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Outline 

• Usecases and a taxonomy of scenarios 

• Inter-GPU communication: 

– Single host, multiple GPUs 

– Multiple hosts 

• Case study 

• Additional considerations: 

– Multiple GPUs, streams, and events 

– Effect of host IOH chips on inter-GPU communication 

2 



© NVIDIA 2011 

• Why multi-GPU? 

– To further speedup computation 

– Working set exceeds a single GPU’s memory 

– Having multiple GPUs per node improves perf/W 

• Amortize the CPU server cost among more GPUs 

• Same goes for the price 

• Inter-GPU communication may be needed 

– Two general cases: 

• GPUs within a single network node 

• GPUs across network nodes 
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Taxonomy of Inter-GPU Communication Cases 

Network nodes 

Single Multiple 

Single process 
Single-threaded N/A 

Multi-threaded N/A 

Multiple processes 
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GPUs can communicate via P2P or shared host memory 

GPUs communicate via host-side message passing 
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Communication for Single Host, Multiple GPUs 
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Managing multiple GPUs from a single CPU thread 

• CUDA calls are issued to the current GPU 

– Exception: peer-to-peer memcopies 
 

• cudaSetDevice() sets the current GPU 
 

• Current GPU can be changed while async calls (kernels, memcopies) are running 

– It is also OK to queue up a bunch of async calls to a GPU and then switch to another GPU 

– The following code will have both GPUs executing concurrently: 
 

cudaSetDevice( 0 ); 

kernel<<<...>>>(...); 

cudaMemcpyAsync(...); 

cudaSetDevice( 1 ); 

kernel<<<...>>>(...); 
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Unified Addressing (CUDA 4.0 and later) 

• CPU and GPU allocations use unified virtual address space 

– Think of each one (CPU, GPU) getting its own range of a single VA space 

• Thus, driver/device can determine from an address where data resides 

• A given allocation still resides on a single device (an array doesn’t span several GPUs) 

– Requires:  

• 64-bit Linux or 64-bit Windows with TCC driver 

• Fermi or later architecture GPUs (compute capability 2.0 or higher) 

• CUDA 4.0 or later 

• A GPU can dereference a pointer that is: 

– an address on another GPU 

– an address on the host (CPU) 
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UVA and Multi-GPU Programming 

• Two interesting aspects: 

– Peer-to-peer (P2P) memcopies 

– Accessing another GPU’s addresses 
 

• Both require peer-access to be enabled: 

– cudaDeviceEnablePeerAccess( peer_device, 0 ) 

• Enables current GPU to access addresses on peer_device GPU 

– cudaDeviceCanAccessPeer( &accessible, dev_X, dev_Y ) 

• Checks whether dev_X can access memory of dev_Y 

• Returns 0/1 via the first argument 

• Peer-access is not available if: 

– One of the GPUs is pre-Fermi 

– GPUs are connected to different Intel IOH chips on the motherboard 

• QPI and PCIe protocols disagree on P2P 
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Peer-to-peer memcopy 

• cudaMemcpyPeerAsync( void* dst_addr, int dst_dev,  

  void* src_addr, int src_dev,  

  size_t num_bytes, cudaStream_t stream ) 

– Copies the bytes between two devices 

– Currently performance is maximized when stream belongs to the source GPU 

– There is also a blocking (as opposed to Async) version 

• If peer-access is enabled: 

– Bytes are transferred along the shortest PCIe path 

– No staging through CPU memory 

• If peer-access is not available 

– CUDA driver stages the transfer via CPU memory 
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How Does P2P Memcopy Help Multi-GPU? 

