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Abstract. In this report, we explore the basic Quantum Mechanical analy-
sis of hydrogen. In the process we come across the Legendre and Laguerre
polynomials, and present an informal derivation of these functions and their
normalization.

1. The Bohr model

We first consider an early model of the hydrogen atom, (Thompson 1903) [1]. In
this model, the atom is a blob of uniformly distributed positive charge, a sphere of
radius 1Å and charge +e. The electron is considered to exist as a point like particle
within this sphere. Breaking the sphere up into infinitesimal shells, each shell will
contribute a potential to the electron of

(1.1) dV =
−eρ2πr2dr

4πǫ0

∫ π

0

sin θdθ

r2 + r′2 − 2rr′ cos θ

Where ρ = e/(4πR3/3), r is the radius of the shell, and r’ is the location of the
electron relative to the center of the sphere. Considering shells of radius less than
the position of the electron, and those greater, the potential is
(1.2)

V =
−e4πρ
4πǫ0

(

∫ r′

0

r2dr

r′
+

∫ R

r′

r2dr

r

)

=
−eρ4π
4πǫ0

(−r′2
6

+
R2

2

)

⇒ F =
−e2

4πǫ0R3
r

Similar in form to the harmonic potential, F = −kr, we have,

(1.3) ω =

√

k

me
=

√

e2

4πǫ0R3me

We divide by 2π and use known constants to find that we expect a frequency of
2.43 × 1015Hz corresponding to 123 nm wavelength. This is approximately the
Lyman-alpha wavelength (121.5 nm), but does not account for the infinite spec-
trum that Hydrogen actually exhibits. Nor does this model incorporate Planck’s
discovery of quantization of radiation.

The earliest model of the hydrogen atom that accounted for Planck’s discov-
ery that a proper explanation of the blackbody radiation spectrum could only be
achieved through quantization of the energy released by atoms was achieved by
Niels Bohr. The model had the following properties, as summarized by Bohr [2, 3]:

(1) The electron emits radiation when transitioning from one discreet state to the next.
(2) Classical mechanics is valid when the electron is not transitioning.
(3) In transition from a state to another, energy differences being ∆E, a photon of frequency

ν = ∆E/h is emitted.
(4) Angular momentum is quantized and identifies permitted orbits. It is always a natural

number multiple of h/2π.

The model is amazingly simple, but manages to correctly predict the ground state
energy level. It goes as follows. Since we assume the laws of classical mechanics
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hold in non-transition periods, the electron obeys the Coulomb force law and the
centripetal acceleration formulation:

(1.4)
mev

2

r
=

1

4πǫo

e2

r2

Under the quantization of orbital angular momentum, we can write L = mevr =
n~, n ∈ Z > 0. This number, n, will be seen throughout this derivation as a key and
important variable, the angular momentum quantum number. From our definition
of L, we find that,

(1.5)
mev

2

r
=
me

r

(

n2~2

m2
er

2

)

=
1

4πǫo

e2

r2
−→ r =

4πǫon
2~2

e2me

The smallest possible orbit is when n = 1. This is called the Bohr radius, and is
given as

(1.6) ao =
4πǫo~2

e2me

Energy is the sum of its Kinetic and Potential partitions, and given our previous
results,

(1.7) En =
mev

2
e

2
− e2

4πǫor
= −me

2

(

e2

4πǫo~n

)2

It was a great result that this formula predicts the ground state energy and excited
energy states of the electron:

(1.8) E1 = −me

2

(

e2

4πǫo~

)2

= −2.18E − 18J = −13.6ev

The model also gives a more accurate picture of the spectrum of hydrogen, where
we can use En = ~ν to find the corresponding frequencies. But this is not good
enough. This model tells us nothing about why and how the transitions are made.
It is rather ad hoc.

Bohr also introduced a helpful principle in Quantum Mechanics, the Correspon-
dence Principle, the idea that Quantum Mechanical calculations must limit to clas-
sical results when the census of quantum numbers tends towards infinity.

