
ANNALES MATHÉMATIQUES

BLAISE PASCAL
Gábor Kallós
A generalization of Pascal’s triangle using powers of base
numbers

Volume 13, no 1 (2006), p. 1-15.

<http://ambp.cedram.org/item?id=AMBP_2006__13_1_1_0>

© Annales mathématiques Blaise Pascal, 2006, tous droits réservés.
L’accès aux articles de la revue « Annales mathématiques Blaise Pas-
cal » (http://ambp.cedram.org/), implique l’accord avec les condi-
tions générales d’utilisation (http://ambp.cedram.org/legal/). Toute
utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier doit
contenir la présente mention de copyright.

Publication éditée par les laboratoires de mathématiques
de l’université Blaise-Pascal, UMR 6620 du CNRS

Clermont-Ferrand — France

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://ambp.cedram.org/item?id=AMBP_2006__13_1_1_0
http://ambp.cedram.org/
http://ambp.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


Annales mathématiques Blaise Pascal 13, 1-15 (2006)

A generalization of Pascal’s triangle using powers
of base numbers

Gábor Kallós

Abstract

In this paper we generalize the Pascal triangle and examine the connections
among the generalized triangles and powering integers respectively polynomials.
We emphasize the relationship between the new triangles and the Pascal pyramids,
moreover we present connections with the binomial and multinomial theorems.

1. Introduction

The interesting and really romantic Pascal triangle has been a favorite
research field for mathematicians for a very long time. The table of bi-
nomial coefficients has been named after Blaise Pascal, a French scientist
and writer. Although the triangle had been known as early as in ancient
India, and later in Persia, China and Europe in the Middle Ages by a
number of scientists before Pascal, he generalized known results and gave
a number of new properties, which he formulated in nineteen theorems
([3]).

The Pascal triangle has a number of generalizations.
We can construct the generalized Pascal triangles of sth order (or kind s,

sometimes referred to as the s-arithmetical triangles), from the generalized
binomial coefficients of order s. This idea was first published in 1956 by
John E. Freund ([5]). These triangles have been intensively investigated
in the last decades, we cite some important properties in Sections 4 and
5.

Other interesting planar generalizations are the Lucas, Fibonacci, Cata-
lan and other arithmetical triangles, however these constructions diverge
from our topic.

This research project has been partially supported by a grant given by the Universitas-
Foundation, Győr.
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The so-called Pascal pyramid is constructed from trinomial coefficients,
which occur in the expansions (x + y + z)n (first mentioned by E. B.
Rosenthal, 1960, [3]). Each of the outer faces of the pyramid are Pascal
triangles. We can extend this idea to the multi-dimensional case (with
dim ≥ 4), so Pascal hyperpyramids can be constructed from multinomial
coefficients ([3]).

In this paper we present another type of generalization. This idea is
based on the well-known fact (see e.g. the paper of Robert L. Morton
from 1964, [8]) that from the nth row of the Pascal triangle with positional
addition we get the nth power of 11 (Figure 1), where n is a non-negative
integer, and the indices in the rows and columns run from 0.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1
. . .

1 = 110, 11 = 111, 121 = 112, 1331 = 113, 14641 = 114, 161051 = 115, . . .

Figure 1. Powers of 11 in the Pascal triangle

This comes directly from the binomial equality

(
n

0

)
10n +

(
n

1

)
10n−1 +

(
n

2

)
10n−2 + · · ·+

(
n

n− 1

)
101 +

(
n

n

)
100 = 11n.

(1.1)

2. ab-based triangles

Let us construct triangles, in which the powers of other numbers appear.
To achieve this, let us consider the Pascal triangle as the 11-based triangle,
and take the following definition.
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Generalization of Pascal’s triangle

Definition 2.1. Let a and b be integers, with 0 ≤ a, b ≤ 9. We get the
kth element in the nth row of the ’ab’-based triangle if we add b-times
the k − 1th element in the n − 1th row to a-times the kth element in the
n − 1th row. If k − 1 < 0 or k > n (i.e., the element in the n − 1th row
does not exist according to the normal implementation) then we consider
this element to be 0 (Figure 2). The indices in the rows and columns run
from 0.

1

4 7

16 56 49

64 336 588 343

256 1792 4704 5488 2401
. . .