• Ease of programming 

– No need to manually maintain memory buffers on the host 
for inter-GPU exchanges 

• Increased throughput 

– Especially when communication path does not include IOH 
(GPUs connected to a PCIe switch): 

• Single-directional transfers achieve up to ~6.6 GB/s 

• Duplex transfers achieve ~12.2 GB/s   

– 4-5 GB/s if going through the host 

– GPU-pairs can communicate concurrently if paths don’t 
overlap 
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Example: 1D Domain Decomposition and P2P 

• Each subdomain has at most two neighbors 

– “left”/”right” 

– Communication graph = path 

• GPUs are physically arranged into a tree(s) 

– GPUs can be connected to a PCIe switch 

– PCIe switches can be connected to another switch 

• A path can be efficiently mapped onto a tree 

– Multiple exchanges can happen without contending for the same PCIe links 

– Aggregate exchange throughput: 

• Approaches (PCIe bandwdith) * (number of GPU pairs) 

• Typical achieved PCIe gen2 simplex bandwidth on a single link: 6 GB/s 
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Example: 4-GPU Topology 

• Two ways to implement 1D exchange 

– Left-right approach 

– Pairwise approach 

– Both require two stages 

GPU-0 GPU-1 

PCIe switch 

GPU-2 GPU-3 

PCIe switch 

PCIe switch 

to host system 
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Example: Left-Right Approach for 4 GPUs 

• The 3 transfers in a stage happen concurrently 

– Achieved throughput: ~15 GB/s (4-MB messages) 

• No contention for PCIe links 

– PCIe links are duplex 

– Note that no link has 2 communications in the same “direction” 

GPU-3 GPU-2 

PCIe switch 

GPU-1 GPU-0 

PCIe switch 

PCIe switch 

Stage 2: send “left” / receive from “right” 

GPU-0 GPU-1 

PCIe switch 

GPU-2 GPU-3 

PCIe switch 

PCIe switch 

Stage 1: send “right” / receive from “left” 
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• Stage 1 shown above (Stage 2 is basically the same) 

• Achieved aggregate throughput: ~34 GB/s 

IOH 

Westmere Westmere 

GPU-0 GPU-1 

PCIe switch 

GPU-2 GPU-3 

PCIe switch 

GPU-4 GPU-5 

PCIe switch 

GPU-6 GPU-7 

PCIe switch 

PCIe switch PCIe switch 

Example: Left-Right Approach for 8 GPUs 
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Example: Pairwise Approach for 4 GPUs 

• No contention for PCIe links 

– All transfers are duplex, PCIe links are duplex 

– Note that no link has more than 1 exchange 

• Not true for 8 or more GPUs 

GPU-3 GPU-2 

PCIe switch 

GPU-1 GPU-0 

PCIe switch 

PCIe switch 

Stage 2: odd-even pairs 

GPU-0 GPU-1 

PCIe switch 

GPU-2 GPU-3 

PCIe switch 

PCIe switch 

Stage 1: even-odd pairs 
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IOH 

Westmere Westmere 

GPU-0 GPU-1 

PCIe switch 

GPU-2 GPU-3 

PCIe switch 

GPU-4 GPU-5 

PCIe switch 

GPU-6 GPU-7 

PCIe switch 

PCIe switch PCIe switch 

• Odd-even stage: 

– Will always have contention for 8 or more GPUs 

• Even-odd stage: 

– Will not have contention 

Contention for the link: 

  2 duplex communications 

Example: Even-Odd Stage of Pairwise Approach for 8 GPUs 
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1D Communication 

• Pairwise approach slightly better for 2-GPU case 

• Left-Right approach better for the other cases 
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Code for the Left-Right Approach 

 

• Code assumes that addresses and GPU IDs are stored in arrays 

• The middle loop isn’t necessary for correctness 

– Improves performance by preventing the two stages from interfering with 
each other (15 vs 11 GB/s for the 4-GPU example) 

for( int i=0; i<num_gpus-1; i++ ) // “right” stage 

 cudaMemcpyPeerAsync( d_a[i+1], gpu[i+1], d_a[i], gpu[i], num_bytes, stream[i] ); 
 

for( int i=0; i<num_gpus; i++ ) 

  cudaStreamSynchronize( stream[i] ); 
 

for( int i=1; i<num_gpus; i++ ) // “left” stage 

 cudaMemcpyPeerAsync( d_b[i-1], gpu[i-1], d_b[i], gpu[i], num_bytes, stream[i] ); 
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Possible Pattern for Multi-GPU Code 

• Stage 1: 

– Compute halos (data to be shared with other GPUs) 

• Stage 2: 

– Exchange data with other GPUs 

• Use asynchronous copies 

– Compute over internal data 

• Synchronize 

19 

• These can overlap when 

issued to different streams 
 

• If compute is longer than 

exchange then scaling is 

linear 
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Code Pattern 
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for( int istep=0; istep<nsteps; istep++) 

