
© NVIDIA 2011

Paulius Micikevicius| NVIDIA November 14, 2011

Multi-GPU Programming Supercomputing 2011

© NVIDIA 2011

Outline

• Usecases and a taxonomy of scenarios

• Inter-GPU communication:

– Single host, multiple GPUs

– Multiple hosts

• Case study

• Additional considerations:

– Multiple GPUs, streams, and events

– Effect of host IOH chips on inter-GPU communication

2

© NVIDIA 2011

• Why multi-GPU?

– To further speedup computation

– Working set exceeds a single GPU’s memory

– Having multiple GPUs per node improves perf/W

• Amortize the CPU server cost among more GPUs

• Same goes for the price

• Inter-GPU communication may be needed

– Two general cases:

• GPUs within a single network node

• GPUs across network nodes

3

© NVIDIA 2011

Taxonomy of Inter-GPU Communication Cases

Network nodes

Single Multiple

Single process
Single-threaded N/A

Multi-threaded N/A

Multiple processes

4

GPUs can communicate via P2P or shared host memory

GPUs communicate via host-side message passing

© NVIDIA 2011

Communication for Single Host, Multiple GPUs

5

© NVIDIA 2011

Managing multiple GPUs from a single CPU thread

• CUDA calls are issued to the current GPU

– Exception: peer-to-peer memcopies

• cudaSetDevice() sets the current GPU

• Current GPU can be changed while async calls (kernels, memcopies) are running

– It is also OK to queue up a bunch of async calls to a GPU and then switch to another GPU

– The following code will have both GPUs executing concurrently:

cudaSetDevice(0);

kernel<<<...>>>(...);

cudaMemcpyAsync(...);

cudaSetDevice(1);

kernel<<<...>>>(...);

6

© NVIDIA 2011

Unified Addressing (CUDA 4.0 and later)

• CPU and GPU allocations use unified virtual address space

– Think of each one (CPU, GPU) getting its own range of a single VA space

• Thus, driver/device can determine from an address where data resides

• A given allocation still resides on a single device (an array doesn’t span several GPUs)

– Requires:

• 64-bit Linux or 64-bit Windows with TCC driver

• Fermi or later architecture GPUs (compute capability 2.0 or higher)

• CUDA 4.0 or later

• A GPU can dereference a pointer that is:

– an address on another GPU

– an address on the host (CPU)

7

© NVIDIA 2011

UVA and Multi-GPU Programming

• Two interesting aspects:

– Peer-to-peer (P2P) memcopies

– Accessing another GPU’s addresses

• Both require peer-access to be enabled:

– cudaDeviceEnablePeerAccess(peer_device, 0)

• Enables current GPU to access addresses on peer_device GPU

– cudaDeviceCanAccessPeer(&accessible, dev_X, dev_Y)

• Checks whether dev_X can access memory of dev_Y

• Returns 0/1 via the first argument

• Peer-access is not available if:

– One of the GPUs is pre-Fermi

– GPUs are connected to different Intel IOH chips on the motherboard

• QPI and PCIe protocols disagree on P2P
8

© NVIDIA 2011

Peer-to-peer memcopy

• cudaMemcpyPeerAsync(void* dst_addr, int dst_dev,

 void* src_addr, int src_dev,

 size_t num_bytes, cudaStream_t stream)

– Copies the bytes between two devices

– Currently performance is maximized when stream belongs to the source GPU

– There is also a blocking (as opposed to Async) version

• If peer-access is enabled:

– Bytes are transferred along the shortest PCIe path

– No staging through CPU memory

• If peer-access is not available

– CUDA driver stages the transfer via CPU memory

9

© NVIDIA 2011

How Does P2P Memcopy Help Multi-GPU?

