

Finally, define a metric on P induced by the proper paths, namely the 
distance between two points is the sum of the lengths of the line segments 
in the unique shortest path between the points. With this metric, P is 
isometric to our original discrete metric space X. 

We can think of this model as the spokes and bub of a wagon wheel. 
The points lie at the end of the spokes. To get from one point to another, 
one must travel down the spoke to the center and then out along the other 
spoke. 

Having modeled the discrete metric we now tum our attention to the 
sequence space to develop a similar model, i.e. one which isometrically 
maps each sequence to a point in the real plane. 

Modeling the Sequence Space 
In order to model the sequence space we will follow a pattern analogous 

to the one we created for the discrete metric. Thus we will define points 
and line segments between those points, such that the lengths of certain 
paths using the segments induces a metric on the set of points, making it 
isometric to the sequence space. 
The Points 

Definition 3.1. For X E [0,2) c: ll define an(X) to be the coefficient 
of ....!.. in the binary expansion of x. That is, 

2n 

"" x =La (x)...!.. 
n•O n 2n 

and an(X) E {0, 1}. 

[Note: If x bas two binary expansions we consider only the one which 
ends in repeating zeros, for example 1.0000 ... instead of 0.1111.. .. ] 

Definition 3.2. Define P c: [0, 2) x [0, 2) by 
P = { (x,y) f"Vn E N, a2n (x) = 0 and a 2n+l (y) = 0}. 
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The set p is pictured in Figure 3. We are now ready to define our 
Crush Map, K, which will identify points of P with those of E . 

finition 3.3. Define the Crush Map K: E - P by 

K(SoSlSz···> =(E s!• L 2s!)· 
1 odd 2 1 even 

;; :1 " " 
:1 ;; ;; :1 a :: 

II :I 

" :: :1 ;; 

.. .. .. :: 
:: .. :: .. :: .. 

:I :: 
:: :: .. :: 

.. :: .. .. 
.. .. .. :: . . .. . . .. 

:: .. :: .. 
:: .. :: .. 

:: :: :: .. .. . . .. .. 
:: .. :: :: 

Figure 3 P 
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For example, consider the sequence o = 11111io E :E. The 
corresponding x-coordinate of x (a) would be o .101oio and the y­
coordinate would be 1. o 1 o 1 o o in base two. So in base ten the coordinates 
would be ..! + ..! + _!_ + o + = 21 and 2 8 32 ••• 32 

1 + 1 + 1 + o + = 2
16

1 respectively. So x(a) is(~ E-) 4 16 ° 
0 0 32 I 16 • 

Lemma 3.1. x is a bijection. 
Proof. First we will show that x is injective. Let a ( s 0 s 1 s 2 • •• ) 1 

T = ( t 0 t 1 t 2 ••• ) E :E and assume x (a) = x ( T) • Then 
x(s0 s 1 s 2 •• • ) = x(t0 t 1 t 2 •• • ) 

so, 
o + s 1 + o + s 1 + o + ••• = o + ..5:. + o + 2 + o + 

2 1 '21 2 1 2 1 

and 
So + 0 + s 2 + 0 + = 2 + 0 + ~ + 0 + 
20 22 • . • 20 22 

But two numbers are equal if and only if the digits of their binary 
expansions are equal, so 

s 1 = t 11 s 1 = t 1 I ••• I and s 0 = t 0 I s 2 = t:2 I •••• 

Thus s1 = t 1 for all i, and so o = T. Thus x is injective. 
To see that tt is surjective let p E P. Then p = <x~y> where 

a2n (x) = 0 and a2a+1 (y) = 0 for all n. Define 1t E :E to be1t = s 0 s 1 s 2 • •• 

where 
if i is even 
if i is odd · 

Clearly x ( 1t) = p. Therefore x is surjective. So K is a bijection. D 
Now that we have a mapping of points from I: to P c: ll2 we need to 

define the distances between those points in a way which preserves the 
distances in (E I d..,). We begin by defining a set of line segments whose 
endpoints are points of P. 
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Line Segments 
Definition 3.4. LetS be the set of all line segments connecting those 

of P whose inverse images under the crush map differ by only one 
That is, 

6n denotes the nth term of the sequence 6 E L, and £(p,q} denotes 
line segment joining p to q in R2. 
Notice that every point in P is the endpoint of a unique segment of 

_!. for all x E N. This is easy to see by analogy in L . Go and 
2K 

the box that you stepped on earlier. Decompress it so that it is a box 
· . Notice that each vertex of the box bas three edges connected to it. 

has length one, another bas length one half, and the third bas length 
quarter. This can also be seen by referring to Figure l(c.). 
Lemma 3.2. Let 1 (pi q) 1 denote the length (in the Euclidean metric) 

the line segment l(p I q) E s. Then 
IHPI q) I = d.., cx-1 (p) I x-1 (q)) . 

Proof. Since the points x-1 (p) and tt-1 (q) differ by only one tenn, 
the x or the y coordinate will be the same for both p and q. Assume 

have the same y coordinate, the other case being similar. 

IHP~ q) I = ~1~ x-1~~) 1 -1~ K-1 ~~) 11 
= I j~ IC-1 (p) 1 ;j IC-1 ( q) 11 

I 
x·l(p)n-x-l(q)n I 

= 0 + 0 + •• , + 
2

n + 0 + 0 + ••• 

= doo cx·l (p) 1 x•l ( q) ) 

ere n is the index of the unique term in which tt-1 (p) and K-
1 (q) differ. 

Thus the length of the line segment equals the distance in :E between 
• erse images of p and q. 0 

The entire set of line segments, S, is pictured in Figure 4. Notice that 
erever perpendicular line segments in the figure cross, the point o£ 
rsection is in P. Notice also that many distinct line segments in S 

overlap each other in the figure. For example there is a line segment 
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ting 1C(O) = (0,0) and K(10) = (0,1). There is aJso one 
ting 1C(O) = (O,O) and JC(ooio) = (o,~)· Further note that the 

ents in the figure enclose infinitely many rectangular regions. Iii this 
t it bas a fractal-like nature. 

We are now ready to define the proper paths along line segments of S. 

Path 
Definition 3.5. Let p, q E P. Apathfromp to q is a (possibly infinite) 

ence of points of P 

Po = p, satisfying 

limpn = q 
n·• 

PJc = q in the case where the sequence is finite of length k + 1, i.e. 
en 1C"1 (p) and 'IC-1 (q) differ in k digits). 
The length of a path from p to q is defined to be the sum of the lengths 

its line segments, .E7.o IHPJ·PJ.1 ) I· A path from p to q is said to be 
a proper path if 'IC-1 (pJ_

1
) and K-1 (pJ) differ in the j th term that1e·1 

(p) 

ers from 1C"1 (q) and in no other terms. 
Note that the series in the definition of length of proper path must 

nverge since a proper path can contain a line segment of length ;J at 

once. 
For an example consider the proper path from 1C(0001110) to 

c 1101000) • The proper path is 
15625,0.0625),(0.15625,1.0625),(0.65625,1.0625),(0.65625,1),(0.625,1) 

these points are equal to 1C(0001110), K(1001110), K(1101110), 

s: 1101010) , and 1C (1101000) respectively. The segments which comprise 
path are shown on a graph of P in Figure 5. 
As can be seen in the preceding example, traveling along a proper path 
measuring the distances traveled is comparable to comparing the terms 

m order) of the corresponding points in the sequence space. This is further 

aplained in the following theorem. 
Lemma 3.3 . For any p, q, E P, there is a unique proper path from p. 

q. 
Proof. Suppose a = K-1 (p) = s 0 s 1 s 2 ••• and~ = JC-

1 
( q) = t 0 t 1 t 2 •••• 
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(0.15625, 1.0625) 2 (0.65625, 1.0625) 

"-:/ 

rJ : s 
:: ! .1 
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.. " .. ·r-------____;.;_;;__~ I ... 
,. ' 

(0.15625,0.0625) 

" . 16 
=" / .. 1 '""' 

(0.625,1) 32 (0.65625,1) 

:z ~= 

:: :: 

u 1& 

u ~ 

u n 
u :s 

n : : 
:: a 

Figure 5 Proper Path from (0.15625,0.0625) to (0.625,1) 
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p 0 ,p11 p 2 , ••• be a proper path from p to q. We will prove the case 
re o and "'" differ in infinitely many terms, the finite case being similar. 

Ld j ~ 1 and assume i is the index ofthejth term in which o and "'" differ. 
We show that 

I) x-l(pj) = totlta'"tl-ltls.J•ls.J•:z" .. 

We proceed by induction on j. 
Let j = 1 so i is the index of the first term where o and 1: differ. Since 
path is proper, x-1 (p0 ) and x-1 (p1 ) must differ in the i th term, and in 

other. Therefore, x-1 (p1 ) = s 0s 1 ••• s 1_1t 1s 1• 1 ••• (since t 1 ~ s 1) and 
further, since the i th term is the first term which they differ, sm = tm for 

< i. Therefore x-1 (p1 ) = t 0t 1 • .. t 1_1 t 1s 1• 1s 1• 2 .. .. 

Now for the induction step. Let j > 1. Assume (1) is true. Let i be 
the index of the j th term in which o and "'" differ. Let I be the index of the 
(j + l)th term in which they differ. Then 

x-1 (pj) = t 0 t 1 t 2 .•• t 1 _1tls.J.1s1•2 ••• sx_1SzSz•l''. 

Since tz ~ Sz, 

x-1 (Pj. 1 ) = t 0t 1 t 2 ••• t.J_ 1t.Js1+1s1• 2 ••• sx_ 1tzSz•l' •• 

and since the I th term is the next term (after the i th term) in which they 
differ, sm = tm fori < m < I. Therefore, 

x-l (pj•l) = totlta. • • t.J-lt.Jt.J•lt.J+2' • • tx-ltzSz•lsi+'Z' • • 

This completes the induction. Therefore the proper path is unique, as it is 
the one prescribed by (1) . D 

We can now use the lengths of the proper paths to induce a metric on 
P. 
The Metric 

Definition 3.6. Define di> : P x P ~ R. by dP (p, q) = the length of the 
unique proper path from p to q. 

