
Evaluating Automatic Model Selection

Jennifer L. Castle†, Jurgen A. Doornik‡ and David F. Hendry? ∗

† James Martin Fellow, and Magdalen College, University of Oxford, UK
‡ Nuffield College, University of Oxford, UK

? James Martin Fellow, and Department of Economics, University of Oxford, UK

Abstract

We outline a range of criteria for evaluating model selection approaches that have been
used in the literature. Focusing on three key criteria, we evaluate automatically selecting
the relevant variables in an econometric model from a large candidate set. General-to-
specific selection is outlined for a regression model in orthogonal variables, where only
one decision is required to select, irrespective of the number of regressors. Comparisons
with an automated model selection algorithm,Autometrics(Doornik, 2009), show similar
properties, but not restricted to orthogonal cases. Monte Carlo experiments examine the
roles of post-selection bias corrections and diagnostic testing, and evaluate selection in
dynamic models by costs of search versus costs of inference.
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1 Introduction

Model selection has historically been a contentious issue,see e.g., Leamer (1978, 1983a),
Chatfield (1995) and Hansen (2005). The literature has traditionally focused on situations
where the only uncertainty concerns the set of relevant variables. Selection procedures such as
information criteria, stepwise regression, shrinkage methods such as Lasso, or cross validation,
all aim to select a set of relevant variables from a candidateset. In this paper, we consider
a more general setting, whereby there is specification uncertainty over the choice of which
variables, their lags, functional forms etc., are relevantand which irrelevant. This more general
framework acknowledges that there is uncertainty about every aspect of model specification,
and selection has the objective of reducing such uncertainties, at the cost of a ‘local increase’ in
uncertainty at the margin of significance regarding what is relevant. However, model selection
in this more complex framework is difficult: to successfullydetermine what matters and how it
enters, all important determinants need to be included jointly. Omitting key variables adversely
affects the goodness of fit, biases the included factors’ effects, and in a world of intercorrelated
variables with non-stationarities induced by breaks, leads to non-constant estimated models.
To resolve that requires commencing from a sufficiently general model in which all potentially
relevant variables, lags, functional forms, outliers, etc. are included initially. The objective of
our paper is to consider why model selection might be successful in such a setting, and then
focus on its application to dynamic specification.

The structure of the paper is as follows. Section 2 briefly describes how the paper fits in
with the literature on model selection, motivating the analysis of automatic general-to-specific
(Gets) selection. Section 3 considers nine common criteria for evaluating the success, or other-
wise, of model selection. Three of those criteria are both operational and relevant to practical
empirical modeling. These three criteria are applied toGetsselection, first for a simple 1-cut
rule (section 4), then in a comparison of the 1-cut rule with the more complicated model selec-
tion procedure of automatedGets(section 5), and finally applying that approach to a dynamic
data generation process (DGP) in section 6. Section 7 concludes.

A more detailed overview of Sections 4-6 will help to motivate their structure. Section
4 considers the analytically tractable setting of a constant DGP with orthogonal variables, an
unknown subset of which are relevant to explaining the dependent variable, with the remainder
being irrelevant. We show that only one selection decision is required, called ‘1-cut’, irrespec-
tive of the number of regressorsN < T , for T observations. This rebuts claims that model
selection intrinsically involves repeated testing (see e.g. Leamer, 1983a). A simulation exper-
iment forN = 1000 atT = 2000 confirms the theoretical analysis of ‘1-cut’. Although there
are21000 ' 10301 possible models, onlyonemodel needs estimated, and only asingle decision
is required to select the final model: ‘repeated testing’ does not occur.

We introduce the terminology ‘gauge’ and ‘potency’. Gauge denotes the retention fre-
quency of irrelevant variables when selecting, without necessitating that they be ‘significant’.
Thus, gauge measures the ‘distance’ between correctly excluding all the irrelevant variables
and retaining some irrelevant variables, with connotations of the gauge as the distance between
rails on a railway track. Gauge is used because the ‘size’ of atest statistic has a definition which
is only precise for a similar test with a known distribution,and the word is ambiguous in many
settings (such as sample size). Similarly, retaining relevant variables no longer corresponds to
the conventional notion of power, so we use potency to denotethe average retention frequency
of relevant variables, which need not be by rejecting the null. Potency implies strength, so is
appropriate to delineate retaining variables that have ‘signal strength’, i.e. that are relevant.

Gauge and potency are more useful concepts than the metric used by Lovell (1983), which
measures the probability that the DGP is selected as the model. That metric does not account



for variables with very low (but non-zero) populationt-statistics, where such variables would
not be retained when testing the DGP itself. For 1-cut, the gauge is close to its corresponding
nominal significance level,α, for small α (e.g.,α ≤ 1/N ), which can be controlled, and
potencies are close to the theoretical powers for one-off tests, despite seeking to select a small
number of relevant variables from a very large set of candidates.

Although there is no repeated testing,selectiondoes affect the distributional properties
of the final model’s estimates as compared with estimating the local data generating process
(LDGP–the DGP in the space of the variables under analysis: see Hendry, 2009). Thus, the
next step is to correct for biases induced in conditional distributions by only retaining signifi-
cant coefficients. Building on Hendry and Krolzig (2005), weshow that bias corrections also
reduce mean-square errors (MSEs) of irrelevant variables estimates in both conditional and
unconditional distributions, with a small increase in theMSEs of relevant variables.

Next, a more general procedure is required than 1-cut that does not depend on orthogonality
of the regressors. Section 5 compares the 1-cut approach with using a general search algorithm
implementing automaticGets, namelyAutometricswithin PcGive(see Doornik, 2007b, 2009,
Hendry and Doornik, 2009). The 1-cut strategy is ‘optimal’ when the regressors are orthogonal
in-sample, so a comparison provides a check of the closenessof the more general algorithm’s
results. We also assess the impact of mis-specification testing on gauges, and note the role of
tests for encompassing the initial general unrestricted model (GUM).

Since dynamic dependence induces correlations between adjacent lags, the resulting non-
orthogonality requires a general algorithm. Section 6 extends the experimental design to sta-
tionary dynamic DGPs, examining models that are under-specified relative to the DGP, match
the DGP, and are over-specified. Negative dependence (e.g.,the levels representation of first
differences) can be problematic for selection approaches that do not useGets, such as step-
wise expanding searches and the Lasso (see Tibshirani, 1996). A lag-length pre-search at loose
significance levels from the longest lag has little impact onthe selection results, but greatly
improves the search time for largeN . Dynamicsper sedo not seem to affect the selection
procedure, although measurements of performance must account for the difficulty in precisely
dating lag reactions. We now review previous approaches.