Figure 2. The 47-based triangle

Remark 2.2. Although the construction of triangles of coefficients in ex-
pansions of (a + bx)n – i.e. our ab-based triangles – has already been
mentioned by few other authors in the last years (see e.g. [4] and [9]), sys-
tematic analysis as here was published first only in [6] and [7]. The same
is true for the more general case as triangles of coefficients in expansions
of (a + bx + cx2)n, see Definition 3.1.

Let us introduce the notation Eab
n,k for the kth element in the nth row

of the ab-based triangle. Thus, our definition takes the form Eab
n,k =

bEab
n−1,k−1 + aEab

n−1,k with n ≥ 1 and Eab
0,0 = 1. Here E11

n,k = Ck
n is the

element of the Pascal triangle.
The structure of the ab-based triangle is relatively simple and closely

related to the Pascal triangle.

Proposition 2.3. In the ab-based triangle we have Eab
n,k = an−kbkCk

n.

Proof. We prove by induction. In the first row the assertion is true. Let
us now assume, that in the n − 1th row Eab

n−1,k−1 = an−kbk−1Ck−1
n−1 and
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Eab
n−1,k = an−k−1bkCk

n−1 hold. Then for Eab
n,k by the definition we have

Eab
n,k = b · an−kbk−1Ck−1

n−1 + a · an−k−1bkCk
n−1 = an−kbkCk

n.
�

As a consequence of this result, by positional addition from the nth row
of the ab-based triangle we get the nth power of the base-number ab, since
similarly, as in (1.1), from the expansion of abn we get

(10a + b)n =

(
n

0

)
an10n +

(
n

1

)
an−1b10n−1 + · · ·

+

(
n

n− 1

)
abn−110 +

(
n

n

)
bn.

(2.1)

Example 2.4. In the 3rd row of the 47-based triangle 64 · 103 + 336 · 102 +
588 · 10 + 343 = 103823 = 473.

We have a nice connection with the binomial theorem.

Proposition 2.5. The elements in the nth row of the ab-based triangle
are the coefficients of the polynomial (ax + by)n.

Proof. This result follows from Proposition 2.3, if we substitute 10a with
ax and b with by in (2.1). �

Example 2.6. From the 47-based triangle (4x + 7y)3 = 64x3 + 336x2y +
588xy2 + 343y3.

It is interesting to check how the properties of the Pascal triangle are
modified in the ab-based triangles. Some of them (e.g. symmetry, divisibil-
ity) are straightforward, some others will be investigated more generally
in the next sections.

We focus here only on some properties, which rely on the fact that the
base-number has only two digits.

An important property of the Pascal triangle is that the sum of ele-
ments in the ascending diagonals form the Fibonacci sequence. A direct
consequence of the construction is that in the ab-based triangles we have
Fibonacci-like recurrence sequences Gi = bGi−2 +aGi−1, with G0 = 1 and
G1 = a. (Figure 3).

An interesting connection between the Pascal pyramid and the ab-based
triangles will be discussed in Section 4.
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Generalization of Pascal’s triangle

1
1 2

1 4 4
1 6 12 8

1 8 24 32 16
. . .

��9
1

����9
1

��9
3

����9
5

��9
11

...

Figure 3. The recurrence sequence Gi = 2Gi−2 + Gi−1

in the 12-based triangle

Finally, we mention that the ab-based triangles have already some prac-
tical applications. In 1996, Sven J. Cyvin, Jon Brunvoll and Bjørg N.
Cyvin published several articles to solve the so-called isomer enumeration
problem for polycyclic conjugated hydrocarbons and for the unbranched
α-5 catapolyheptagons (see e.g. in [4]). To achieve this, they used certain
triangular matrices (denoted by A(x, y) with integer parameters x and
y), which were defined by a recurrence relation essentially identical as in
Definition 2.1. E.g., in [4], the authors used matrix A(4, 2) (our 42-based
triangle).

3. Further generalization

The base-number of such triangles can consist of more than two digits,
too.

Definition 3.1. Let 0 ≤ a0, a1, . . . , am−1 ≤ 9 be integers. We get the kth

element in the nth row of the a0a1 . . . am−1-based triangle if we multiply
the k−mth element in the n− 1th row by am−1, the k−m + 1th element
in the n − 1th row by am−2, . . . , the kth element in the n − 1th row by
a0, and add the products. If for some index i we have k − m + i < 0 or
k −m + i > n(m− 1) (i.e., an element in the n− 1th row does not exist)
then we consider this element to be 0. The indices in the rows and columns
run from 0 (Figure 4).