Theorem 3.4. (P, dP) is a metric space and the Crush Map, 
... : (L, d"') ~ (P, dP), is an h:ometry. 

Proof. By Lemma 3.1 x is a bijection, so it suffices to show that 
d.., (o,"t) = dP(x(o) ,1C(1:)). 

dP (x (a), 1t ("t)) = the distance of the proper path from 1t (o) to x ("t) 

·. 
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= Y" doo (tt-1 (pj_ 1 ) , tt-1 (pj) ) 
/':'1 

Since x-1 (pj_1 ) and x-1 (pj) differ by only one digit in ~th place, (where ~ 
is the index of the j th term in which a differs from 't) we have 
ct-cx-1 (pj_ 1 ), x-1 (pj)) = 4- so 

2 J .., 

.. ~ .. 
=~ 

= d..,(a,'t). 0 
Thus, (P, d,) is a geometric model of the sequence space. 

Additional Theorems 

We close by proving some of the claims stated in the introduction. 
Theorem 4.1. There does not exist an isometric embedding from 

(E , d..,) into (Jln, ds> where d• denotes the Euclidean metric, 
ds(x,y) = lx- yj. 

Proof. Since (1: , dz) can be considered to be a subspace of 
(!:,d .. ) it suffices to show that 1: does not embed isometrically into 
lln. Suppose k : Lz - Jln is an isometric bijection. Then 
dz (u, 13> = jk(u) - k<13> I for any u, 13 E 1: . Consider the points: 

a = k(OO) 

't = 1t(01) 

p = x(10) 

v = k(ll) 

Ia - -rl = d 2 (00, 01) 

lor- vi= dz(01,ll) 

Ia- vi= dz(OO,ll) 

- 1 - 2 
= 1 
- 3 - 2 

Thus a, <t, and v are collinear as depicted in Figure 6(a.). 
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a u a 

• • • • 

2 

(a.) (b.) 

Figure 6 

Now let's consider the point p. 

Ia- PI= d 2 (00,10) 

IP- vi= d2 (10,11) 

p 

• 

= 1 
:1. 

2 

u 

• 
I -
2 

Thus p is collinear with a and v, as shown in Figure 6(b.) and, 
therefore, collinear with 't also. Since p, 't, and a are collinear 

l<t - PI = Ia - PI - Ia - <tl 
l<t - PI = 1 - .! = .! 

2 2 
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However I-t - pI = d2 (01, 10) = l. ~ i· So we have a contradiction. 
Thus there does not exist an isomefric embedding of 1:

2 
into Rn, and 

consequently there does not exist an isometric embedding of E into Rn. 
0 

Theorem 4.2. Yn is an isometry (between Ln and its image). 
Proof. First we shown that y is a bijection. It is obviously 

surjective so now we must show that y is injective. Assume 
Yn (a) = Yn(b). 
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a0: b0,a1: b11' ''I ,aD-1: bD-1 

Caoa1a2 • • • an-1> = Cbob1b2 • • .bn-1> 
a=b 

Thus y is a bijection. We now must show that y preserves distances. 
Consider the points a and b in En . By the definition of d12 

And by the definition of the grid metric the distance between y n (a) and 

Yn(b) is 

dG (( ;~ ' ;~ , • • • , ;:=~) 1 ( ~~ , ~~ , •• , , ~:=~)) 

= I( ;~ - ~~)I + I( ;~ - ~~)I + .. • + I( ;:=~ - ~:=~)I 
= lao - bol + la1 - b1l + + lan-1 - bn-1l 

20 21 · ' ' 2n-1 

Thus y preserves distances. So y is an isometry between En and its 
image. 0 
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SEARCmNG FOR INFINITE FAMILIES 
OF 2-TRANSITIVE SPACES 

John Morrison (student) 
St. John's University 

Most everybody is familiar with the basic properties of geometric shapes 
such as the triangle, hexagon, octagon, and so on. However, defining these 
shapes as sets of points reveals some properties which are not so familiar, 
such as 2-transitivity. That is, shapes that can form a partition P of the 
edges into equal size sets so that there is a doubly transitive group of 
automorphisms of the shape that acts as a group of permutations on P. 
These shapes can often be categorized into infinite families, and this 
research is an introduction to identifying these families. 

First we need to define the sets of points we will work with. 

Definition. (S, =) is a set S together with a relation = on pairs of 
points. {S, =) is a space (or more formally an equidistance space) iff: 

i) = is an equivalence relation on pairs of points; 

ii) for all A, Band C inS, AB !!! BC iff A = C; 

iii) for all A and B in S, AB = BA. 

Fortunately, these spaces can be studied without knowing the actual 
distance between points, instead we only know the distance relation between 
pairs of points. 

Let's look at a common space such as (K4, =). The variously marke4 
edges each represent different distances. 
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Example 1. K4 

C=3 B=l 
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LENGTHS 
AB =DC 
AC • DB 
AD= BC 

Note that the actual distance does not matter, only which edges are 
equilvalent, such as AB and DC. These edges can also be shown 
numerically with AB = [0,1] and DC = [4,3]. Then the three different 
types of edges represented here can each be described by the following sets: 

= {[2i,2i + 1] mod 4 I i = 0,1,2,3} 
= {[2i + 1,2i + 2] mod 41 i = 0,1,2,3} 
= {[i2,i2 + 2] mod 4 I i = 0,1,2,3} 

Acting on these sets of points are permutations known as similarities. 

Definition. A similarity is a permutation on a set of points which 
preserves the distance relations. 
A similarity maps one point to another in a shape. For example, the points 
of a rectangle can be rotated using the similarity j(X) = X + 1. Remember 
that since we have only 4 points, we operate in mod 4. 

Example 2. 1 rotation on K4 

0 

1 

f(x) = X + 1 (mod 4) 
ft.O) = 1 
.ftl) = 2 
.ft2) = 3 
.ft3) = 0 

Note that while rotating the points, the similarity preserves the distance 
relations; that is, the horizontal tops and the bottoms remain equivalent in 
length, the vertical sides remain equivalent in length, and the diagonals 
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ranain equivalent in length. This quality of preserving distance relations is 
essential for a space to be singly or doubly transitive. 

Before we can begin to search for 2-transitive spaces we tnust 
rstand the meaning of !-transitive. 

Definition. A space is said to be ]-transitive if, given any point A in 
space, there exists a similarity defined by the function/that sends A to 

y point, say A', in the space. 

This means that if we choose any point in the space, we can map it to 
every other point in the space while preserving the distance relations. 

If the similarity j(X) = X + 1 (mod 4) is applied to the rectangle three 
times , each point is mapped to every other point while preserving the 
distance relations each time. Thus, the rectangle is !-transitive. 

We can expand this idea of !-transitive and move two points instead of 
only one. 

Definition. A finite set of points is said to be 2-transitive if, given any 
two points (A and B) in the space and two images for these points (A' and 
B'), there is a similarity/such thatf(A) =A' andf(B) = B'. 
That is, if it is possible to choose any pair of points and map them to any 
other two points in the space while preserving the distance relations, the 
space is 2-transitive. 

Before attempting to find examples of 2-transitive shapes, there are 
certain conditions necessary for 2-transitivity which should be considered: 
(1) the number of different edge lengths in a shape must divide the total 
number of edges; (2) the number of different edge lengths at a point must 
divide the total number of edges at that point. With the use of these two 
conditions, it is much easier to narrow down which shapes are candidates 
for 2-transitivity . 

Now that we know of the necessary conditions for 2-transitivity, all we 
need is a way to prove that something is indeed 2-transitive; we need a 
theorem that states when a space is 2-transitive. Hence, the following very 
crucial theorem developed from the definition of 2-transitivity. • 

Theorem. (S, =) is 2-transitive if and only if 
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i) (S, a) is !-transitive. 
ii) When a point A in {S, =) is fixed, there are similarities which 

map any other point B to all the remaining points of (S, =). 
Proof. Assume that (S, =-) is 2-transitive. Then by definition (S, =) is 

!-transitive. 
Note that given any two points in (S, e) and any two images for the 

points, there is a similarity /such thatf(A) =A' and/(B) = B'. Thus, there 
is a similarity such that if A is fixed, B can be mapped to any other B' in 
(S, •). Therefore both conditions are satisfied. 

Assume that (S, =) is !-transitive and when a point A is fixed, there are 
similarities which map other B to all the remaining points of (S, e). For 
{S, =)to be 2-transitive, we must find similarities which map any two points 
inS, say A and B, to any two images for these in (S,=), say A' and B'. 

Since (S, =) is !-transitive, there is a similarity defined by the function 
f(A) =A' which maps any point A to any point A' in (S,=). 

There are also similarities which leave A fixed and map B to any other 
point C inS. Let g be any similarity such that g(A) = A and g(B) = C. 
Note the composition of fog: 

f(g(A)) =/(A) =A' andf(g(B)) =/(C). 

Let f(A) = A'. Since f is one to one and onto, there exists a P such 
thatf(P) = B'. Now pick g: g(A) =A and g(B) = P. Thenf(g(A)) = 

/(A)= A'; andf(g(B)) =J(P) = B'. 
Thus for any two points A and B in (S,e), the composition fog is a 
similarity which maps A and B to any two images A' and B' in S. Hence 
S, =) is 2-transitive. Therefore the theorem holds. 

Now that we know necessary conditions for 2-transitivity and posses a 
theorem to prove the quality of 2-transitivity, we can begin the search for 
2-transitive spaces. 

The search begins with two trivial examples that will always be 2-
transitive: (1) a space where all the lengths between the vertices are the 
same; (2) a space where all the lengths between the vertices are different. 
No matter how the points are arranged in each of these respective spaces, 
the distance relations will not change; that is, all of the lengths between the 
vertices will remain the same length, or all the lengths between the vertices 
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will remain a different length. Since there can be infinitely many points in 
these types of spaces, they are two infinite families of 2-transitive spaces. 

