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ON THE EULER EQUATIONS OF INCOMPRESSIBLE PERFECT FLUIDS

’ 

Roger TEHAM 
~~~

Let Q be a bounded domain of R3 with smooth boundary r . The motion of

an incompressible perfect fluid filling Q is governed by the Euler equations

where f -~ f (:~, t~ , uo 
w 

u (x) are -~ u - and -,r 

are the unknowns, the velocity vector and the prcssure ; n is the unit outward

on r . 
’

The problem of existence and uniqueness of solutions of the Euler equations has

been considered by several authors and most recent 1y ty T. Ebin

and J. l-1arsden [3], J.P. Bourguignon and II. Brezis [ 2 ] . ITI [ 41. T. KaLo proves the

existence of a global solution in the two dimensional case and the existence

of a local solution in the three dimensional case, for Q = R3. The existence of a

local solution in the general case, .i.e. Q a domain of ~~3 with a was

then proved by D. Ebin and J. Marsden [3J using technics of Riemanian Geometry on
infinite dimensional manifolds, and by J.P. Bourguignon and II. Brezis [ 2] who give
an alternate proof of the local existence, more analytical but relying still on

geometrical technics.

purpose here is to give a new short proof of result, using a new a 

estinat.c and technics in partial Our 

of that of T. Kato to bounded 

of the which i do not in [.5].

The author shanks J.Versden for interesting on this problem.

(yo) do 91405 Orsay, 
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PLAN. 

1, A priori estimates of the solutions of the Euler Equations.

2. The existence and uniqueness rccuit.

I. A PRIORT ESTIMATE OF THE SOLUTIONS OF EULER EQUATIONS. 

1.1~ Notations.. ,

We will use classical notations and results concerning the Sobolev spaces:
s integer, is the Sobolev spaces of real valued Lp functions

on P , such that all their derivatives up to order s belong to If p # 2,

we write B(R) = w’, (0) ,

. , 

He write (f,g) scalar product and the norm in L2(0) ((f,g)) 
m

and , the scalar product and the norm in 

where DO. is a multi-index derivation, a = . The norm in is
, 

denoted |f|p I 
p 

and II denotes that of Wm,p(Q). The same notations will be
2 3 . 3

used also for the norms and scalar products in I, (Q)3, ....

We assume that the boundary of s is a two dimensional manifold of class Tr
with r sufficently large so that the usual embedding theorems hold. In particular :

where ~ = ~ °~ ~ if m~, .is arbitrary if m - 3 11
r == « if m 3 (in this case (Q) is even a space of Hölderian functions).r 1 (in this case Wm,p 

(

Q) is even a space of Hölderian f unctiors)
p 

We recall also that if m &#x3E; 3, (and Q is smooth), is an algebra
p

for the ’pointv7ise multiplication of functions (see [2], [3]).
Let

,j 
. 5 ,

For m = 0 . X is a closed sustance of L (Q)3 and WG denote P orthogonal

projection in 2 2 3 3 on X . - Recall that P Is also a linear continuous
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from int.o i t,self (m~l) . - Indeed if then (I-P)v -- rad 1r ,

where -a is soluticn of the Neunan problem

and xEr by the classical results of regularity for the Neuman problem

(Aginon Douglis Nirenberg 

1.2. Representation of ’IT as a functional of u .

, 
We will now assume that u and ~r are solutions of (0.1)-(0.4) and we will.

establish an energy inequality satisfied by u . We assume at present that u and

rr are classical solutions of (0.1),(0.4) as smooth as necessary for the subsequent
calculations to make sense. 

The following result will be usefull ;

Lemma 1.1. If u and 7r satisfy ~U.1)--~0.3) , then

the functions oij depending only on r D. == *20132013 , u = {n1,n2,n3}.oij 17 31 D. I = 

dxi " JL 2 3

Proof. We get (1.2) by applying the divergence operator on both sides of (0.1).

Taking then the scalar product of each side of (0.1) with n , we gdt on r :

Since r is a smooth manifold, we can locally répresent it by an equation

and on the corresponding part of F (say F0) 1
o
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(o is a smooth function in some neighborhood n 
0 

of r 0 ).o o

Then

Since

we have

when §(x) = 0 and the gradients of these two functions are therefore parallel on r0:
o

Whence with (0.3)

and (1.3) follows with

1.3. Quadratic estimations of IT in term of u .

Lemma 1.2. If u and n satisfies o.i&#x3E;-o.3&#x3E; then for each t&#x3E;o, for 5 $

the constant c !’1nd n ) c an P, m, and1 2 
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Proof. We infer from (1.2), (1.3) and Fll that

By the triangle inequality and obvious majorations for f , it remains to estimate

Since 1 is an algebra and

(c 0., c3 depend on m, p and 0).

For the boundary term we write

where c4 depends only on m, p, and the oij i.e. r . Observi.ng that
1

m- p p ’

we see that W P (r) is an algebra and hence

1.4 A priori estimate for p = 2 .

Let « be a multi index, m . We apply the operator Da on each 

(0,1~, We then multiply by integrate over Q and add these equalities for
m , We obtain
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The first term on the right can be ffiajorized using T. Kato [4 ] {(2.2) p.29S(
and we find 

’

-

where c’ depends only on m.

For the other terms, we clearly have

Whence

so that

where y is the solution of the differential equation

and (0,T ) , i.s the interval of existence of y ; To depends only on ci0 0 0’

c 2 ‘ ? » and the Hm-norms of Lho datas f, uo .

(1) See (1.12) below giving a more general result using Lp norms, p 0 2
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In conclusion if n is a smooth bounded domain, if u and n are smooth

solutions of (0.1)-(0.4) and m &#x3E; r , then the estimate (1.9) holds.