2. The Hydrogen Calculation using Schrödinger’s equation

Enter Schrödinger. He proposed that an object in quantum mechanics obeys the
wave equation,

(2.1)
∂2ψ

∂x2
= i~

∂ψ

∂t

But of course, the Hydrogen atom does not live in one dimension. We must move
to three dimensions, using spherical coordinates as the most natural setting for our
derivation.

In spherical coordinates the Laplacian becomes:

(2.2) ∇2 =
1

r2
∂

∂r

(

r2
∂

∂r

)

+
1

r2 sin(θ)

∂

∂θ

(

sin(θ)
∂

∂θ

)

+
1

r2 sin2(θ)

(

∂2

∂φ2

)

Schrödinger’s equation becomes:

− ~2

2m

(

1

r2
∂ψ

∂r

(

r2
∂

∂r

)

+
1

r2 sin(θ)

∂

∂θ

(

sin(θ)
∂

∂θ

)

+
1

r2 sin2(θ)

(

∂2

∂φ2

))

+ V ψ = Eψ(2.3)
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If we assume that the solutions can be found through separation of variables:

ψ(r, θ, φ) = R(r)Y (θ, φ) →

− ~2

2m

(

1

R

d

dr

(

r2
dR

dr

))

+
1

Y sin(θ)

∂

∂θ

(

sin(θ)
∂Y

∂θ

)

+
1

Y sin(θ)

∂2

∂ψ2
+ r2(V − E) = 0

=⇒ 1

R

(

r2
dR

dr

)

− 2mr2

~2
(V − E) = ∆,

1

Y

(

1

sin(θ)

∂

∂θ

(

sin(θ)
∂Y

∂θ

)

+
1

sin2(θ)

∂2Y

∂φ2

)

= −∆(2.4)

We have divided, and now we are ready to solve. The radial term contains the
potential V, which is a function of r for hydrogen. It is the more complex of the
two, and so we seek to explore the angular term first. Our analysis will find the ∆
constant of separation in its exact form, enabling a strong attempt at solving the
radial equation.

3. The Angular Component

Once again, it is reasonable to assume a certain dimensional independence which
enables separation of variables in terms of the θ and φ components. Under this
regime:

Y (θ, φ) = Θ(θ)Φ(φ) =⇒
1

Θ

(

sin(θ)
d

dθ

(

sin(θ)
dΘ

dθ

)

+ ∆sin2 θ

)

+
1

Φ

d2Φ

dφ2
= 0 ∋

1

Θ

(

sin(θ)
d

dθ

(

sin(θ)
dΘ

dθ

)

+ ∆sin2 θ

)

= m2,

1

Φ

d2Φ

dφ2
= −m2 =⇒ Φ(φ) = eimφ, m ∈ Z(3.1)

The Φ side of the equation was quickly solved. We can recast this equation in the
following variations, where we let C represent x = cos(θ) and S

√
1 − x2 = sin(θ)

; we introduce the notation H which represents an introduction of a new idea into
the stream of derivation, and ◮ is followed by the immediate consequence of this
new idea; we then consider the m = 0 case.

S
d

dθ

(

S
dΘ

dθ

)

+ (∆S2θ)Θ = 0

x = C(θ) → dx

dθ
= −S(θ) =⇒ S

∂

∂θ

(

S
dΘ

dx

dx

dθ

)

= S
d

dθ

(

−S2dΘ

dx

)

= −2S2C
dΘ

dx
+

(

−S3 d

dx

dΘ

dθ
= S4 d

2Θ

dx2

)

∋

HΘ = y ◮ S2y′′ − 2Cy′ + ∆y

= (1 − x2)y′′ − 2xy′ + ∆y =
d

dx

(

(1 − x2)y′
)

+ ∆y = 0

As we further press on this equation, we shall find it suggesting its own solution,
even betraying the separation constant ∆.
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3.1. A closer look. Let us take a careful look at the equation,

(3.2) (1 − x2)y′′ − 2xy′ + ∆y = 0

We note that the x derivative of (1− x2) is −2x. This is highly suggestive that the
kernel of our function is (1− x2) itself. The multiple derivatives suggest something
a la w = (1 − x2)n. So let us explore this kernel. Its first derivative is w′ =
−2xn(1 − x2)n−1 or w′(1 − x2) + 2nxw = 0 Define Dn to be the nth derivative of
this latter equation. Then we have the following formulation:

D0 : (1 − x2)w′ + 2nxw = 0

D1 : (1 − x2)w′′ − 2xw′ + 2nxw′ + 2nw

= (1 − x2)w′′ + 2x(n− 1)w′ + 2nw = 0

D2 : (1 − x2)w′′′ − 2xw′′ + 2x(n− 1)w′′ + 2(N − 1)w′ + 2nw′

= (1 − x2)w′′′ + 2x(n− 2)w′′ + (4n− 2)w′ = 0

D3 : (1 − x2)w(4) − 2xw(3) + 2x(n− 2)w(3) + 2(n− 2)w(2) + (rn− 2)w(2)

= (1 − x2)w(4) + 2x(n− 3)w(3) + (6n− 6)w(2) = 0

(3.3)

If we have instead w = (x2 − 1)n:

D0 : (x2 − 1)w′ − 2nxw = 0

D1 : (x2 − 1)w′′ − 2(n− 1)xw′ − 2nxw = 0

D2 : (x2 − 1)w(3) − 2(n− 2)xw(2) − 2(2n− 1)w′ = 0

D3 : (x2 − 1)w(4) − 2(n− 3)xw(3) − 2(3n− 3)w(2) = 0

...
... =

...

D(n+1) : (x2 − 1)w′′(n) + 2xw′(n) − 2
(

n2 −∑n
m=0(m− 1)

)

wn = 0

(x2 − 1)w′′(n) + 2xw′(n) − 2
(

n2 − n(n−1)
2

)

wn = 0

(x2 − 1)w′′(n) + 2xw′(n) − n(n+ 1)wn = 0

(3.4)

This latter equation is in the same form as our original equation. That is,

(3.5) y =
d2

dxn
(x2 − 1)n

Or, if we so choose,

(3.6) y =
1

2nn!

d2

dxn
(x2 − 1)n

This is the so called Legendre Polynomial, denoted by Pn(x) We so assign ∆ =
l(l+ 1). But what of the m 6= 0 cases? In such a situation, our equation of interest
can be cast as:

(3.7) (1 − x2)y′′ − 2xy′ +

(

l(l + 1) − m2

1 − x2

)

y = 0

Let us continue the derivation series from above; Recall that

(3.8) D(n+1) : (x2 − 1)w′′(n) + 2xw′(n) − n(n+ 1)wn = 0

Continuing the process we get,

(3.9) Dk,n+1 : (1 − x2)y(2+k) − x(2 + 2k)y(k+1) + (l(l + 1) − k(k + 1)) y(k) = 0
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Or, in the spirit of what we have done thus far, write:

(3.10) z =

(

dk

dxk

)

y → (1 − x2)z′′ − 2x(k + 1)z′ + (l(l + 1) − k(k + 1)) z = 0

This does not yield the correct formulation. When we recast the original equation
as:

(3.11) (1 − x)2y′′ − 2x(1 − x2)y′ +
(

l(l + 1)(1 − x2) −m2
)

y = 0

This easily suggests the following form for our final function:

(3.12) ζ = (1 − x2)a

(

d

dx

)b

yn

To find what form a and b take, we consider y1 = x with b = 1 since clearly b must
be be a positive integer:

ζ = (1 − x2)a d

dx
(x) → ζ = (1 − x2)a

ζ′ = −2ax(1 − x2)a−1

ζ′′ = −2a(1 − x2)a−1 + a(a− 1)(4x2)(1 − x2)a−2

∋ (1 − x2)ζ′′ − 2xζ′ +

(

l(l + 1) − m2

(1 − x2)

)

ζ

= −2a(1 − x2)a + a(a− 1)(4x2)(1 − x2)a−1 + yx2a(1 − x2)a−1

+l(l+ 1)(1 − x2)a −m2(1 − x2)a−1 = 0(3.13)

Upon the expansion of the latter equation for x, we can match each term with its
coefficients. These coefficients must equal zero to satisfy the equation. It is easiest
to take the highest coefficients of x:

a(a− 1)4x2(1 − x2)a−1 + 4x2a(1 − x2)a−1 −m2(1 − x2)a−1 = 0

a2 =
m2

4
→ a =

|m|
2

(3.14)

Here m=1, but we assume the ansazts of generalization whereby, sans a normaliza-
tion constant, the full solution of our angular equation is the associated Legendre
Function,

(3.15) Pm
l (x) = (1 − x2)

|m|
2

(

d

dx

)|m|(
1

2ll!