Now let's look at a less trivial example. Following our necessary 
conditions for 2-transitivity, we can draw a pentagon with two sets of 
distances. 

Example 3. 

0 

1 

- = {[i,i + 1] mod 5/i = 0,1,2,3,4} 

- = {[i,i + 2] mod 5/i = 0,1 ,2,3,4} 

The configuration of this pentagon is notable since it has the 
characteristics of a regular space. 

Definition. A space, (S, =) is said to be regular if each point in (S, =) 
is structurally identical. That is, each point is hit by the same sets of edges 
and with the same number of edges from each set. 

Now we must show that the regular pentagon is indeed 2-transitive. It 
is clear that we can rotate the points and still retain the distance relations, 
so it is !-transitive. But it is not so obvious that a similarity can take a pair 
of points, say [0,1], and map them to [2,4] while preserving the distance 
relations. Thus, we will have to work harder to show 2-transitivity. 

Note that if we use this similarity and map [0,1] to [2,4], the thin edge 
that exists between [2,4] is replaced by the thick edge of [0,1]. If we are 
going to preserve the distance relations of the space, all of the thin edges 
must become thick and vice versa. As shown below: 

·. 
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Example 4 . 2 Similarity: 
f(X) = 2X + 2(mod 5) 

This shows that a structure preserving similarity exists which can map [0,1] 
to [2,4]. However, it would be an extremely lengthy process if we bad to 
do this for every pair of points to show whether or not a space is 2-
transitive. Fortunately, we can use our theorem for 2-transitivity. 

We have already shown that the pentagon is !-transitive, so the first part 
of the theorem is satisfied. Now we need to fix a point, say 0, and show 
that there exist similarities which can take any other point, say 1, and map 
it to all of the remaining points. 

Example 5. 0 0 

@ - .-) 
3 ~ 

I 
1 4 

Thus, we have shown that a regular pentagon with two edge lengths is 2-
transitive. With this in mind, we can discover another infinite family of 2-
transitive shapes. 

To find this infinite family, we need to look for qualities of the regular 
pentagon that may be important for its 2-transitivity. Note that the pentagon 
has an odd number of points, but more importantly it has a prime number 
of points. Also, there is one type of edge for each possible distance. Here 
we have a distance spanning one point represented with a thick line and a 
distance spanning two points with a thin line. This results in a regular space 
with a continuous edge type forming the perimeter. We will denote a space 
with these characteristics as Z

0
• In this case, z5 is a 2-transitive space. 

Since 7 is both odd and prime, Z, is the next logical space to check. 
As with z5, Z, can be drawn with one set of vertices representing each 
possible distance. 
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Example 6. Z, 
(I 

4 

2 

- = {[i,i + 1] mod 7 I i = 0, ... ,6} 

= {[i,i + 2] mod 7 I i = 0, .. :,6} 

= {[i,i + 3] mod 7 I i = 0, ... ,6} 

By using the theorem for 2-transitivity, it can be shown that this regular 7 
point space is 2-transitive. Since Z, has the same qualities as Zs, a pattern 
is developing, but it needs to be defined even further. Both 5 and 7 are odd 
and prime numbers, so we must determine if an odd number suffices, or if 

a prime number is required. 
For this test we will examine ~· There exist four sets of edges for~: 

A = {[i,i + 1] mod 9 I i = 0, ... ,8} 

B = {[i,i + 2] mod 9 I i = 0, .. . ,8} 

C = {[i,i + 3] mod 9 I i = 0 , .. . ,8} 

D = {[i,i + 4] mod 9 I i = 0, ... ,8} 

Sets A, B, and D form one cycle, while C which forms three: 

A = {[0,1,2,3,4,5,6,7,81} 

B = {[0,2,4,6,8,1,3,5,7]} 

c = {[0,3,6] [1 ,4,7] [2,5,81} 

D = {[0,4,8,3,7,2,6,1,5]}. 

Note that ~ is !-transitive since we can use the similarity/(~) = x +. 1 
(mod 9 to rotate all the points. However, the separate cycles m set C w11l 
prevent ~ from being 2-transitive because the similarities on a 2-transitive 
space must be able to interchange every set of edges. 

For example, map an edge from set C, say [0,3], to and edge from se~ 
A, say [0,1]. For this to occur, the cycle formed by C must be analogous 
to the cycle formed by A. However, set C consists of three separate cycles 
of length three, while set A has one cycle of length nine. It is impossible 
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to combine the cycles of set C to a single cycle of length nine and [0,3] 
cannot be mapped to [0,1]. Therefore, ~is not 2-transitive. 

So it appears that our 2-transitive family must be composed of prime 
numbers and further research has proven this to be true. Since there are 
infinitely many prime numbers, ZP' where p is prime, is another infinite 
family of 2-transitive spaces. 

There exist many more 2-transitive spaces than shown here, and nearly 
all are members of an infinite family. Other infinite families that were 
found with these methods include: prime numbered spaces where all 
parallel edges are from the same set; affine planes projected over a field; 
projective planes over a field. This is by no means an exhaustive list, and 
with the use of these basic search methods plus a little group theory, many 
more families of 2-transitive spaces can be found. 

This paper was written by John Morrison at St. John's University during 
his senior year as part of an independent learning project under the guidance 
of professor Tom Sibley. John graduated from St. John's in 1993 with a 
double major in mathematics and history. He is enrolled in the College of 
Biological Sciences at the University of Minnesota. 

MA THACROSTICS 

Solution to Mathacrostics 43 by Gerald M. Leibowitz (Fall 1996 ). 

Words: 

A REEFS 
B. OMEGA 
C. BANACH 
D. ELEMENT 

E. RACY 
F. TOOTHPASTE 

G. SHILOV 
H. FIELDS 

I. ADZ 
J. CHAPT.W 
K. EFT 
L. SPACE 

M. OATH 

N. FOURIER 

0. MILMAN 
P. AWASH 
Q. TOWPATH 

R. HILBERT 

S. EWES 
T. MATCHED 
U. AFFINE 
V. TWEET 

W. ITEM 
X. COSETS 
Y. SWEETS 

Author and title: Roberts, Faces of Mathematics 

Quotation: We chose the title ·'Faces of!v!athematics .. for two reasons. 

First we wanted to emphasize the fact that mathematics was developed by hwnan 

beings, real people with real faces . 

Solvers: Avraham and Chana G. Adler (jointly); Thomas Banchoff: 

Frank P. Battles: Corine Bickley: Jeanette Bickley; Paul S. Bruckman: Charles R. 
Diminnie; Thomas Drucker; Victor G. Feser: Robert C. Gebhardt F. C. Leary: 
Henry S. Lieberman; Rebecca Martel: Naomi Shapiro: Stephanie Sloyan: and the 

proposer. One incorrect solution was received. 

Late solutions to Mathacrostic ~2 were received from James Campbell 

and Victor G. Feser. 

Currently. no mathacrostics are on file for publication. 
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PROBLEM DEPARTMENT 

Edited by Clayton W. Dodge 
University of Maine 

This department welcomes problems believed to be new and at a level 
appropriate for the readers of this journal. Old problems displaying novel 
and elegant methods of solution are also invited. Proposals should be 
accompanied by solutions if available and by any information that will assist 
the editor. An asterisk (*) preceding a problem number indicates that the 
proposer did not submit a solution. 

All communications should be addressed to C. W. Dodge, 5752 
Neville/Math, University of Maine, Orono, ME 04469-5752. E-mail: 
dodge@gauss. umemat. maine. edu. Please submit each proposal and solution 
preferably typed or clearly written on a separate sheet (one side only) 
properly identified with name and address. Solutions to problems in this 
issue should be mailed by December 1, 1997. 

Problems for Solution 

901. Proposed by the Elizabeth Andy, Limerick, Maine. 
Solve this base twelve multiplication alphametic 

PROF x EVES = GEOMETRY. 

902. Proposed by Bill Correll, Jr., Student, Denison University, 
Granville, Ohio. 

For all positive integers n, prove that 

903. Proposed by Peter A. Lindstrom, Batavia, New York. 
Evaluate the indefinite integral 

Jxln[x(x - 1)] - ln(x - 1) dx. 
x(x - 1) 
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904. Proposed by Bob Prielipp, The University of Wisconsin-Oshkosh, 

Oshkosh, Wisconsin. 
Let n be a positive integer and let u(n) denote the sum of the positive 

integer divisors of n. If A = {n/u(n); n is a positive integer}, prove that A 

is dense in the interval (0, 1). 

905. Proposed by the late Charles W. Trigg, San Diego, California. 
A permutation of the digits of the four-digit integer 1030 in the decimal 

system converts it to its equivalent 3001 in the septenary system. Find all 
four-digit base-ten numerals that can be converted to their base seven 
equivalents by permuting their digits. 

906. Proposed by Norman Schaumberger, Douglaston, New York. 
If a, b, and care positive real numbers, prove that 

a3 b3 c3 b c a 
- + - + - ~ - + - + -. 
b3 c3 a3 a b c 

907. Proposed by J. S. Frame, Michigan State University, East 

Lansing, Michigan. 
Fork ~ O, evaluate the determinant of then X n matrix An,k whose 

(iJ)-entry is (i + j + k- 2)!. Denote by n!! the product n::r=l m!. 

908. Proposed by Andrew Cusumano, Great Neck, New York. 

Evaluate 

lim[(n + 2)"+2 
_ (n + 1)"+

1
]· 

,_ .. (n + 1)"+1 n" 
909. Proposed by the late John M. Howell, Littlerock, California. 
For nonnegative integers n and k, let a(n, 0) = n, a(O, k) = k, and 

a(n + 1, k + 1) = a(n + 1, k) + a(n, k + 1). Find a closed formula for 

a(n, k). 