2 Model selection literature

There is a vast literature on model selection, including procedures based on penalized model
fit: (e.g.) theCp criterion of Mallows (1973), the prediction criterion of Amemiya (1980),
and various information criteria, such as Akaike (1973), Schwarz (1978), Hannan and Quinn
(1979), and Chow (1981). However, these procedures do not ensure congruency, and so a mis-
specified model could be selected (see Bontemps and Mizon, 2003). Shrinkage techniques have
been proposed as a solution to the ‘pre-test problem’: see Stein (1956), James and Stein (1961),
Yancey and Judge (1976) and Judge and Bock (1978), and associated algorithms such as Lasso
(Tibshirani, 1996). One criticism of shrinkage is that it isnot progressive, in the sense of
knowledge accumulating about the process being modelled, because the decision rule need not
eliminate variables. Bayesian model averaging (see Hoeting, Madigan, Raftery and Volinsky,
1999, for an overview) is often used to account for model uncertainty, as is the extreme bounds
literature of Leamer (1978, 1983b, 1985). This approach hasbeen heavily criticised by,inter
alia, McAleer, Pagan and Volker (1985), Breusch (1990) and Hendry and Mizon (1990). Step-
wise regression is popular, but is path dependent, is susceptible to negative dependence, and
does not have a high success rate of finding the DGP. Berk (1978) demonstrates that applying
both forward and backward selection is no guarantee to finding the correct model. Alternative
selection procedures exist, such as ‘optimal regression’ in which all subsets of regressors are



included (see Coen, Gomme and Kendall, 1969, and the response by Box and Newbold, 1971),
but that approach is anyway intractable with a large set of potential regressors.

Given these criticisms, our paper focuses on general-to-specific model selection. The pro-
cedure commences with a large set of potential regressors and simplifies the model to cap-
ture the salient characteristics of the data: seeinter alia, Anderson (1962), and Pagan (1987),
Phillips (1988) and Campos, Ericsson and Hendry (2005) for reviews. We challenge the tradi-
tional view that model selection is costly by demonstratingthe low costs of search relative to
the costs of conducting inference on a pre-specified model. In contrast, the costs of search for
earlier procedures can be very high. For example, selectionusing information criteria requires
selecting from2N possible models, which will often be infeasible for largeN , whereasGets
selects from theN candidate variables. Furthermore, stepwise selection could ‘miss’ relevant
variables with negative dependencies depending on the order of inclusion, whereasGetsinsures
against path dependence by undertaking a tree search. We next consider how to evaluate model
selection procedures, before focusing attention on the performance ofGetsselection, noting
that theGetsapproach includes aspects of many other model selection methods (see§5).

3 Evaluating model selection

In this section, we consider how alternative methods of model selection might be evaluated,
including the three criteria that we subsequently use. The properties of empirical models are
determined by how they are formulated, selected, estimated, and evaluated, as well as by data
quality, the initial subject-matter theory and institutional and historical knowledge. Since many
features of models are not derivable from subject-matter theory, empirical evidence is essential
to determine what are the relevant variables, their lag reactions, parameter shifts, non-linear
functions and so on. Embedding a theory in a general specification that is congruent with all
the available evidence offers a chance to both utilize the best available theory insights and
learn from the empirical evidence. That embedding can increase the initial model size to a
scale where a human has intellectual difficulty handling therequired reductions, and indeed the
general model may not be estimable, so automatic methods formodel selection are essential.

Nevertheless, the best model selection approaches cannot be expected to select the LDGP
on every occasion, even when the GUM nests the LDGP. Conversely, no approach will work
well when the LDGP is not a nested special case of the postulated model, especially in pro-
cesses subject to breaks that induce multiple sources of non-stationarity. Phillips (2003) pro-
vides an insightful analysis of the limits of econometrics in that setting.

Models that are constructed with a specific purpose in mind need to be evaluated accord-
ingly. Thus, there are many grounds on which to select empirical models—theoretical, empiri-
cal, aesthetic, and philosophical—and within each category, many criteria, leading to numerous
ways to judge the ‘success’ of selection algorithms, including:

(A) maximizing the goodness of fit;

(B) recovering the LDGP with high frequency;

(C) improving inference about parameters of interest relative to the GUM;

(D) improving forecasting over the GUM (and other selectionmethods);

(E) working well for ‘realistic’ LDGPs;

(F) matching a theory-derived specification;

(G) recovering the LDGP starting from the GUM almost as oftenas from the LDGP itself;



(H) matching the operating characteristics of the algorithm with their desired properties;

(I) finding a well-specified, undominated model of the LDGP.

Criterion (A) is a traditional criterion, often based on penalized fit, but Lovell (1983) showed
that it did not lead to useful selections. The second, (B), isoverly demanding, as it may be
nearly impossible to find the LDGP even when commencing from it, e.g., the population non-
centralities of some relevant variables’ coefficients may be non-zero but very small. The third
criterion, (C), seeks (e.g.) small, accurate, uncertaintyregions around estimated parameters of
interest, and has been criticized by Leeb and Pötscher (2003, 2005) among others. There are
many contending approaches when (D) is the objective, including using other selection meth-
ods, averages over a class of models, factor methods, robustdevices, or neural nets. However,
in processes subject to breaks, in-sample performance neednot be a reliable guide to later fore-
casting success (see Clements and Hendry, 1999). There are also many possible contenders for
(E), including, but not restricted to, Phillips (1994, 1995, 1996), Tibshirani (1996), Hoover and
Perez (1999, 2004), Hendry and Krolzig (1999, 2001), White (2000), Krolzig (2003), Demiralp
and Hoover (2003), and Perez-Amaral, Gallo and White (2003), as well as stepwise regression,
albeit most with different properties in different states of nature. Criterion (F) is again widely
used, and must work well when the LDGP coincides with the theory model, but otherwise need
not.

For (G), a distinction must be made between costs of inference and costs of search. The
former apply to commencing from the LDGP, so confront even aninvestigator who did so, but
who was uncertain that the specification was completely correct (omniscience is not realistic
in empirical economics), and are inevitable when test rejection frequencies are non-zero under
the null, and not unity for all alternatives. Costs of searchare additional, due to commencing
from a GUM that nests but is larger than the LDGP, so are reallydue to selecting. Operating
characteristics for (H) could include that the nominal nullrejection frequency matches the
gauge; that retained parameters of interest are unbiasedlyestimated; thatMSEs are small, etc.
Finally, there is the ‘internal criterion’ (I) that the algorithm could not do better for the given
sample, in that no other model dominates that selected. Criteria (A)–(F) are all widely used
but, as noted above, there are situations in which selectingby such criteria will not work well.
Conversely, (G)–(I) apply to any situation and any model selection procedure, so we use (G),
(H) and (I) as the basis for evaluation, noting that they could in principle be achieved together.