Using our notation introduced above, we have

E
a0a1...am−1

n,k =am−1E
a0...am−1

n−1,k−m + am−2E
a0...am−1

n−1,k−m+1 + · · ·
+ a1E

a0...am−1

n−1,k−1 + a0E
a0...am−1

n−1,k .
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1

2 5 7

4 20 53 70 49

8 60 234 545 819 735 343
. . .

Figure 4. The 257-based triangle

As we already mentioned, triangles with base-number 11 . . . 1 (s pieces
of 1 digits) have already been known for decades as generalized Pascal
triangles of sth order ([3]). However, they were introduced using a combina-
torial approach, by the generalization of the binomial coefficients ([5]). 1

The most common such triangle is the generalized Pascal triangle of or-
der three (our 111-based triangle), sometimes referred as trinomial triangle
– because of the connection with the trinomial coefficients, see Section 4.

Similarly, as in the generalized Pascal triangles of mth order, in the
a0a1 . . . am−1-based triangles the number of the elements in the nth row is
Nn,m = n(m− 1) + 1.

As by the ab-based triangles, we have the same result about the powers
of the base-number.

Theorem 3.2. From the nth row of the a0a1 . . . am−1-based triangle by
positional addition we get the nth power of the number a0a1 . . . am−1.

Proof. We prove by induction. In the first row of the triangle is obviously
the first power of the number a0a1 . . . am−1.

Let us now assume, that in the n − 1th row (n > 1) we have elements
b0, b1, . . . , bp with p = (n− 1)(m− 1), and from these elements with posi-
tional addition we get the n−1th power of the base-number a0a1 . . . am−1.
Let us write out (a010m−1 + a110m−2 + · · ·+ am−210 + am−1)n as

1The generalized binomial coefficient
(

n
m

)
s

is the number of different ways of dis-
tributing m objects among n cells where each cell may contain at most s− 1 objects
([3]). This is the element in the mth column of the nth row in the generalized Pascal
triangles of sth order. For s = 2 we get the "normal" binomial coefficients and the Pascal
triangle.
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Generalization of Pascal’s triangle

(b010p + b110p−1 + · · ·+ bp−110 + bp)a010m−1

+ (b010p + b110p−1 + · · ·+ bp−110 + bp)a110m−2

+ . . .

+ (b010p + b110p−1 + · · ·+ bp−110 + bp)am−210

+ (b010p + b110p−1 + · · ·+ bp−110 + bp)am−1.

By adding these expressions (using p = mn−m− n + 1) we get

a0b010mn−n+(a0b1 + a1b0)10mn−n−1+(a0b2 + a1b1 + a2b0)10mn−n−2+· · ·
+ (am−1b0 + am−2b1 + · · ·+ a1bm−2 + a0bm−1)10mn−m−n+1 + · · ·
+ (am−2bp + am−1bp−1)10 + am−1bp,

and this is exactly the number we get after positional addition from the
nth row of the triangle. �

Example 3.3. In the 2nd row of the 257-based triangle 4 · 104 + 20 · 103 +
53 · 102 + 70 · 10 + 49 = 66049 = 2572.

Proposition 3.4. The elements in the nth row of the general triangle are
exactly the coefficients of the polynomial (a0 + a1x + · · · + am−1x

m−1)n,
where the kth element is the coefficient of xk.

Proof. We prove by induction. In the first row the statement is true. Let
us now assume that in the n − 1th row there are the coefficients of the
polynomial (a0 + a1x + · · · + am−1x

m−1)n−1, and the kth element is the
coefficient of xk. If we multiply this polynomial by a0, a1x, . . . , am−1x

m−1,
and sum the results (similarly as in the proof of Theorem 3.2), we get the
nth power of the basic polynomial. But according to the forming rules of
the triangle, the coefficients of this polynomial are exactly the elements of
the nth row. �

Example 3.5. From the 3rd row of the 257-based triangle (Figure 4)
(2 + 5x + 7x2)3 = 8 + 60x + 234x2 + 545x3 + 819x4 + 735x5 + 343x6.

These results show that we have the "right" to call the new triangles as
generalized Pascal triangles, since their general properties are very similar
to that of the Pascal triangle.
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In Proposition 2.5 we saw a connection of the ab-based triangle with
the binomial theorem. Thus, we expect the a0a1 . . . am−1-based triangle to
have a relation with the multinomial (sometimes referred as the polyno-
mial) theorem. However the structure of the latter triangle is much more
complicated. See for example the triangle with base-number abc (Figure
5). The elements in the nth row are some sums of the coefficients of the
polynomials (ax + by + cz)n.