910. Proposed by William Chau, New York, New York. 
A triangle whose sides have lengths a, b, and c has area 1. Find the line 

segment of minimum length that joins two sides and separates the interior :. 
of the triangle into two parts of area a and 1 - a, where a is a given 
number between 0 and 1. 
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911. Proposed by Norman Schaumberger, Douglaston, New York. 
If a, b, and c are the lengths of the sides of a triangle with 

semiperimeter s and area K, show that 

G b ( )c 4 

(_s ):;::; + (-s ).r-b + _s -;:; 2: ~. 
s-a s-b s-c K2 

912. Proposed by PaulS. Bruckman, Highwood, Illinois. 
Let p be a prime such that p = 1 (mod 60). Show that there are positive 

integers rands with p = .,2 + s2 and 3 divides r or sand 5 divides r or s. 

913. Proposed by Kenneth B. Davenport, Pittsburgh, Pennsylvania. 
Find a closed formula for the sum 

Corrections 

860. [Spring 1995, Spring 1996] Proposed by Richard I. Hess, Rancho 
Palos Verdes, California. 

This problem originally appeared in a column by the Japanese problems 
columnist Nob Yoshigahara. Find the minimal positive integer n so that 
2n + 1 circles of unit diameter can be packed inside a 2 by n rectangle. 

II. Comment and solution by Basil Rennie, Burnside, South Australia. 
The engineer looks at the figure on page 336, reproduced here, and sees 

a lot of slightly greasy roller bearings squeezed between two plates. They 
are obviously in unstable equilibrium, and so by giving them a little nudge 
they can be squeezed into a smaller length. Thus circle (Q) can move 
upward and to the left while circle (P) moves slightly upward, allowing all 
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the other circles to move slightly leftward. By geometric methods similar to 
those in the solution we find that we gain 0.0077795 units by this shift. 
furthermore, if now one more circle is added at the left end to the left of 
(P) and tangent to the bottom line, then there is room for another circle 
above this one. These two added circles require 0.9922204979 more width. 

Now 107 sets of three circles plus 5 circles added on each end will fit 
m 159.53537 + 5.45987 = 164.99524, yielding 331 circles in a 2 by 165 
rectangle. 

When a "greasy shift" is applied to the "rhombi" packing offour circles 
'"glued" together, then 469 circles fit into a 2 by 234 rectangle. 

862. [Fall1996], page 419. BramDavid Weiser, New York, New York, 
noted that the last sentence in the next to the last paragraph on page 419 
should read: Now A = D + 1 + H = 7 + H ~ 8, which is impossible. 
An inequality, which is not incorrect but unnecessarily weak, appeared in 
place of the second equality. 

864. [Fall 1996], page 424. H.-J. Seiffert pointed out that in the last 
line of proof I, the phrase In base 10 should be deleted. In a lapse of logic 
the editor added this unnecessary restriction. 

897. [Fall 1996], page 417. Russell Euler noted that in the fourth line 
on page 418 the term bxx_ 1 should read bx;_ 1• 

Solutions 

875. [Spring 1996] Proposed by Howe Ward Johnson, Jceboro, Maine. 
A certain restaurant chain used to advertise "28 flavors" of ice cream. 

In remembrance of many pleasant stops there, this problem is proposed. 
Replace each letter by a digit to reconstruct this base ten equation: 

(/CE)2 + 28 = /CONE. 

Solution by Patty Revelant, student, Clarion University, Clarion, ·• 
Pennsylvania. 

2 Since 1102 > 12000, then I = 1 and C = 0. When 8 is added to E , 
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the result must terminate in the digit E, which occurs only forE= 2, 4, 7, 
and 9. Since 1072 > 11000, then only 2 and 4 are candidates. Now 1042 
+ 28 = 10844, which requires that N = E. Hence, only 2 is permissible. 
The solution is 1022 + 28 = 10432. 

Also solved by Avraham Adler, Charles Ashbacher, Frank P. Battles, 
PaulS. Bruckman, James Campbell, Crystal Casey, Christy Catania, Sandra 
Rena Chandler, William Chau, Mark Evans, Victor G. Feser, Jayanthi 
Ganapathy, Robert C. Gebhardt, S. Gendler, Brad Gilbert, Stephanie 
Hackett, Richard I. Hess, Peter A. Lindstrom, David E. Manes, Yoshinobu 
Murayoshi, William H. Peirce, Sheryle A. Westfall Proper, George W. 
Rainey, H.-J. Seiffert, Jesse Sharpe, Kenneth M. Wilke, Rex H. Wu, Chris 
Zaber, and the Proposer. 

876. [Spring 1996] Proposed by Peter A. Lindstrom, Irving, Texas. 
Consider the portion of a typical calculator keyboard shown here. 

7 8 9 

4 5 6 

1 2 3 

a) Define a small square number to be a four-digit number formed by 
pressing in cyclic order four keys that form a small square, e.g. 1254 or 
8569. Show that each small square number is divisible by 11. 

b) Define a large square number to be a four-digit number formed by 
pressing in cyclic order the four keys that form the vertices of the large 
square, e.g. 9713 or 3179. Show that each large square number is divisible 
by 11. 

c) Define a diamond number to be a four-digit number formed by 
pressing in cyclic order the four keys that form a diamond, e.g. 6842 or 
2486. Show that each diamond number is divisible by 22. 

d) Define a big square number to be an eight-digit number formed by 
pressing in cyclic order the eight keys that form the vertices and sides of the 
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large square, e.g. 98741236 or 14789632. Show that each big square 
number is divisible by II and is divisible by neither 3 nor 5. 

e) Define a rectangular number to be a six-digit number formed by 
pressing in cyclic order six keys that form the vertices and sides of a 
rectangle, e.g. 987456 or 478521. Show that each rectangular number is 
divisible by 111. 

f) Define a double triangle number to be a six-digit number formed by 
pressing in any order the six keys that form the vertices of two right 
triangles with a common hypotenuse, e.g. 958956 or 421245. Show that 
each double triangle number is divisible by 3. 

Solution by Rex H. Wu, Brooklyn, New York. 
We use the following divisibility rules. A base ten number is divisible 

by 2 if and only if it ends with an even digit, by 3 if and only if the sum of 
its digits is divisible by 3, by 5 if and only if it ends with 0 or 5, by II if 
the sum of its digits in odd-numbered positions equals the sum of the digits 
in even-numbered positions (i.e. the number abcdef is divisible by 11 if a 
+ c + e = b + d + /}, by Ill if the three sums of every third digit are 
all equal (i.e. the number abcdefghi is divisible by Ill if a + d + g = b 
+ e + h = c + f + l). Note that these last two tests are not "if and only 
if' conditions, but they will suffice here. 

For parts (a) and (b), observe that the diagonals have the same sum. 
Thus 1 + 5 = 2 + 4 and 9 + 1 = 7 + 3. Hence any small or large square 
number is divisible by II. 

c) All the digits of any diamond number are even and their sums 4 + 
6 and 8 + 2 are equal. Combining the divisibility rules for 2 and II , it 
follows that any diamond number is divisible by 22. 

d) Any big square number uses all the digits except 0 and 5. Since 1 + 
7 + 9 + 3 = 2 + 4 + 8 + 6, it is divisible by II. The number cannot end 
in 0 or 5 and the sum of all its digits is 40, so it is divisible by neither 5 nor 
3. 

e) It is easy to see that a rectangular number satisfies our test for 
divisibility for Ill. For example, 9 + 4 = 8 + 5 = 7 + 6, so 987456, its 
reversal and their cyclic permutations are divisible by Ill. .• 

f) The digits of a double triangle number are the same as those of a 
small square number, whose diagonals have the same sum, as we have 
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already noted. Since the sum of all its digits is equal to 3 times the diagonal 
sum, any double triangle number is divisible by 3. 

Also solved by PaulS. Bruckman, James Campbell, Mark Evans, Victor 
G. Feser, S. Gendler, Richard I. Hess, David E. Manes, Kenneth M. 
Wilke, Monte J. Zerger, and the Proposer. 

877. [Spring 1996] Proposed by the late John M. Howell, Littlerock, 
California. 

For given constants a, b, c, d, let Do = a, a1 = b, and, for n > 1, let 
an = can-1 + dan-2· 

a) Find an in terms of a, b, c, and d. 
b) Find limn--- 011 (an lan-1>· 
c) Find integers a, b, c, d so that the limit of part (b) is 3. 

Solution by H. -J. Seiffert, Berlin, Germany. 
a) Case 1: ? + 4d = 0. Here, an easy mathematical induction 

argument shows that 

( c)"-
1

~( ac) ac] a,. = l ~ b - 2 n + 2 , n ~ 1. (1) 

If c ¢ 0, this equation remains valid for n = 0. 
Case 2: ? + 4d ¢ 0. Assuming that an is of the form X', then the 

recursion formula becomes X'+ 1 = eX' + dx!'-1, which reduces to the 
quadratic equation x? - ex - d = 0. The roots are 

c + .lc2 + 4d c - .fc2 + 4d u = v and v = -=-----~v'------
2 2 

and we have 

u2 =cu+d Vl=cv+d u+v=c ' , ' 

u - v = Jc 2 + 4d, and uv = -d. 

Since x = u and x = v each satisfy the recursion formula, it is easily proved 
by induction on n that 
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(b - av)u" - (b - au)v" a = , n ~ 0. 
II U- V 

(2) 

b) We must ensure that an ¢ 0 for all sufficiently large n. This is not 
fulfilled if, for example, a = b = 0 or c = d = 0. 

Case 1:? + 4d = 0, c ¢ 0, and a ¢ 0 orb ¢ 0. From (1) it follows 
that 

lim a,. = E. 
,._.., a,._

1 
2 

Case 2: ? + 4d ¢ 0. Using (2) we find that 

if b ~ av and lvl < lui, 
if b ~au and lui < I vi, 
if b = av, b ~ au and v ~ 0, 
if b = au, b ~ av and u ~ 0. 