)(

d

dx

)l

(x2 − 1)l

3.2. Normalization for final result. Define Ak
n,s =

∫ 1

1
P k

n (x)P k
s (x)dx, then by

separation of variables:

Ak
n,s =

∫ 1

1

(1 − x2)k

(

dk

dxk
Pn(x)

)(

dk

dxk
Ps(x)

)

dx

=

∫ 1

1

(1 − x2)k

(

dk

dxk
Pn(x)

)(

dk−1

dxk−1
Ps(x)

)

dx

−
∫
(

dk−1

dxk−1
Ps(x)

)

d

dx

(

(1 − x2)k dk

dxk
Pn(x)

)

dx(3.16)

Introduce z′ = dk

dxkPn(x). From our previous discussion, we find that,

(3.17)
d

dx

(

(1 − x2)z′
)

= ((k(k + 1) − l(l + 1)) z = 0
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Or just as easily,

d

dx

(

(1 − x2)k+1z′
)

= (k(k + 1) − l(l+ 1)) (1 − x2)kz

= (k − l)(k + l+ 1)(1 − x2)kz = 0

(3.18)

Here we need to compensate for the following: The z used in this previous equation
was built with:

(3.19) z′ =
dk

dxk
Pn(x) → z =

dk−1

dxk−1
Pn(x)

Thus we must shift k → k − 1. Thus,

Ak
n,s =

∫ 1

−1

P k
n (x)P k

s (x)dx = (n− k + 1)(n+ k)

∫ 1

−

1P k−1
s P k−1

n dx

Ak
n,s = (n− k + 1)(n+ k)Ak−1

n,s

Ak
n,s = (n− k + 1)(n+ k)(n− k + 2)(n+ k − 1)Ak−2

n,s

· · · = · · ·

Ak
n,s =

(n+ k)!

(n− k)!
A0

n,s =
(n+ k)!

(n− k)!

∫ 1

−1

PnPsdx = δns||Pn||2

We can find ||Pn||2 as another separation of variables chain:
∫ 1

−1

Pn(x)dx =

(

1

2nn!

)
∫ 1

−1

(

d

dx

)n

(1 − x2)n

(

d

dx

)m

(1 − x2)mdx

=

(

1

2nn!

)(

d

dx

)

(1 − x2)n

(

d

dx

m+1

(1 − x2)m|1−1

)

−
(

1

2nn!

)
∫ 1

−1

(

d

dx

)m−1

(1 − x2)m

(

d

dx

)n+1

(1 − x2)dx(3.20)

The non-integral part equals zero, the integral component cycles up on the n de-
rivative and down on the m derivative. Of course, m = n, but we maintain the
separation for the sake of derivation. The final result of the cycle gives:

(3.21)

∫ 1

−1

||Pn(x)||2dx =
(2n)!

(2nn!)2

∫ 1

−1

(

d

dx

0

(x2 − 1)m

)

dx

To solve the latter integral, we introduce two identities:

(1 − x2)m =

(
∫ x

0

)m

Pm(x′) (dx′)
m

1

2n+ 1

(

P ′
n+1(x) − P ′

n−1

)

=
1

2n+ 1

1

2nn!

dn

dxn

(

1

2(n+ 1)

d2

dx2
(x2 − 1)n+1 − 2n(x2 − 1)n−1

)

H
1

2(n+ 1)

d2

dx2
(x2 − 1)n+1 = (x2 − 1)n + 2x2n(x2 − 1)n−1

◮
1

2n+ 1

(

P ′
n+1(x) − P ′

n−1(x)
)

=
1

2n+ 1

1

2nn!

dn

dxn

(

(x2 − 1)n + 2n(x2 − 1)(x2 − 1)n−1
)

