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Abstract

We outline a range of criteria for evaluating model selettipproaches that have been
used in the literature. Focusing on three key criteria, waduate automatically selecting
the relevant variables in an econometric model from a lagyeliclate set. General-to-
specific selection is outlined for a regression model in@gtnal variables, where only
one decision is required to select, irrespective of the remobregressors. Comparisons
with an automated model selection algorithlitometricgDoornik, 2009), show similar
properties, but not restricted to orthogonal cases. Momtdo@xperiments examine the
roles of post-selection bias corrections and diagnossiting, and evaluate selection in
dynamic models by costs of search versus costs of inference.
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1 Introduction

Model selection has historically been a contentious issee, e.g., Leamer (1978, 1983a),
Chatfield (1995) and Hansen (2005). The literature hastioadily focused on situations
where the only uncertainty concerns the set of relevanalbles. Selection procedures such as
information criteria, stepwise regression, shrinkagehmeés such as Lasso, or cross validation,
all aim to select a set of relevant variables from a candidate In this paper, we consider
a more general setting, whereby there is specification taingr over the choice of which
variables, their lags, functional forms etc., are relewtt which irrelevant. This more general
framework acknowledges that there is uncertainty aboutyeagpect of model specification,
and selection has the objective of reducing such uncesaijrdt the cost of a ‘local increase’ in
uncertainty at the margin of significance regarding whaglisvant. However, model selection
in this more complex framework is difficult: to successfudigtermine what matters and how it
enters, all important determinants need to be includedljoi@mitting key variables adversely
affects the goodness of fit, biases the included factorstedf and in a world of intercorrelated
variables with non-stationarities induced by breaks, dei@dnon-constant estimated models.
To resolve that requires commencing from a sufficiently gamaodel in which all potentially
relevant variables, lags, functional forms, outliers, et@ included initially. The objective of
our paper is to consider why model selection might be sufideisssuch a setting, and then
focus on its application to dynamic specification.

The structure of the paper is as follows. Section 2 brieflycdess how the paper fits in
with the literature on model selection, motivating the sl of automatic general-to-specific
(Get9 selection. Section 3 considers nine common criteria fahating the success, or other-
wise, of model selection. Three of those criteria are bo#ratmonal and relevant to practical
empirical modeling. These three criteria are applieGisselection, first for a simple 1-cut
rule (section 4), then in a comparison of the 1-cut rule withmore complicated model selec-
tion procedure of automatddets(section 5), and finally applying that approach to a dynamic
data generation process (DGP) in section 6. Section 7 coeslu

A more detailed overview of Sections 4-6 will help to mot&dheir structure. Section
4 considers the analytically tractable setting of a condbgaP with orthogonal variables, an
unknown subset of which are relevant to explaining the dépetvariable, with the remainder
being irrelevant. We show that only one selection decissarequired, called ‘1-cut’, irrespec-
tive of the number of regressofg < T, for T' observations. This rebuts claims that model
selection intrinsically involves repeated testing (see eeamer, 1983a). A simulation exper-
iment for N = 1000 atT" = 2000 confirms the theoretical analysis of ‘1-cut’. Although ther
are2!990 ~ 10301 possible models, onlgnemodel needs estimated, and onlgiagle decision
is required to select the final model: ‘repeated testing'scos occur.

We introduce the terminologygauge and ‘potency. Gauge denotes the retention fre-
quency of irrelevant variables when selecting, withoutassgating that they be ‘significant’.
Thus, gauge measures the ‘distance’ between correctlydirg all the irrelevant variables
and retaining some irrelevant variables, with connotatioithe gauge as the distance between
rails on a railway track. Gauge is used because the ‘sizetedtastatistic has a definition which
is only precise for a similar test with a known distributi@md the word is ambiguous in many
settings (such as sample size). Similarly, retaining eetevariables no longer corresponds to
the conventional notion of power, so we use potency to dethetaverage retention frequency
of relevant variables, which need not be by rejecting thé midtency implies strength, so is
appropriate to delineate retaining variables that hagmaistrength’, i.e. that are relevant.

Gauge and potency are more useful concepts than the metddoyd_ovell (1983), which
measures the probability that the DGP is selected as thelmbalat metric does not account



for variables with very low (but non-zero) populatitistatistics, where such variables would
not be retained when testing the DGP itself. For 1-cut, thaygas close to its corresponding
nominal significance levely, for smalla (e.g.,a < 1/N), which can be controlled, and
potencies are close to the theoretical powers for one-sif§ telespite seeking to select a small
number of relevant variables from a very large set of candgla

Although there is no repeated testirgglectiondoes affect the distributional properties
of the final model's estimates as compared with estimatiegidbal data generating process
(LDGP-the DGP in the space of the variables under analysis:Hendry, 2009). Thus, the
next step is to correct for biases induced in conditionaritistions by only retaining signifi-
cant coefficients. Building on Hendry and Krolzig (2005), skew that bias corrections also
reduce mean-square errofdESs) of irrelevant variables estimates in both conditional an
unconditional distributions, with a small increase in M8Es of relevant variables.

Next, a more general procedure is required than 1-cut thest dot depend on orthogonality
of the regressors. Section 5 compares the 1-cut approablusiitg a general search algorithm
implementing automatiGets namelyAutometricswithin PcGive(see Doornik, 2007b, 2009,
Hendry and Doornik, 2009). The 1-cut strategy is ‘optimatiem the regressors are orthogonal
in-sample, so a comparison provides a check of the closefdlse more general algorithm’s
results. We also assess the impact of mis-specificatioimgesh gauges, and note the role of
tests for encompassing the initial general unrestrictedehGUM).

Since dynamic dependence induces correlations betweeoeadjlags, the resulting non-
orthogonality requires a general algorithm. Section 6reddethe experimental design to sta-
tionary dynamic DGPs, examining models that are underispecelative to the DGP, match
the DGP, and are over-specified. Negative dependence tfgedevels representation of first
differences) can be problematic for selection approachasdo not usésets such as step-
wise expanding searches and the Lasso (see Tibshirani). 198&)-length pre-search at loose
significance levels from the longest lag has little impacttiom selection results, but greatly
improves the search time for largé. Dynamicsper sedo not seem to affect the selection
procedure, although measurements of performance mustrtcor the difficulty in precisely
dating lag reactions. We now review previous approaches.