There are many nontrivial cases in which the limit does not exist. For 
example, if abd ¢ 0 and c = 0, then a2k = adk and a2k+ 1 = bdk. Here 
at'at_1 is either adlb or bla, according as k is even or odd, and the limit 
does not exist if a2d ¢ b2• 

c) Let r > 1, take c = 1 and d = r(r- 1). Then u =rand v = 1- r, 
so that we have I vI < I u I . From part (b) it follows that 

a 
lim-" = r if b ~ a(l - r). 
,._ .. a,._. 

Therefore, a possible choice is a = b = c = 1 and d = 6. 

Also solved by Paul S. Bruckman, Russell Euler, S. Gendler, Richard 
I. Hess, David E. Manes, Rex H. Wu, and the Proposer. 

878. [Spring 1996] Proposed by Andrew Cusumano, Great Neck, New 
York. 

If x is a solution to the equation x? - ax + 1 = 0, where a is an 
in~er greater than 2, then show that~ can be written in the form p + ·~ 
qyr , where p, q, and r are integers. 
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Solution by Heath Schulterman, student, Fort Smith Northside High 
School, Barling, Arkansas. 

From the quadratic formula we know that the solutions to the above 
equation are 

a± Ja 2 
- 4 

X= • 
2 

We cube these roots to see that 

3 a 3 - 3a a2 1 ~-=---x = ± - ya 2 - 4. 
2 2 

If a is odd, then both 03 - 3a and a2 - 1 are even numbers. Thus we may 
take p = (03 - 3a)/2, q = (a2 - 1)/2, and r = a2 - 4, and p, q, and rare all 
integers. If a is even, then p = (03 - 3a)/2 is still an integer. Now a2 is 
divisible by 4, so we take r = (a2 - 4)/4 and q = a2 - 1, and both q and r 
are integers. In either case we have shown that X3 can be written in the 
desired form. 

Also solved by Avraham Adler, Miguel Amengual Covas, Frank P. 
Battles, Paul S. Bruckman, James Campbell, William Cbau, Lisa M. Croft, 
Charles R. Diminnie, Russell Euler, George P. Evanovicb, Mark Evans, 
Victor G. Feser, Jayanthi Ganapatby, Robert C. Gebhardt, S. Gendler, 
Richard I. Hess, Joe Howard, Thomas C. Leong, Peter A. Lindstrom, 
David E. Manes, Yosbinobu Murayoshi, William H. Peirce, Bob Prielipp, 
John F. Putz, H.-J. Seiffert, Skidmore College Problems Group, Kenneth 
M. Wilke, Rex H. Wu, Monte J. Zerger, and the Proposer. 

879. [Spring 1996} Proposed by Barton L. Willis, University of 
Nebraska at Kearney, Kearney, Nebraska. 

A Mystery Space. LetS be a set of ordered pairs of elements. Define 
binary operations + , *, and + on S by 

(a, b) + (c, d) = (a + c, b + d), (a, b)*(c, d) = (ac, ad + be), 

and 

(a, b) + (c, d) = (a + c, b + c - ad+ ~). 
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Although it might be fun to deduce properties of space S (commutativity, 
associativity, etc.), the problem is to find an application for S. 

I. Solution by PaulS. Bruclanan, Highwood, lllinois. 
Let the ordered pair (a, b) denote the fraction bla. A problem occurs if 

a = O, which may be circumvented by including a point at infinity [(0, b) 
= oo if b ¢. 0, and (0, 0) is undefined} or by requiring that a be a positive 

integer. 
One more relation needs to be defined: 

(ka, kb) = (a, b) for all k '#- 0. 

The binary operation "+" is then defined as the operation whereby the 
numerators and denominators of the two fractions, respectively, are added. 
The result is called the mediant of the two given fractions, one application 
of which is found in baseball batting averages. A batter with 10 hits in 40 
times at bat bas a batting average of 1000 X 10/40 = 250. If in the next 
game that batter gets 2 bits in 4 times at bat, his or her average for the 
game is 1000 x 214 = 500 and the new accumulative batting ave~ge 
becomes the mediant 1000(10 + 2)/(40 + 4) = 273 of the two prevtous 

fractions. 
The binary operations "*" and "+" represent respectively the sum and 

difference of the two fractions. That is, 

and 

(a, b)"*" (c, d) = bla + die = (ad + bc)lac = (ac, ad+ be) 

(a, b)"+" (c, d) = bla -die = (be- ad)lac = (b/c - adl~)l(alc) 

= (ale, b/c- ad/~). 

Of course, there is no unit under "+" (unless we allow (0, 0)), the unit _ 
under "*" is (1, 0), and since we have (a, b) "+" (1, 0) = (a, b), then (1, 0) • 

is the right hand unit under "+ ". 
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II. Solution by David E. Manes, SUNY College at Oneonta, Oneonta, 
New York. 

Let A(x) = :tn~oa/ be a formal power series in x with coefficients 
from the set of real numbers and with ao ':;i 0. Let the elements of the 
ordered pair (a, b) be the first two coefficients of A(x), that is, (Oo, a 1), the 
constant term and the coefficient of x. Then addition, multiplication, and 
division of ordered pairs correspond to the addition, multiplication, and 
division of these power series. Of course, we must ignore all terms of 
degree higher than 1. 

III. Solution by the Proposer. 
For a fixed value of x, say x = r, and functions f and g, both 

differentiable at r, let {a, b) = if(r),f (r)) and {c, d) = {g{r), {g' (r)). Then 
the formulas give the sum, difference, and quotient of functions and their 
derivatives. Thus the values of the function H(x) = (1 + x)/(2 + x) and its 
derivative at x = 4 are given by 

(1,0) + (4,1) _ (5,1) _ (s 1) 
(2,0) + (4, 1) - (6, 1) - 6' 36 . 

Thus H(4) = 516 and H' (4) = 1/36. 

880. [Spring 1996] Proposed by Rex H. Wu, Brooklyn, New York. 

Evaluate, where i = H, 
lim ~(e2ailn - e -2ailn). 

n-OD 4t 

Solution by Richard 1. Hess, Rancho Palos Verdes, California. 
Since sinx = (tfx - e-ix)/2i, we have 

lim II ( 2Gi/tt -2Di/") lim II . 2a - e - e = - sm- = a. ,. __ 4i ,. __ 2 n 

Also solved by Avraham Adler, Miguel Amengual Covas, Frank P. 
Battles, James D. Brasher, Paul S. Bruckman, James Campbell, William 
Chau, Kenneth B. Davenport, Charles R. Diminnie, Russell Euler, George 
P. Evanovich, Jayanthi Ganapathy, Robert C. Gebhardt, Joe Howard, 
Thomas C. Leong, Peter A. Lindstrom, David E. Manes, Michael R. 
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Pinter, Bob Prielipp, George W. Rainey, H.-J. Seiffert, Timothy Sipka, and 

the Proposer. 

881. [Spring 1996] Proposed by Andrew Cusumano, Great Neck, New 

York. 
Let ABC be an equilateral triangle with center D. Let a be an arbitrary 

positive angle less than 30°. Let BD meet CA at F. Let G be that point on 
segment CD such that angle CBG = a, and let E be that point on FG such 
that angle FCE = a. Prove that DE is parallel to BC. 

Solution by William H. Peirce, Delray Beach, Florida. 
We give an analytic 

solution in which the letter A 
representing a point can be 
thought of as the complex 
number affix of that point, 
the ordered pair of Cartesian 
coordinates for the point, or 
the vector from the origin to 
the point. Two lemmas are 
used in this solution: (1) any 
point on the line through two B C 
distinct points can be 
expressed uniquely as a linear 
combination of the two points in which the two real coefficients add to 1, 
and (2) any point in the plane of three noncollinear (and therefore distinct) 
points can be expressed uniquely as a linear combination of the three points 
in which the three coefficients add to 1. 

Thus D =(A + B + C)/3 and F =(A+ C)/2. Let CE meet AD at H. 
Because triangles BGC and CHA are congruent, by Lemma 1 there is a real 
number A. that is a function of angle a such that both 

G = (1 - A.)C + AD and H = (1 - A.)A + AD. 

Now E lies on both FG and CH, so there are real numbers p. and P such 
that 
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E = (1 - p.)F + p.G and E = (1 - 11)C + 11H. 

In terms of A, B and C we therefore have, respectively, 

E = (! -~ + 1 ~)A + 1~ B + (! + ~ - 21 ~ )c 
2 2 3 3 2 2 3 

and 

E = ( v - 2~ v )A + 13v B + ( 1 - v + 13v) C 

and they must be equal. Equating the corresponding coefficients of A, B, 
and C gives p. = " = 11(3 - 2X), and therefore 

1 E =-A+ 1 B + --=-6 _-.....;5~1:....._c. 
3 3(3 - 21) 3(3 - 21) 

From this expression we find that 

D-E= 1 - 1 (B-C) 
3 - 21 ' 

which shows that DE is parallel to BC. 
Line DE is not defined and the solution breaks down when ).. = 0, 1, 

or 3/2, which correspond respectively toG= C, D, or the midpoint of AB, 
that is, a = 0°, 30°, or 60°. Otherwise there is no restriction on a or on 
the location of G on line CD, including the point at infinity. 

Also solved by Miguel Amengual Covas, PaulS. Bruckman, Mark Evans, 
Yoshinobu Murayoshi, and the Proposer. 

882. [Spring 1996] Proposed by Rex Wu, Brooklyn, New York. 
Define, for any nonnegative integer m and any real number n, 

[ m
n] = n(n - 1)(n - 2) ··· (n - m + 1) [ n] 

m! . Otherwise m = 0. 

Find the values of 

(a) t. [!I and 
(b) ~ I~ I I 71· 
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Solution by Thomas E. Leong, The City College of CUNY, New York, 
New York. 