{ 

 for( int i=0; i<num_gpus; i++ ) 

 { 

  cudaSetDevice( gpu[i] ); 

  kernel<<<..., stream_halo[i]>>>( ... ); 

  kernel<<<..., stream_halo[i]>>>( ... ); 

  cudaStreamQuery( stream_halo[i] ); 

  kernel<<<..., stream_internal[i]>>>( ... ); 

 } 
 

 for( int i=0; i<num_gpus-1; i++ ) 

  cudaMemcpyPeerAsync( ..., stream_halo[i] ); 

 for( int i=0; i<num_gpus; i++ ) 

  cudaStreamSynchronize( stream_halo[i] ); 

 for( int i=1; i<num_gpus; i++ ) 

  cudaMemcpyPeerAsync( ..., stream_halo[i] ); 
 

 for( int i=0; i<num_gpus; i++ ) 

 { 

  cudaSetDevice( gpu[i] ); 

  cudaDeviceSynchronize(); 

  // swap input/output pointers 

 } 

} 

Compute halos 

Exchange halos 

Synchronize before next step 

Compute internal data 
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Communication for Single Host, Multiple GPUs 
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Communication Between GPUs in Different Nodes 

• Requires network communication 

– Currently requires data to first be transferred to host 

• Steps for an exchange: 

– GPU->CPU transfer 

– CPU exchanges via network 

• For example, MPI_Sendrecv 

• Just like you would do for non-GPU code 

– CPU->GPU transfer 

• If each node also has multiple GPUs: 

– Can continue using P2P within the node, netw outside the node 

– Can overlap some PCIe transfers with network communication 

• In addition to kernel execution 
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Code Pattern 

23 

 

 cudaMemcpyAsync( ..., stream_halo[i] ); 

 cudaStreamSynchronize( stream_halo[i] ); 

 MPI_Sendrecv( ... ); 

 cudaMemcpyAsync( ..., stream_halo[i] ); 
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Case Study 
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Case Study: TTI RTM 

• TTI RTM 

– One of the applications in seismic processing 

– 3DFD, 8th order in space, 2nd order in time 

– Regular grid 

– 1D domain decomposition 

• Data set: 

– 512x512x512 cube 

– Requires ~7 GB working set 

• Experiments: 

– Throughput increase over 1 GPU 

– Single node, 4-GPU “tree” 
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Case Study: Time Breakdown 

• Single step (single 8-GPU node): 

– Halo computation: 1.1 ms 

– Internal computation: 12.7 ms 

– Halo-exchange: 5.9 ms 

– Total: 13.8 ms 
 

• Communication is completely hidden 

– 12.7 ms for internal computation, 5.9 ms for communication 

• ~95% scaling: halo+internal: 13.8 ms (13.0 ms if done without splitting) 

– Thus, plenty of time for slower communication (network) 
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Case Study: Multiple Nodes 

• Test system:  

– 3 servers, each with 2 M2090 GPUs, Infiniband DDR interconnect 

• Performance: 

– 512x512x512 domain: 

• 1 node x 2 GPUs: 1.98x 

• 2 nodes x 1 GPU: 1.97x 

• 2 nodes x 2 GPUs: 3.98x 

• 3 nodes x 2 GPUs: 4.50x 

– 768x768x768 domain: 

• 3 nodes x 2 GPUs: 5.60x 

•  Test system: 

– Communication (PCIe and IB DDR2) is hidden when each GPU gets ~100 slices 

• Network is ~68% of all communication time 

– IB QDR hides communication when each GPU gets ~70 slices 
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Communication takes longer than  

internal computation 
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CPU-GPU and GPU-GPU transfers in NUMA hosts 
Multi-GPU with Streams and Events 

Additional Considerations 
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Additional System Issues to Consider 

• Host (CPU) NUMA affects PCIe transfer throughput in dual-IOH systems 

– Transfers to “remote” GPUs achieve lower throughput 

– One additional QPI hop 

– This affects any PCIe device, not just GPUs 

• Network cards, for example 

– When possible, lock CPU threads to a socket that’s closest to the GPU’s IOH 
chip 

• For example, by using numactl, GOMP_CPU_AFFINITY, KMP_AFFINITY, etc. 

