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Abstract 

The demand for clean power source which can be used to run the various types of vehicles on 

the road is increasing on a daily basis due to the fact that high emissions released from internal 

combustion engine play a significant role in air pollution and climate change. Fuel cell devices, 

particularly Proton Exchange Membrane (PEM) type, are strong candidates to replace the 

internal combustion engines in the transport industry. 

The PEMFC technology still has many challenges including high cost, low durability and 

hydrogen storage problems which limit the wide-world commercialization of this technology. 

In this paper, the fuel cell cost, durability and performances challenges which are associated 

with using of fuel cell technology for transport applications are detailed and reviewed. Recent 

developments that deal with the proposed challenges are reported. Furthermore, problems of 

hydrogen infrastructure and hydrogen storage in the fuel cell vehicle are discussed. 
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1 INTRODUCTION 

The transport sector is one of the major contributors of hazardous emissions to the environment 

in recent years. Many researches have been done on energy consumption analysis and fuel 

types were compared with each other including alternative fuel systems which are leading to 

more development in fuel technology [1]. This development can in turn reduce the oil 

consumption for transport [2]. There are two approaches in dealing with vehicle emissions 

problem. The first approach is the fuel type which can be addressed by either enhancing the 

quality of conventional fuel or by using alternative fuel systems. The second approach is 

upgrading the engine technology which includes in-use vehicles emission and the new vehicles 

emission standards. 
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In parallel with these developments; the transport sector has a good effect on a viable eco-

driving strategy and reduction of excess fuel consumption [6- 7]. Achour et al. [8] developed a 

representative tool for the local authority in identifying the air quality caused by traffic 

emissions, in fact, many of these researches have to be applied in the developing countries as 

the transport sector is facing problems in oil supply [9]. Due to the growing global concerns on 

the depletion of petroleum based energy resources, and the environmental pollution and climate 

change caused by the burning of fossil fuels, renewable energy systems are suggested to play 

an increasing role in the transport sector year by year. Fuel cells have received an increased 

attention in recent years owing to their high efficiencies and low emissions.  

A fuel cell is an electro-chemical power source which converts chemical energy in the form of 

fuel directly into electrical energy. However, unlike other electro-chemical power sources such 

as batteries which store their reactants within a cell, the reactants are fed continuously to it 

from external stores. Also, the electrodes in a fuel cell are not consumed as in a battery, 

irreversibly in a primary cell and reversibly in a secondary cell, and do not take part in the 

reaction. Fuel cells are already used to generate electricity for other applications, including in 

spacecraft and in stationary uses, such as emergency power generators. 

Although the concept of a fuel cell was developed in England in the 1800s by Sir William 

Grove, the first workable fuels cells were not produced until much later, in the 1950s. During 

this time, interest in fuel cells increased, as NASA began searching for ways to generate power 

for space flights [13]. Several types of fuel cells are classified according to the electrolyte 

employed. The most popular type of fuel cells is the Proton exchange membrane fuel cells, also 

known as polymer electrolyte membrane (PEM) fuel cells (PEMFC). PEMFC use a solid 

polymer as an electrolyte and porous carbon electrodes usually containing a platinum or 

platinum alloy catalyst. They are typically fuelled with pure hydrogen supplied from storage 

tanks or reformers. 

Hydrogen fuel is processed at the anode where electrons are separated from protons on the 

surface of a platinum-based catalyst. The protons pass through the membrane to the cathode 

side of the cell while the electrons travel in an external circuit, generating the electrical output 

of the cell. On the cathode side, another precious metal electrode combines the protons and 

electrons with oxygen to produce water, which is expelled as the only waste product; oxygen 

can be provided in a purified form, or extracted at the electrode directly from the air.  
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PEM fuel cells are used primarily for transportation applications and some stationary 

applications. Due to their fast start up time and favourable power-to-weight ratio, PEM fuel 

cells are particularly suitable for use in passenger vehicles, such as cars and buses. Transport 

consumes about one quarter of the world total energy. In the case of internal combustion 

engines, a large part of the fuel energy is emitted as heat due to friction loss and exhaust gas. 