Note: we assume that ® = 1 for all real n. 
(a) A bit more generally we show that for any real number a and 

nonnegative integers n and k, 

Recall Newton's binomial formula, that for any real number a and I x I < 
1, we have 

(1 + x)a = 1 + <1>x + (~~ + (~~ + 

Thus the desired sum is the coefficient of X' in 

(1 + x)a + (1 + x)a+ 1 + · · · + (1 + x)a+k 

(1 )a+k+l (1 )a 1 
= + X - + X = -((1 + X)a+k+l _ (1 + X)a), 

(1 + x) - 1 x 

which clearly is (a!! t 1) - <n~ 1). It follows that 

k(i) (k+l) ( n) (k+1) t:n = n+l- n+l = n+1. 

(b) We have that 

,t [~I [71; ,t [k ~ il [71 
is the coefficient of :xk in 

.. 
which indisputably is (ntk). Thus we have 
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Also solved by PaulS. Bruckman, William Cbau, Mark Evans, David 
E. Manes, H.-J. Seiffert, and the Proposer. Bruclaru:ln, Manes, and Seiffert 
each proved Part (b) as an immediate consequence of the Vandemwnde 
convolution formula, found on page 169 of [1]: 

Reference 

1. R. L. Graham, D. E. Knuth, 0. Pasternak, Concrete Mathematics, 2nd 
ed, Addison-Wesley, New York, 1994. 

883. [Spring 1996] Proposed by Sammy Yu (student), University of 
South Dakota, Vermillion, South Dakota. 

M. N. Khatri [Scripta Mathematica, 1955, vol. 21, p. 94] found that 
from the identity 7'(4) + 7'(9) = T(lO), where T(n) = n(n + 1)/2 is the nth 
triangular number, Pythagorean triples (5, 12, 13) a11d (8, 15, 17) produce 
the more general formulas T( 4 + 5k) + T(9 + 12/c) = T( 10 + 13k) and T( 4 
+ 8k) + T(9 + 15k) = T(lO + 17k), where k is a positive integer. Given 
p, q, r, so that T(p) + T(q) = T(r), find Pythagorean triples (a, b, c) so that 
a2 + b2 = dl and T(p + ak) + T(q + bk) = T(r + ck) for any positive 
integer k. 

Solution by William H. Peirce, Delray Beach, Florida. 
Given a Pythagorean triple (a, b, c) and positive integers p, q, and r 

such that T(p) + T(q) = T(r), the equation T(p + ak) + T(q + bk) = T(r 
+ ck) reduces to 

a(2p + 1) + b(2q + 1) = c(2r + 1). (1) 

Pythagorean triples can be written as 

a = u2 - v2, b = 2uv, and c = u2 + v2. (2) 
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Now substitute (2) into (1) and simplify to obtain 

(r- p)u2 - (2q + 1)uv + (p + r + l)v2 = 0, 

whose two solutions are 

(r - p)u = qv and (r - p)u = (q + 1)v. 

From these equations we take (u, v) = (q, r- p) and (q + 1, r- p), which 

give 

(a, b, c) = <1- [r- p)2, 2q[r- p), cl + [r- pf) 

and 

(a, b, c) = ([q + 1)2 - [r- pf, 2[q + 1][r- p], [q + 1)2 + [r- p)2
). 

Finally, any factors common to a, b, and care removed to give the final 
two primitive solution triples (a, b, c). 

For example, (p, q, r) = (9, 13, 16) satisfy T(p) + T(q) = T(r). Then 
(u, v) = (13, 7) or (14, 7), which produce the triples (a, b, c) = 
(120, 182, 218) and (147, 196, 245). Removing the commo~ ~a~tor 2 fr?m 
the first triple and 49 from the second gives us the two pnmtttve solution 
triples (60, 91, 109) and (3, 4, 5). 

Also solved by PaulS. Bruckman, Richard I. Hess, Joe Howard, David 
E. Manes, Bob Prielipp, and the Proposers. 

884. (Spring 1996] Proposed by Seema Chauhan, Lucknow, India. 
a) Held every day is a tutorial class in which 2m students are enrol_Ied. 

Exactly m of these students, selected at random, attend class on any gtven 
day. If the class meets for exactly 2r days, find the probability that in the 
end each student bas attended exactly r classes. 

*b) The class of part (a) contains m boys and m girls. For each p, 0 ~ 
p ~ r, find the probability that each girl attends exactly r + p classes and 
each boy attends just r - p classes. 
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Solution by PaulS. Bruckman, Highwood, Illinois. 
We solve Part (b) first, and show that it is a generalization of Part (a). 

For brevity we write 

M = ( 
2
:) and a = M/2 = ( 

2mm-l} 
Let Nr,p,a and Tr,a denote the number of ways to form 2r classes out of the 
2m students with the restrictions as described and without restriction, 
respectively. Each class consists of k males and m - k females, say, where 
0 ~ k ~ m, and the total number of ways in which such a class is made up 
is equal to 

E (mY m ) =(2m) = M 
k=O k},m-k m · 

In counting Tr,a• each class is made up independently of the others, and so 

T = M2r 
r,a • (1) 

In counting Nr,p,a• if a particular one of the M possible selections of m 
students in a class occurs a total of n times, say, then the classes consisting 
of the remaining m students must also occur n times, with one exception if 
p > 0. That exception occurs if the class is made up entirely of boys; if 
such classes occur n times, say, then the classes consisting entirely of girls 
must occur n + 2p times, in order to fulfill the conditions of the problem. 

Note that we may express Tr.a in terms of multinomial coefficients, as 

T, a = L ( 2r )· (2) 
• "••"J•···+IIM•2r nl'nz····•nM 

Similarly, based on the foregoing comments, we may express Nr,p,a as 

~ ( 2r ) N'"~' = L.J . 
111 +"1+ ...• , •• ,-p n1,n1 +2p,~,n2, ... ,n11,n11 

(3) 

We also have 

(4) 
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We make the substitution 

Note that 

= N'"~' + ( 2r )· 
r-p 

5
'"11 = ]; ( r :p X r :p )"1."1~"··11 ( nl'n2~ ... ,nllr 
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(5) 

Temporarily we detach a from its dependence on m, and allow a to be any 
positive integer. With this proviso, we then see that 

- ~ ('-pXr+p) s,/),(1 - L.J s,o,o-1" 
II=O n n 

Next we form the formal generating function Fp.a(x) by 

S xr-p 

F (x) = L '"~' . 
Pll r•p (r- p)!(r + p)l 

Substitute the recurrence expression of (6) into (7) to obtain 

'" s - S x" 
F (x) = L x L ,.,o,o-1 = IP(x) ·Fo,o-1(x), 

Pll .r=O sl(s+2p)l,..0 nlnt 

where 

• II 

=E X 
,.=0 nl(n +2p)l 

Ip(x) 

(6) 

(7) 

(8) 

(9) 

Define So,o,o = 1 and s,,o,o = 0 if r > 0. We see from (7) and (8) that 
Fo,a(x) = lo(x)Fo,a-l(x), and that F0 ,0(x) = 1. It follows that 

(10) 

Returning to (8), we then see that 

(11) 
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It then follows that N is (2r)! times the coefficient of x--p 1"n the . r,p,a 
e~pans10n of Fp,a(x) as given by (11). The first few terms of this expansion 
(ID terms of Sr,p,a) are 

So,o,a = 1, Sl,O,a = a, S1,1,a = 1; 

s2 0 a = 2a2 - a, s2 1 a = 3a - 2, s2 2 = 1· , ' • , , ,a ' 

s3,0,a = 6a3 -9~ + 4a; s3 1 a= 12a2 -22a + 11; s3 2 = 5a-4· s3 3 
= 1. , ' ' ,a ' , ,a 

Then the required probability is given by 

p s N,,IJ = ( 2r )M-2r S 
r .PIJ T - r ,p,p• 

r,p r p 

In terms of M = 2a the first few results are 

P1,o,a = liM, P1,1,a = 11M 2; P2,o,a = 3(M- 1)/M3, 

P2,1,a = (6M- 8)/M
4

, P2,2,a = 11M 4; P3,0,a = 5(3M 2 - 9M + 8)/M5, 

P3,1,a = 15(3M2
- llM + ll)/M 6, P3 2 = 3(5M- 8)/M6 p = 

l!M6. • ,a • 3,3,a 

As mentioned, Part (a) is the special case of Part (b) for which p = 0. 

Part (a) also solved by the Proposer. 

885. [Spring 1996] Proposed by Arthur Marshall, Madison, Wisconsin. 
Evaluate the sum 

E (-1)n-1 6 

n"'1 3(2n- 1)12 (2n- 1). 

Solution by Kenneth P. Davenport, Pittsburgh, Pennsylvania. 
Since 

x5 x1 
+--s 7 

+ ... 
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then we have 

~ (-l)n-1 6 _ ~ (-l)n-1(11J3")2n-1 _ _1 1 
L .......,.,~..,..,....,;,,----- - 6 L - 6tan _ = 1r. 
n"'1 3(2n- 1)12 (2n - 1) n"'1 2n- 1 {3 

Also solved by Frank P. Battles, Paul S. Bruckman, James Campbell, 
Charles R. Diminnie, Russell Euler, George P. Evanovich, Jayanthi 
Ganapathy, Robert C. Gebhardt, Richard I. Hess, Joe Howard, Thomas C. 
Leong, Peter A. Lindstrom, David E. Manes, Bob Prielipp, H.-J. Seiffert, 
Rex H. Wu, and the Proposer. 

886. [Spring 1996] Proposed by R. S. Luthar, University of Wisconsin 
Center, Janesville, Wisconsin. 

Find the general solution in integers to the equation:? - 8y + 7 = 0. 

I. Solution by David Tascione, student, St. Bonaventure University, St. 
Bonaventure, New York. 

Suppose that (x, y) is a solution of:? = 8y - 7. Since the right side is 
odd for any integer y, then x must be odd. We therefore take x = 2n + 1 
for n an integer. Then 

y = [(2n + 1 )2 + 7]/8 = 1 + n(n + 1)/2 

which is an integer. It follows that (x, y) = (2n + 1, 1 + n(n + 1 )/2) is the 
general solution. 