• Dual-IOH systems prevent PCIe P2P across the IOH chips 

– QPI link between the IOH chips isn’t compatible with PCIe P2P 

– P2P copies will still work, but will get staged via host memory 

• Lower throughput 
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“Local” D2H Copy: 6.3 GB/s 

30 

IOH  36D 

DRAM DRAM 

CPU-1 CPU-0 

IOH  36D 

 

GPU-2 
 

GPU-3 
 

GPU-0 
 

GPU-1 
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“Remote” D2H Copy: 4.3 GB/s 
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IOH  36D 

DRAM DRAM 

CPU-1 CPU-0 

IOH  36D 

 

GPU-2 
 

GPU-3 
 

GPU-0 
 

GPU-1 
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Summary of CPU-GPU Copy Throughputs on One System 
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IOH  36D 

DRAM DRAM 

CPU-1 CPU-0 

IOH  36D 

 

GPU-2 
 

GPU-3 
 

GPU-0 
 

GPU-1 

• Note that these vary 
among different systems 

– Different BIOS settings 

– Different IOH chips 

• Local: 
– D2H: 6.3 GB/s 

– H2D: 5.7 GB/s 

• Remote: 
– D2H: 4.3 GB/s 

– H2D: 4.9 GB/s 
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Summary of P2P Throughputs 

• Via PCIe switch: 

– GPUs attached to the same PCIe switch 

– Simplex: 6.3 GB/s 

– Duplex: 12.2 GB/s 

• Via IOH chip: 

– GPUs attached to the same IOH chip 

– Simplex: 5.3 GB/s 

– Duplex: 9.0 GB/s 

• Via host: 

– GPUs attached to different IOH chips 

– Simplex: 2.2 GB/s 

– Duplex: 3.9 GB/s 
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Multi-GPU, Streams, and Events 

34 
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Multi-GPU, Streams, and Events 

• CUDA streams and events are per device (GPU) 

– Determined by the GPU that’s current at the time of their creation 

– Each device has its own default stream (aka 0- or NULL-stream) 

• Streams and: 

– Kernels: can be launched to a stream only if the stream’s GPU is current 

– Memcopies: can be issued to any stream  

• even if the stream doesn’t belong to the current GPU 

• Driver will ensure that all calls to that stream complete before bytes are transferred 

– Events: can be recorded only to a stream if the stream’s GPU is current 

• Synchronization/query: 

– It is OK to query of synchronize with any event/stream 

• Even if stream/event does not belong to the current GPU 
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Example 1 
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cudaStream_t streamA, streamB; 

cudaEvent_t eventA, eventB; 
 

cudaSetDevice( 0 ); 

cudaStreamCreate( &streamA );  // streamA and eventA belong to device-0 

cudaEventCreaet( &eventA );    
 

cudaSetDevice( 1 ); 

cudaStreamCreate( &streamB );  // streamB and eventB belong to device-1 

cudaEventCreate( &eventB ); 
 

kernel<<<..., streamB>>>(...);  

cudaEventRecord( eventB, streamB ); 
 

cudaEventSynchronize( eventB ); 

OK:  

• device 1 is current 

• eventB and streamB belong to device 1 
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Example 2 
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cudaStream_t streamA, streamB; 

cudaEvent_t eventA, eventB; 
 

cudaSetDevice( 0 ); 

cudaStreamCreate( &streamA );  // streamA and eventA belong to device-0 

cudaEventCreaet( &eventA );    
 

cudaSetDevice( 1 ); 

cudaStreamCreate( &streamB );  // streamB and eventB belong to device-1 

cudaEventCreate( &eventB ); 
 

kernel<<<..., streamA>>>(...);  

cudaEventRecord( eventB, streamB ); 
 

cudaEventSynchronize( eventB ); 

ERROR:  