2 Model selection literature

There is a vast literature on model selection, includingcpdures based on penalized model
fit: (e.g.) theC, criterion of Mallows (1973), the prediction criterion of Asmiya (1980),
and various information criteria, such as Akaike (1973hvarz (1978), Hannan and Quinn
(1979), and Chow (1981). However, these procedures do sorerongruency, and so a mis-
specified model could be selected (see Bontemps and Miz08) 28hrinkage techniques have
been proposed as a solution to the ‘pre-test problem’: ssr @1956), James and Stein (1961),
Yancey and Judge (1976) and Judge and Bock (1978), and atesbalgorithms such as Lasso
(Tibshirani, 1996). One criticism of shrinkage is that itnist progressive, in the sense of
knowledge accumulating about the process being model&muse the decision rule need not
eliminate variables. Bayesian model averaging (see Hypelitadigan, Raftery and \Volinsky,
1999, for an overview) is often used to account for model taggy, as is the extreme bounds
literature of Leamer (1978, 1983b, 1985). This approachbleas heavily criticised bynter
alia, McAleer, Pagan and Volker (1985), Breusch (1990) and Headd Mizon (1990). Step-
wise regression is popular, but is path dependent, is stisleep negative dependence, and
does not have a high success rate of finding the DGP. Berk YIi#f8onstrates that applying
both forward and backward selection is no guarantee to fiytie correct model. Alternative
selection procedures exist, such as ‘optimal regressiom/hich all subsets of regressors are



included (see Coen, Gomme and Kendall, 1969, and the resjpgrBox and Newbold, 1971),
but that approach is anyway intractable with a large set tdrg@l regressors.

Given these criticisms, our paper focuses on generaldoisp model selection. The pro-
cedure commences with a large set of potential regressarsiaplifies the model to cap-
ture the salient characteristics of the data: iséer alia, Anderson (1962), and Pagan (1987),
Phillips (1988) and Campos, Ericsson and Hendry (2005)daews. We challenge the tradi-
tional view that model selection is costly by demonstratimg low costs of search relative to
the costs of conducting inference on a pre-specified modelomtrast, the costs of search for
earlier procedures can be very high. For example, seleasomg information criteria requires
selecting from2" possible models, which will often be infeasible for larye whereasGets
selects from théV candidate variables. Furthermore, stepwise selectiold ¢ouss’ relevant
variables with negative dependencies depending on the ofdelusion, wherea&etsinsures
against path dependence by undertaking a tree search. \Weomsider how to evaluate model
selection procedures, before focusing attention on thioeance ofGetsselection, noting
that theGetsapproach includes aspects of many other model selectiomoae(segbs).

3 Evaluating model selection

In this section, we consider how alternative methods of rhedkection might be evaluated,
including the three criteria that we subsequently use. Tbpgsties of empirical models are
determined by how they are formulated, selected, estimatatievaluated, as well as by data
quality, the initial subject-matter theory and instituta and historical knowledge. Since many
features of models are not derivable from subject-matesrh empirical evidence is essential
to determine what are the relevant variables, their lagti@as; parameter shifts, non-linear
functions and so on. Embedding a theory in a general spdaificthat is congruent with all
the available evidence offers a chance to both utilize thst aeailable theory insights and
learn from the empirical evidence. That embedding can as=ehe initial model size to a
scale where a human has intellectual difficulty handling-&agiired reductions, and indeed the
general model may not be estimable, so automatic methoasddel selection are essential.

Nevertheless, the best model selection approaches caamsipected to select the LDGP
on every occasion, even when the GUM nests the LDGP. Cortyerseapproach will work
well when the LDGP is not a nested special case of the postulaibdel, especially in pro-
cesses subject to breaks that induce multiple sources e$tationarity. Phillips (2003) pro-
vides an insightful analysis of the limits of econometricghat setting.

Models that are constructed with a specific purpose in mirgdirie be evaluated accord-
ingly. Thus, there are many grounds on which to select engbimnodels—theoretical, empiri-
cal, aesthetic, and philosophical—and within each categaany criteria, leading to numerous
ways to judge the ‘success’ of selection algorithms, inicigd

(A) maximizing the goodness of fit;

(B) recovering the LDGP with high frequency;

(C) improving inference about parameters of interestireddb the GUM,;
(D) improving forecasting over the GUM (and other selectiogthods);
(E) working well for ‘realistic’ LDGPs;

(F) matching a theory-derived specification;

(G) recovering the LDGP starting from the GUM almost as ofisrfrom the LDGP itself;



(H) matching the operating characteristics of the algaorithith their desired properties;
(D finding a well-specified, undominated model of the LDGP.

Criterion (A) is a traditional criterion, often based on pkred fit, but Lovell (1983) showed
that it did not lead to useful selections. The second, (Bdvexly demanding, as it may be
nearly impossible to find the LDGP even when commencing fripm.g., the population non-
centralities of some relevant variables’ coefficients maybn-zero but very small. The third
criterion, (C), seeks (e.g.) small, accurate, uncertaiegyons around estimated parameters of
interest, and has been criticized by Leeb and PotscheB(ZWD5) among others. There are
many contending approaches when (D) is the objective, diratpusing other selection meth-
ods, averages over a class of models, factor methods, rdéuises, or neural nets. However,
in processes subject to breaks, in-sample performancenuede a reliable guide to later fore-
casting success (see Clements and Hendry, 1999). Therlsaraany possible contenders for
(E), including, but not restricted to, Phillips (1994, 199996), Tibshirani (1996), Hoover and
Perez (1999, 2004), Hendry and Krolzig (1999, 2001), WI2@90), Krolzig (2003), Demiralp
and Hoover (2003), and Perez-Amaral, Gallo and White (2C@3)vell as stepwise regression,
albeit most with different properties in different statésature. Criterion (F) is again widely
used, and must work well when the LDGP coincides with thehewdel, but otherwise need
not.

For (G), a distinction must be made between costs of inferemd costs of search. The
former apply to commencing from the LDGP, so confront evemeaestigator who did so, but
who was uncertain that the specification was completelyecbiomniscience is not realistic
in empirical economics), and are inevitable when test tigiedrequencies are non-zero under
the null, and not unity for all alternatives. Costs of seaaoh additional, due to commencing
from a GUM that nests but is larger than the LDGP, so are rehiy/to selecting. Operating
characteristics for (H) could include that the nominal mejflection frequency matches the
gauge; that retained parameters of interest are unbiasstityated; thaMSEs are small, etc.
Finally, there is the ‘internal criterion’ (1) that the algiihm could not do better for the given
sample, in that no other model dominates that selecteder@rifA)—(F) are all widely used
but, as noted above, there are situations in which selebgirsych criteria will not work well.
Conversely, (G)—(l) apply to any situation and any modetain procedure, so we use (G),
(H) and () as the basis for evaluation, noting that they daulprinciple be achieved together.