In this paper, an overview of the proton exchange membrane fuel cell (PEMFC) was given. 

The application of the PEMFC in the transport market was displayed. The recent challenges 

and developments that are related to the cost, durability and performance, the hydrogen 

refulling infrastructure and the hydrogen storage in the vehicles are discussed. 

2. The proton exchange fuel cell components 

The main components of a single PEMFC power source (figure1) are, according to [23- 28]: 

 Membrane Electrode Assembly (MEA) which consists of proton conducting 

electrolyte, cathode/anode porous electrodes, anodic/cathodic catalyst layers and gas 

diffusion layer. MEA is considered as the “heart” of the PEM fuel cell, because it is 

typically inserted by two flow field plates that are often mirrored to make a bipolar plate 

when cells are stacked in series for greater voltages. 

 Anode/cathode current collectors with the reactant flow fields (also called bipolar 

plates). They act as electron conductors and they are in contact with the anode/cathode 

gas diffusers. The Bipolar Plates have the following functions to perform: to distribute 

the fuel and oxidant within the cell, to facilitate water management within the cell, to 

separate individual cells in the stack, to carry current away from the cell, and to 

facilitate heat management. For general transport applications, the graphite-based 

composite materials are best suited for Bipolar Plates as they offer excellent chemical 

resistance and good thermal and electrical conductivity combined with a lower density 

than metal plates. If strength is an additional criterion than only metal plates are a viable 

possibility. 

 Auxiliaries that are needed for thermal and water management and for compression and 

transportation of gases (e.g. Anode/Cathode gas channel that supply the fuel cell with 

reactants). 



 

Fig 1: Main components of PEMFC stack [26] 

In particular, the subcomponents of the MEA are very important to study from an economical 

point of view, especially the electrodes, because they represent the main contributors to the 

overall PEMFC stack cost. the current state-of-the-art of materials for fuel cells presents Nafion 

membranes for the electrolyte for low-temperature PEMFC (80°c) and h3po4–pbi membranes 

for high-temperature PEMFC (110°c-180°c), while for the electrodes and electro-catalysts 

platinum and platinum alloys are still the most preferred, even if they are still too expensive 

for the market and for the gas diffusion layers (GDL) the choice is for porous carbon cloth, or 

carbon paper, wet-proofed with a PTFE (Teflon) coating [28- 30]. A list of the most common 

materials for the PEMFC components is provided in table 1. 

 

  Table 1. Most common materials for a PEMFC stack. 

Component Functions 
Most used 

materials 
Other materials developed 

Proton 

Exchange 

Membrane 

(PEM) 

Charge carrier for 

protons 

Nafion 

 

PBI 

Sulfonated aromatic 

hydrocarbon polymer 

membranes 

Separate the reactant 

gases 

Inorganic–organic composite 

membranes 

Electronic insulator 

Polymer blend membranes 

Polybenzimidazole (PBI) 

based acid–base membranes 



Electrodes and 

Catalyst Layers 

Location of the half-

cell reactions 

Platinum 

 

Platinum 

alloys 

Pt electrodes with lower Pt 

content 

Total/partial substitution of 

Pt with other metals 

Gas Diffusion 

Layers 

Ensures that reactants 

effectively diffuse to 

the catalyst layer 

Porous 

carbon 

 

Paper or 

carbon cloth 

 

Teflon 

coating 

Continuous carbon-fiber 

based gas diffusion materials Electrical conductor 

for electrons to/from 

the catalyst layer 

Bipolar Plates 

Conduct current 

between cells 

Graphite 

Non-metals: non-porous  

graphite/electro graphite 

Facilitate water and 

thermal management 

through the cell 

Metals: precious non coated 

metals, non-coated metals, 

coated metals 

Provide conduits for 

reactants 

Composites: polymer–carbon 

and polymer–metal 

3. Fuel cell in transportation 

The transportation industry is one of the main important fields in the development of clean 

energy technologies. This is due to the fact that the transportation industry is responsible for 

17% of the global greenhouse gas emissions every year [14], so that important changes are 

expected from this sector in order to reach the aims of Kyoto protocol [15]. The industry’s 

outlook is to invest in technologies that would offer both significant reductions in harmful 

emissions and better energy conversion efficiencies.  

