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ON THE EULER EQUATIONS OF INCOMPRESSIBLE PERFECT FLUIDS

Roger TEMAM (%)

TRODUCTION.

Let @ be a bounded domain of RB with smooth boundary T . The motion of

2n incompressible perfect fluid filling £ is governed by the Fuler equations

3
(0.1) 53- E :u --+ grad m = £ in @ x (0,T)
J=1 )
(0.2) divu=0 in @ x (0,T) .
(0.3) u.n =0 on I x (0,T)
(0.4) u(x,0) = uo(x) in Q,
where £ = f(x,t) , u, = uo(x) are given, u(x,t) = u = (ul,uz,u Y and 7w = w(x,t)

1

are the unknowns, the velocity vector and the pressure ; n 1s the unit outward

’

norna2l on T .
,

The problem of existence and uniqueness of solutions of the Euler equatiomns has
been considered by several authors and most recently ty T. Kato [ 4], [ 5], D. Ebin
and J. Marsden [:3], J.P. Bourguignon and H. Brezis [ 2]. In [:4] T. Kato proves the

existence of a global solution im the twoc dimensional case and in [ 5} the existence

. The existerce of a

of a local solution in the three dimensional case, for Q = R3
local solution in the general case, -i.e. Q a domain of R3 with a boundary, was

then proved by D. Ebin and J. Marsden [ 3] using technics of Riemanian Geometry on

infinite dimensional manifolds, and by J.P. Bourguignon and H. Brezis [_2] who give
n zlternate proof of the local existence, more analytical but relying still on

georetrical technics.

Cur purpose here ic to give a new short proof of this result, using a new local a prior
estinate and stondard technics in partial differential equations. Our proofl is
essentially en extension of that of T. Kato LS J to beunded donmain, with o «ultable

treatrenlt of the boundary terms which do not appear in [5 I.
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1, A priori estimates of the sclutions of the Euler Equations.
5

The existence and uniqueness raesult,

1. A PRIORY ESTIMATE OF THE SOLUTICNS OF THE EULER EQUATIONS.

1.1. Notations.

We will use classical notations and results concerning the Sobolev spaces:
s .
W ’p(Q) , § integer,

l¢p<e , is the Socbolev spaces of real valued L? functions
on § , such that all their derivatives up to order

s belong to LP@) . If p =2,
ve write BH3@) = w2@) .

Ve write (f,g) , ]fl , the scalavy product and the norm in LZ(Q) » ((f,g))m
and Jf]_, the scalar product and the norm in H () ,
m

(g, = 5 0l

[olsm

o, . . . .
where D is a multi-index derivation,

o = {al,a

denoted !f’p and Hf"m . denotes that of W' *P(2) . The same notations will be
, .

used also for the norms and scalar products in LZ(Q)3, Hm(Q)3, ces o

2,a3} . The norm in Lp(n) is

We assume that the boundary of

o
with r

is a two dimensional manifold of class %?r
sufficently large so that the usual embedding theorems hold. In particular :
wm’p(Q) c:Lr(Q) where % = % - % if m< g y 1S§r<e .ig arbitrary if m = 3

1]
. 3
r =« 1f m> =

. . ,D . Lo . .
(in this case ¥ *-(f) 1is even a space of Holderian functions).

, (and 9 1is smooth), W ’P(Q)

for the pointwise multiplication of functions (see [2], [3]).

We recall also that if m > 2 is an algebra

Let

X, ={ve 1 @)? , dive

s

Gy, ven = 0 on T3}
ML, 3L . .
X = {ve W ’Y(sz) 9wy = D, v,n =0 on T} .
m, ’
For m = C Xo is a closed cuber.co of L7(7)7 and we denote P the orthogonal
. . . 2,3
projceotion ia L7(Q) on Xo Weorerall that P

iz also a linear continuous oper.

[



from Um’p(sz)3 into itself (m21l) . Indeed if vew’“’p(gz)B

where w 1s soluticn of the Neuman problem

divv (e wm—l,p(Q))

Am =
(1.1) . m-%,p
Py = v.u (e W ar)»

and 1e WP(Q) by the classical results of regularity for the Neuman problem
(Agmon Douglis Nirenberg [1]).

1.2. Represeniation of & as a functional of u .

. We will now assume that u and n are solutions of (0.1)-(0.4) and we will
establish an energy inequality satisfird by u . We assume at present that u and
m are classical solutions of (0.1),(0.4) as smooth as necessary for the subsequent

calculations to make sense.