4 Why Gets model selection can succeed

In this section, we consider the simplest case of a congtamatmeter linear regression model
with perfectly orthogonal variables in-sample, of whictuaset comprise the LDGP. This sim-
ple case is of interest because it demonstrates that mddetisa does not require searching
through2? possible models. Instead, one decision is required, hémcélicut’ rule. Then
Getsselection can be seen as a natural generalization to tlaisituwhere the regressors are
not perfectly orthogonal. We show that the 1-cut rule satifigeria (G), (H) and (l), providing
the groundwork for the more general correlated case in &ebti

4.1 The orthogonal regressor model

When all the regressors are mutually orthogonal, it is easxplain whyGetsmodel selec-
tion needs only a single decision. Consider the regressioaeiin which the regressors are



perfectly orthogonal in sample:

N
Y = Z Brart + € 1)
k=1

whereT=' >0 | 2y iy = Aklr; VE, j, wheredy ; = 1if £ = j and zero otherwise, with
e; ~ IN[0, 2], independently of thdxy,,}, andT >> N. In (1), n < N of the regressors
have non-zer@,, but it is not known which, nor how many.

After unrestricted estimation of (1), order thesamplet?-statistics testingdy: 3, = 0 as:

ty 2ty 2 2 ) (2)

The cut-off,nn, between retained and excluded variables using a 2-sidedisance levek,
for at-test is:
t2, > > t& (3)
() = %a 7 HA+1)

Variables with large? values are retained and all other variables are elimin&etl a single
decisionis needed to implement (3), even fvr= 1000, and ‘repeated testing’ does not occur.
Using this 1-cut decision rule, it is straightforward to mtain the false null retention rate at
(say) less than one variable by setting< 1/N, VN (for small N, much tighter choices are
feasible):« should also tend to zero dsincreases to ensure a consistent selection (see Hannan
and Quinn, 1979, Potscher, 1991, and Campos, Hendry aridig¢ra003).

4.2 Simulation evaluation of model selection

Eet the firstn regressors be relevant, witii — n irrelevant regressors in the GUM, and let
By..; denote the OLS coefficient estimate after selection for dedficient onyy ; in replication

i, with M replications. Wheri(-) is the indicator variable, potency and gauge respectively
calculate the retention frequencies of relevant and weglevariables as:

retention ratepy = & S 1B #0), k=1,....N,

potency = & ko1 Pk @
N ~

gauge = ﬁ > k=n-+1 Pk-

In addition, we also compute mean square errMSKs), both before and after model
selection. DefineM, as the model obtained after selection from the GUM ang as the
model retained after selection from the LDGP. The uncoowigi and conditional (on retaining)
MSESs respectively are calculated as:

1
M
1

2 i1 [(ﬂzz‘—ﬁk)Q'l(ﬁzi#O) M
CMSE = ’ ’ , ,32 when 1 ﬁ* . 7& 0) = 0 (6)
k S (5, £0) (3 when 3_1(51: #0) =0

wheref}, ; denotes the coefficient defined in Table 1.

GMSE;, refers to theMISE for variablek in the GUM (which is only estimable with fewer
variables than observations) abhiSE; refers to theMSE for variablek in the LDGP. After
selecting from the GUM, the uncondition®ISE for variablek in the resulting model is given
by USMSE,; and the corresponding condition®ISE is given by CSMSE,. If selection is

(Br:—Br)°, Vk (5)

M=

UMSE, =

<




Coefficient MSE Note

GUM B GMSE; for N <T

My Bris  USMSEy, CSMSE, B, = 0if z; not selected

LDGP Br.i LMSE;, Bri=0fork=n+1,.,N

Mgy E;“ UIMSE;,, CIMSE;, E,” = 0 if = not selected ok > n

Table 1:MSEs before and after model selection

undertaken commencing from the LDGPMSE,, refers to the unconditionaVISE for the

k™ variable in the selected model (with | referring to ‘infecencosts’) and correspondingly
CIMSE, is the conditionaMSE. The square roots of tHdSEs are denoteBMSEs. When the
GUM nests the LDGP, the difference betwekfy, and M, is a measure of over-specification.
When the GUM does not nest the LDGP (under-specificatioe)ditierence betweeM, and

M is a measure of mis-specificatio§6.3 relates the costs of search and inference to Table 1.

4.3 Selection effects and bias corrections

The estimates from the selected model do not have the saiperpies as if the LDGP equation
had simply been estimated: the ‘pre-test’ problem. Coowiiti estimates of relevant coeffi-
cients are biased away from zero as they are only retained whe c2, and some relevant
variables will by chance havé < c2 in any given sample, so not be selected. Also, on av-
eragea(N — n) irrelevant variables will have? > ¢2 (spurious significance). However, bias
correction after selection is easily implemented follogvidendry and Krolzig (2005).

Let the population standard error for the OLS estim@tdnea% = E[&%]. Approximate:

Aﬁ ~ ﬁ ~ N ﬁ
9% B B
wherey = ﬁ/ag is the non-centrality parameter of théest. Let¢ (x) and® (z) denote the
normal density and its integral, then the expectation ofrinecated-value for a post-selection
estimatorg such thaqt5| > ¢, IS (see e.g., Johnson and Kotz, 1970, ch. 13):

¢(ca =) —¢(=ca —¥)
—®(ca =) + P (—ca =)

tB:

31] :NW),”

=Y +rpca) (7)

¢*:E[t5|‘t5‘>ca;w] :w+1

Then, (e.g.) for) > 0:

E[B 12 05ca] = B+05m (0,00) = B(1+ 077 (4,ca)) ®)
S0 an unbiased estimator after selection is:
=5 ¥ S (¥
— = - . 9
’ ﬂ(wrwma)) 5<¢*> ©)

Implementation requires an estima?ieof 1) based on estimating* from the observedg
and solving iteratively for) from (7) written as:

Y =" —r (1, ca) (10)
First replace (1, ¢,,) in (10) byr(tB,ca), andy* by ty:

:EB = tB —-r (tB,Ca) s then %’B = tB -Tr (ZEB’ Ca) (11)



leading to the bias-corrected parameter estimate:
B=p Gg/tg) : (12)

Hendry and Krolzig (2005) show that most of the selectiors lisacorrected for relevant
retained variables by (12), at the cost of a small increagleir conditionalMSEs. Thus,
correction exacerbates the downward bias in the unconditiestimates of the relevant coef-
ficients, and also increases th&liSEs somewhat. Against such costs, bias correction con-
siderably reduces thBISEs of the coefficients of any retained irrelevant variableéging a
substantive benefit in both their unconditional and cooddl distributions. Thus, despite se-
lecting from a large set of potential variables, nearly asbt estimates of coefficients can
be obtained with little loss of efficiency from testing imeant variables, but suffering some
loss from not retaining relevant variables at large values,0 The power loss from tighter
significance levels is usually not substantial relativesty, at-distribution with few degrees
of freedom. However, Castle, Doornik and Hendry (2010) stimat impulse-indicator satura-
tion (see Hendry, Johansen and Santos, 2008, and JohartsBietsen, 2009) is a successful
antidote for fat-tailed error processes.