4 Why Gets model selection can succeed

In this section, we consider the simplest case of a constant-parameter linear regression model
with perfectly orthogonal variables in-sample, of which a subset comprise the LDGP. This sim-
ple case is of interest because it demonstrates that model selection does not require searching
through2N possible models. Instead, one decision is required, hence the ‘1-cut’ rule. Then
Getsselection can be seen as a natural generalization to the situation where the regressors are
not perfectly orthogonal. We show that the 1-cut rule satifies citeria (G), (H) and (I), providing
the groundwork for the more general correlated case in Section 5.

4.1 The orthogonal regressor model

When all the regressors are mutually orthogonal, it is easy to explain whyGetsmodel selec-
tion needs only a single decision. Consider the regression model in which the regressors are



perfectly orthogonal in sample:

yt =

N∑

k=1

βkxk,t + εt (1)

whereT−1
∑T

t=1 xk,txj,t = λkδk,j ∀k, j, whereδk,j = 1 if k = j and zero otherwise, with
εt ∼ IN[0, σ2ε ], independently of the{xk,t}, andT >> N . In (1), n ≤ N of the regressors
have non-zeroβk, but it is not known which, nor how many.

After unrestricted estimation of (1), order theN samplet2-statistics testingH0: βk = 0 as:

t2(1) ≥ t2(2) ≥ · · · ≥ t2(N) (2)

The cut-off,ñ, between retained and excluded variables using a 2-sided significance levelcα
for a t-test is:

t2(ñ) ≥ c2α > t2(ñ+1). (3)

Variables with larget2 values are retained and all other variables are eliminated.Only a single
decisionis needed to implement (3), even forN = 1000, and ‘repeated testing’ does not occur.
Using this 1-cut decision rule, it is straightforward to maintain the false null retention rate at
(say) less than one variable by settingα ≤ 1/N , ∀N (for smallN , much tighter choices are
feasible):α should also tend to zero asT increases to ensure a consistent selection (see Hannan
and Quinn, 1979, Pötscher, 1991, and Campos, Hendry and Krolzig, 2003).

4.2 Simulation evaluation of model selection

Let the firstn regressors be relevant, withN − n irrelevant regressors in the GUM, and let
β̃k,i denote the OLS coefficient estimate after selection for the coefficient onxk,i in replication
i, with M replications. When1(·) is the indicator variable, potency and gauge respectively
calculate the retention frequencies of relevant and irrelevant variables as:

retention rate:̃pk = 1
M

∑M
i=1 1(β̃k,i 6= 0), k = 1, . . . , N,

potency = 1
n

∑n
k=1 p̃k,

gauge = 1
N−n

∑N
k=n+1 p̃k.

(4)

In addition, we also compute mean square errors (MSEs), both before and after model
selection. DefineMg as the model obtained after selection from the GUM andMd as the
model retained after selection from the LDGP. The unconditional and conditional (on retaining)
MSEs respectively are calculated as:

UMSEk =
1

M

M∑

i=1

(
β∗k,i − βk

)2
, ∀k (5)

CMSEk =

∑M
i=1

[(
β∗k,i − βk

)2 · 1(β∗
k,i 6= 0)

]

∑M
i=1 1(β

∗
k,i 6= 0)

, (β2k when
M∑

i=1

1(β∗
k,i 6= 0) = 0) (6)

whereβ∗k,i denotes the coefficient defined in Table 1.
GMSEk refers to theMSE for variablek in the GUM (which is only estimable with fewer

variables than observations) andLMSEk refers to theMSE for variablek in the LDGP. After
selecting from the GUM, the unconditionalMSE for variablek in the resulting model is given
by USMSEk and the corresponding conditionalMSE is given byCSMSEk. If selection is



Coefficient MSE Note
GUM β̂k,i GMSEk for N < T

Mg β̃k,i USMSEk, CSMSEk β̃k,i = 0 if xk not selected
LDGP βk,i LMSEk βk,i = 0 for k = n+ 1, ..., N

Md βk,i UIMSEk, CIMSEk βk,i = 0 if xk not selected ork > n

Table 1:MSEs before and after model selection

undertaken commencing from the LDGP,UIMSEk refers to the unconditionalMSE for the
kth variable in the selected model (with I referring to ‘inference costs’) and correspondingly
CIMSEk is the conditionalMSE. The square roots of theMSEs are denotedRMSEs. When the
GUM nests the LDGP, the difference betweenMg andMd is a measure of over-specification.
When the GUM does not nest the LDGP (under-specification), the difference betweenMg and
Md is a measure of mis-specification.§6.3 relates the costs of search and inference to Table 1.

4.3 Selection effects and bias corrections

The estimates from the selected model do not have the same properties as if the LDGP equation
had simply been estimated: the ‘pre-test’ problem. Conditional estimates of relevant coeffi-
cients are biased away from zero as they are only retained when t2 ≥ c2α, and some relevant
variables will by chance havet2 < c2α in any given sample, so not be selected. Also, on av-
erageα(N − n) irrelevant variables will havet2 ≥ c2α (spurious significance). However, bias
correction after selection is easily implemented following Hendry and Krolzig (2005).

Let the population standard error for the OLS estimatorβ̂ beσ2
β̂
= E[σ̂2

β̂
]. Approximate:

t
β̂
=

β̂

σ̂
β̂

' β̂

σ
β̂

∼ N

[
β

σ
β̂

, 1

]
= N [ψ, 1]

whereψ = β/σ
β̂

is the non-centrality parameter of thet-test. Letφ (x) andΦ (x) denote the
normal density and its integral, then the expectation of thetruncatedt-value for a post-selection
estimator̃β such that|t

β̃
| > cα is (see e.g., Johnson and Kotz, 1970, ch. 13):

ψ∗ = E
[
t
β̃
|
∣∣∣tβ̃
∣∣∣ > cα;ψ

]
= ψ +

φ (cα − ψ)− φ (−cα − ψ)

1− Φ (cα − ψ) + Φ (−cα − ψ)
= ψ + r (ψ, cα) (7)

Then, (e.g.) forψ > 0:

E
[
β̃ | β̃ ≥ σ

β̃
cα

]
= β + σ

β̃
r (ψ, cα) = β

(
1 + ψ−1r (ψ, cα)

)
(8)

so an unbiased estimator after selection is:

˜̃
β = β̃

(
ψ

ψ + r (ψ, cα)

)
= β̃

(
ψ

ψ∗

)
. (9)

Implementation requires an estimateψ̃ of ψ based on estimatingψ∗ from the observedt
β̃

and solving iteratively forψ from (7) written as:

ψ = ψ∗ − r (ψ, cα) (10)