The following result will be usefull

Lemma 1.1. If u and 7 satisfy (0.1)-(0.3), then

' (1.2) An = div f -~ E :D.u..D.u. , in
J1r 1]
i,]
am
(1.3) o f.n + E : uiuj ¢ij on T ,
i,j

: . . -2 . :

the functions ¢ij depending only on T , D, o n {nl,nz,n3} .

Proof., We get (1.2) by applying the divergence dperator on both sides of (0.1).

Taking then the scalar product of each side of (0.1) with n , we gét on T :

om _
(1.4) — = f.n j;—j ui(Diuj) nj .

it
on bpmerd
1,3

Since T 1is a smooth manifold, we can locally represent it by an equation

$(x) =0,

and on the corresponding part of I (say FO) s

, then (I-P)v = grad = ,
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_ grad ¢ (x)
n(x) = [grad ¢(x)]

(¢ 1is a smooth function in some neighborhood QO of FO).

Then
lgrad ¢(x)| ui(x)(Di uj(x)).nj(x) = ui(x)(Di uj(x)) Dj¢(x) .
Since
u(x) . n(x) =0 on T ,
we have

u(x) . grad ¢(x) = 0

when ¢(x) = O and the gradients of these two functions are therefore parallel on Iy

Di(u.grad ) =k Di¢ on T_ .

3 3

E :D. u, . D.¢ = - E u. . D.,.¢ + kD.¢ .
J=1 1] J‘ 3=1 J 1] 1

Whence with (0.3)

3 3

2 u; . DluJ .« D.¢p = - E :ui . uJ . D13¢
i,j=1 i,1=1

and (1.3) follows with

Dis ¢ (x)
(1.5). 9y (x) = —H——
J |grad ¢ (x)|

1.3. Quadratic estimation of g 1in term of u .

—

Lemma 1.2. If u and ¢ satisfies (0.1)-(0.3) then for each t>0 , for m>§ ,

(1.6) Jerad v ()], ¢ ¢ (JE@], + Juco)?

.

and for ms> 1 + g ,

—ero—

g i W ! 2
(1.7) lsrad v(t)dm’p <<, {“f(t)”m’p + Hu(t)“m,p} ’

the constant ¢y depending only m and @ , <, depending on p, m, and Q .
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Proof. We infer from (1.2), (1.3) and [1:] that

.

: ) S
| grad r”m,P s ¢ {|div £ - 2L_JDJu°'D .U, "m-l . +f.on + uiuj¢ij” m—%,p }
i’j l’J w (I')

By the triangle inequality and obvious majorations for £ , it remains to estimate

1;}:‘ 59005l 2nd ||Z: ¢13U m__ o

1,] )
. 3 wm-l;p .
Since m> 1 + 5 , (@) 1is an algebra and

"D .Du]] c “%u

m~1,p § 3 i"m-l,pHDiuj"m-l,p

(co, cy depend on m, p and Q).

For the boundary term we write

"Z uiuJ ¢ij" m—l,p < CA "Z: uiuj " m—-]-.-’p
1,3 p P

W ) 1,3 W r)

Ny

where c, depends only on m, p, and the ¢ij i.e. T . Observing that m - % > =

o

we see that VW P’ (r) 1is an algebra and hence

< (by the trace theorems)

GHUHWF:P( )

1.4 A priori estimate for p = 2 ,

Let & be a multi index, |a| ¢« m . We apply the operator D® on each zide of
(0.1). We then multiply by 0% , integrate over Q and add these equalities for
|a] « m . We obtain

@ ‘
(A

3
—E-) ﬁuiin = - Z—J ((U X 1u)) ((3rad ‘"nu).)m + ((fgu))m
IS

N



1
The first term on the right can be majorized using T. Kato [4 ] {(2.2) p.298( )}

and we find

-3
Qu 3
1Y (g 5= u)) e elul
Jﬁ‘=1| ] ch m m

where c¢' depends only on m .

For the other terms, we clearly have
(o)), < Mgl ol
- ((grad =m,u))_ < | grad ""m“unm
< (by Lemma 1.2)
2
< oy {E]Hully Tully, -
Whence
1 .4 2! 3
5 (G lulys ef Tuly + e 1l Nl

i = c' + cys el =1+c¢, , '

2 1
(1.8) &0 Iully < of Tul? + o5 121, -
so that
(1.9). “u(t)“ms y(t) , | O<t<T

where y 1is the solution of the differential equation

r G RICHAY ECIME

(1.10)

y(© = July, »

and (O’To) , 0<To<+w , 1s the interval of existence of vy ; To depends only on Qi

: ™
cé , and the H -norms of the datas £ , u

(1) See (1.12) below giving a more general result using LP norms, p # 2 .



In conclusion if § 1is a smooth bounded domain, if u and w are smooth

solutions of (0.1)-(0.4) and m > % , then the estimate (1.9) holds.