Electric vehicles (EVs), which are driven by electrical energy stored in batteries or fuel cell 

units, are a potential option for reducing emissions from the transportation sector. EVs are 

proven to be significantly more efficient than internal combustion engines. Automobile 

manufacturers have been compelled to shift part of their production from internal combustion 

engines to (EVs) [13- 16]. The electrical motor converts more than 90% of the energy in its 

storage cells to motive force, whereas internal combustion drives use less than 25% of the 

energy in a gallon of gasoline. Additionally, in contrast with internal combustion engine, the 

electric motor can be directly connected to the wheels, so that no energy consumption is taken 

place when the car is at rest or freewheeling. Moreover, the regenerative braking system can 

return as much as half an electric vehicle’s kinetic energy to the storage cells. On the other 

hand, EVs are considered to be more environmentally friendly than internal combustions 

vehicles [17- 18]. Combusting fossil fuels to power conventional vehicles releases GHG 

emissions and other pollutants from the vehicle exhaust system. In addition, there are also 



emissions associated with producing petroleum-based fuels, notably emissions from oil 

refineries. Electrical vehicles produce no GHG pollution when operating. However, it depends 

on how electrical energy is produced, there can be substantially lower upstream GHG 

emissions associated with producing hydrogen fuel. The important increase of the energy 

efficiency as long as the decrease of the vehicle weight in EVs over internal combustion 

vehicles are believed to have a significant effect on the GHG pollution reduction. 

Electric vehicles can be powered either by batteries or by fuel cells. It has been stated that for 

any vehicle range greater than (100 miles), fuel cells are superior to batteries in terms of mass, 

volume, cost, initial greenhouse gas reduction, refuelling time, well-to-wheels energy 

efficiency using natural gas or biomass as the source and life cycle costs. However, 

hybridization of fuel cell systems with high specific energy-storage devices was found to have 

important advantages overcoming the relatively slow FCS transient response, improving the 

hydrogen economy and reducing the warm-up time of the FCS to reach full power. According 

to Carbon Trust, fuel cells could be powering up to 491 million cars by 2050 [19] – a third of 

all the cars on the road. In particular, the PEMFC technology can be ideally suited for 

transportation applications due to its high power density, high energy conversion efficiency, 

compactness, lightweight, and low-operating temperature. However, among all applications, 

for fuel cells the transportation application involves the most stringent requirements regarding 

volumetric and gravimetric power density, reliability, and costs. However, the high cost of this 

technology represents the biggest challenge for its commercialization.  

Indeed, the fuel cell transportation applications can be specified into the following markets: 

auxiliary power units (APUs), light traction vehicles (LTVs), light- duty fuel cell electric 

vehicles (L-FCEVs), heavy-duty fuel cell electric vehicles (H-FCEVs), aerial propulsion, and 

marine propulsion. Light traction vehicles (LTVs) include scooters, personal wheel-chairs, 

motorbikes, airport tugs, golf carts, electric-assisted bicycles, etc. in addition to material 

handling vehicles and equipment (e.g. carts, wheel carts, forklifts, tow trucks, pallet trucks, 

etc). One of the most important future application in this field will be fuel cell-based 

motorcycle, because, even if they have a small size, motorcycles are a major source of pollution 

in cities [20]. Forklifts have been the most successful demonstration of fuel cells in the 

transportation sector, and one of the most successful demonstrations for fuel cells overall. Until 

now, for example, around 1300 fuel cell-powered forklifts are operative in the US market 

today. Due to their advantages, PEMFCs are the most popular fuel cells in light fuel cell electric 

vehicles (L-FCEVs) research and development [14]. The principle of how FCEVs work is 

simple; they use low temperature fuel cells (mainly PEM) to generate electricity from 



hydrogen, and then the electricity is used to drive the vehicle or stored in batteries or ultra-

capacitors [21]. Since fuel cells generate electricity from chemical reactions, they do not 

combust fuel and therefore do not produce harmful emissions and produce much less heat than 

internal combustion engines. In fact, the only by-product of a hydrogen fuel cell is water.  