First replacer(ψ, cα) in (10) byr(t
β̃
, cα), andψ∗ by t

β̃
:

t̃
β̃
= t

β̃
− r

(
t
β̃
, cα

)
, then ˜̃t

β̃
= t

β̃
− r

(
t̃
β̃
, cα

)
(11)



leading to the bias-corrected parameter estimate:

˜̃
β = β̃

(̃
t̃
β̃
/t
β̃

)
. (12)

Hendry and Krolzig (2005) show that most of the selection bias is corrected for relevant
retained variables by (12), at the cost of a small increase intheir conditionalMSEs. Thus,
correction exacerbates the downward bias in the unconditional estimates of the relevant coef-
ficients, and also increases theirMSEs somewhat. Against such costs, bias correction con-
siderably reduces theMSEs of the coefficients of any retained irrelevant variables, giving a
substantive benefit in both their unconditional and conditional distributions. Thus, despite se-
lecting from a large set of potential variables, nearly unbiased estimates of coefficients can
be obtained with little loss of efficiency from testing irrelevant variables, but suffering some
loss from not retaining relevant variables at large values of cα. The power loss from tighter
significance levels is usually not substantial relative to,say, at-distribution with few degrees
of freedom. However, Castle, Doornik and Hendry (2010) showthat impulse-indicator satura-
tion (see Hendry, Johansen and Santos, 2008, and Johansen and Nielsen, 2009) is a successful
antidote for fat-tailed error processes.

4.4 Monte Carlo simulation of 1-cut for N = 1000

We illustrate the above theory by simulating 1-cut selection from 1000 variables. The DGP is:

yt = β1x1,t + · · · + β10x10,t + εt (13)

xt ∼ IN1000 [0, I] (14)

εt ∼ IN [0, 1] (15)

wherex′
t = (x1,t, · · · , x1000,t). The regressors are only orthogonal in expectation, but arekept

fixed between experiments, withT = 2000. The DGP coefficients andt-test non-centralities,
ψk, are reported in Table 2, together with the theoretical powers of t-tests on the individual
coefficients.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10
βk 0.063 0.079 0.095 0.111 0.126 0.142 0.158 0.174 0.190 0.206
ψ
k

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
P0.01 0.281 0.468 0.662 0.821 0.922 0.973 0.992 0.998 1.000 1.000
P0.001 0.097 0.212 0.382 0.579 0.758 0.885 0.955 0.986 0.997 0.999

Table 2: Coefficientsβk, non-centralitiesψk, and theoretical retention probabilities.

The GUM, which is the starting point for model selection, consists of all1000 regressors
and an intercept (which is also irrelevant here):

yt = β0 + β1x1,t + · · · + β1000x1000,t + ut, t = 1, . . . , 2000 (16)

Only the firstn = 10 variables are relevant, so991 variables are irrelevant in (16). Selection
is undertaken by estimating (16), ordering thet2s as in (2), retaining (discarding) all variables
with t2-statistics above (below) the critical value as in (3), so selection is made in one decision.
We report the outcomes forα = 1% and0.1% usingM = 1000 replications.

Gauges and potencies are recorded in Table 3. Gauges are not significantly different from
their nominal sizes,α, so selection is correctly ‘sized’, and potencies do not deviate from the
average powers of 0.81 and 0.69. Thus, there is a close match between theory and evidence,



α Gauge Potency
1% 1.01% 81%
0.1% 0.10% 69%

Table 3:Potency and gauge for 1-cut selection with 1000 variables.

even when selecting10 relevant regressors from1000 candidate variables in one decision. Fig-
ure 1 confirms that retention rates for individual relevant variables are close to the theoretical
powers of individualt-tests, despite selecting from10301 possible models. TheCSMSEs are
always below theUSMSEs for the relevant variables (bottom graphs in Fig. 1), with the excep-
tion of β1 at 0.1%. BaselineUSMSEs for estimated coefficients in (16) are0.001 as shown.
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Figure 1:Model selection by the 1-cut rule forN = 1000 atα = 1% (left) andα = 0.1% (right): re-
tention rates̃pk of relevant variablesx1, . . . , x10 (top graphs),USMSEk andCSMSEk (bottom graphs).

Figure 2 records the trade-off frontier of gauge against potency as the non-centrality in-
creases. This can be compared to the theoretical frontier based on a singlet-test for an individ-
ual coefficient, recording size against power. The difference between the two frontiers is very
small, due to sampling variation, demonstrating that the 1-cut algorithm matches the theory.
See Hoover and Perez (1999, figure 1) for a similar analysis ofthe potency/gauge frontier.
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Figure 2: Trade-off frontier: left-hand panel records the theoretical frontier of size against power;
right-hand panel records the empirical frontier of gauge against potency.



4.5 Impact of bias correction onMSEs

In 1-cut selection, all retained variables must be significant at cα. However, with automated
Gets, this is not necessarily the case: irrelevant variables maybe retained because their deletion
would make a diagnostic test significant, or because of encompassing since a variable can be
individually insignificant, but not jointly with all variables deleted so far. The bias correction
formula in (12) is only applied to significant retained variables, setting insignificant variables’
coefficients to zero.

α 1% 0.1% 1% 0.1%
averageCSMSE over averageCSMSE over
990 irrelevant variables 10 relevant variables

uncorrected̃β 0.84% 1.23% 0.10% 0.14%
˜̃
β after bias correction 0.38% 0.60% 0.12% 0.13%

Table 4:AverageCSMSE of selected relevant and irrelevant variables (excludingβ
0
), with and without

bias correction,M = 1000.

Table 4 shows that the bias corrections for the retained irrelevant variables substantially
reduce theirCSMSEs by downweighting chance significance; since 99.9% of irrelevant vari-
ables are eliminated atα = 0.001, their USMSEs are tiny. Thus, in complete contrast to the
earlier literature reviewed in section 2, even with 991 irrelevant variables, their total impact on
selected models after bias correction is essentially negligible when suitable significance lev-
els are used. Figure 3 graphs theMSEs of the bias-corrected relevant coefficient estimates in
their conditional distributions. Here, the impact of bias correction can also be beneficial, but is
generally small.
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Figure 3:Impact of bias correction onCSMSEk for relevant variables atα = 1% (left) andα = 0.1%
(right).