II. Solution by Skidmore College Problem Group, Saratoga Springs, 
New York. 

It is clear that y = (:? + 7)/8, so if y is an integer, then 

:? = 1 (mod 8). 

This congruence is true for all x where x is an odd positive integer. It can 
be shown by induction that all integer solutions may be written as a 
sequence of ordered pairs (x;. Y;) where (x1, y1) = (1, 1), (x2, y2) = (3, 2)~, 
and fori > 1, (x;.Y;) = (x;_1 + 2, X;_ 1 + Yi-2). 

Also solved by Miguel Amengual Covas, Charles Ashbacher, Frank P. 
Battles, Paul S. Bruckman, James Campbell, Sandra Rena Chandler, 
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William Chau, Kenneth B. Davenport, George P. Evanovich, Mark Evans, 
Victor G. Feser, Jayanthi Ganapathy, Robert C. Gebhardt, Richard I. Hess, 
Thomas C. Leong, Peter A. Lindstrom, David E. Manes, Yoshinobu 
Murayoshi, William H. Peirce, Bob Prielipp, George W. Rainey, H.-J. 
Seiffert, Timothy Sipka, Kenneth M. Wilke, Rex H. Wu, and the Proposer. 

887. [Spring 1996] Proposed by J. S. Frame, Michigan State 
University, East Lansing, Michigan. 

The Fibonacci numbers Fn are defined by F0 = 0, F1 = 1, and F1 = 

F1 _ 1 + F1 _ 2 fork > 1. Compute the following sums involving Fibonacci 
numbers: 

Also find their limits S 1 and S2 as n -+ oo. Express the finite sums as 
rational numbers in lowest terms. Finally, simplify each of the following 
expressions: 

s2 
a= 1 b= 1 

s2, s2,n 

d = s
1
·" - s1,n• and e = + 

s2,n s 1,n 
Solution by the Proposer. 

1 
s2,n. 

The Fibonacci numbers satisfy the determinantal relations 

fj+2 F1 fj+1 F1 fj fj_j F3 F2 
= = - = (-1)' = (-1)'. 

F1+1 fj_1 fj ~-t ~-t ~- F2 F1 

Hence we can compute S 1 ,n and s2,n as telescoping series 

and 

S1 = t [ F2k - F2k-2] = F2n - 0 = 
,n k=1 F2k+1 F2k-1 F2n+1 T F2n+1 

s2 = ,n 
F2n+1 
-- + 1. 
F2n+2 
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Since successive Fibonacci numbers are relatively prime, then S1,n· = 

F IF 1 and s2 = F2niF2n+2 are rational numbers in lowest terms. Also 
2n 2n+ ,n • • H s
1 

and s1 /S2 = F2n+1/F2n+2have a common hmttS1 as n- oo. ence 
,n 

2 
,n ,n . 

a = S 1ts2 = 1. Smce 

b = 1/S2n- l!S1,n = (F21+2 - F2k+ 1)/F2k = 1, 

we have 1/Sy- 11S1 = 1, so that Sy + S1 - 1 = 0. Then 

s
1 

=<IS- 1)/2, s2 = sr = (3- IS>t2, c = S1 - sr = si =IS 
- 2, 

d = (F2n+2 - F2n)IF2n+ 1 = 1, and e = (F~+1- F2nF2n+2)F~ = 

IIF~. 

In summary, 

c = s.- s2 = IS -2, and e = IIF~. 

Also solved by Paul S. Bruckman, Kenneth B. Davenport, George P. 
Evanovich, Mark Evans, Richard I. Hess, David E. Manes, William H. 
Peirce, Bob Prielipp, and H.-J. Seiffert. 

Notice 

Starting in the Fall of 1995, to save space in this JOURNAL for 
articles, we stopped listing the affiliations of also-solvers. It bas been. made 
clear to us that this was not a popular decision. So we have reconstdered 
and shall again print your affiliations. Since this decision was made just as 
this issue was being sent to press, that listing will return in the Fall of 1997~ 
We try our best to make this JOURNAL interesting and appropriate for its 
audience and we welcome your comments, criticisms, and suggestions. 



THE RICHARD V. ANDREE A WARDS 

The Richard V. Andree Awards are ghen annually to the authors of the three 
papers written by students that have been judged by the officers and councilors of 
Pi Mu Epsilon to be the best that have appeared in the Pi Mu Epsilon Journal 
in the past year. 

Until his death in 1987. Richard V. Andree was Professor Emeritus of 
Mathematics at the University of Oklahoma. He had sen'cd Pi Mu Epsilon for 
many years and in a variet) of capacities: as President. as Secretary-Treasurer. 
and as Editor of the Journal. 

The "'inner of the first prit.:e for 1996 is Rick Mohr for his paper ··Nearness 
ofNomtals··. this Journal 10(1994-99)#4. 257-264. 

The \\iimer of the second pri.t:e is Ryan Bennink for his paper ··Red Light. 
Green Light: A Model of Traffic Signal Systems ... this Journal I 0(1994-99)#5. 
353-363. 

Since there \\as a two-way tie for third place. there will be four awards this 
year. The wimters arc Carolyn Farruggia, Michael Lawrence, and Brian 
Waterhouse for their paper ""The Elimination of a Family of Periodic Parit)· 
Vectors in the 3x + I Problem"". this Journal I 0(1994-99)#4. 275-280. and 
Mark Tomforde for his paper ··self-Similarity and Fractal Dimension of Certain 
Generali.t:ed Arithmetical Triangles··. this Journall0(1994-99)#5. 379-389. 

At the time the papers \\ritten Mr. Mohr was at Rose-Hulman Institute of 
Technology: Mr. Bennink ''as at Hope College: Ms. Farruggia, Mr. Lawrence 
and Mr. Waterhouse were at the Univcrsit)· of Scranton: and Mr. Tomforde was 
at Gustavus Adolphus College. 

The officers and cowtcilors of the Societ)· congratulate the winners on their 
achievements and \\ish them well for their futures . 
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1996 NATIONAL PI MU EPSILON MEETING 

The Annual Mcetmg of the P1 Mu Epsilon National Honora!) Mathematics 
Socieh \\as held at the UniverSih of Washington in Seattle from August 9 
through August 11 . As in the past. the meeting \\as held in conjunction with the 
national mecbng of the Mathematical Association of America· s Student Sections 

The J. Sutherland Frame Lecturer \\as J. Kevin Colligan. National Securit) 
Agcnc~ . His presentation \\<as on .. Webs. Sieves. and Mone~ · Nwnber Theory·s 
Rubber Hits the 1-Wav Road: · 

The follo\\ing thlrt) student papers "'ere presented at the meeting. An 
asterisk(*) before the name of the presenter indicates that the speaker received a 
best paper award. 

Program - Student Paper Pi Mu Epsilon Sessions 

The Math Behind the Schrodingcr Equation Janet Bernard 
Virginia Epsilon 

Long\\Ood College 

Extensions of the Tower of Hanoi * Scott Clark 
Ohio Xi 

YoungstO\m State Uruversit~ 

Graphs of Groups and Sub-Groups James A. Cole 
Arkansas Beta 

Hendrix College 

Reflection Groups in T\\o and Three Dimensions Katherine Crow 
Massachusetts Beta 
Holy Cross College 

Qualitathe Analysis ofD~nanuc Systems * Philip Darcy 
Ne\\ York Omega 

St. Bonaventure Universi~ 
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A Comparative Study on the Variance of Thickness. Scott Delaney 
Virginia Zeta 

Mary Washington College 

Gogan Hardness. and Specific Gravity 
in Brakes 

Gepetic Algorithms Brian Drobet 

Michigan Alpha 
Michigan State Uni,·ersity 

The Creation of the National PME Home Page Nathan Gibson 

Effects of the Tide 

Anu Kama 
Massachusetts Alpha 

Worcester Pol~1echnic Institute 

Jacqueline Gosz 
Wisconsin Delta 

St. Norbert College 

Computing Integrals for the Invariant Measure of 
Elementary Fractals 

"' Stephen Haptonstahl 
Louisiana Alpha 

Louisiana State Universit~ 

Selection Schemes for Judging Essay Contests 

Density Functional Theory in Chemistry 

Graceful Creatures of the Sea 

Delgarno-Len·is Methods for Second Order 
Energies ofNeon 
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Andrew Hetzel 
Ohio Zeta 

Uni,·ersity of Dayton 

John Hybl 
Michigan Alpha 

Michigan State University 

*Kim Jordan 
Ohio Xi 

Youngstown State Uni,·ersity 

Robert Komara 
Ohio Xi 

Youngstonn State University 

Two-Color Rado Nwnbers for Some Inequalities "' Pi-Yeh Liu 
Petmsyhania Lambda 

C'larion Universit) 

Matrix Integrals and the Topology of the Moduli Laura Loos 
Spaces of Riemann Surfaces California Lambda 

University of California. Davis 

The KGB. Espionage. and RSA Encryption "' Vincent Lucarelli 
Ohio Xi 

Yowtgstov.n State Universit) 

Student Tutorials in Maple-Mathematical Softy,are Cali Manning 
Alabama Alpha 

University of Alabama 

Minimun1 Defining Sets in Vertex Colorings 
of Networks 

Sliding Piece Puulcs \\ith Permutations on the 
Rows and Colwnns 

Applications of Advanced Mathematics 
in Gardening 

The Studentization of Indh idual Multi variate 
Observations 

Nim"s Sum 
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Thayer Morrill 
Ohto Delta 

Miami Universit) 

David Murphy 
Michigan Epsilon 

Western Michigan Universit) 

Clinton David Nolan III 
Georgia Epsilon 

Valdosta State Universtty 

Sherry Parker 
Louisiana Epsilon 

McNeese State Universtty 

Wendy Rigterink 
Ohio Delta 

Miami Universit)· 



o, als in Kaleidoscopic Tilings on Closed Surfaces Dennis A. Schmidt 
Wisconsin Delta 

St. Norbert College 

A Paradox of Funct1on ApproXImations 

Pi peflo\\ m the Reg10n of a BifurcatiOn 

A Discrete Time Martingale Dtscusston 
of the Free Group with Tv.o 
Generators a and h 

Days of the W eel from Dates 

Shape: The Unsoh ed M)stery 

To Be or Not To Be Written b~· Shakespeare 
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Mark Short 
Wisconsm Delta 
Carthage College 

*Eugene Sy 
Califonua Lambda 

Utuversity ofCalifonua. Dans 

Michael Everett Theriot, Jr. 
Lowsiana Alpha 

Louisiana State Universi~· 

Bryan Treusch 
Ohio Xi 

Yowtgsto\\n State University 

Rebecca Weingard 
Virginia Alpha 

University of Richmond 

Hande Yurttan 
D.C. Beta 

Georgetov.n Uruversi~· 

List of Referees 

The editor wishes to acknowledge the substantial contributions made by 
the following mathematicians who reviewed manuscripts for the Pi Mu Epsilon 
Journal during the past year. 