4.4 Monte Carlo simulation of 1-cut for N = 1000

We illustrate the above theory by simulating 1-cut selecfrom 1000 variables. The DGP is:

ye = Bix1e+--+ BroTioe + e (13)

x¢ ~ INygoo [0,1] (14)

e ~ INJO,1] (15)
wherex; = (x14,--- ,Z1000,). The regressors are only orthogonal in expectation, blkepe

fixed between experiments, with = 2000. The DGP coefficients andtest non-centralities,
Yy, are reported in Table 2, together with the theoretical peveét-tests on the individual
coefficients.

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10
B 0.063 0.079 0.095 0.111 0.126 0.142 0.158 0.174 0.190 0.206
Uy, 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
Poor 0281 0.468 0.662 0.821 0.922 0.973 0.992 0.998 1.000 1.000
Po.oor 0.097 0.212 0.382 0.579 0.758 0.885 0.955 0.986 0.997 0.999

Table 2: Coefficient®,,, non-centralities),., and theoretical retention probabilities.

The GUM, which is the starting point for model selection, sists of all1000 regressors
and an intercept (which is also irrelevant here):

yr = Bo+ B1x1,e + - + BrogoT1000,t + U, t=1,...,2000 (16)

Only the firstn = 10 variables are relevant, 991 variables are irrelevant in (16). Selection
is undertaken by estimating (16), ordering thg as in (2), retaining (discarding) all variables
with t2-statistics above (below) the critical value as in (3), dect®n is made in one decision.
We report the outcomes far = 1% and0.1% using M = 1000 replications.

Gauges and potencies are recorded in Table 3. Gauges algmifitantly different from
their nominal sizesg, so selection is correctly ‘sized’, and potencies do noiatefrom the
average powers of 0.81 and 0.69. Thus, there is a close mataledn theory and evidence,



o} Gauge Potency
1% 1.01% 81%
0.1% 0.10%  69%

Table 3:Potency and gauge for 1-cut selection with 1000 variables.

even when selectintp relevant regressors frot®00 candidate variables in one decision. Fig-
ure 1 confirms that retention rates for individual relevaariables are close to the theoretical
powers of individuat-tests, despite selecting frond3°! possible models. ThESMSEs are
always below th&JSMSEs for the relevant variables (bottom graphs in Fig. 1), whihéxcep-
tion of 5, at 0.1%. Baselin®SMSEs for estimated coefficients in (16) a&d€01 as shown.

Retention of relevant variables at 1% Retention of relevant variables at 0.1%

0
— Monte Carlq
- Theory

0.7

0.5

0.2

—— Monte Carlg
- Theory

0.7

0.5

0.2

1 2 3 4 6 7 8 9 10X 1 2 3 4 6 7 8 9 10 X
MSES at 1% MSES at 0.1%
—— UMSE at 1% -
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L. I
0002 \ 0.002-
[ \\\___ I N
| | | | | | | | | | L | | | | | _7 | | | |
12 3 4 56 7 8 9 105 1 2 3 45 6 7 8 9 103

Figure 1:Model selection by the 1-cut rule fd¥ = 1000 ata = 1% (left) anda = 0.1% (|r<ight): re-
tention rateg;, of relevant variables, ..., z1o (top graphs)USMSE,; andCSMSE,, (bottom graphs).

Figure 2 records the trade-off frontier of gauge againsempot as the non-centrality in-
creases. This can be compared to the theoretical frontsthan a singlétest for an individ-
ual coefficient, recording size against power. The diffeeebetween the two frontiers is very
small, due to sampling variation, demonstrating that treaitlalgorithm matches the theory.
See Hoover and Perez (1999, figure 1) for a similar analydiseopotency/gauge frontier.

Theoretical Frontier

0.10
gauge

3 0.05

ho, 4 ho, 4
nCentra/ily nce"t’a/ig, 3 0 05

Figure 2: Trade-off frontier: left-hand panel records the theowdtftontier of size against power;
right-hand panel records the empirical frontier of gaugast potency.



4.5 Impact of bias correction onMSEs

In 1-cut selection, all retained variables must be significe c,. However, with automated
Gets this is not necessarily the case: irrelevant variablesImeagtained because their deletion
would make a diagnostic test significant, or because of epasging since a variable can be
individually insignificant, but not jointly with all varidbs deleted so far. The bias correction
formula in (12) is only applied to significant retained vaies, setting insignificant variables’
coefficients to zero.

Q 1% 0.1% 1% 0.1%
averageCSMSE over averag€ SMSE over
990 irrelevant variables 10 relevant variables

uncorrected3 0.84% 1.23% 0.10% 0.14%

E after bias correction 0.38% 0.60% 0.12% 0.13%

Table 4:AverageCSMSE of selected relevant and irrelevant variables (excludig)gwith and without
bias correction)/ = 1000.

Table 4 shows that the bias corrections for the retaineteirmat variables substantially
reduce theilCSMSEs by downweighting chance significance; since 99.9% ofauasht vari-
ables are eliminated at = 0.001, their USMSEs are tiny. Thus, in complete contrast to the
earlier literature reviewed in section 2, even with 991lavant variables, their total impact on
selected models after bias correction is essentially giédgi when suitable significance lev-
els are used. Figure 3 graphs M&Es of the bias-corrected relevant coefficient estimates in
their conditional distributions. Here, the impact of biasrection can also be beneficial, but is
generally small.

MSEs at 1% MSEs at 0.1%
0.006- —— CMSE 0.006-
— —- CMSE 2-step
-------- CMSE 1-step
— UMSE
0.004- 0.004-

LLLEPEEPRE PR o P

0.002- \ 0.002-
,....Q.\ \ ‘/’/'.—...-.—..—:.\‘——_\ e B

|
12345678910E 123456789105
k k

Figure 3:Impact of bias correction 06SMSE,, for relevant variables at = 1% (left) anda = 0.1%
(right).