5 Comparisons of 1-cut selection and automatedGets

Having demonstrated that the 1-cut rule satisfies properties (G), (H) and (I), we now compare it
with automatedGets. In non-orthogonal problems, path search is required to establish ‘genuine
relevance’, which gives the impression of ‘repeated testing’, but should not be confused with
selecting the ‘best fitting model’ from the21000 ' 10301 possible models. The multi-path
procedures in Hoover and Perez (1999) and Hendry and Krolzig(2001) do not become stuck
in a single-path sequence, where a relevant variable is inadvertently eliminated, retaining other
variables as proxies (e.g., as in stepwise regression).Autometricsimproves further by a tree-
search to detect and eliminate statistically-insignificant variables, and handlingN > T . At any



stage, a variable is removed only if the new model is a valid reduction of the GUM (i.e., the
new model must encompass the GUM at the chosen significance level: see Doornik, 2008). A
path terminates when no variable meets the reduction criterion. At the end, there will be one or
more non-rejected (terminal) models: all are congruent, undominated, mutually-encompassing
representations. If necessary, a choice is made using a tie-breaker, e.g., the Schwarz (1978)
information criterion, although all terminal models are reported and can be used in, say, forecast
combinations. Thus, goodness-of-fit is not directly used toselect models, and no attempt is
made to ‘prove’ that a given set of variables matters although the choice ofcα affectsR2

and ñ through retention byt2(ñ) ≥ c2α. Generalizations are feasible to instrumental variables
estimators (see Hendry and Krolzig, 2005), and likelihood estimation (Doornik, 2009).

Getsselection encompasses many aspects of the alternative approaches discussed in§2.
For example, information criteria are used to select a final model if there are multiple terminal
models. Alternatively, the terminal models could be averaged, or the GUM could be retained, or
included in a set of models being averaged. The GUM should be specified using all available
subject-matter theory, and such theory can be imposed by ‘forcing’ variables to be retained.
When there are more variables than observations, expandingand contracting searches are used,
as in Doornik (2009), so specific-to-general search also plays a role. Encompassing tests ensure
a parsimonious congruent model of the GUM is selected, see Doornik (2008).

We now consider a much smallerN so results can be graphed and compared across a range
of experiments as the number of relevant variables,n ≤ N , and their significance changes,
using the general design from Castle, Qin and Reed (2009). Weretain the orthogonal design
to ensure that 1-cut is a valid procedure. The analysis showsthat there is little or no cost to
undertaking a multi-path search compared to 1-cut, validating theGetsprocedure.

5.1 A small orthogonal-regressor model

The experimental design is given byN = 10, n = 1, . . . , 10, andT = 75:

yt = β0 + β1x1,t + · · · + β10x10,t + εt, (17)

xt ∼ IN10 [0, I10] , (18)

εt ∼ IN
[
0, σ2j

]
, t = 1, . . . , T, j = 2, . . . , 6, (19)

wherex′
t = (x1,t, · · · , x10,t). Thext are fixed across replications. Equations (17)–(19) specify

10 different DGPs, indexed byn, each havingn relevant variables withβ1 = · · · = βn = 1
and10 − n irrelevant variables (βn+1 = · · · = β10 = 0). Throughout, we setβ0 = 5 and
M = 1000 replications are undertaken.

The error variance is given byσ2j wherej indexes 5 different error variances calculated
by σ2j = T/j2, for j = 2, . . . , 6, such that all relevant variables in each experiment have
the same non-centrality given byψk,j = 2, . . . , 6 for k = 1, . . . , n. Hence, the 10 different
DGPs have relevant variables with 5 different non-centralities, resulting in 50 experiments. The
experimental design aims to span a broad range of situations, from many relevant regressors
to few relevant regressors, and from highly significant to marginally significant regressors,
to ensure the simulation results are relatively general within the linear, orthogonal-regressor
context. Table 5 reports the theoretical powers oft-tests for the non-centralities of relevant
variables considered.

The GUM is the same for all10 DGPs:

yt = β0 + β1x1,t + · · ·+ β10x10,t + ut.



j = 2 j = 3 j = 4 j = 5 j = 6

α = 0.05 50.3 84.3 97.8 99.9 100
α = 0.01 26.0 63.9 91.3 99.1 100

Table 5:Theoretical power for a singlet-test (%) for experiments (17)–(19).

5.1.1 Simulation results forN = 10

We now investigate how the general search algorithm performs relative to 1-cut selection in
terms of (G)–(I) in Section 3. Their comparative gauges forψk = 2 andψk = 6 are shown in
Figure 4, whereAutometricsselects both with and without diagnostic testing. In default mode
(with diagnostic testing),Autometricsis ‘over-gauged’, particularly for low non-centralities,
where the gauge increases asn → N . For high non-centralities, the default-mode gauge is
increased by about 1-2 percentage points (see§5.2). Doornik (2008) shows that encompassing
checks against the GUM help stabilize performance.
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Figure 4: Gauges for 1-cut rule (solid lines),Autometricswith diagnostic testing (dashed lines) and
Autometricswithout diagnostic testing (dotted lines) forα = 0.01, 0.05. The left panel corresponds
to j = 2 so ψk = 2 for k = 1, . . . , n, and the right panel corresponds toj = 6, soψk = 6 for
k = 1, . . . , n. The horizontal axis represents then = 1, . . . , 10 DGPs, each withn relevant variables
(and10− n irrelevant).
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Figure 5:Potencies for 1-cut rule (solid lines) andAutometricswithout diagnostic testing (dotted lines)
for α = 0.05 (left panel) and0.01 (right panel). The horizontal axis represents then = 1, . . . , 10 DGPs,
each withn relevant variables (and10 − n irrelevant). Solid thin lines record the power for a single
t-test atψk = 2, 3, 4.

Figure 5 compares the potencies of both algorithms, withoutdiagnostic testing, and when
the intercept is always included. Potencies can be comparedto the power of a singlet-test, also
recorded in Figure 5 (powers for high non-centralities are excluded as they are close to unity).
Both methods have potencies close to the optimal singlet-test with no selection. The 1-cut
rule has a consistently lower potency, but potencies are notgauge-corrected, and it also has a



slightly lower gauge. Given this trade-off, there is littledifference between 1-cut and searching
many paths.
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Figure 6: Ratios ofMSEs for Autometricsto 1-cut rule asn changes, averaging across all relevant
(solid lines) and irrelevant (dashed lines) variables. Left-hand panels correspond toj = 2 (ψ

k
= 2) and

right-hand panels correspond toj = 6 (ψk = 6) for k = 1, . . . , n.

Figure 6 records the ratios ofMSEs of Autometricsselection to the 1-cut rule for both
unconditional and conditional distributions, with no diagnostic tests and no bias correction, for
M = 1000. If the ratio is below unity, the former has a smaller averageMSE than 1-cut. The
lines labelledRelevantreport the ratios of averageMSEs over all relevant variables for a given
n. Analogously, the lines labelledIrrelevant are based on the averageMSEs of the irrelevant
variables for each DGP (none whenn = 10). Unconditionally, all ratios are close to unity
for the relevant variables, but the 1-cut rule performs better for irrelevant variables when non-
centralities are low but not when they are high. The benefits to search are largest when there are
few relevant variables that are highly significant, but conditionally, Autometricsoutperforms
the 1-cut rule in almost all cases–most lines are below unity. Thus, there is little loss from
using the path-search algorithm even when 1-cut is applicable. In non-orthogonal problems,
1-cut would be inadvisable as the initial ranking given by (2) depends on correlations between
variables as well as their relevance.