1

a b c

a2 2ab 2ac + b2 2bc c2

a3 3a2b 3a2c + 3ab2 6abc + b3 3ac2 + 3b2c 3bc2 c3

a4 4a3b 4a3c 12a2bc 6a2c2 12abc2 4ac3 4bc3 c4

+6a2b2 + 4ab3 + 12ab2c + 4b3c + 6b2c2

+b4

. . .

Figure 5. The abc-based triangle

To discover the connection of the general triangle with the multinomial
theorem we need deeper analysis.

Definition 3.6. For the digits of the base-number a0a1 . . . am−1 let the
weight of a digit be its distance from the centerline. So w(a0) = −w(am−1),
w(a1) = −w(am−2), . . . . If the base number is odd, then w(a(m−1)/2) = 0.
Let the unit of the weights be the distance of two neighboring elements in
the triangle, i.e., w(ai) = w(ai+1) + 1.

Example 3.7. In the abc-based triangle w(a) = −1, w(b) = 0 and w(c) = 1,
in the abcd-based triangle w(a) = −1.5, w(b) = −0.5, w(c) = 0.5 and
w(d) = 1.5.

We would like to extend this idea to the elements of the other rows. As
the elements of the triangle are sums, consider first the parts of them. For
such an expression let the weight of the part be the sum of the weights of
its digits. If a digit is on the ith power, then we count its weight i-times.

8



Generalization of Pascal’s triangle

Example 3.8. One part of the 2nd element in the 3rd row of the abc-
based triangle is 3a2c (Figure 5). For this expression we have w(3a2c) =
2w(a) + w(c) = −1.

Lemma 3.9. In an element of the general triangle the weights of the
parts are identical, and this weight is the distance of the element from the
centerline.

Proof. This result follows by induction directly from the construction of
the triangle. �

In the following let us call the identical weights of the parts the weight
of the element.

Lemma 3.10. Let us consider an expression ai0
0 ai1

1 . . . a
im−1

m−1 for which
i0 + i1 + · · ·+ im−1 = n. Then we can find this expression with some kind
of coefficient as a part of the element with the same weight in the nth row
of the general triangle.

Proof. Let us assume indirectly that this expression does not exist in the
nth row of the general triangle as a part of the element with a correspond-
ing weight. We should get this expression from parts of elements of the
previous row

(ai0−1
0 ai1

1 . . . a
im−1

m−1 , ai0
0 ai1−1

1 . . . a
im−1

m−1 , . . . , ai0
0 ai1

1 . . . a
im−1−1
m−1 )

with multiplication (by a0, a1, . . . , am−1). Thus these parts of elements
can’t exist in the previous row. Proceeding backwards with this method
we conclude that in the first line some digits of the base-number do not
exist, and this is a contradiction. �

Lemma 3.11. For the coefficient d of the expression dai0
0 ai1

1 . . . a
im−1

m−1 with
i0 + i1 + · · · + im−1 = n in the nth row of the general triangle we have
d = n!

i0!i1!...im−1! .

Proof. This lemma can be proved by induction. This is left to the moti-
vated reader. Now we omit the details. �

By these three Lemmas we proved the following result, which gives the
desired connection with the multinomial theorem (4.3):

Theorem 3.12. The elements in the nth row of the a0a1 . . . am−1-based
triangle are exactly such sums of the coefficients of the polynomial (a0x0 +
a1x1 + · · ·+ am−1xm−1)n in which the weights of the parts are identical.
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Remark 3.13. With this result we presented a method to determine di-
rectly an element of the general triangle in a given position, too. However,
because of the complexity of the construction, we cannot have such a nice
formula for the elements as in the ab-based triangle.

4. Relationship with the Pascal pyramid

Richard C. Bollinger proved in [2] that the generalized binomial coeffi-
cients can be expressed by the means of multinomial coefficients as(

n

m

)
s

=
∑

n1,n2,...,ns

(
n

n1, n2, . . . , ns

)
, (4.1)

where the summation is over all s-part compositions n1, n2, . . . , ns of n
such that a) n1 +n2 + · · ·+ns = n, and b) 0n1 +1n2 + · · ·+(s−1)ns = m,
where the multinomial coefficients 2 are determined by(

n

n1, n2, . . . , ns

)
=

n!
n1!n2! . . . ns!