5 Comparisons of 1-cut selection and automateGets

Having demonstrated that the 1-cut rule satisfies prope(@¢, (H) and (1), we now compare it
with automatedsets In non-orthogonal problems, path search is required abésh ‘genuine

relevance’, which gives the impression of ‘repeated tgstiout should not be confused with
selecting the ‘best fitting model’ from th2'%% ~ 103%! possible models. The multi-path
procedures in Hoover and Perez (1999) and Hendry and Kr{£i§1) do not become stuck
in a single-path sequence, where a relevant variable is@nthtly eliminated, retaining other
variables as proxies (e.g., as in stepwise regressibajometricsmproves further by a tree-
search to detect and eliminate statistically-insignificariables, and handliny > 7'. Atany



stage, a variable is removed only if the new model is a valkitlicgon of the GUM (i.e., the
new model must encompass the GUM at the chosen significavele $ee Doornik, 2008). A
path terminates when no variable meets the reductionioriteAt the end, there will be one or
more non-rejected (terminal) models: all are congruerdpumnated, mutually-encompassing
representations. If necessary, a choice is made usingbaei#dker, e.g., the Schwarz (1978)
information criterion, although all terminal models arpodged and can be used in, say, forecast
combinations. Thus, goodness-of-fit is not directly useddiect models, and no attempt is
made to ‘prove’ that a given set of variables matters althotig choice ofc,, affects R?
andn through retention by?., > ¢2. Generalizations are feasible to instrumental variables
estimators (see Hendry and Krolzig, 2005), and likelihositheation (Doornik, 2009).

Getsselection encompasses many aspects of the alternativeampbjers discussed 2.
For example, information criteria are used to select a firadehif there are multiple terminal
models. Alternatively, the terminal models could be aveda@r the GUM could be retained, or
included in a set of models being averaged. The GUM shoulgéeified using all available
subject-matter theory, and such theory can be imposed bgirig variables to be retained.
When there are more variables than observations, expaadohgontracting searches are used,
as in Doornik (2009), so specific-to-general search alsgs@aole. Encompassing tests ensure
a parsimonious congruent model of the GUM is selected, seerido(2008).

We now consider a much smalldr so results can be graphed and compared across a range
of experiments as the number of relevant variabless N, and their significance changes,
using the general design from Castle, Qin and Reed (2009)re¥d@ the orthogonal design
to ensure that 1-cut is a valid procedure. The analysis shiosighere is little or no cost to
undertaking a multi-path search compared to 1-cut, vatigahe Getsprocedure.

5.1 A small orthogonal-regressor model

The experimental design is given By = 10, n = 1,...,10, andT = 75:

Y = Po+Bixie+ -+ Bioriog + €, (17)

x; ~ INg[0,Io], (18)

e ~ IN[0,0F],t=1,....T, j=2,...,6, (19)
wherex; = (z14,--- ,z10¢). Thex, are fixed across replications. Equations (17)—(19) specify
10 different DGPs, indexed by, each having. relevant variables witl$;, = --- = 3,, =1
and10 — n irrelevant variables4,,,; = --- = ;o = 0). Throughout, we sef, = 5 and

M = 1000 replications are undertaken.

The error variance is given bay? wherej indexes 5 different error variances calculated
by 0% = T/j%, for j = 2,...,6, such that all relevant variables in each experiment have
the same non-centrality given by, , = 2,...,6 for k = 1,...,n. Hence, the 10 different
DGPs have relevant variables with 5 different non-ceriteali resulting in 50 experiments. The
experimental design aims to span a broad range of situatitora many relevant regressors
to few relevant regressors, and from highly significant tagimally significant regressors,
to ensure the simulation results are relatively generdtiwithe linear, orthogonal-regressor
context. Table 5 reports the theoretical powerd-te#sts for the non-centralities of relevant
variables considered.

The GUM is the same for all0 DGPs:

Yyt = Bo + Bz, + - - + BroTios + us-



J=2 j=3 j=4 j=5 j=6
a=0.05 503 843 978 99.9 100
a=0.01 260 639 913 991 100

Table 5:Theoretical power for a singletest (%) for experiments (17)—(19).

5.1.1 Simulation results forNV = 10

We now investigate how the general search algorithm pedaetative to 1-cut selection in
terms of (G)—(I) in Section 3. Their comparative gauges/fpr= 2 and«;,, = 6 are shown in
Figure 4, wheréAutometricsselects both with and without diagnostic testing. In defendde
(with diagnostic testing)Autometricsis ‘over-gauged’, particularly for low non-centralities,
where the gauge increasesras— N. For high non-centralities, the default-mode gauge is
increased by about 1-2 percentage points §8e2). Doornik (2008) shows that encompassing
checks against the GUM help stabilize performance.

Gauges for 1—cut rule autometrics, j=2 Gauges for 1-cut rule adutometrics, =6
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Figure 4: Gauges for 1-cut rule (solid lineshutometricswith diagnostic testing (dashed lines) and
Autometricswithout diagnostic testing (dotted lines) far = 0.01,0.05. The left panel corresponds
toj =2soy, = 2fork = 1,...,n, and the right panel correspondsjo= 6, sovy, = 6 for

k =1,...,n. The horizontal axis represents the= 1,...,10 DGPs, each witm relevant variables
(and10 — n irrelevant).
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Figure 5:Potencies for 1-cut rule (solid lines) aAdtometricavithout diagnostic testing (dotted lines)
for a = 0.05 (left panel) and).01 (right panel). The horizontal axis representsithe 1,...,10 DGPs,
each withn relevant variables (antld — n irrelevant). Solid thin lines record the power for a single
t-test aty, = 2,3, 4.

Figure 5 compares the potencies of both algorithms, witd@dnostic testing, and when
the intercept is always included. Potencies can be compartbé power of a singletest, also
recorded in Figure 5 (powers for high non-centralities ai@ugled as they are close to unity).
Both methods have potencies close to the optimal siigst with no selection. The 1-cut
rule has a consistently lower potency, but potencies argaage-corrected, and it also has a



slightly lower gauge. Given this trade-off, there is littléference between 1-cut and searching
many paths.
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Figure 6: Ratios ofMSEs for Autometricsto 1-cut rule as: changes, averaging across all relevant
(solid lines) and irrelevant (dashed lines) variablestdhafnd panels correspondite= 2 (v, = 2) and

right-hand panels correspondie= 6 (v, = 6)fork =1,...,n.

0.7

Figure 6 records the ratios ®SEs of Autometricsselection to the 1-cut rule for both
unconditional and conditional distributions, with no diagtic tests and no bias correction, for
M = 1000. If the ratio is below unity, the former has a smaller averltiE than 1-cut. The
lines labelledRelevanteport the ratios of averaddSEs over all relevant variables for a given
n. Analogously, the lines labelldldrelevant are based on the averaftSEs of the irrelevant
variables for each DGP (none when= 10). Unconditionally, all ratios are close to unity
for the relevant variables, but the 1-cut rule performsdudtr irrelevant variables when non-
centralities are low but not when they are high. The benefisgarch are largest when there are
few relevant variables that are highly significant, but dbadally, Autometricsoutperforms
the 1-cut rule in almost all cases—most lines are below uniityus, there is little loss from
using the path-search algorithm even when 1-cut is appécaip non-orthogonal problems,
1-cut would be inadvisable as the initial ranking given byd2pends on correlations between
variables as well as their relevance.