1.5. A priori estimate for p 1 2 .

We rapidly establish an estimate similar to (1.9), involving the norms in

VPIP(Q) , m &#x3E; 1 +~ .
p

We apply the operator D on each side of (a.1~ , we multiply by f
integrate over n and add these equalities for m . This leads to

where . We prove hereafter that

From (1.7) and Holder inequality we see then that the right hand side-of (1.11)

is less than

Whence

with

We conclude from (1.11) that

where z is the solution of
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and (0, T1) is the interval of existence of z .

There remains to establish (1.12).

Proof of Application of the Leibnitz rule gives

Because of (0.2) , (0.3), the contribution of the first term of (1.16) is zero,

for each a . The contribution of the subsequent terms is less than .

In order to prove (1.12) it is then sufficient to show that

and we observe that

for the values of p and o given by Sobolev inclusion theorems 0 ,

as 1) . If p or a is infinite then we just write

or

If is arbitrary, but in this case .
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3 3M- 3 -1 &#x3E; 0 by assumption. a Hence and setting’ I cl I p 
’ 

p 
" ’ 

. 1)&#x3E;,l and 

p -- 

ci-I ) &#x3E; we write

Similarly if o&#x3E;l is arbitrary r but in this case

e Hence we choose a = p and we writep- 1

The last case to consider is the case where p and c are finite and given by

By Holder inequality (1.17) is satisfied in this case provided that

i.e.

and this is true as and

2. THE EXISTENCE AND UNIQUENESS RESULT.

Theorem. Assume that si is a regular bounded open set of ir, 3 (1) . let m and p

be given, m&#x3E;l + 2 . Then for each u and f 01 

--

there a unique function , dc-jfincc 0 n ( 0 ) p-r ) ,

( ) It is sufficient r.o assume that: is a i 1 of class Cm+2
and Q ’1.S on one side of dQ.
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t .

where T. 4 inf (T,T 1) ( 1 ), and satisfying (0.1)-(0.4) on (0,T*).

Remarks. (i) The Theorem is also valid in higher dimensions, with the natural

modification on the assumption on m (m &#x3E; 1+N) ;
p 

(ii) Because of the boundary layer effects we can not expect to prove as

in Kato [5 ] the existence on (0,T,,) , for each V&#x3E;O of a solution of the Navier

Stokes equations belonging to 
°

The proof of uniqueness is standard. We will just show the existence of u

and TT , considering successively the case p - 2 and p ~ 2 .

Case p = 2.. 

We apply the Calerkin method with a special basis {wk} which we first

describe 
m 3 

(i) For m fixed as before, we consider the space Xm c H(Q), endowed with
the Hilbert scalar product m , and the space Xo which is a closed

subspace of 2 3 . It is clear that X c X and 0 is dense in X . By thesubspace of L (n) 3 . It is clear that X c X 
0 

and X 
m 

is dense in X . B the" ( ) 
m o m o y

Lax-Milgram theorem, for each g eX, there exists a unique w £ X such that

The linear mapping g ~2013~ w(g) is a compact self adjoint operator in Xo and it

possesses an orthonormal complete family of eigenvectors w. :
. 

**

(ii) Let us use the Galerkin method with this basis. For P&#x3E;O fixed we look

for

(1) See (1.10) and ~1.15~ .
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satisfying

P = the orthogonal projection in X (or as well in Xm) on the space spanned byP o rn. 
-

w1,...,wk.
The equations (2 . $) , (2.9) are equivalent to a system of ordinary differential

equations for the g. , and the existence of a solution on some interval (0,T03BC)
JP 

is standard. The following a priori estimates on u show that T03BC = T* is

independant or y . .

(iii) The first a priori estinlate is obtained by multiplying (2.8) b’y

g (t) and adding in k. It is well known (see also §.l) that
k03BC -

and there remains

i

This shows that T = T and that 
’

’ 

~ 

’

(2.10) u remains bounded in 2013~ ~ . 
i

We can also write (2.8) as

(w e X ) . Now (t)] c X , t , (see (1.11) ) and we
k O y m m

can use (2.6). We multiply (2.11) by Àkgk and dd in k , k = 1,...,03BC. We obtain

We 
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where 7T 
11 

is defined in term of u~ and f by relations similar to (1.2), (1.3)

(replacing u by u ). The relation similar to (1.6) is satisfyed and we get

exactly the same relation as (1.8)

We recall also that

Whence,

and

I

(iv) In order to pass to the limit in the non linear term using a

com actness theorem, we need an estimate on 
du

compactness theorem, we need an estimate on due 
.. 

w dt 
’

Since the wk are orthogonal in Xo , we deduce from (2.11) that 
’

Hence

and with (2.13) it is easily found that

du 2 3
(2.14) remains bounded in as p ~ 0153 .

(v) The passage to the limit using (2.13), (2.14) and a compactness

theorem (as in Lions j~7"j) is standard. We obtain at the limit the existence of

u c that
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u satisfies all the properties announced, i.e. (0.2)-(0.4) and (2.3). Because of

(2.15) the existence of Tr such chat. (0.1) is sntisfied is standard (see

Ladyzhenskaya L6 1

Case p # 2 . 
’

We proceed by regularization. We approximate u 
o 

and f by u 
OE 

and ,

with s sufficiently large so that

and X 
s 
C Xm,p . We solve (0.1)-(0.4) with u 

o 
and f replaced by u 

oe 
and f .

s m,p 0 
au 

ot E

The estimate analog to (1.14) and an easy estimate on due allow us to pass to the

limit as c 0 and we obtain (0.1)-(0.4) on (0,T,,)
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