5.2 Impact of diagnostic tests

Figure 4 also compared the gauges forAutometricswith diagnostic tracking switched on versus
off, both with bias correction. The gauge is slightly over the nominal significance level when
diagnostic tests are checked to ensure a congruent reduction. With diagnostic testing switched
off, the gauge is close to the nominal significance level. Thedifference seems due to irrelevant
variables proxying chance departures from the null on one ofthe five mis-specification tests
or the encompassing check, and then being retained despite insignificance–a key reason for
measuring gauge not ‘size’.

Figure 7 records the ratio of theUSMSEs with diagnostic tests switched off to on in the top
panel, and the same for theCSMSEs in the bottom panel, averaging within relevant and irrel-
evant variables. Switching the diagnostics off generally improves theUSMSEs, but worsens



the results conditionally, with the impact coming through the irrelevant variables. Switching
the diagnostics off leads to fewer irrelevant regressors being retained overall, improving the
USMSEs, but those irrelevant variables that are retained are now more significant than with
the diagnostics on. The impact is largest at tight significance levels.
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Figure 7:Ratios ofMSEs with diagnostic tests off to on for unconditional and conditional distributions
asn changes, averaging across all relevant (solid lines) and irrelevant (dashed lines) variables. Left-
hand panels correspond toj = 2 (ψk = 2) and right-hand panels correspond toj = 6 (ψk = 6) for
k = 1, . . . , n.

6 Model selection in ADL models

In this section, we analyze a setting in which the regressorsare correlated and the models
are dynamic; the setting that confronts most time-series researchers, so 1-cut is an invalid
procedure. We use a relatively general experimental designto cover many possible settings,
56 experiments in total, for a linear DGP, and assess performance based on criteria (G)–(I).
Non-linear model selection is discussed in Castle and Hendry (2010a, 2010b).

6.1 The dynamic model

The experimental design has nine DGP specifications given by, for r = 3, . . . , 8:

DGP0: yt = εt

DGP1: yt = 0.75yt−1 + εt

DGP2: yt = 1.5yt−1 − 0.8yt−2 + εt

DGPr : yt = 1.5yt−1 − 0.8yt−2 +
r−2∑

j=1

(
βjxj,t − βjxj,t−1

)
+ εt (20)

whereεt ∼ IN [0, 1] andxt = (x1,t, . . . , x6,t)
′ is generated by:

xt = ρxt−1 + vt where vt ∼ IN6 [0,Ω] (21)



with ρ = 0.5, ωkk = 1, andωkj = 0.5,∀k 6= j. There aren = 0, 1, 2, 4, 6, 8, 10, 12, 14
relevant regressors. The DGP involves negative relations between pairs of exogenous regres-
sors as the first differences matter. We setβk = ψk√

T
, ∀k = 1, . . . , L, in a given experiment,

whereL ≤ 6 is the number of contemporaneous exogenous regressors, andthe non-centrality,
ψk = 8/

√
2k, ranges from 5.5 for DGP3 to just over 2 for DGP8.

There are 7 GUMs, given bys = 0, 1, 2, 5, 10, 15, 20:

yt = µ+

s∑

k=1

αkyt−k +
6∑

j=1

s∑

k=0

γj,kxj,t−k + et. (22)

N is the total number of regressors, withN = 7, 14, 21, 42, 77, 112, 147, andT = 100, so there
are four GUMs withN < T/2, one GUM nearT , and two GUMs withN > T . Included in
these are under-specified examples whens = 0 (all DGPs) ands = 1 (DGP2–DGP8), and over-
specified cases. We consider all combinations of DGPs and GUMs, creating 56 experiments
in total. Selection usesα = 1%, 0.5%, both with and without lag pre-selection (sequential
reductions from the longest lag), with diagnostics switched off (as some GUMs are dynamically
mis-specified), forM = 1000 replications.

6.2 Potency and gauge

Potency calculated using (4) combines the retention of the lagged dependent variables and the
exogenous variables, so we separately compute potencies for exogenous variables only by av-
eraging retention rates over the2L relevant exogenous variables. These can be compared with
the theoretical powers for at-test on individual coefficients, as recorded in Table 6. Poten-
cies are not reported for under-specified cases, as they haveno precise meaning when relevant
variables are omitted from the GUM.

DGP 3 4 5 6 7 8
ψk 5.66 4.00 3.27 2.83 2.53 2.31
P0.01 0.999 0.915 0.739 0.580 0.462 0.376
P0.005 0.997 0.871 0.654 0.483 0.367 0.287

Table 6: Powers for a singlet-test.

Figure 8 records the potencies for each DGP and GUM specification defined by the lag
length, s, commencing ats = 2 when there is no under-specification, for selection using
lag pre-search. There is a decline in potency as the non-centrality falls (i.e., the DGP size
increases), but potency is fairly constant across increasing GUM size (s). There is little impact
of extending the GUM when the DGP is autoregressive as the non-centralities of the lagged
dependent variables (LDVs) are high, so even including 20 lags ofy has little effect on potency.

The differences between significance levels are fairly small as the lagged dependent vari-
ables have potencies close to unity. However, comparing thepotencies for just exogenous
regressors against the powers for a singlet-test, the potencies are close to, and in some cases
higher than, the correspondingt-test power, despite successive positive and negative coeffi-
cients of lagged regressors.

Figure 9 records gauges for each DGP and GUM specification. Gauges should be invariant
to the number of regressors and non-centralities so the planes should be flat at the given signif-
icance level. For DGP0, the gauge is close to the nominal significance level and is somewhat
tighter for moderate lag lengths. For the DGPs with just lagged dependent variables (DGP1
and DGP2), the gauges are also close to the nominal significance level, and additional lags do
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not increase them. The gauges increase as more exogenous regressors become relevant, but fall
as the GUM lag length increases. Thus, the gauges are worse for moderate lag lengths (s = 2
and5) than the large GUMs withs = 15 or 20. Whens = 15 or 20, there are more variables
than observations so expanding and contracting searches are needed to reduce the GUM to an
estimable intermediate model, see Doornik (2007a). Despite commencing withN > T , the
gauge is controlled close to the nominal significance level.Overall, divergences from a flat
plane are not substantial, so (H) seems to be satisfied even with dynamics.