5.2 Impact of diagnostic tests

Figure 4 also compared the gaugesAatometricawith diagnostic tracking switched on versus
off, both with bias correction. The gauge is slightly ovee ttominal significance level when
diagnostic tests are checked to ensure a congruent redut¥fith diagnostic testing switched
off, the gauge is close to the nominal significance level. diference seems due to irrelevant
variables proxying chance departures from the null on onihefiive mis-specification tests
or the encompassing check, and then being retained despitmificance—a key reason for
measuring gauge not ‘size’.

Figure 7 records the ratio of théSMSEs with diagnostic tests switched off to on in the top
panel, and the same for tl’SMSESs in the bottom panel, averaging within relevant and irrel-
evant variables. Switching the diagnostics off generatiprioves thdJSMSES, but worsens



the results conditionally, with the impact coming througle trrelevant variables. Switching
the diagnostics off leads to fewer irrelevant regressomgoretained overall, improving the
USMSEs, but those irrelevant variables that are retained are nove significant than with
the diagnostics on. The impact is largest at tight signifiedevels.
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Figure 7:Ratios ofMSEs with diagnostic tests off to on for unconditional and cdiedial distributions
asn changes, averaging across all relevant (solid lines) aetewant (dashed lines) variables. Left-
hand panels correspond fo= 2 (¢, = 2) and right-hand panels correspondjte= 6 (¢, = 6) for
k=1,...,n.

6 Model selection in ADL models

In this section, we analyze a setting in which the regresaoescorrelated and the models
are dynamic; the setting that confronts most time-seriesgarehers, so 1-cut is an invalid
procedure. We use a relatively general experimental ddsigiover many possible settings,
56 experiments in total, for a linear DGP, and assess pedioce based on criteria (G)—(I).
Non-linear model selection is discussed in Castle and Hefafdr10a, 2010b).

6.1 The dynamic model

The experimental design has nine DGP specifications givefoby = 3,...,8:

DGPO: y; = &
DGP1.: Yt = 0.75yt,1 + €
DGP2: y; = 1.5y;-1 —0.8y;_2 + ¢

r—2
DGPr: y, = 15y 1 — 08y o+ Y (Bjzje— Bjzje1) + & (20)
j=1
wheree; ~ IN[0, 1] andx; = (214, . .. ,a:w)’ is generated by:

x; = pxi—1 + v¢ Where v, ~ INg [0, 2] (22)



with p = 0.5, wgr = 1, andwy; = 0.5,Vk # j. There aren = 0,1,2,4,6,8,10,12,14
relevant regressors. The DGP involves negative relatiebhsden pairs of exogenous regres-
sors as the first differences matter. We ggt= % Vk = 1,...,L,in a given experiment,
whereL < 6 is the number of contemporaneous exogenous regressorjeandn-centrality,
Y, = 8/v/2k, ranges from 5.5 for DGP3 to just over 2 for DGPS8.

There are 7 GUMSs, given by=10, 1, 2,5, 10, 15, 20:

s 6 s
Yyt =p+ Z aRYi—k + Z Z Vi kTjt—k T €t (22)
k=1 Jj=1k=0

N is the total number of regressors, with= 7,14, 21,42, 77,112,147, andT = 100, so there
are four GUMs withN < T'/2, one GUM neafl’, and two GUMs withN > T'. Included in
these are under-specified examples when0 (all DGPs) ands = 1 (DGP2-DGP8), and over-
specified cases. We consider all combinations of DGPs and §dMating 56 experiments
in total. Selection uses = 1%, 0.5%, both with and without lag pre-selection (sequential
reductions from the longest lag), with diagnostics swittbt (as some GUMs are dynamically
mis-specified), foll/ = 1000 replications.

6.2 Potency and gauge

Potency calculated using (4) combines the retention ofafgdd dependent variables and the
exogenous variables, so we separately compute potenciegdgenous variables only by av-
eraging retention rates over tBé relevant exogenous variables. These can be compared with
the theoretical powers for &test on individual coefficients, as recorded in Table 6.eRot
cies are not reported for under-specified cases, as theynlogweecise meaning when relevant
variables are omitted from the GUM.

DGP 3 4 5 6 7 8

Yy, 566 4.00 327 283 253 231
Poor 0.999 0915 0.739 0.580 0.462 0.376
Po.oos 0.997 0.871 0.654 0.483 0.367 0.287

Table 6: Powers for a singletest.

Figure 8 records the potencies for each DGP and GUM spedgificdefined by the lag
length, s, commencing as = 2 when there is no under-specification, for selection using
lag pre-search. There is a decline in potency as the nomatigntfalls (i.e., the DGP size
increases), but potency is fairly constant across inangaSiUM size §). There is little impact
of extending the GUM when the DGP is autoregressive as thecaotralities of the lagged
dependent variables (LDVs) are high, so even including 86 tdy has little effect on potency.

The differences between significance levels are fairly Easathe lagged dependent vari-
ables have potencies close to unity. However, comparingothiencies for just exogenous
regressors against the powers for a singiest, the potencies are close to, and in some cases
higher than, the correspondirigest power, despite successive positive and negativdi-coef
cients of lagged regressors.

Figure 9 records gauges for each DGP and GUM specificationg€sashould be invariant
to the number of regressors and non-centralities so theplsimould be flat at the given signif-
icance level. For DGPO, the gauge is close to the nominalfiignce level and is somewhat
tighter for moderate lag lengths. For the DGPs with just éajdependent variables (DGP1
and DGP2), the gauges are also close to the nominal sigraédawel, and additional lags do



Figure 8:Potency with lag pre-search recorded against DGP and GUM(fizdion

a=1% a=0.5%

‘s
\

gl =S
0o
N
o
o
& - d
63 s 8y
On %3 O %3
Co <31 15 10 5 Co {—"J 15 10
GUM lag length GUM lag length

Figure 9:Gauge with lag pre-search recorded against DGP and GUMfigzdicin

not increase them. The gauges increase as more exogenmssmrg become relevant, but fall
as the GUM lag length increases. Thus, the gauges are wors®fterate lag lengths (= 2
and5) than the large GUMs witk = 15 or 20. Whens = 15 or 20, there are more variables
than observations so expanding and contracting searchesaded to reduce the GUM to an
estimable intermediate model, see Doornik (2007a). Deggitnmencing withV > T, the
gauge is controlled close to the nominal significance le@Verall, divergences from a flat
plane are not substantial, so (H) seems to be satisfied evieryviamics.