There are a lot of car manufacturers which are increasingly progressing for the 

commercialization of L-FCEVs (e.g. General Motors, Toyota, Mazda, Daimler AG, Volvo, 

Volkswagen, Honda, Hyundai, Nissan) [14]. In 2007, the vehicle manufacturer Honda 

presented the model FCX Clarity at Los Angeles automobile saloon. This model is available 

for the consumer since the summer of 2008. This was the first fuel cell vehicle platform-

exclusive in the world manufactured in series [20]. At the 2010 Fuel Cell Expo in Tokyo, 

Japanese automakers announced a programme designed to deploy 2 million FCEVs in Japan 

by 2025, at which point the industry estimates FCEVs would be fully competitive [21]. 

Heavy-duty fuel cell electric vehicles (H-FCEVs) include buses, heavy-duty trucks, 

locomotives, vans, utility trucks, service fleets, and other large load vehicles which use fuel 

cells for the electric propulsion system [14]. A number of fuel cell buses have been noted in 

operation worldwide during the last few years [20]. In 2012, more than 30 fuel cell buses in 

Western Europe, and other 25 in the United States were deployed. Fuel cell electric buses 

(FCEBs) are becoming one of the best public demonstration tools and R&D data sources in the 

H-FCEVs industry. PEMFCs are the most commonly-used types of fuel cells stacks used in 

the transportation, taking the advantages of regenerative braking energy recovery and high 

dynamic response performance. However, the immaturity of fuel cell technologies and the lack 

of mass production and manufacturing are making FCEBs economically-uncompetitive with 

conventional buses and other competing arising technologies. 

Fuel cells application in marine transportation is increasing during the last years. Potential use 

of fuel cells as auxiliary power units on surface ships, is becoming an actual chance and 

probably in the future fuel cell systems will share with diesel engines the marine propulsion 

task. Promising future marine propulsion markets for fuel cells include ferries, boats, yachts, 

and cargo ships, but mostly submarines and underwater vehicles [22]. Fuel cells offer their 

regular advantages for ships and ferries, such as low emissions, high efficiency, and static 

operation, but they have also issues related to reliability, lifetime, shock resistance, and 

tolerance to the salt content of sea air which have to be resolved [14]. Therefore, according to 

[22], marine applications of fuel cells are not so developed as in other transport sectors such as 

automotive or aerial propulsion. Fuel cell technology, so far, does not assure a clear 

improvement in the respect of certain requirements of space taken (volume) and weight which 



are required for a ship. Moreover, the marine environment is very hostile especially with regard 

to dynamic loads and the high corrosion. The application of fuel cell technology in this field 

needs to be adapted to these circumstances in order to operate normally with a required life 

cycle. There is a lack of infrastructure to facilitate the commercialization of this technology 

and, in general, the price of the energy generated by fuel cells is still higher than the ones 

obtained by internal combustion engines conventional systems. 

On the other hand, in 2003, the first yacht with a hybrid PEMFCs/batteries system for both 

propulsion and auxiliary power unit as demonstrated in Germany and, also in Germany, the 

world’s first commercial passenger-ship was put into service in 2008. Submarines that use 

oxygen/hydrogen fuel cells for propulsion and auxiliary load requirements have also been 

successfully deployed. PEMFC are the main technology considered to provide a new 

generation of conventional submarines with an Air Independent Propulsion system (AIP) 

through Germany, Greece, Italy, Portugal and Spain [22]. 