1.5. A priori estimate for p # 2 .

We rapidly establish an estimate similar to (1.9), involving the norms in

WP ,m> 1+ g .

-2
We apply the operator D* on each side of (0.1), we multiply by IDaulp “p% ,

integrate over  and add these equalities for |a| « m . This leads to

1 .d -2

L1 2 G “uﬂg,p = - (0% (y+grad m-£),|p%|P %) ,
|o<m
where ¢ = Z:u. —g—i—— « We prove hereafter that
1%
J
(1.12) | 0%, [0%|P20%) | < o Jul?
’ A 7 m,p .
|aTsm

From (1.7) and Holder inequality we see then that the right hand side-of (1.11)
is less than

3 2
ol + el o el o} Haly o+ Dely Ll
Whence
d 2 ;
(1.13) ol LU M e
with
cé = c2 + c7 , ca =1 + c2 .

We conclude from (1.11) that

(1.14) "u(t)"m’p € z(t) , O<t<T ,

Y

where 2z 1is the solution of

(s 2(t)2 + c) “f(t)"m ,

]

(1.15)
200) = Jlugfl, o s



and (O,Tl) is the interval of existence of 1z .

There remains to establish (1.12).

Proof of (1.12). Application of the Leibnitz rule gives

(1.16) Dy = (u.grad) Pu+ J  c  (Pu.grad) 0* By
a,B
O<Bga
Because of (0.2), (0.3), the contribution of the first term of (1.16) is zero,

for each a . The contribution of the subsequent terms is less than

Z |ca BII(DBu.grad) Dm—BuIPIDmi.!Ip .
o<B<a

In order to prove (1.12) it is then sufficient to show that
B a8 2
(1.17) | (0 u;) (D, D uj)lp < c ﬂu"m’p ,

for each i, j, a, B, 1lgi,j<3 , 1lclal¢m, O<Bsa .

Let us show (1.17). We set g = DBui , h = Di Da—Buj and we observe that

g e Wm_lei Py c 1P @) ,

he wlol*Bl=1 oy 0 19y

8l , < clel gy ,p < duly,p

In], < élhlm_|a|+|6|_1\< C"Ullm,p ,

for the values of p and ¢ given by Sobolev inclusion theorens (m—lsl >0,

n-|a|+|8|~1 > 0 as |af > [g] > 1) . If p or ¢ is infinite then we just write

' 2
leb], < [8l Ihl, < el I, < cluly

P m"lBI »P P

or

- 12
lehl, < |8|p|h|w$ Clglplhlm..!awel_l~<°|%“||m,p .

If |8 =m - % , p*l 1is arbitrary, but in this case



-1 > 0 by assumption. Hence g»ppl and sctting

lghl < lgl In] <o Mul® .

P p'lo thm,p

Similarly if m*iai+i6§—1 = % , then o021 1is arbitrary but in this case

m-]B* = 2m~‘ai~1—§ > m~l~§ > 0 . Hence p>p2l1 , we choose ¢ = S%T- and we write

in] .

p

ienl < lel,

The last case to consider is the case where p and o are finite and given by

_ 1 _ ng] 1_1_mfol+]gi~1
P g P

3 ’

O =

By Holder inequality (1.17) is satisfied in this case provided that

O g
+
Q

S

T I

e
.
”

2omela]-1 < 0
1%

and this is true as |al¢m and m > 1 + g .

2. THE EXISTENCE AND UNIQUENESS RESULT.

Theorem. ' Assume that  is a regular bounded open set of RB o) ; let m and ‘p

. 3
be given, p2l , m>»1 + 5 « Then for each ug and f ,

e

(2.1) uo . w‘t‘.,P(Q\) 3 , _Eii_y uo = ( , uo.n =0 on aQ

)
;
(2.2) fe 1 (0,0 @)

there exists a unique function .u and 7 defined on {O,T )
— L 2 4 em— ’ A 3

Putiishe e ot e @ e » 7

:'."*‘2

1 . - ; . . . . . - T
(7) It is seifzerount to assume that 30 is a tve dirensiona! wmarifeld ef class <

and @ 15 locally situated on one side ol 30
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(2.3) u e L°(0,T, ;WP (e)?)

(2.4) e 17(0,T, ;W™ 1P (o))

1 .
where T, < inf (T,Tl) ( ), and satisfying (0.1)-(0.4) on (0O,T,).

is A
Remarks. (i) The Theorem\“also valid in higher dimensions, with the natural

ces . . N
modification on the assumption on m (m > 1+5) 3

(ii) Because of the boundary layer effects we can not expect to prove as
in Kato [S'J'the existence on (0,T,) , for each y>0 of a solution of the Navier

Stokes equations belonging to Hm(9)3

The proof of uniqueness is standard. We will just show the existence of u

and ‘m , considering successively the case p =2 and p ¢ 2 .