• Ease of programming

– No need to manually maintain memory buffers on the host
for inter-GPU exchanges

• Increased throughput

– Especially when communication path does not include IOH
(GPUs connected to a PCIe switch):

• Single-directional transfers achieve up to ~6.6 GB/s

• Duplex transfers achieve ~12.2 GB/s

– 4-5 GB/s if going through the host

– GPU-pairs can communicate concurrently if paths don’t
overlap

10

© NVIDIA 2011

Example: 1D Domain Decomposition and P2P

• Each subdomain has at most two neighbors

– “left”/”right”

– Communication graph = path

• GPUs are physically arranged into a tree(s)

– GPUs can be connected to a PCIe switch

– PCIe switches can be connected to another switch

• A path can be efficiently mapped onto a tree

– Multiple exchanges can happen without contending for the same PCIe links

– Aggregate exchange throughput:

• Approaches (PCIe bandwdith) * (number of GPU pairs)

• Typical achieved PCIe gen2 simplex bandwidth on a single link: 6 GB/s

© NVIDIA 2011

Example: 4-GPU Topology

• Two ways to implement 1D exchange

– Left-right approach

– Pairwise approach

– Both require two stages

GPU-0 GPU-1

PCIe switch

GPU-2 GPU-3

PCIe switch

PCIe switch

to host system

© NVIDIA 2011

Example: Left-Right Approach for 4 GPUs

• The 3 transfers in a stage happen concurrently

– Achieved throughput: ~15 GB/s (4-MB messages)

• No contention for PCIe links

– PCIe links are duplex

– Note that no link has 2 communications in the same “direction”

GPU-3 GPU-2

PCIe switch

GPU-1 GPU-0

PCIe switch

PCIe switch

Stage 2: send “left” / receive from “right”

GPU-0 GPU-1

PCIe switch

GPU-2 GPU-3

PCIe switch

PCIe switch

Stage 1: send “right” / receive from “left”

© NVIDIA 2011

• Stage 1 shown above (Stage 2 is basically the same)

• Achieved aggregate throughput: ~34 GB/s

IOH

Westmere Westmere

GPU-0 GPU-1

PCIe switch

GPU-2 GPU-3

PCIe switch

GPU-4 GPU-5

PCIe switch

GPU-6 GPU-7

PCIe switch

PCIe switch PCIe switch

Example: Left-Right Approach for 8 GPUs

© NVIDIA 2011

Example: Pairwise Approach for 4 GPUs

• No contention for PCIe links

– All transfers are duplex, PCIe links are duplex

– Note that no link has more than 1 exchange

• Not true for 8 or more GPUs

GPU-3 GPU-2

PCIe switch

GPU-1 GPU-0

PCIe switch

PCIe switch

Stage 2: odd-even pairs

GPU-0 GPU-1

PCIe switch

GPU-2 GPU-3

PCIe switch

PCIe switch

Stage 1: even-odd pairs

© NVIDIA 2011

IOH

Westmere Westmere

GPU-0 GPU-1

PCIe switch

GPU-2 GPU-3

PCIe switch

GPU-4 GPU-5

PCIe switch

GPU-6 GPU-7

PCIe switch

PCIe switch PCIe switch

• Odd-even stage:

– Will always have contention for 8 or more GPUs

• Even-odd stage:

– Will not have contention

Contention for the link:

 2 duplex communications

Example: Even-Odd Stage of Pairwise Approach for 8 GPUs

© NVIDIA 2011

1D Communication

• Pairwise approach slightly better for 2-GPU case

• Left-Right approach better for the other cases

17

© NVIDIA 2011

Code for the Left-Right Approach

• Code assumes that addresses and GPU IDs are stored in arrays

• The middle loop isn’t necessary for correctness

– Improves performance by preventing the two stages from interfering with
each other (15 vs 11 GB/s for the 4-GPU example)

for(int i=0; i<num_gpus-1; i++) // “right” stage

 cudaMemcpyPeerAsync(d_a[i+1], gpu[i+1], d_a[i], gpu[i], num_bytes, stream[i]);

for(int i=0; i<num_gpus; i++)

 cudaStreamSynchronize(stream[i]);

for(int i=1; i<num_gpus; i++) // “left” stage

 cudaMemcpyPeerAsync(d_b[i-1], gpu[i-1], d_b[i], gpu[i], num_bytes, stream[i]);

© NVIDIA 2011

Possible Pattern for Multi-GPU Code

• Stage 1:

– Compute halos (data to be shared with other GPUs)

• Stage 2:

– Exchange data with other GPUs

• Use asynchronous copies

– Compute over internal data

• Synchronize

19

• These can overlap when

issued to different streams

• If compute is longer than

exchange then scaling is

linear

© NVIDIA 2011

Code Pattern

20

for(int istep=0; istep<nsteps; istep++)

{

 for(int i=0; i<num_gpus; i++)

 {

 cudaSetDevice(gpu[i]);

 kernel<<<..., stream_halo[i]>>>(...);

 kernel<<<..., stream_halo[i]>>>(...);

 cudaStreamQuery(stream_halo[i]);

 kernel<<<..., stream_internal[i]>>>(...);

 }

 for(int i=0; i<num_gpus-1; i++)

 cudaMemcpyPeerAsync(..., stream_halo[i]);

 for(int i=0; i<num_gpus; i++)

 cudaStreamSynchronize(stream_halo[i]);

 for(int i=1; i<num_gpus; i++)

 cudaMemcpyPeerAsync(..., stream_halo[i]);

 for(int i=0; i<num_gpus; i++)

 {

 cudaSetDevice(gpu[i]);

 cudaDeviceSynchronize();

 // swap input/output pointers

 }

}

Compute halos

Exchange halos

Synchronize before next step

Compute internal data

© NVIDIA 2011

Communication for Single Host, Multiple GPUs

21

© NVIDIA 2011

Communication Between GPUs in Different Nodes

• Requires network communication

– Currently requires data to first be transferred to host

• Steps for an exchange:

– GPU->CPU transfer

– CPU exchanges via network

• For example, MPI_Sendrecv

• Just like you would do for non-GPU code

– CPU->GPU transfer

• If each node also has multiple GPUs:

– Can continue using P2P within the node, netw outside the node

– Can overlap some PCIe transfers with network communication

• In addition to kernel execution

22

© NVIDIA 2011

Code Pattern

23

 cudaMemcpyAsync(..., stream_halo[i]);

 cudaStreamSynchronize(stream_halo[i]);

 MPI_Sendrecv(...);

 cudaMemcpyAsync(..., stream_halo[i]);

© NVIDIA 2011

Case Study

24

© NVIDIA 2011

Case Study: TTI RTM

• TTI RTM

– One of the applications in seismic processing

– 3DFD, 8th order in space, 2nd order in time

– Regular grid

– 1D domain decomposition

• Data set:

– 512x512x512 cube

– Requires ~7 GB working set

• Experiments:

– Throughput increase over 1 GPU

– Single node, 4-GPU “tree”

25

© NVIDIA 2011

Case Study: Time Breakdown

• Single step (single 8-GPU node):

– Halo computation: 1.1 ms

– Internal computation: 12.7 ms

– Halo-exchange: 5.9 ms

– Total: 13.8 ms

• Communication is completely hidden

– 12.7 ms for internal computation, 5.9 ms for communication

• ~95% scaling: halo+internal: 13.8 ms (13.0 ms if done without splitting)

– Thus, plenty of time for slower communication (network)

26

© NVIDIA 2011

Case Study: Multiple Nodes

• Test system:

– 3 servers, each with 2 M2090 GPUs, Infiniband DDR interconnect

• Performance:

– 512x512x512 domain:

• 1 node x 2 GPUs: 1.98x

• 2 nodes x 1 GPU: 1.97x

• 2 nodes x 2 GPUs: 3.98x

• 3 nodes x 2 GPUs: 4.50x

– 768x768x768 domain:

• 3 nodes x 2 GPUs: 5.60x

• Test system:

– Communication (PCIe and IB DDR2) is hidden when each GPU gets ~100 slices

• Network is ~68% of all communication time

– IB QDR hides communication when each GPU gets ~70 slices

27

Communication takes longer than

internal computation

© NVIDIA 2011

CPU-GPU and GPU-GPU transfers in NUMA hosts
Multi-GPU with Streams and Events

Additional Considerations

28

© NVIDIA 2011

Additional System Issues to Consider

• Host (CPU) NUMA affects PCIe transfer throughput in dual-IOH systems

– Transfers to “remote” GPUs achieve lower throughput

– One additional QPI hop

– This affects any PCIe device, not just GPUs

• Network cards, for example

– When possible, lock CPU threads to a socket that’s closest to the GPU’s IOH
chip

• For example, by using numactl, GOMP_CPU_AFFINITY, KMP_AFFINITY, etc.