The space industry was one of the first fields to adopt fuel cells in. NASA used alkaline fuel 

cells (AFC)s and PEMFCs technologies for its manned space programs during the 1960s. Fuel 

cells are attractive for space applications due to their many advantaged compared to other 

power generation technologies. However, the fact that water is a by-product of the 

electrochemical reactions within a fuel cell makes it even more attractive for space applications 

where air, water, and food supplies are of most importance. On the other hand, the market of 

manned military and commercial air vehicles is still impractical for fuel cells due to the 

market’s high energy density, power density, durability, and reliability requirements, especially 

for the development of small unmanned aerial vehicles (UAVs). The stealth nature of UAVs is 

facilitated by fuel cells’ static operation, and low heat dissipation that represents together two 

advantages over UAVs with internal combustion engines. UAVs are mainly used for surveying, 

surveillance, and reconnaissance purposes due to their stealth nature and lack of risk to human 

life [14]. 

4 CURRENT CHALLENGES AND DEVELOPMENTS 

Fuel cell technology is showing year-on-year growth, with more prototypes being unveiled. 

Successful application of these technologies in the transport sector has taken place in Europe 

and USA. However, the fuel cell industry is still facing a number of challenges to 

commercialization. Fuel cell cost is one major challenge, the durability of the unit and its 

performance is another important one. The challenge of hydrogen infrastructure and storage is 

essential for the technology wide spread in transportation. 



4.1. Fuel Cell Cost 

Fuel cell costs can be broken into three elements: the material and component costs, labor 

(design and fabrication), and capital cost of the manufacturing equipment [31, 32]. It is clearly 

seen that labor and capital costs can be reduced through mass-manufacturing. Material and 

component costs, such as catalysts, membrane and bipolar plates, are dependent on 

technological innovations and the market [33, 34]. According to Carbon Trust, in order to be 

competitive with internal combustion engine vehicles, automotive fuel cells must reach 

approximately $36/kW. Platinum (Pt) is a precious metal, with around 250 tonnes annually 

production. It is currently mined in South Africa, Russia and North America. Estimated world 

reserves of Pt are >30,000 tonnes. Given its high value, the majority of Pt used in FCEVs is 

likely to be recycled at the end of life of the vehicle. 

Cost savings can be achieved by reducing material costs (in particular: platinum use), 

increasing power density, reducing system complexity and improving durability. Reducing the 

amount of platinum in the electro-catalyst layer will reduce the overall cost of the PEMFC 

technology and allow for mass production particularly in transport applications. Mainly, the 

platinum content can be reduced either by using Pt-alloy catalysts or by the application of core 

shell catalysts. The Pt-alloy catalysts [35- 36] mean alloying platinum with low cost metals 

such as ruthenium (Ru) or chromium (Cr). The core shell catalysts [37] are nanoscopic low 

cost metal core such as Copper (Cu) and rhenium (Rh) covered by a platinum shell. Platinum 

content of fuel cells was reduced by more than doubling catalyst specific power from the 2008 

baseline of 2.8 kW/g of platinum group metal (PGM) to 5.8 kW/g in 2012. Current catalyst 

specific power is approaching the 2017 target of 8.0 kW/g, and it reflects more than 80 percent 

reduction in PGM content since 2005. Several UK organisations are focused on achieving a 

step-change in PEM fuel cell system costs, by developing technologies that reduce platinum 

use, increase power densities and radically simplify system designs. 

Developing of Platinum-free catalysts is another route to reduce the cost of the fuel cell. In this 

route, active metals such as Cobalt (Co) and Iron (Fe) were used as alternative to Platinum in 

the catalysts of PEMFC technology. ACAL Energy’s patented FlowCath® [23, 38] fuel cell 

design uses a liquid polymer cathode solution, which replaces the platinum-based solid cathode 

used in standard PEM fuel cells. This represents a fundamental design breakthrough that has 

the potential to reduce expensive platinum use by at least two thirds, reduce the number of 

components within the overall system (by avoiding fuel humidification and water recovery), 

and increase durability (as it replaces the solid cathode of typical systems, which usually suffers 



performance degradation that limits product lifetime). The projected fuel cell cost given for the 

FlowCath® fuel cell was 36 $/kW. 

Another patent [39, 23] was made by ITM Power’s to demonstrate exceptional high power 

densities by replacing the perfluorosulfonic acid membranes that are the current industry 

standard with a membrane fabricated by ionic polymers. Higher power densities translate into 

more power per cell; hence a much smaller, lighter, and cheaper stack can meet the same power 

output. The proposed fuel cell cost given for by ITM Power’s fuel cell was 35 $/kW. 