=
1

2nn!

dn

dxn
(x2 − 1) = Pn(x)(3.22)
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So we follow through,

Pn(x) =
1

2n+ 1

(

P ′
n+1(x) − P ′

n−1(x)
)

∫ x

0

Pn(x)dx =
1

2n+ 1
(Pn+1(x) − Pn−1(x))

∫ x

0

∫ x

0

Pn(x)dx dx =
1

2n+ 1

(

1

2n+ 3
(Pn+2(x) − Pn) − 1

2n− 1
(Pn(x) − Pn−2(x))

)

We follow through this derivation cycle n times, splitting each P value as per the
above identity. The Pn(x) integral becomes the (1 − x2)n as identified above and
he array Pn will be spread from values of P2n → P0. If we integrate both sides
of the equation over the Legendre function range, [-1,1], all said values of Pn will
vanish except P0. The prefactors from the expansion give:

2nn!

∫ 1

−1

(1 − x2)ndx

=

∫ 1

−1

2nn!

((
∫ x

0

)n

Pn(x) (dx)
n

)

dx =
(2n)!

(2n+ 1)!

∫ 1

−1

P0(x)dx(3.23)

But properly,

∫ 1

−1

|Pn|2dx =
(2n)!

(2nn!)2

∫ 1

−1

(1 − x2)ndx

=
(2n)!

(2nn!)2

∫ 1

−1

2nn!

(
∫ x

0

Pn(x) (dx)n

)

dx

=
(2n)!

(2nn!)2

∫ 1

−1

2nn!
2nn!

(2n+ 1)!
dx

=
2

2n+ 1
(3.24)

From this we conclude,

(3.25) Ak
n,s =

(

(n+ k)!

(n− k)!

2

2n+ 1

)

Of course, we cannot neglect the symmetric components of theta, which give us an
additional normalization of 2π, thus the final normalization condition,

(3.26)

∫ 2π

0

∫ π

0

||Y k
n | sin(θ)dθdφ

Re-tagging our variables appropriately, the normalized Associated Legendre Poly-
nomial is,

Y k
n (θ, φ) =

√

2n+ 1

4π

(n− k)!

(n+ k)!
eimφ(1 − x2)

|m|
2

(

d

dx

)|m|(
1

2ll!

)(

d

dx

)l

(x2 − 1)l

Or in simplified notation,

(3.27) Y m
n (θ, φ) =

√

2n+ 1

4π

(n−m)!

(n+m)!
eimφPm

l (cos(θ))

.
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4. Radial side

Granted that ∆ = l(l + 1), the radial equation becomes simply:

(4.1)
d

dr

(

r2
dR

dr

)

− 2mr2

~2
(V (r) − E)R = l(l+ 1)R

When finding solutions to such equations, it is generally in our best interest to
isolate the leading derivatives. We can do so with the substitution:

u(r) = rR(r) → R =
u

r
,
dR

dr
=
r du

dr − u

r2
∋ d

dr
(r2

dR

dr
) = r

d2u

dr2

∴ − ~2

2m

d2u

dr2
+

(

V − E +
~2l(l+ 1)

2mr2

)

u = 0

H V = − e2

4πǫor
, ζ =

√
−2mE

~
◮

− ~2

2m

d2u

dr2
+

(

− e2

4πǫor
+
ζ2~2

2m
+

~2l(l+ 1)

2mr2

)

u = 0

1

ζ2

d2u

dr2
=

(

1 − me2

2πǫo~2ζ2r
+
l(l+ 1)

ζ2r2

)

u

H ρ = ζr , ρo =
me2

2πǫo~2ζ
◮
d2u

dρ2
=

(

1 − ρo

ρ
+
l(l+ 1)

ρ2

)

u(4.2)

Here we have considered the bound states of the electron (of course) where E < 0.
Typically, one looks and supposes asymptotic solutions. For ρ→ ∞,