• Dual-IOH systems prevent PCIe P2P across the IOH chips

– QPI link between the IOH chips isn’t compatible with PCIe P2P

– P2P copies will still work, but will get staged via host memory

• Lower throughput

29

© NVIDIA 2011

“Local” D2H Copy: 6.3 GB/s

30

IOH 36D

DRAM DRAM

CPU-1 CPU-0

IOH 36D

GPU-2

GPU-3

GPU-0

GPU-1

© NVIDIA 2011

“Remote” D2H Copy: 4.3 GB/s

31

IOH 36D

DRAM DRAM

CPU-1 CPU-0

IOH 36D

GPU-2

GPU-3

GPU-0

GPU-1

© NVIDIA 2011

Summary of CPU-GPU Copy Throughputs on One System

32

IOH 36D

DRAM DRAM

CPU-1 CPU-0

IOH 36D

GPU-2

GPU-3

GPU-0

GPU-1

• Note that these vary
among different systems

– Different BIOS settings

– Different IOH chips

• Local:
– D2H: 6.3 GB/s

– H2D: 5.7 GB/s

• Remote:
– D2H: 4.3 GB/s

– H2D: 4.9 GB/s

© NVIDIA 2011

Summary of P2P Throughputs

• Via PCIe switch:

– GPUs attached to the same PCIe switch

– Simplex: 6.3 GB/s

– Duplex: 12.2 GB/s

• Via IOH chip:

– GPUs attached to the same IOH chip

– Simplex: 5.3 GB/s

– Duplex: 9.0 GB/s

• Via host:

– GPUs attached to different IOH chips

– Simplex: 2.2 GB/s

– Duplex: 3.9 GB/s

33

© NVIDIA 2011

Multi-GPU, Streams, and Events

34

© NVIDIA 2011

Multi-GPU, Streams, and Events

• CUDA streams and events are per device (GPU)

– Determined by the GPU that’s current at the time of their creation

– Each device has its own default stream (aka 0- or NULL-stream)

• Streams and:

– Kernels: can be launched to a stream only if the stream’s GPU is current

– Memcopies: can be issued to any stream

• even if the stream doesn’t belong to the current GPU

• Driver will ensure that all calls to that stream complete before bytes are transferred

– Events: can be recorded only to a stream if the stream’s GPU is current

• Synchronization/query:

– It is OK to query of synchronize with any event/stream

• Even if stream/event does not belong to the current GPU

35

© NVIDIA 2011

Example 1

36

cudaStream_t streamA, streamB;

cudaEvent_t eventA, eventB;

cudaSetDevice(0);

cudaStreamCreate(&streamA); // streamA and eventA belong to device-0

cudaEventCreaet(&eventA);

cudaSetDevice(1);

cudaStreamCreate(&streamB); // streamB and eventB belong to device-1

cudaEventCreate(&eventB);

kernel<<<..., streamB>>>(...);

cudaEventRecord(eventB, streamB);

cudaEventSynchronize(eventB);

OK:

• device 1 is current

• eventB and streamB belong to device 1

© NVIDIA 2011

Example 2

37

cudaStream_t streamA, streamB;

cudaEvent_t eventA, eventB;

cudaSetDevice(0);

cudaStreamCreate(&streamA); // streamA and eventA belong to device-0

cudaEventCreaet(&eventA);

cudaSetDevice(1);

cudaStreamCreate(&streamB); // streamB and eventB belong to device-1

cudaEventCreate(&eventB);

kernel<<<..., streamA>>>(...);

cudaEventRecord(eventB, streamB);

cudaEventSynchronize(eventB);

ERROR:

• device 1 is current

• streamA belongs to device 0

© NVIDIA 2011

Example 3

38

cudaStream_t streamA, streamB;

cudaEvent_t eventA, eventB;

cudaSetDevice(0);

cudaStreamCreate(&streamA); // streamA and eventA belong to device-0

cudaEventCreaet(&eventA);

cudaSetDevice(1);

cudaStreamCreate(&streamB); // streamB and eventB belong to device-1

cudaEventCreate(&eventB);

kernel<<<..., streamB>>>(...);

cudaEventRecord(eventA, streamB);

ERROR:

• eventA belongs to device 0

• streamB belongs to device 1

© NVIDIA 2011

Example 4

39

cudaStream_t streamA, streamB;

cudaEvent_t eventA, eventB;

cudaSetDevice(0);

cudaStreamCreate(&streamA); // streamA and eventA belong to device-0

cudaEventCreaet(&eventA);

cudaSetDevice(1);

cudaStreamCreate(&streamB); // streamB and eventB belong to device-1

cudaEventCreate(&eventB);

kernel<<<..., streamB>>>(...);

cudaEventRecord(eventB, streamB);

cudaSetDevice(0);

cudaEventSynchronize(eventB);

kernel<<<..., streamA>>>(...);

device-1 is current

device-0 is current

© NVIDIA 2011

Example 4

40

cudaStream_t streamA, streamB;

cudaEvent_t eventA, eventB;

cudaSetDevice(0);

cudaStreamCreate(&streamA); // streamA and eventA belong to device-0

cudaEventCreaet(&eventA);

cudaSetDevice(1);

cudaStreamCreate(&streamB); // streamB and eventB belong to device-1

cudaEventCreate(&eventB);

kernel<<<..., streamB>>>(...);

cudaEventRecord(eventB, streamB);

cudaSetDevice(0);

cudaEventSynchronize(eventB);

kernel<<<..., streamA>>>(...);

OK:

• device-0 is current

• synchronizing/querying events/streams of

other devices is allowed

• here, device-0 won’t start executing the

kernel until device-1 finishes its kernel

© NVIDIA 2011

Example 4

41

cudaStream_t streamA, streamB;

cudaEvent_t eventA, eventB;

cudaSetDevice(0);

cudaStreamCreate(&streamA); // streamA and eventA belong to device-0

cudaEventCreaet(&eventA);

cudaSetDevice(1);

cudaStreamCreate(&streamB); // streamB and eventB belong to device-1

cudaEventCreate(&eventB);

kernel<<<..., streamB>>>(...);

cudaEventRecord(eventB, streamB);

cudaSetDevice(0);

cudaEventSynchronize(eventB);

kernel<<<..., streamA>>>(...);

OK:

• device-0 is current

• synchronizing/querying events/streams of

other devices is allowed

• here, device 0 won’t start executing the kernel

until device 1 finishes its kernel

© NVIDIA 2011

Example 5

42

int gpu_A = 0;

int gpu_B = 1;

cudaSetDevice(gpu_A);

cudaMalloc(&d_A, num_bytes);

int accessible = 0;

cudaDeviceCanAccessPeer(&accessible, gpu_B, gpu_A);

if(accessible)

{

 cudaSetDevice(gpu_B);

 cudaDeviceEnablePeerAccess(gpu_A, 0);

 kernel<<<...>>>(d_A);

}
Even though kernel executes on

gpu2, it will access (via PCIe)

memory allocated on gpu1

© NVIDIA 2011

Summary

• CUDA provides a number of features to facilitate multi-GPU programming

• Single-process / multiple GPUs:

– Unified virtual address space

– Ability to directly access peer GPU’s data

– Ability to issue P2P memcopies

• No staging via CPU memory

• High aggregate throughput for many-GPU nodes

• Multiple-processes:

– GPU Direct to maximize performance when both PCIe and IB transfers are needed

• Streams and asynchronous kernel/copies

– Allow overlapping of communication and execution

– Applies whether using single- or multiple threads to control GPUs

• Keep NUMA in mind on multi-IOH systems

43

© NVIDIA 2011

Questions?

44