In a further patent, fuel cell stack design was improved by Imperial College & University 

College London [23]. The so called ‘Flexi- Planar’ design uses a layered arrangement of 

laminated, printed circuit board materials, bonded on top of each other to create a fuel cell stack 

with internal fuel, water and air channels. These boards lead to cost benefits over conventional 

fuel cell systems by eliminating the need for several components that are normally used in a 

conventional fuel cell. The biggest areas for potential cost reduction are air-, fuel- and water-

management, sealing (no gaskets or frame required) and stack assembly. The planned cost of 

the proposed fuel cell according to this project is 26 $/kW. 

4.2.Durability and performances 

Both low durability and reliability are caused by accumulated degradation of materials and 

catalyst due to water and heat issues [24, 40]. The degradation of materials and catalyst are 

mainly because of poor water management, fuel and oxidant starvation, corrosion and chemical 

reactions of cell components that cause dehydration or flooding. The dehydration can damage 

the membrane and flooding can facilitate corrosion of the electrodes, the catalyst layers, the 

gas diffusion media and the membrane. Lifetime of fuel cells can be extended either by 

controlling the flow conditions (i.e. humidity, flow rates and temperature) or by changing the 

materials and the flow design. 

One of these strategies that meant to enhance the mechanical durability of the PEM fuel cell is 

to design and develop cheap bipolar plate with high corrosion resistance. Traditionally, 

graphite was used to fabricate the bipolar plates, because of its high corrosion resistance, 

relatively low surface contact resistance and high surface conductivity, in the PEM fuel cell 

environment. However, graphite is brittle and thus it is not suitable for transport application 

where a lot of vibrations and loading are occurred. Metals, metals alloys, and carbon based 

composites have been suggested recently to develop cost-effective and durable bipolar plates 

which can replace the graphite ones. In fact, metals and their alloys provide several advantages 

over the carbon-based composites for fuel cells used in transport application as they possess 



higher mechanical strength and can be made thinner to achieve higher power density better 

durability [41]. Generally, it was found that bare metals such SS, Al, Ti, Ni, etc. are prone to 

corrosion in the PEM fuel cell environment [42]. The corrosion behaviour of metallic flow 

plates causes many undesirable phenomena such as increasing the electrical resistance and 

decreasing the efficiency and power output of the fuel cell [41, 43- 44]. Thus, Corrosion 

resistant coatings are required to avoid the corrosion problem in the metallic bipolar plates. 

Two main classifications of coatings, carbon-based and metal-based, have been studied [45]. 

Carbon-based coatings include conductive polymers (e.g., polyaniline (PANI) and polypyrrole 

(PPY)) [46], graphite [47] and Composite coating (e.g., TiC-ETFE, Ag-PTFE) [48- 49]. The 

metal-base coatings for bipolar plate applications include Noble metals [50], metal nitrides [51- 

53], and metal carbides [54- 55], and conductive metal oxide (e.g., fluorine doped Tin (II) oxide 

(SnO2: F) and Ruthenium oxide (RuO2)) [56- 57]. 

On another hand, the carbon corrosion in the catalyst layer was considered as a major 

degradation source in operating a PEM fuel cell. It is well known that Platinum nanoparticles 

supported on carbon black (Pt/C) were found the most promising electrocalyast applied on 

PEMFC. However, platinum nanoparticles in catalyst layers must have simultaneous access to 

the gases, electrons, and protons to be effectively utilized. When operating under extremely 

high current conditions, platinum nanoparticles in the thin catalyst layers may detach from the 

support carbon and accelerate the degradation of the electrochemical performance. It was found 

that mixing of graphene with conventional Pt/C was able to transport electrons effectively and 

to provide better pathways under high current density conditions [58]. Graphene displays low 

electrical resistance and provides channels with better conductivity for large amount of 

electrons. Graphene can potentially provide much higher durability than carbon black with its 

unique graphitized basal plane [59]. 