(4.3)
d2u

dρ2
= u −→ u(ρ) = αe−ρ + βeρ

But of course, finiteness requires that β = 0 As ρ→ 0, the ρ−2 term dominates ∋

(4.4)
d2u

dρ2
=
l(l+ 1)u

ρ2

The solution to this equation is interesting to derive. We suppose the existence of
some function z(ρ), and rewrite the equation thereby:

du

dρ
=

du

dz

dz

dρ

d2u

dρ2
=

d

dρ

(

d

dz
u
dz

dρ

)

=
dz

dρ

d

dz

(

du

dz

)

+
du

dz

d2z

dρ2

=
d2u

dz2

(

dz

dρ

)2

+
du

dz

d2z

dρ2

∴
d2u

dρ2
=

l(l+ 1)u

ρ2
◮

0 =
d2u

dz2

(

dz

dρ

)2

+
du

dz

d2z

dρ2
− l(l+ 1)u

ρ2
(4.5)

8



The trick here is to assume that there exist a z(ρ) such that the previous equation
is a differential equation with constant coefficients, i.e.:

(

dz
dρ

)2

l(l+1)
ρ2

= 1

dz

dρ
=

√

l(l + 1)

ρ

z =
√

l(l+ 1) ln(ρ) = ln(p
√

l(l+1))(4.6)

Our characteristic equation follows from:

(4.7)
l(l + 1)

ρ2
u′′ −

√

l(l + 1)

ρ2
u′ − l(l+ 1)

ρ2
= 0

It is easy to show the resulting characteristic is (1 ± (2l + 1))/(2
√

l(l + 1)) with
solutions:

u = γexp(
2(l+ 1)z

2
√

l(l+ 1)
) + iexp(

−2lz

2
√

l(l+ 1)
)

= γexp(
2(l + 1)

√

l(l + 1)lnρ

2
√

l(l + 1)
) + iexp(

−2l
√

l(l+ 1)lnρ

2
√

l(l+ 1)
)

= γexp(lnρ(l+1)) + iexp(lnρ−l)

= γρl+1 + iρ−l(4.8)

Since this solution contains the zero point, i = 0, and we can write our asymptotic
general solution in total as u(ρ) = ρl+1e−ρv(ρ), where v(ρ) is some unknown func-
tion which properly completes the radial function and is to be found. Reformulating
the equation thus far,

u(ρ) = ρl+1e−ρv(ρ)

du

dρ
= ρle−ρ

(

(l + 1 − ρ)v + ρ
dv

dp

)

d2u

dρ2
= ρle−ρ

((

−2l− 2 + ρ+
l(l+ 1)

ρ

)

v + 2(l + 1 − ρ)
dv

dρ
+ ρ

d2v

dρ2

)

With the radial equation as,

(4.9)
d2u

dρ2
=

(

1 − ρo

ρ
+
l(l+ 1)

ρ2

)

u

We can plug in the values we found above to reformulate the equation in terms of
v. Via algebra which can be easily done in mind, we find:

(4.10) ρ
d2v

dρ2
+ 2(l + 1 − ρ)

dv

dρ
+ (ρo − 2(l + 1))v = 0

Following typical derivations (though we will part with it eventually), we assume
a solution of a series solution form, v(ρ) =

∑∞
j=0 ajp

j . Done so, the prior equation
9



becomes,

∞
∑

j(j + 1)aj+1p
j + 2(l + 1)

∞
∑

j=0

aj+1p
j − 2

∞
∑

j=0

jajp
j

+ (po − 2(l+ 1))

∞
∑

j=0

ajp
j = 0 −→

j(j + 1)aj+1 + 2(l+ 1)(j + 1)aj+1 − 2jaj + (po − 2(l + 1)) aj = 0

∴ aj+1 =

(

2(j + l + 1) − ρo

(j + 1)(j + 2l + 2)

)

aj

H lim
j→∞

(

2(j + l + 1) − ρo

(j + 1)(j + 2l+ 2)

)

aj ≈ 2j

j!
γ

◮ µ(ρ) =

∞
∑

j=0

2j

j!
pj = ǫe2p → ∞ @ ρ→ ∞(4.11)

Obviously the series must terminate dynamically, i.e.