6.3 Costs of search and inference

We next consider costs of inference and costs of search ¢éssafise selection procedure, ad-
dressing criterion (G). Search and inference costs are os@fil concepts than (A) or (B),
because they account for the costs of conducting inferemteecL DGP itself. If the signal-to-
noise ratio of the LDGP is low, even commencing from it wilkudt in some relevant variables
being excluded. Such inference costs are an unavoidabkeqoance of the LDGP speci-
fication. We measure them by tiRMSEs of LDGP parameter estimates after conducting
inference on that LDGP, summing the unconditioRMSESs over all variables, namely (see
Table 1 for definitions):

> UIRMSE;. (23)
k=1
When the GUM is the LDGP, as only significant variables araimnetd, (23) could be larger
or smaller than th&RMSE from directly estimating the LDGP, calculated by summing th
unconditionalRMSEs over all variables in the estimated LDGP, depending on liwéce of



critical value,c,,, and the non-centralities;,,, of the LDGP parameters:

Z LRMSE;,. (24)
k=1

Now consider starting from a more general model with botbvaht and irrelevant vari-
ables. The additional costs of search are calculated aschesise in uncondition&®MSEs for
relevant variables in the selected model when starting frenGUM as against the LDGP, plus
the unconditionaRMSEs computed for allvV — n irrelevant variables, both bias corrected:

n N
> " (USRMSE; — UIRMSE;) + > USRMSE; (25)
k=1 k=n+1

If the LDGP specification is known and just estimated, thea- n and (25) is zero. Otherwise,
depending on the non-centralities,, there is usually a trade-off between the two components:
asc, increases, the second term falls, but the first term mayasereAlso, the second rises as
N — nincreases because it sums over more irrelevant terms. Beth desirable properties
of a measure of search costs. Section 6.5 considers uneefisg models, where (25) can be
smaller than (23), and may even be negative.

For dynamic models, these measures of search costs evafjstest the precise LDGP lag
structure. With substantial autocorrelation, it is difftdo pinpoint the exact timing of relevant
lags, so for example;_3 rather thany;_, may be retained. Defining,_3 as an ‘irrelevant’
variable wheny;_ is not retained results in a crude measure of costs. If tleetsa lags pick
up similar dynamics, then search costs would not be as higidasated by (25). To quantify
this, we compute the search and inference costs over theseaog regressors only, i.e,
become=2L and N becomessL wheres is the GUM lag length. We separately assess the
search costs for the LDVs using:

M s s 2
1 ~
USRMSEvov = | 770 ( B = Zﬂy,k,z) (26)
i=1 \k=1 k=1
Whereﬁy,m denotes the OLS estimate of th® lag of the dependent variable. If the retained

coefficient estimates sum to the DGP coefficients, then theekBecosts for the lagged depen-
dent variables would be low despite not selecting the exagistructure. We compare (26)
to the costs of inference, which also sum the retained laggpdndent variables’ coefficients
when commencing from the LDGP.

Figure 10 recordRMSESs for the LDGP given by (24), the costs of inference given 8) (2
and the costs of search given by (25) over exogenous regsefsoeach DGP as the GUM
lag lengths increases. The costs of search increaseinsreases, as there are more irrelevant
variables contributing to search costs. These increaadibtéalmost linearly for large DGPS)
despite a shift fromV < 7'to N > T betweens = 10 ands = 15. A tighter significance
level results in lower search costs, as fewer irrelevanabbes are retained, but delivers higher
costs of inference as more relevant variables will be ochiti¥hen there are many irrelevant
variables and few relevant variables that are highly sigaifi (DGP3), the costs of search
dominate, but for the larger DGPs (DGP6-DGP8) the costsastheare smaller than the costs
of inference for estimable GUMs. Indeed, the costs of seaathbe smaller than the LDGP
costs with no selection (all lower panels upste= 5). For DGP8 atn. = 0.005, the costs of
search are lower than the costs of inference even for thewlasee N > T (s = 15), so an
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Figure 10:Costs of search and inference for exogenous regredseMSE for the LDGP (solid line),
inference on the LDGP (dashed lines) and bias-correctedtsah from the GUM with lag pre-selection
(dotted lines).

additional 98 irrelevant variables are searched over. Bets®f inference over the LDGP with
no selection are substantial for the larger DGPs, due tatlerinon-centralities.

When computing costs for dynamics by averaging over all LD¥fficients,USRMSE, py
is close to the equivalent averagRMSE for the LDGP. This is not a pure measure of search
costs, but does reflect that the dynamics are adequatelyredptalthough the timing of the
dynamics may not be. In practice, timing is likely to be oulydoy one or at most two lags,
depending on data frequency and seasonality. Hence, fanadigmmodels, selection on average
will result in the same long-run solution, but the short-dymamics may only proxy the LDGP.
Thus, the timing of policy impacts, say, may be incorrect,rmt their overall effect.

6.4 Impact of bias correction and lag pre-search ofiMSEs

As in the static simulation experiments, we compare thesaif USMSE and CSMSE with
bias correction to without bias correction, averaged oglvant and irrelevant variables. Fig-
ure 11 records the averagfsMSE and CSMSE ratios, averaging across all DGPs, recorded
against the GUM specification. All ratios are less than yrstybias correction is beneficial
in all specifications. Most of the benefit comes from downghiéing retained irrelevant vari-
ables, but there is also some advantage to bias correctingebivant variables. The theory
behind these corrections assumes that the only bias sou@e&ay from the origin due to
selecting larger? values, whereas inadvertently-omitted variables coulli¢e other biases,
yet there remains a substantive benefit in practice from dmazction for relevant variables’
coefficients, including wheiV > T.

Lag pre-selection is designed to have no overall impact erfittal selected model, and
is undertaken at very loose significance levels so as notirturelte variables that could be
relevant when undertaking the tree search, but is infeasitlenN > T. Computing ratios
of USMSEs andCSMSEs with and without lag pre-search results in values closenity,u
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Figure 11: Ratios of MSEs with bias correction to no bias correction, averaged acatisrelevant
(solid lines) and irrelevant (dashed lines) for all DGPsttgld againss.

although search time is vastly improved with lag pre-s@ectThere is a small benefit to lag
pre-search when the GUM specification includes five lagshferirelevant variables (detailed
results available on request).

6.5 Under-specification

The GUM is under-specified for all DGPs whegr= 0, and for DGP2-DGP8 when= 1. An
LDGP is defined as the joint density of the set of includedalaés: leaving out any variables
that matter defines a different, and obviously less usefduction of the DGP. Correlations
between variables then lead to included components ‘gicii correlated parts of excluded
variables. Evaluating selection by how often that undecsjed representation is found sheds
little light on how useful that would be in practice. Sinceeevhe most general formulation
is under-specified for the DGP in this section, the equati@ated by the relevant variables
that are included is denoted LDGBelow, but the benchmark for evaluation remains the DGP
parameters, not the induced parameters of the LDGP.
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Figure 12: Costs of search and inference for under-specified cd$B84SEs for the LDGP* (solid
line), inference on the LDGP* (dashed lines) and bias-ateck selection from the GUM with lag pre-
selection (dotted lines).