6.3 Costs of search and inference

We next consider costs of inference and costs of search to assess the selection procedure, ad-
dressing criterion (G). Search and inference costs are moreuseful concepts than (A) or (B),
because they account for the costs of conducting inference on the LDGP itself. If the signal-to-
noise ratio of the LDGP is low, even commencing from it will result in some relevant variables
being excluded. Such inference costs are an unavoidable consequence of the LDGP speci-
fication. We measure them by theRMSEs of LDGP parameter estimates after conducting
inference on that LDGP, summing the unconditionalRMSEs over all variables, namely (see
Table 1 for definitions):

n∑

k=1

UIRMSEk. (23)

When the GUM is the LDGP, as only significant variables are retained, (23) could be larger
or smaller than theRMSE from directly estimating the LDGP, calculated by summing the
unconditionalRMSEs over all variables in the estimated LDGP, depending on the choice of



critical value,cα, and the non-centralities,ψk, of the LDGP parameters:

n∑

k=1

LRMSEk. (24)

Now consider starting from a more general model with both relevant and irrelevant vari-
ables. The additional costs of search are calculated as the increase in unconditionalRMSEs for
relevant variables in the selected model when starting fromthe GUM as against the LDGP, plus
the unconditionalRMSEs computed for allN − n irrelevant variables, both bias corrected:

n∑

k=1

(USRMSEk − UIRMSEk) +
N∑

k=n+1

USRMSEk (25)

If the LDGP specification is known and just estimated, thenN = n and (25) is zero. Otherwise,
depending on the non-centralities,ψk, there is usually a trade-off between the two components:
ascα increases, the second term falls, but the first term may increase. Also, the second rises as
N − n increases because it sums over more irrelevant terms. Both seem desirable properties
of a measure of search costs. Section 6.5 considers under-specified models, where (25) can be
smaller than (23), and may even be negative.

For dynamic models, these measures of search costs evaluateagainst the precise LDGP lag
structure. With substantial autocorrelation, it is difficult to pinpoint the exact timing of relevant
lags, so for exampleyt−3 rather thanyt−2 may be retained. Definingyt−3 as an ‘irrelevant’
variable whenyt−2 is not retained results in a crude measure of costs. If the selected lags pick
up similar dynamics, then search costs would not be as high asindicated by (25). To quantify
this, we compute the search and inference costs over the exogenous regressors only, i.e.,n
becomes2L andN becomessL wheres is the GUM lag length. We separately assess the
search costs for the LDVs using:

USRMSELDV =

√√√√ 1

M

M∑

i=1

(
s∑

k=1

β̃y,k,i −
s∑

k=1

βy,k,i

)2

(26)

whereβ̃y,k,i denotes the OLS estimate of thekth lag of the dependent variable. If the retained
coefficient estimates sum to the DGP coefficients, then the search costs for the lagged depen-
dent variables would be low despite not selecting the exact lag structure. We compare (26)
to the costs of inference, which also sum the retained laggeddependent variables’ coefficients
when commencing from the LDGP.

Figure 10 recordsRMSEs for the LDGP given by (24), the costs of inference given by (23)
and the costs of search given by (25) over exogenous regressors for each DGP as the GUM
lag lengths increases. The costs of search increase ass increases, as there are more irrelevant
variables contributing to search costs. These increase steadily (almost linearly for large DGPs)
despite a shift fromN � T to N > T betweens = 10 ands = 15. A tighter significance
level results in lower search costs, as fewer irrelevant variables are retained, but delivers higher
costs of inference as more relevant variables will be omitted. When there are many irrelevant
variables and few relevant variables that are highly significant (DGP3), the costs of search
dominate, but for the larger DGPs (DGP6–DGP8) the costs of search are smaller than the costs
of inference for estimable GUMs. Indeed, the costs of searchcan be smaller than the LDGP
costs with no selection (all lower panels up tos = 5). For DGP8 atα = 0.005, the costs of
search are lower than the costs of inference even for the casewhereN > T (s = 15), so an
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Figure 10:Costs of search and inference for exogenous regressors:LRMSE for the LDGP (solid line),
inference on the LDGP (dashed lines) and bias-corrected selection from the GUM with lag pre-selection
(dotted lines).

additional 98 irrelevant variables are searched over. The costs of inference over the LDGP with
no selection are substantial for the larger DGPs, due to the lower non-centralities.

When computing costs for dynamics by averaging over all LDV coefficients,USRMSELDV
is close to the equivalent averageLRMSE for the LDGP. This is not a pure measure of search
costs, but does reflect that the dynamics are adequately captured, although the timing of the
dynamics may not be. In practice, timing is likely to be out only by one or at most two lags,
depending on data frequency and seasonality. Hence, for dynamic models, selection on average
will result in the same long-run solution, but the short-rundynamics may only proxy the LDGP.
Thus, the timing of policy impacts, say, may be incorrect, but not their overall effect.

6.4 Impact of bias correction and lag pre-search onMSEs

As in the static simulation experiments, we compare the ratios ofUSMSE andCSMSE with
bias correction to without bias correction, averaged over relevant and irrelevant variables. Fig-
ure 11 records the averageUSMSE andCSMSE ratios, averaging across all DGPs, recorded
against the GUM specification. All ratios are less than unity, so bias correction is beneficial
in all specifications. Most of the benefit comes from down-weighting retained irrelevant vari-
ables, but there is also some advantage to bias correcting the relevant variables. The theory
behind these corrections assumes that the only bias source is away from the origin due to
selecting largert2 values, whereas inadvertently-omitted variables could induce other biases,
yet there remains a substantive benefit in practice from biascorrection for relevant variables’
coefficients, including whenN > T .

Lag pre-selection is designed to have no overall impact on the final selected model, and
is undertaken at very loose significance levels so as not to eliminate variables that could be
relevant when undertaking the tree search, but is infeasible whenN > T . Computing ratios
of USMSEs andCSMSEs with and without lag pre-search results in values close to unity,
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Figure 11: Ratios ofMSEs with bias correction to no bias correction, averaged across all relevant
(solid lines) and irrelevant (dashed lines) for all DGPs, plotted againsts.

although search time is vastly improved with lag pre-selection. There is a small benefit to lag
pre-search when the GUM specification includes five lags for the irrelevant variables (detailed
results available on request).

6.5 Under-specification

The GUM is under-specified for all DGPs whens = 0, and for DGP2–DGP8 whens = 1. An
LDGP is defined as the joint density of the set of included variables: leaving out any variables
that matter defines a different, and obviously less useful, reduction of the DGP. Correlations
between variables then lead to included components ‘picking up’ correlated parts of excluded
variables. Evaluating selection by how often that under-specified representation is found sheds
little light on how useful that would be in practice. Since even the most general formulation
is under-specified for the DGP in this section, the equation created by the relevant variables
that are included is denoted LDGP∗ below, but the benchmark for evaluation remains the DGP
parameters, not the induced parameters of the LDGP.
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Figure 12:Costs of search and inference for under-specified cases.URMSEs for the LDGP* (solid
line), inference on the LDGP* (dashed lines) and bias-corrected selection from the GUM with lag pre-
selection (dotted lines).