. (4.2)

Equation (4.1) presents a direct connection of generalized Pascal triangles
of sth order (for us now triangles with base-number 11 . . . 1) with the
Pascal hyperpyramids and the multinomial theorem (see (4.3) with n1 +
n2 + · · ·+ nm = n), similarly as our Theorem 3.12.

(x1 + x2 + · · ·+ xm)n =
∑

n1,n2,...,nm

n!
n1!n2! . . . nm!

xn1
1 xn2

2 . . . xnm
m . (4.3)

For s = 3 rule (4.1) can be presented as follows: if we add the trinomial
coefficients in the layers of the Pascal pyramid with identical weights, we
get the elements of the 111 based triangle (see Figure 6 with a = b = c =
1).

As it is already known, the Pascal pyramid can be constructed in the
way that we choose base numbers in the first layer a, b, c, and so the nth

layer consists of the coefficients in the expansion of (a + b + c)n (first
published by G. Garcia, 1967, [3]). We will call this kind of pyramid in
the following as the general Pascal pyramid.

2The combinatorial sense of the multinomial coefficient is as follows: (4.2) gives the
number of ways that n different objects may be distributed among s cells, where the
number of objects in the kth cell is nk, with k = 1, 2, . . . , s ([3]).
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Generalization of Pascal’s triangle

Now from Theorem 3.12 directly follows:

Corollary 4.1. Adding the elements in the layers of the general pyramid
in the way that the weights of the parts are identical, we get the elements
of the abc based triangle.

Example 4.2. For layer 4 this connection is presented in Figure 6.

a4

4a3b 4a3c

6a2b2 12a2bc 6a2c2

4ab3 12ab2c 12abc2 4ac3

b4 4b3c 6b2c2 4bc3 c4

��9 a4

����9
4a3b
��9 6a2b2 + 4a3c

����9
4ab3 + 12a2bc
��9 b4+12ab2c+6a2c2

. . .
��9 c4

Figure 6. Connection between the abc-based triangle and
the general Pascal pyramid

We can extend this result theoretically to the multi-dimensional case.
Thus, from an m-dimensional Pascal hyperpiramid which consists of the
coefficients in the expansions of (a0 + a1 + · · · + am−1)n, with the same
method we get the elements of the a0a1 . . . am−1-based triangle.

Another interesting connection can be observed between the Pascal
pyramid and the ab-based triangles. Lior Manor mentioned in 2004 ([9])
that by adding the elements in the rows of the layers in the pyramid, we
get the elements of the 12-based triangle. 3

However, by the analysis of the change of this property to the general
pyramid we can discover that something more general is true.

Theorem 4.3. Adding the elements in the rows of the nth layer of the
general pyramid, we get the elements in the nth row of the triangle with
base numbers AB, where A = a and B = b + c.

Proof. Mary Basil presented in 1968 ([1]) a rule for constructing the ele-
ments of the nth layer of the Pascal pyramid as(

n

n−m1,m1 −m2

)
=

(
n

m1

)(
m1

m2

)
, (4.4)

3Called by him as the triangle of coefficients in expansion of (1 + 2x)n.
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with m1 = 0, 1, . . . , n (rows) and m2 = 0, 1, . . . ,m1 (columns). Moreover
([1]), in the general pyramid the element in the nth layer with row and
column index m1 and m2 is(

n

m1

)(
m1

m2

)
an−m1bm1−m2cm2 (4.5)

We know that

(a+(b+c))n =

(
n

0

)
an+

(
n

1

)
an−1(b+c)+

(
n

2

)
an−2(b+c)2+. . .+

(
n

n

)
(b+c)n.

(4.6)
Now if we expand the powers of (b+c)i in (4.6), using (4.5) our statement
follows. �

Remark 4.4. Rule (4.4) says, in effect, that we get the elements of the nth

layer by taking rows of the Pascal triangle until n, rotating the last row
counterclockwise through the angle 90◦, and then multiplying the elements
of this column by the elements of the triangle ([3]).

In Figure 7 we arranged the parts of the right hand side of (4.6) in rows
and illustrated the proof of Theorem 4.3.