Case p =2..

We apply the Galerkin method with a special basis {wk} which we first
describe .
(i) For m fixed a; before, we consider the space Xm c Hm(n)3 , endowed with
the Hilbert scalar product ((.,.))m , and the space X° which is a closed
subspace of L2(9)3 . It is clear that X <X, and Xm is dense in X . By the

Lax-Milgram theorem, for each g e.xo , there exists a unique w e.xm such that
(2.5) ((w,v)) = (8,V) Vvex ..

The linear mapping g > w(g) 1is a compact self adjoint operator in xo and it

possesses an orthonormal complete family of eigenvectors v

wk e Xm and
{2.6)
(ii) Let us use the Gaierkin method with this basis. For u>0 fixed we look
for ' .
. = . t .
(2.7) u, E gJu( ) vs
i=1

(1) see (1.10) and (1.15).
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satisfying
d
(2.8) 3?(%1’wk) + ((%J.grad)Uh,Wk) = (f,w) , Ik ,

(2.9) uh(O) = uou = Euuo ,

P, = the orthogonal projection in Xo (or as well in Xm) on the space spanned by

wl"..’wk .
The equations (2.8), (2.9) are equivalent to a system of ordinary differential
equations for the gju , and the existence of a solution on some interval (O,Th)

is standard. The following a priori estimates on u_ show that %1_= T, is

P
independant of u .

(iii) The first a priori estimate is obtained by multiplying (2.8) by
gku(t) and adding in k . It is well known (see also §.1) that

((uu.grad)uu,uu) =0

and there remains

1.d 2
260 lu, 1 = () < [l |
This shows that Tu = T and that
(2.10) uu remains bounded in Lm(O,T;Lz(Q)3) as y — o,

We can also write (2.8) as

du

(2.11)  (gPhw) + (P[(uu.grad)uu ) = (Pf,w)

W
’k:

(wke: Xo) . Now P[(uu(t).grad)uu(t)] € Xm , PE(t) = Xm , Vit , (see (1.11)) and we
can use (2.6). We multiply (2.11) by Akgk and dd in k , k =1,...,p0 . We obtain

1,d 2 e o
(2.12) 5 E?) "uufm t(p(f (u“.grad)uu,uu;)m .

We have simply

P[f—(uu.grad)uu] = f - (uu.gr;ad)‘.\a’1 -~ grad "u ,
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where T is defined in term of u, and f by relations similar to (1.2), (1.3)

(replacing u by uu). The relation similar to (1.5) is satisfyed and we get

exactly the same relation as (1.8)
d 2 2 :
G 112 < el 12 + il -

We recall also that

e, O = Mg, I < Tuoly -
Whence,
"uu(t)"ms y(t) , ¥ t < inf(T,T )
and
(2.13) As y — = ,u remains bounded in ﬂ”(o,r*,mm(u)s)

VT, < inf(T,T )

{
(iv) In order to pass to the limit in the non linear term using a

. du
compactness theorem, we need an estimate on "

dt '
Since the W are orthogonal in Xo , we deduce from (2.11) that

du

-t = -
It Pu P(f (uu.grad)uu) .

Hence

du
|70 < [£() = (u (&) .grad)u (0)]

and with (2.13) it is easily found that

du

(2.14) EEE; remains bounded in L“(O,T*;L2(9)3) as y -—> o,

(v) The passage to the limit using (2.13), (2.14) and a compactness
theoren (as in Lions [7—]) is standard. We obtain at the limit the existence of
u e:Lm(O,T*;Xm) such that

(2.15)  To(u(®),v) + ((u(t).grad)ult),v) = (£(0),v) Y ve X , O<teT, .



(2.16) u{C)

u satisfies all the properties anaounced, i.e. (0.2)-(0.4) and (2.3). Because of

L3

(2.15) the existence of 1w such that (0.1) is satisfied is standard (see

Ladyzhenskaya [6 ]).

Case p # 2.

We proceed by regularxz tion. We approximate Uy and £ by Use ‘and ‘e

uOE & XS
£ e oS3

with s sufficiently large so that

B3 ¢ WP (n)

and X < xﬁlp . We solve (G.1)-(0.4) with u and f replaced by u and f
, ! :

Ju OE
. ) . IS :
The estimate analog to (1.14) and an easy estimate on T allow us to pass to the

limit as € — O and we obtain (0.1)-(0.4) on (0,T,) .
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