When models are under-specified for the DGP, theRMSEs for the omitted variables are
their squared DGP parameters, but as these are an additive common element in all models, and
in practice it is presumably not known that they are omitted,such terms are excluded in all cost
calculations below. Inter-correlations between includedand omitted regressors induce biases
and inconsistencies in estimated coefficients of the remaining included variables, adding to
both search and inference costs. In practice, mis-specification tests may reveal that the LDGP
(or GUM) is a poor reduction of the DGP, but that induces a simple-to-general search where it
is easy to incorrectly diagnose the source of any rejection (e.g., residual autocorrelation could
be due to many mis-specifications), although including the relevant omitted variables would in



fact lead to a congruent representation.
Figure 12 records the DGP and LDGP∗ costs from (24), as well as the costs of inference,

(23), and the costs of search, (25), for the LDGP∗ and GUM in these under-specified cases,
again computed only over the exogenous variables and all evaluated against the DGP param-
eters. As more exogenous variables become relevant, and non-centralities fall, the costs of
inference dominate. Fors = 1 (right-hand panel) the form of mis-specification (the omitted
variable isyt−2) is the same for all LDGP∗s across the horizontal axis, but the mis-specification
has a greater impact as more variables are relevant. In contrast, search costs decline as more
variables become relevant (and can even be negative, as in DGP8): the choice ofα = 0.01
or 0.005 makes almost no difference. The same phenomenon is observedwhens = 0, with
inference costs increasing and search costs decreasing. Thus, there can be higherRMSE costs
from just estimating the DGP than from searching in the GUM for the best specification. The
GUMs for DGP1 and DGP2 are just a constant fors = 0, so are omitted from Figure 12.

6.6 Higher-order dynamics

We extended the simulation exercise to include higher-order dynamics to reflect seasonal dy-
namics (see Hylleberg, 1986, 1992). In DGP2–DGP8,yt−2 is replaced byyt−12 to reflect
annual lags at the monthly frequency, and the GUM is given by (22) for s = 15, 20. A second
simulation study replacedyt−2 by yt−20 for s = 20, to reflect ‘ice-age’ type data measured at
1000-year intervals, treating a cycle as 20,000 years. The gauge, potency and search costs were
close to those found for the experiments above, so ‘gaps’ in the dynamics have little impact:
performance on such ‘seasonally dynamic’ data is as good as on non-seasonal data.

7 Conclusion

In this paper, we consider how to evaluate model selection procedures. Three criteria are
highlighted as useful benchmarks to assess any method of model selection, namely, the local
data generation process (LDGP) can be recovered when commencing from the initial general
unrestricted model (GUM) almost as often as as when commencing from the LDGP itself;
the operating characteristics of the selection procedure match their desired properties; and the
method finds a well-specified, undominated model of the LDGP.Using these three objective as-
sessment criteria, we examine automaticGetsselection embodied inAutometrics, see Doornik
(2009). The analysis builds from the simple case of a linear regression model withN orthogo-
nal variables, where only one decision is required to selectwhenN < T (a 1-cut procedure), to
the more realistic setting of dynamic models with long lag structures and intercorrelated vari-
ables. As the automatic selection algorithm is complicated, we undertake a range of simulation
experiments to assess its properties, including cases where N > T , and where the GUM is
under-specified for the LDGP.

When the nominal rejection frequency of individual selection tests,α, is set atα ≤ 1/N ,
then on average one irrelevant variable will be spuriously retained as significant out ofN candi-
dates. Thus, there is little difficulty in eliminating almost all irrelevant variables when starting
from the GUM (a small cost of search). Despite large numbers of irrelevant candidate regres-
sors, includingN > T , Autometricshas a retention frequency of irrelevant variables (gauge)
close toα, somewhat increased by undertaking mis-specification testing for congruence and
encompassing tests against the GUM. Bias correction for selection greatly reduces the mean
square errors (MSEs) of spuriously retained irrelevant variables in both unconditional and con-
ditional distributions, at a small cost in increasedMSEs for relevant variables. The costs of
search can be smaller than those of just estimating the DGP, even when the GUM is under-
specified, and seem to increase only linearly inN despiteN > T . Thus, the procedure usually



terminates with a selected model close to what would be foundcommencing from the LDGP,
with near unbiased estimates of the retained LDGP parameters, and almost no irrelevant vari-
ables, with those retained having smallMSEs, thereby satisfying our three criteria.

Limits to automatic model selection apply when the LDGP equation would not be reliably
selected by the given inference rules applied to itself as the initial specification: selection can-
not rectify that. When relevant variables have parameters that areO(1/

√
T ), and regressors

are highly intercorrelated, selection will not work well, see Leeb and Pötscher (2003, 2005).
Thus, uniform convergence seems infeasible, as parameterscannot then be consistently esti-
mated. However, selection works for parameters larger thanO(1/

√
T ) (as they are consistently

estimable), or smaller thanO(1/T ) (as they vanish), and1/
√
T and1/T both converge to zero

asT → ∞, so ‘most’ parameter values are unproblematic. The so-called ‘size’ of a selection
procedure,1 − (1 − α)N−n, can be large, but is uninformative about the success of selection
that correctly eliminates(1−α)(N−n) irrelevant variables on average, and is consistent when
α→ 0 asT → ∞.

When the LDGP is not nested in the GUM, direct estimation willdeliver inconsistent es-
timates. While a selected approximation will also be an incorrect choice, it will be undomi-
nated, and in a progressive research strategy, especially when there are intermittent structural
breaks in both relevant and irrelevant variables, will soonbe replaced. Conversely, if the LDGP
would always be retained when commencing from it, then a close approximation will generally
be selected when starting from a GUM which nests that LDGP. Costs of inference dominate
costs of search for most values of the non-centrality parameter and numbers of candidate vari-
ables. Search costs rise with the extent of initial over-specification, whereas inference costs rise
with under-specification, even in constant-parameter processes. Consequently, prior theoretical
analyses that can ascertain the main relevant variables andlikely lag-reaction latencies remain
invaluable, and can be embedded in the search process, allowing more stringent selection of
other potential effects, as in Hendry and Mizon (2010). Automatic model selection is just the
next step up from automatic computation, extending the capabilities of empirical modellers.

Overall, we conclude that model selection based onAutometricsusing relatively tight sig-
nificance levels and bias correction is a successful approach to selecting dynamic equations
even when commencing from very long lags to avoid omitting relevant variables or dynamics.
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