Some minimum level of hydration is required to facilitate efficient ionic conductivity in the 

proton exchange membrane. However, excess hydration will be related to reliability issues such 

as voltage loss at high current density, voltage instability at low current density, unreliable 

start-up under freezing conditions, and will promote the corrosion of the carbon in the catalyst 

support due to hydrogen starvation [60]. Therefore, the design of membrane and its material 

selection must comprehend the critical balance between too little and too much hydration, 

especially for automotive applications where the fuel cell can be subjected to wide variations 

in load demand and ambient conditions during its lifetime. Another approach is to develop the 

proton exchange membranes to improve the performance and durability of the standard 
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membranes made of Nafion. However, in spite of their high proton conductivities and fuel cell 

performances, sulfonated statistical copolymers are generally characterized by a high degree 

of dimensional change and poor durability derived from a poorly connected non-hydrated 

phase and inordinate dimensional variation in the hydrated phase. Alternatively, The sPP-b-

PAES(6.5K)-3.0 membrane had been developed by [61]. The developed membrane showed 

high proton conductivity, stable dimensional variation, along with high performance and 

durability superior to those of Nafion. 

In June 2013, ACAL Energy Ltd [58] announced that it enabled a PEM hydrogen fuel cell to 

reach 10,000 hours runtime on a third party automotive industry durability test without any 

significant signs of degradation. 10,000 hours, the equivalent of 300,000 driven miles, is the 

point at which hydrogen fuel cell endurance is comparable to the best light-weight diesel 

engines under such test conditions. This endurance far exceeds the current 2017 US 

Department of Energy (DoE) industry target for fuel cell powered vehicles to last 5,000 hours, 

equivalent to 150,000 road miles, with an expected degradation threshold of approximately 

10%. Unlike a conventional PEM hydrogen fuel cell design, ACAL Energy’s technology does 

not rely on platinum as the catalyst for the reaction between oxygen and hydrogen. The liquid 

acts as both a coolant and catalyst for the cell’s, ensuring that they last longer by removing 

most of the known decay mechanisms. 

4.3.Hydrogen refuelling infrastructure: 

Hydrogen is the lightest chemical element and it has the lowest storage density of all fuels. 

Historically, the H2 fuelling infrastructure has been technically infeasible and too expensive. 

Sales of fuel cell vehicles are clearly dependent on the existence of the hydrogen infrastructure 

required for fuel [62]. The extensive system used to deliver gasoline from refineries to local 

filling stations cannot be used for hydrogen. New facilities and systems must be constructed 

for producing, transporting, and dispensing hydrogen to consumers [63]. At present, industry 

experts are focusing on supply chains, H2 compression, high pressure storage components, and 

standardizing station designs as the primary approach to reducing station costs. All hydrogen 

refuelling infrastructure consists of the following components (Hydrogen supply, Hydrogen 

storage, and the Hydrogen refueller).  

Two options are given for Hydrogen supply. Either Hydrogen is delivered to the site or it can 

be generated on-site [64]. Delivered hydrogen can exist either in a liquefied form by tanker 

truck, or as a compressed gas in cylinders. Liquefied hydrogen tends only to be delivered in 

large volumes whereas compressed gas is far more scalable and can be supplied in small 



quantities. On the other hand, on-site hydrogen generation can be taken place mainly either by 

reformation of natural gas (a process of splitting methane into molecules of hydrogen and 

carbon dioxide), or by electrolysis of water (using electrical current to split water into hydrogen 

and oxygen). Currently, most hydrogen is produced from natural gas reformation. In longer 

term, solar energy and biomass can be used more directly to generate hydrogen. 

Hydrogen storage system depends on the hydrogen form. If hydrogen is delivered as a liquid, 

a cryogenic storage vessel will be required on the site to maintain the temperature in the liquid 

range. When hydrogen is delivered as a compressed gas, the storage vessel is usually dropped 

off at the site by a truck and then replaced when empty. If hydrogen is generated on-site, it will 

be transferred from the reformer or electrolyser via a compressor to a compressed storage 

vessel. Liquefaction of hydrogen is an energy intensive process requiring large plant and would 

only be considered at a location where very large quantities of hydrogen were being produced. 