Phil Barker, University of Missouri-Kansas City 
Philip J. Byrne, College of St. Benedict 
Gerard Buskes. University of Mississippi 
Hang Chen. Central Missouri State University 
Curtis Cooper. Central Missouri State University 
Richard Delaware. University of Missouri - Kansas City 
Underwood Dudley. DePauw University 
Larry Eifler. University of Missouri - Kansas City 
J. Douglas Faires. Youngstown State University 
James Foran. University of Missouri - Kansas City 
Ramesh Garimella. Tennessee Technological University 
Betty Jean Harmsen, Northwest Missouri State University 
Terry King, Northwest Missouri State University 
Michael Kinyon, Indiana University South Bend 
Dennis Maim, Northwest Missouri State University 
Wayne McDaniel, University of Missouri- St. Louis 
Allan D. Mills. Tennessee Technological University 
Michael Motto, Northwest Missouri State University 
Charles B. Pierre, Clark Atlantic University 
Jawad Sadek. Northwest Missouri State University 
Norman Schaumberger. Bronx Community College 
Lawrence Somer, The Catholic University of America 
Michael Steiner. University of Texas- Austin 
Songlin Tian, Central Missouri State University 
Jingcheng Tong, University of North Florida 
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MISCELLANY 

Letter to the Editor 

Basil Rennie of South Australia sent the following conuncnt on the note 
··Approximabng e"/'2 with nearly n + 1/3 TemtS·· by Frame and Frenzen (Volume 
10. Number 5. Fall1996). 

These authors are treading in the footsteps of Rarnanujan. who in 
a partJal solution of a problem in The Journal of the Indian Math 
Soc. commented that if 

S = + n + n 212 + ·· + n o- 1/(n - 1)! and M = n"/n!. then 

e" 2S + .!:. ~) 1 + _±._ n _, - ~ n -2 - ~ n -.~ + ···) . 
3 •• , ~5 9~5 2835 

In Memoriam 

Leon Bankoff pmcticcd dentistry for sixty years in Beyerly Hills. California. 
Among his other interests. such as piano and guitar. he lectured and \\TOte papers 
both on dcntisby and mathematics. His specialty was geometry. and the figure he 
loYed best was the arbelos. or shoemaker·s knife. It is said that the test of a 
mathematician is not what he himself has discoYered. but what he inspired others 
to do Leon· s discovery of a third circle congruent to each of the t\\in circles of 
Archimedes moti,·ated the discm·ery of several other members of that family of 
circles. An article on those circles is in progress. 

Dr. Bankoff edited this Problem Deparbnent from 1968 to 1981. setting and 
maintaining a high standard of excellence in the more than 300 problems he 
included in these pages. His influence continues today. 

Leon and I became good friends . first through correspondence and later 
through many personal meetings. On February 16. 1997. he died of cancer at age 
88. Right up to his last few weeks he worked on the manuscript for a proposed 
book on the properties of the arbelos. cail)ing on work started by his collaboration 
with the late Victor Thebault. 

He ''as a gentleman and a scholar. a true friend. 
Clay1on W. Dodge 

Francis Regan. professor and chair emeritus of St. Louis University. died on 
February 18. 1996. Born on January 10. 1903. he was a member of the American 
Mathematical Society for sixty-three years. Francis was editor of the Pi Mu 
Epsilon Journal from 1957 to 1963 . 
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Subscription and Change of Address 

lf,our address label contams the s\mbols "S97'". then true; IS the last 
Issue m ~~ur current subscnption We hope that you agree that the .loutnal 
provides good Yaluc and that ~ou mllicnew ~our subscnption The rates arc 

Umtcd States 

Foreign 

Back Issue!> 

Complete 'olumes 

All Issues 

$20 tor 2 years 
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1>400 ( 9 back 'olumcs and 'olumc I o l 

lf~ou ltaYC moYed. please let us kno" Titc .lournal1s not fomardcd so 
11 IS important that we have a current mailing address for \OU. 

To subscnbe or chartgc ~our address. complete the form belo" (or a cop~ 
thereof) and send it. \\Ith a check payable to the Pi Mu Ep~ilon .Journal for 
subscnptions. to 

Joan Weiss 
Department of Mathematics and Com puler Sc1cncc 
Fairfield l hm crs1~ 
Fairfield. CT 06-l3U 

Name: -------------- Chapter:--------

Address : __________________________________________ ___ 

Address change?----------- ~ubscnption ______ ._ 
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REFEREE APPLICATION FORM 

11te contributions of a referee can enhance the quality of any joumal. If you would 
like to volunteer to serve as a referee for the Pi Mu Epsilon Journal. please provide the 
information requested below so that the appropriate manuscripts can be sent to you for 
your consideration. Since manuscripts are not to exceed ten pages in length. the editor 
believes that a referee's report should be sent back to the editor in at most two months from 
the date of receipt. Please keep this in mind before volunteering your valuable time and 
~xpertise. Your support of the Journal is appreciated. Please send the completed form 
to: 

~Please type or print neatly ) 

Russell Euler 
Department of Mathematics and Statistics 
Northwest Missouri State University 
Maryville. MO 64468. 
(816)562-1229 

Name __________________________________________________ ___ 

Affiliation __________________________________________________________________________________________ _ 

MrulingAdwess ______________________________________ _ 

Phone Number ________________________________________ __ 

E-mrulAdwess ________________________________________ _ 

Please list the mathematical areas in which you feel competent to referee. 

Please li~t any sp~cific times of the year that you would prefer NOT to receive a 
manuscnpt to reVIew. 
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WIN A FREE* TRIP TO THE 
SITE OF THE 

ATLANTA OLYMPICS! 

The 1997 Meeting of the Pi Mu Epsilon National Honorary Mathematics Society will 
be held in Atlanta. GA. from August 1-3. The meeting will be held in conjunction 
with the MAA Mathfest, which will run from August 1-4. Pi Mu Epsilon will again 
coordinate its national meeting with that of the MAA student chapters. 

The Pi Mu Epsilon meeting will begin with a reception on the evening of Friday, 
August I. On Sarurday morning, August 2, the Pi Mu Epsilon Council will have its 
annual meeting. The srudent presentations will begin later that same day. The 
presentations will continue on Sunday, August 3. TI1e Pi Mu Epsilon Banquet will 
take place that evening, followed by the J. Sutherland Frame Lecture. This year's 
Frame lecture will be given by Philip Straffin, of Beloit College. Pi Mu Epsilon 
members are encouraged to participate in the MAA Student Chapter Workshop and 
Student Lecture, both of which will take place on Monday, August 4. 

• TRAVEL SL"PPORT FOR STI.!"DE~T SPEAKERS 

Pi Mu Epsilon will pro\'ide tra\'el support for srudent speakers at the national meeting. 
The first speaker is eligible for 25 cents per mile, up to a maximum of $600. If a 
srudent chooses to use public transportation, PME will reimburse for the actual cost 
of transportation, up to a maximum of S600. In case this request exceeds 25 cents per 
mile, receipts should be presented. The first four additional speakers are eligible for 
20% of whatever amount the first speaker receives. In the case of more than one 
speaker from one chapter, the speakers may share the allowance in any way that they 
see fit. If a chapter is not represented by a student speaker, Pi Mu Epsilon will 
provide one-half support for a student delegate. For further information about the 
meeting and the travel support: 

SEE YOtJ"R. PI ~ru EPSILON ADVISOR 



IIME 
St. Norbert College 

Twelfth Annual 

PI MU EPSILON 

Regional Undergraduate Math Conference 

November 7-8, 1997 

Featured Speaker: Paul Humke 

Saint Olaf College 

Sponsored by: St. l':orbert College Chapter of IIME 

and 

St. !\'orbert College l:Nt. Math Club 

The conference will begin on Friday evening and continue through 
Saturday noon. Highlights of the conference will include sessions for 
student papers and two presentations by Professor Humke, one on Friday 
evening and one on Saturday morning. Anyone interested in 
undergraduate mathematics is welcome to attend. All students (who 
have not yet received a master's degree) are encouraged to present 
papers. The conference is free and open to the public. 

For information, contact: 

Rick Poss, St. Norbert College 
De Pere, WI 54115 
1414) 403-3198 
FAX: (4141403-4098 
e-mail: possrl@sncac.snc.edu 

PI MU EPSILON 

T-SHIRTS 

The shirts are white, Hanes g- BEEFY-T'RJ, pre-shrunk, 
I 00% cotton. The front has a large Pi Mu Epsilon shield 

(in black), with the line ''1914 - oo" below it The back of 
the shirt has a "II M E" tiling, designed by Doris 
Schattschneider,in the PI\1£ colors of gold, lavender, and 
violet The shirts are available in sizes large and X-large. 
The price is only $10 per shirt, \Vhich includes postage and 
handling. To obtain a shirt, send your check or money 
order, payable to Pi 1\Iu Epsilon, to: 

Rick Poss 
Mathematics - Pi Mu Epsilon 
St. Norbert College 
I 0 Grant Street 
De Pere, WI 54115 
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