(n
0

)
(n
1

)
(n
2

)
(n
3

)
...(n
n

)
→

(0
0

)
(1
0

) (1
1

)
(2
0

) (2
1

) (2
2

)
(3
0

) (3
1

) (3
2

) (3
3

)
...(n

0

) (n
1

) (n
2

)
. . .
(n
n

)
→

an

an−1b an−1c

an−2b2 an−2bc an−2c2

an−3b3 an−3b2c an−3bc2 an−3c3

...

bn bn−1c bn−2c2 . . . cn

→

(n
0

)
an(n

1

)
an−1(b + c)(n

2

)
an−2(b + c)2(n

3

)
an−3(b + c)3

...(n
n

)
(b + c)n

Figure 7. Illustration of the proof of Theorem 4.3

5. Some properties of the generalized triangles

As we already mentioned, a number of mathematicians examined how
the properties of binomial coefficients can be extended to the generalized

12



Generalization of Pascal’s triangle

binomial coefficients of order s. Similarly, it seems to be a very interesting
and exciting research field, to determine more general connections among
the elements in the general triangles.

One interesting property follows immediately from Theorem 3.12.

Corollary 5.1. In the nth row of the a0a1 . . . am−1-based triangle the sum
of the elements (with normal addition) is (a0 + a1 + · · ·+ am−1)n.

Proof. If we set in the polynomial (a0x0 + a1x1 + · · · + am−1xm−1)n the
values of xi-s as 1 = x0 = x1 = · · · = xm−1, then from Theorem 3.12 in
the nth row of the triangle there are the coefficients of the "polynomial"
(a0 + a1 + · · ·+ am−1)n. �

Remark 5.2. For the generalized Pascal triangle of order s from this corol-
lary we get the known fact (see e.g. in [3]) that the sum in the nth row is
sn, while for s = 2 it follows the famous combinatorial equality(

n

0

)
+

(
n

1

)
+ · · ·+

(
n

n

)
= 2n.

For an arbitrary triangle let us denote the sum of the elements in the
nth row with even index by Se

n and similarly, the sum of the elements with
odd index by So

n.

Theorem 5.3. In the nth row of the a0a1 . . . am−1-based triangle we have

Se
n − So

n = (a0 − a1 + a2 − · · ·+ (−1)m−1am−1)n. (5.1)

For the proof of this theorem we will use the following lemma.

Lemma 5.4. Let us assume that in the b0b1 . . . bm−1-based triangle the
digits of the base-number are of alternating sign e.g. b0 is positive, b1

is negative, b2 is positive, b3 is negative, and so on. Then this property
remains true for all of the rows of the triangle, i.e. in every row is the 0th

element is negative, the 1st element is positive, and so on. Moreover, the
absolute value of the elements is the same, as the value of the elements in
the triangle with base |b0||b1| . . . |bm−1|.

Proof. We prove by induction. In the first row the statement is true. Let
us now assume that in the n − 1th row the assumption is true. By the
definition of the triangle, we calculate the elements of the nth row as
follows: we multiply together the elements of alternating sign in the n−1th

13
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row by the digits of the base number, which are of alternating sign, too.
Thus, we multiply together elements with signs + and +, − and −, . . . ,
or − and +, + and −, . . . , alternately, so we have elements in the nth row
with alternating sign. Not considering the signs we calculated the same
way the elements in the triangle with base |b0||b1| . . . |bm−1|, and from the
induction assumption the absolute value of the elements in the n − 1th

rows are the same. Thus, the absolute value of the elements in the nth

rows are the same, too. �

Now we prove the theorem.

Proof. Let us apply now Corollary 5.1 for the b0b1 . . . bm−1-based triangle
in Lemma 5.4. So

(b0+b1+ · · ·+bm−1)n = E
b0b1...bm−1

0,n +E
b0b1...bm−1

1,n + · · ·+E
b0b1...bm−1

n(m−1),n (5.2)

where on the right-hand side of (5.2) we have simply the sum of the
elements in the nth row. If we choose the bi-s such that bi = ai, if i is even,
and bi = −ai, if i is odd, then (5.1) follows directly from (5.2). �

In an arbitrary triangle let Se
n + So

n = A and Se
n − So

n = B. Then
Se

n = A+B
2 and So

n = A−B
2 . Using Theorem 5.3 and Corollary 5.1 we are

able to determine both of these sums without constructing the triangle.

Example 5.5. In the 257-based triangle (Figure 4) we have Se
1 = 9 =

(141 + 41)/2 and So
1 = 5 = (141 − 41)/2, Se

2 = 4 + 53 + 49 = (142 + 42)/2
and So

2 = 20 + 70 = (142 − 42)/2, and so on.

As a special result, for the generalized Pascal triangle of sth order it
follows the already known fact (see e.g. in [3]) that either Se

n − So
n = 1n,

if s is odd, or Se
n − So

n = 0n, if s is even (this is the case for the Pascal
triangle, too).
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