Hydrogen refueller delivers hydrogen to the vehicle’s tank in a controlled manner and to the 

correct pressure [65, 66]. Hydrogen is dispensed to the vehicle through a flexible hose and 

nozzle connected to the vehicle’s tank, in a similar fashion to refilling with petrol or diesel. 

However, it has been noticed that the infrastructure requirement and financial resources 

allocated for the production and supply of oil and natural gas were enormous during the initial 

several decades of commercialisation efforts of this sector. It was more of a politico-economic 

policy and funding which brought oil and natural gas to its present state. Hence, it will require 

a huge initiative for replicating the same for hydrogen in the near future and the Governments 

of various countries must align their requirement of energy for the future in terms of increasing 

the usage of hydrogen as a transport fuel [67]. 

4.4. Hydrogen storage in vehicles: 

The cruising range of vehicle is limited by the amount of hydrogen on board. It has only 1/10 

of energy compared with gasoline from the same volume. Therefore, it is necessary to increase 

both storable hydrogen and efficiency to achieve comparable range as gasoline vehicles. Some 

Fuel Cell Vehicles (FCVs) store enough hydrogen to travel as far as gasoline vehicles between 

fill-ups—about 300 miles—but the storage systems are still too large, heavy, and expensive 

[64, 66].  

Three practical ways were offered for Hydrogen storage on the FCVs. One of them is storing 

hydrogen gas in high pressure tanks which is the current hydrogen storage system in FCVs. 

This system is different from the compressed natural gas vehicle because the hydrogen vehicle 

uses higher pressure than the natural gas vehicle, which is normally compressed to 20–25 MPa. 



Recently there is a trend to move to 70 MPa tank to carry more hydrogen in order to extend 

vehicle range. However, these systems are still heavy, large and costly. Moreover, it is well 

known that hydrogen diffuses more easily through many conventional materials used for 

vessels, and through gaps that are normally small enough to seal other gases safely [68]. The 

currently validated high-pressure tank technology is close to meeting the revised DOE 2017 

target 5.5% of system gravimetric capacity and 40 g/l of system volumetric capacity. It utilizes 

expensive premium carbon reinforcement to meet the challenging structural requirement of 

supporting over 150 MPa burst pressure as specified in current regulations. However, using 

tank technology, it is impossible to reach the ultimate DOE targets of 7.5% gravimetric 

capacity and 70 g/l volumetric capacity of the storage system [68]. 

Another storing system is using hydrogen in the liquid form by cooling the hydrogen gas to 20 

K at the atmospheric pressure. Storage systems using liquid hydrogen have the potential of 

storing a larger amount of hydrogen on board than when using high pressure tanks, but it needs 

tanks with double wall construction to keep the low temperature with the thermal insulation 

[62]. The third storage system is the materials based storage in which hydrogen is stored in 

solid form, it can be absorbed in high density by different absorbing alloys. Such alloys are 

smaller and lighter than tanks in other methods. The hydrogen is released from these 

compounds by heating or the addition of water. More research is needed in this area to develop 

these materials [69]. Application of Metal Organic Frameworks (MOFs) for hydrogen storage 

applications gained a high attention due to their huge structural diversity, ability to tune the 

pore size and surface functionality, exceptional porosity and surface area, and their rich 

chemistry. However, despite the rapid progress in metal organic frameworks (MOF)s research, 

these materials still doesn’t comply with DOE targets [70]. 

5 Summary 

This paper highlighted the main challenges associated with using the PEM fuel cell for 

transport applications. PEMFC provides several advantages over the traditional internal 

combustion engine, which are the formal power source in transport industry, including higher 

efficiency and lower emissions. 

Latest developments that aim to approach the planned targets and to break the 

commercialization barriers of the PEMFC technology were also reported. 

However, to meet the full requirements as power sources for transport applications, the fuel 

cell researchers have to overcome serious challenges related to high cost, low durability, 

hydrogen refulling infrastructure and hydrogen storage on the fuel cell vehicles (FCVs).  
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