When models are under-specified for the DGP,RMSESs for the omitted variables are
their squared DGP parameters, but as these are an addithnre@o element in all models, and
in practice it is presumably not known that they are omitsesth terms are excluded in all cost
calculations below. Inter-correlations between included omitted regressors induce biases
and inconsistencies in estimated coefficients of the reimgiimcluded variables, adding to
both search and inference costs. In practice, mis-spdaificeests may reveal that the LDGP
(or GUM) is a poor reduction of the DGP, but that induces a &ntp-general search where it
is easy to incorrectly diagnose the source of any rejectom (residual autocorrelation could
be due to many mis-specifications), although including #hevant omitted variables would in



fact lead to a congruent representation.

Figure 12 records the DGP and LDGEvsts from (24), as well as the costs of inference,
(23), and the costs of search, (25), for the LGd GUM in these under-specified cases,
again computed only over the exogenous variables and dllatea against the DGP param-
eters. As more exogenous variables become relevant, andembralities fall, the costs of
inference dominate. Far = 1 (right-hand panel) the form of mis-specification (the oadtt
variable isy;_9) is the same for all LDG® across the horizontal axis, but the mis-specification
has a greater impact as more variables are relevant. Inasbnsrearch costs decline as more
variables become relevant (and can even be negative, as R8P @he choice oty = 0.01
or 0.005 makes almost no difference. The same phenomenon is obsehaus = 0, with
inference costs increasing and search costs decreasing, fhiere can be high&MSE costs
from just estimating the DGP than from searching in the GUMtlie best specification. The
GUMs for DGP1 and DGP2 are just a constantdet 0, so are omitted from Figure 12.

6.6 Higher-order dynamics

We extended the simulation exercise to include higherrodgeamics to reflect seasonal dy-
namics (see Hylleberg, 1986, 1992). In DGP2-DG8; is replaced byy; 12 to reflect
annual lags at the monthly frequency, and the GUM is giver2y for s = 15, 20. A second
simulation study replaceg -, by ;o9 for s = 20, to reflect ‘ice-age’ type data measured at
1000-year intervals, treating a cycle as 20,000 years. @bgeay potency and search costs were
close to those found for the experiments above, so ‘gapsierdiynamics have little impact:
performance on such ‘seasonally dynamic’ data is as good asm-seasonal data.

7 Conclusion

In this paper, we consider how to evaluate model selectiocquiures. Three criteria are
highlighted as useful benchmarks to assess any method doflmeekbction, namely, the local
data generation process (LDGP) can be recovered when cooimgefrom the initial general
unrestricted model (GUM) almost as often as as when commerfoom the LDGP itself;
the operating characteristics of the selection procedwaiemtheir desired properties; and the
method finds a well-specified, undominated model of the L&y these three objective as-
sessment criteria, we examine autom&egtsselection embodied iAutometrics see Doornik
(2009). The analysis builds from the simple case of a linegrassion model wittv orthogo-
nal variables, where only one decision is required to sa&ben/N < T (a 1-cut procedure), to
the more realistic setting of dynamic models with long lagaures and intercorrelated vari-
ables. As the automatic selection algorithm is complicarexlundertake a range of simulation
experiments to assess its properties, including casesewlier T, and where the GUM is
under-specified for the LDGP.

When the nominal rejection frequency of individual selecttests,, is set ate < 1/N,
then on average one irrelevant variable will be spurioustigined as significant out &f candi-
dates. Thus, there is little difficulty in eliminating alma@sl irrelevant variables when starting
from the GUM (a small cost of search). Despite large numbEnsalevant candidate regres-
sors, includingN > T, Autometricshas a retention frequency of irrelevant variables (gauge)
close toa, somewhat increased by undertaking mis-specificatiomngedbr congruence and
encompassing tests against the GUM. Bias correction fecseh greatly reduces the mean
square errordSEs) of spuriously retained irrelevant variables in both umditional and con-
ditional distributions, at a small cost in increadd&Es for relevant variables. The costs of
search can be smaller than those of just estimating the D&R, when the GUM is under-
specified, and seem to increase only linearlyVimespiteN > T'. Thus, the procedure usually



terminates with a selected model close to what would be famamidmencing from the LDGP,
with near unbiased estimates of the retained LDGP paraseted almost no irrelevant vari-
ables, with those retained having smdIBEs, thereby satisfying our three criteria.

Limits to automatic model selection apply when the LDGP ¢ignavould not be reliably
selected by the given inference rules applied to itself asrtiial specification: selection can-
not rectify that. When relevant variables have parameteasareO(1/+/T), and regressors
are highly intercorrelated, selection will not work weleesLeeb and Potscher (2003, 2005).
Thus, uniform convergence seems infeasible, as paranczter®t then be consistently esti-
mated. However, selection works for parameters larger @ari/7T) (as they are consistently
estimable), or smaller thad(1/7) (as they vanish), anti/+/T and1,/T both converge to zero
asT — oo, SO ‘most’ parameter values are unproblematic. The seddadize’ of a selection
procedurel — (1 — a)N_”, can be large, but is uninformative about the success oftsmte
that correctly eliminatesl —«)(N —n) irrelevant variables on average, and is consistent when
a— 0asT — .

When the LDGP is not nested in the GUM, direct estimation dalliver inconsistent es-
timates. While a selected approximation will also be an iirexi choice, it will be undomi-
nated, and in a progressive research strategy, especiadin there are intermittent structural
breaks in both relevant and irrelevant variables, will sbemeplaced. Conversely, if the LDGP
would always be retained when commencing from it, then aeciggproximation will generally
be selected when starting from a GUM which nests that LDGBtCaf inference dominate
costs of search for most values of the non-centrality paran@ad numbers of candidate vari-
ables. Search costs rise with the extent of initial ovecHjgation, whereas inference costs rise
with under-specification, even in constant-parametergeees. Consequently, prior theoretical
analyses that can ascertain the main relevant variablebkahdlag-reaction latencies remain
invaluable, and can be embedded in the search processjrajlonore stringent selection of
other potential effects, as in Hendry and Mizon (2010). Anaitic model selection is just the
next step up from automatic computation, extending thelulipas of empirical modellers.

Overall, we conclude that model selection based\atometricsusing relatively tight sig-
nificance levels and bias correction is a successful appraaselecting dynamic equations
even when commencing from very long lags to avoid omittinguant variables or dynamics.
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