∃ jmax ∋ ajmax+1 = 0 → 2(jmax + l + 1) − ρo = 0 H n = jmax + l + 1 ◮ ρo = 2n

Our new recursion equation is:

(4.12) aj+1 =
2(j + l+ 1 − 2n)

(j + 1)(j + 2l+ 2)
aj

We consider a few sample results of vl
n. E.g.

v0
2 = ao − aox

v1
3 = ao −

ao

2
x

vo
3 = ao − 2aox+

2ao

3
x2

vl
4 = ao − aox+

2ao

10

We can go on ad infinitum, but we seek an analytical solution to this equation. The
asymptotically suggested form gives us a starting point for its completing function.
We also suspect that the solution might follow the onion-derivative similar to that
of the angular solution. With these educated guesses, we start as follows: We
assume the solution has a kernel w = e−xxq

w′ = −e−xxq + qe−xxq−1

w′′ = e−xxq − qe−xxq−1 + q(q − 1)e−xxq−2 − qe−xxq−1

e.g. @ q = 2 w′′ = 2e−x − 4e−xx+ e−xx2,

exw′′(q = 2) = 2 − 4x+ x2(4.13)

We had plugged in p = 2 as a simple test of low level results. Take the derivative of
the latter equation and find, 2x− 4 a la v3

1 = ao − ao

2 x. One could follow through
this examination ad infinitum, but we already know the ending to this story so we
assume immediately that we have happened upon the correct solution form, i.e.

(4.14) vp
q−p(x) = k

(

d

dx

)p(

ex

(

d

dx

)q

e−xxq

)

When k = (−1)p, the above equation is the associated Laguerre Polynomial, Lp
q−p.

We can bring this all home as follows. We consider our v3
1 example. In that case,

for n = 3, l = 1, we can write the the v completing function with coefficients
10



in terms of the recursion variables. Using v(ρ) = L2l+1
n−l−1(2ρ), which, due to the

multiplication by two matches our v3
1 example,

Now R = u(ρ)
r , where:

(4.15) u(ρ) = ρl+1e−ρL2l+1
n−l−1(2ρ)

But with ρo = 2n, and

ρo =
me2

2πǫo~2κ

(4.16) κ =
me2

4πnǫo~2

Let

a =
4πǫo~2

me2

which is the Bohr Radius we had previously derived. Then we write κ = 1
an . Thus

ρ = κr = r
an . Ergo

(4.17) R(r) =
N

an

( r

an

)l

exp(− r

na
)L2l+1

n−l−1

(

2r

na

)

The normalization factor N is determined as follows.

4.1. Normalization of the Radial Term. Key to normalizing the radial term is
the normalization of the Laguerre Polynomials. This task will not be as facile as
was normalization for the Legendre Polynomials.

Given that Ln(x) = ex

n!
dn

dx2 (xne−x), we note the following:

nLn−1(x) =
nex

(n− 1)!

dn−1

dxn−1
xn−1e−x

=
ex

(n− 1)!

dn−1

dxn−1
(nxn−1e−x)

=
ex

(n− 1)!

dn−1

dxn−1
(
d

dx
xne−x + xne−x)

=
nex

n!

dn

dxn
xne−x +

ex

(n− 1)!

dn−1

dxn−1
xne−x

= nLn(x) +
ex

(n− 1)!

dn−1

dxn−1
xne−x(4.18)

In the same way, we find that:

(n+ 1)Ln+1(x) = (n+ 1)
ex

(n+ 1)!

dn+1

dxn+1
xn+1e−x

H
d

dx
xn+1e−x = (n+ 1)xne−x − xn+1e−x

◮ (n+ 1)Ln+1(x) =
ex

n!

dn

dxn

(

(n+ 1)xne−x − xn+1e−x
)

=
ex

n!

dn

dxn

(

(n+ 1)xne−x
)

− ex

n!

dn

dxn
(xn+1e−x)

= (n+ 1)Ln(x) − ex

n!

dn

dxn
(xn+1e−x)(4.19)

11



One final note is to demonstrate the following for one case and assume the rest of
the cases by assumed induction:

ex

(n− 1)!

dn−1

dxn−1
(xne−x) − ex

n!

dn

dxn
(xn+1e−x) = ?