• device 1 is current 

• streamA belongs to device 0 
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Example 3 
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cudaStream_t streamA, streamB; 

cudaEvent_t eventA, eventB; 
 

cudaSetDevice( 0 ); 

cudaStreamCreate( &streamA );  // streamA and eventA belong to device-0 

cudaEventCreaet( &eventA );    
 

cudaSetDevice( 1 ); 

cudaStreamCreate( &streamB );  // streamB and eventB belong to device-1 

cudaEventCreate( &eventB ); 
 

kernel<<<..., streamB>>>(...);  

cudaEventRecord( eventA, streamB ); 
 

ERROR:  

• eventA belongs to device 0 

• streamB belongs to device 1 
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Example 4 
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cudaStream_t streamA, streamB; 

cudaEvent_t eventA, eventB; 
 

cudaSetDevice( 0 ); 

cudaStreamCreate( &streamA );  // streamA and eventA belong to device-0 

cudaEventCreaet( &eventA );    
 

cudaSetDevice( 1 ); 

cudaStreamCreate( &streamB );  // streamB and eventB belong to device-1 

cudaEventCreate( &eventB ); 
 

kernel<<<..., streamB>>>(...);  

cudaEventRecord( eventB, streamB ); 
 

cudaSetDevice( 0 ); 

cudaEventSynchronize( eventB ); 

kernel<<<..., streamA>>>(...); 

device-1 is current 

device-0 is current 
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Example 4 
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cudaStream_t streamA, streamB; 

cudaEvent_t eventA, eventB; 
 

cudaSetDevice( 0 ); 

cudaStreamCreate( &streamA );  // streamA and eventA belong to device-0 

cudaEventCreaet( &eventA );    
 

cudaSetDevice( 1 ); 

cudaStreamCreate( &streamB );  // streamB and eventB belong to device-1 

cudaEventCreate( &eventB ); 
 

kernel<<<..., streamB>>>(...);  

cudaEventRecord( eventB, streamB ); 
 

cudaSetDevice( 0 ); 

cudaEventSynchronize( eventB ); 

kernel<<<..., streamA>>>(...); 

OK:  

• device-0 is current 

• synchronizing/querying events/streams of 

other devices is allowed 

• here, device-0 won’t start executing the 

kernel until device-1 finishes its kernel 
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Example 4 
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cudaStream_t streamA, streamB; 

cudaEvent_t eventA, eventB; 
 

cudaSetDevice( 0 ); 

cudaStreamCreate( &streamA );  // streamA and eventA belong to device-0 

cudaEventCreaet( &eventA );    
 

cudaSetDevice( 1 ); 

cudaStreamCreate( &streamB );  // streamB and eventB belong to device-1 

cudaEventCreate( &eventB ); 
 

kernel<<<..., streamB>>>(...);  

cudaEventRecord( eventB, streamB ); 
 

cudaSetDevice( 0 ); 

cudaEventSynchronize( eventB ); 

kernel<<<..., streamA>>>(...); 

OK:  

• device-0 is current 

• synchronizing/querying events/streams of 

other devices is allowed 

• here, device 0 won’t start executing the kernel 

until device 1 finishes its kernel 
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Example 5 
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int gpu_A = 0; 

int gpu_B = 1; 

 

cudaSetDevice( gpu_A ); 

cudaMalloc( &d_A, num_bytes ); 
 

int accessible = 0; 

cudaDeviceCanAccessPeer( &accessible, gpu_B, gpu_A ); 

if( accessible ) 

{ 

 cudaSetDevice(gpu_B ); 

 cudaDeviceEnablePeerAccess( gpu_A, 0 ); 

 kernel<<<...>>>( d_A); 

} 
Even though kernel executes on 

gpu2, it will access (via PCIe) 

memory allocated on gpu1 
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Summary 

• CUDA provides a number of features to facilitate multi-GPU programming 

• Single-process / multiple GPUs: 

– Unified virtual address space 

– Ability to directly access peer GPU’s data 

– Ability to issue P2P memcopies 

• No staging via CPU memory 

• High aggregate throughput for many-GPU nodes 

• Multiple-processes: 

– GPU Direct to maximize performance when both PCIe and IB transfers are needed 

• Streams and asynchronous kernel/copies 

– Allow overlapping of communication and execution 

– Applies whether using single- or multiple threads to control GPUs 

• Keep NUMA in mind on multi-IOH systems 
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Questions? 
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