n = 1 → ex(xe−x) − ex d

dx
(x2e−x) = ex

(

xe−x − 2xe−x + x2e−x
)

= x2 − x = −xL1

Generally:
ex

(n− 1)!

dn−1

dxn−1
(xne−x) − ex

n!

dn

dxn
(xn+1e−x) = −xLn(x)

Putting the above three results into place, we find that:

(4.20) (n+ 1)Ln+1(x) = (2n+ 1 − x)Ln(x) − nLn−1(x)

We can derive another important and useful identity as follows:

−xLn(x) =
ex

(n− 1)!

dn−1

dxn−1
(xne−x) − ex

n!

dn

dxn
(xn+1e−x)

→ −xL′
n(x) − Ln = −xLn + nLn − (n+ 1)Ln+1(x)

H − xLn(x) = (n+ 1)Ln+1(x) + nLn−1(x) − (2n+ 1)Ln(x)

◮ xL′
n(x) = nLn(x) − nLn−1(x)(4.21)

But we are using associated Laguerre Polynomials, so we need to extend these
identities. We will not work out the details, but taking the derivatives of the
previous identities gives us the associated identities:

(n+ 1)Lk
n+1(x) = (2n+ k + 1 − x)Lk

n(x) − (n+ k)Lk
n−1(x)

x
d

dx
Lk

n(x) = nLk
n(x) − (n+ k)Lk

n−1(x)(4.22)

The solution we found for the radial equation took the form exp(−x/2)x(k+1)/2Lk
n(x).

The normalization equation for this formulation gives:
∫ ∞

0

e−xxk+1(Lk
n(x))2dx =

∫ ∞

0

x

n!

dn

dxn

(

e−xxn+k
) (

Lk
n(x)

)

dx(4.23)

Applying integration by parts n times, cycling up on the left derivative and down
on the right Laguerre, using the derivative formula above, we land at:

(4.24)

∫ ∞

0

e−xxk+1(Lk
n(x))2dx =

∫ ∞

0

x−(n−1)

n!
(e−xxn+k)(n+ k)!Lk

0(x)dx

(4.25)

∫ ∞

0

e−xxk+1(Lk
n(x))2dx =

∫ ∞

0

(n+ k)!

n!
(e−xxk)Lk

0(x)dx

From the identity, we have:

(4.26) xLk
0(x) = (2n+ k + 1)Lk

0(x) + (n+ 1)Lk
1(x) − (n+ k)Lk

−1(x)

When we plug this into the integral to wash away the x, all terms integrate to zero
except Lk

0 , and our integral becomes:

(4.27)

∫ ∞

0

e−xxk+1(Lk
n(x))2dx = (2n+ k + 1)

(n+ k)!

n!

∫ ∞

0

e−xxkLk
0(x)dx

12



With Lk
0(x) = k!, and a integration by parts performed on the remaining integral

(cycling down the xk so that the k! values cancel, we get:
∫ ∞

0

e−xxk+1(Lk
n(x))2dx

= (2n+ k + 1)
(n+ k)!

n!

∫ ∞

0

e−xdx =
(n+ k)!

n!
(2n+ k + 1)(4.28)

Now when we adjust this representation for our own, i.e. n → n − l − 1 and

k → 2l + 1, the normalization constant becomes (n+l)!
(n−l−1)! (2n). Incorporating the

fact that we must convert x → 2
na , this calls upon an additional normalization

factor of
(

2
na

)3/2

Thus the radial normalization is:

(4.29) N =

√

(n− l − 1)!

2n(n+ l)!

(

2

na

)3

Our final radial equation becomes:

(4.30) R(r) =

√

(n− l − 1)!

2n(n+ l)!

(

2

na

)3

e−
r

na

(

2r

na

)l

L2l+1
n−l−1(

2r

na
)

5. Final Form

Putting these pieces together, the full function that describes the most basic
hydrogen quantum model is given as,

(5.1) ψnlm =

√

(

2

na

)3
(n− l − 1)!

2n((n+ 1)!)
e−

4

na

(

2r

na

)l

L2l+1
n−l−1

(

2r

na

)

Y m
l (θ, φ)

We present this equation in full below.
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