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1 Introduction 

Binary numbers are reasonably well known as in Table 1.  
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Table 1. Binary matrices (arrays) 

These binary matrices can be generated by the first order recurrence relation 
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with initial term 

11 GB   
where 











1

0
1G , 

and
12

0
n is a column vector (or matrix with one column) and 2n rows each with a zero in it, and 

Bn+1 has 2n+1 rows and n + 1 columns. 
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2 Gray codes 

A Gray code is also made up of binary numbers as shown in the arrays of Gray matrices (Table 2). 
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Table 2. Gray matrices 

If we define the reverse of the unit nn matrix, I, by 

][ 1,   jni
R

nnI   

in which ji , , the element in the i-th row and j-th column, is the Kronecker delta:  
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The reverse of any nm matrix, A, can then be defined as 
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For instance, 
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It can next be observed that in general 1nG  is a block matrix which satisfies the matrix 

recurrence relation 
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where 
12

0
n and 

12
1

n are column matrices containing zeros or ones, respectively. 

Gray Codes are clearly binary in nature, so it is tempting to contrast them with the formal 
binary numbers (Table 3).   
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Decimal order Binary Gray Gray decimal 

0 000000 000000 0 
1 000001 000001 1 
2 000010 000011 3 
3 000011 000010 2 
4 000100 000110 6 
5 000101 000111 7 
6 000110 000101 5 
7 000111 000100 4 
8 001000 001100 12 
9 001001 001101 13 
10 001010 001111 15 

Table 3. Gray and binary numbers 

We can use Gray arrays to define third-order recursive sequences    nn vu , , which are 

coupled or lacunary (have missing terms), with initial terms a, b, c and d, e, f, respectively, and 
eight pairs of recurrence relations defined by  
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in which ig  and ig~  are the i-th rows of 3G  and 3

~
G , respectively [1]. Try it! Once again, there 

is a two-fold idea of finding patterns and getting the notation to suggest new ideas [5]. 

3 Good sequences 

Austin and Guy [2] define a ‘good’ sequence as an ordered set of zeros and ones in which each 
‘one’ in it has a neighbouring ‘one’; that is, if there is a ‘one’ in the set, then it has a ‘one’ next 
to it. an is then defined as the number of good sequences of length n (Table 4).  
 

n ‘Good’ sequences of length n an 

1 0 1 
2 00,11 2 
3 000,011,110,111 4 
4 0000,0011,0110,1100,0111,1110,1111 7 
5 00000,00011,00110,01100,11000,00111,01110,11100,01111,11110,11011,11111 12 

Table 4. ‘Good’ sequences 

The ‘good’ numbers, an, can be shown to satisfy the fourth order recurrence relation: 

421   nnnn aaaa . (3.1) 

What about investigating ‘better’ sequences,  nb  in which the requirement is that each 

‘one’ (if present) be accompanied by two other ‘ones’; that is, in blocks of length three?  (This 
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is actually using the mathematical principle of exclusion-inclusion.) Or, as Austin and Guy 
consider the binary sequences of length n in which the ‘ones’ occur only in blocks of length at 

least k. The elements of this are designated by )(k
na , so that the ‘good’ sequence is  )2(

na , and 

we again gradually begin to see how notation becomes a tool of thought rather than an artificial 
burden [5].  Can you justify that  

knnna k
nk  0),2)(1(1 2

1)( ? (3.2) 

These are the central polygonal numbers and a solution to the ‘Lazy caterer’s problem’ [4, 6, 7]. 

4 Some other recursive sequences 

Sburlati [9] used a recursive sequence {kn} defined as a repunit [3] by 

)14(3
1  n

nk  (4.1) 

It satisfies the second order homogenous linear recurrence relation 

,5,1,2,45 2121   kknkkk nnn  (4.2) 

which is a generalization of the well-known Fibonacci recurrence relation 

,1,1,2, 2121   FFnFFF nnn  (4.3) 

As a means of comparison, the first ten elements of the Fibonacci, Lucas and Pell 
sequences as well as those from [9] are printed in Table 5. 
 

n Fibonacci Lucas Pell Sburlati 

1 1 1 1 1 
2 1 3 2 5 
3 2 4 5 21 
4 3 7 12 85 
5 5 11 29 341 
6 8 18 70 1365 
7 13 29 169 5461 
8 21 47 408 21845 
9 34 76 985 87381 

10 55 123 2378 1398101 

Table 5. Some second order sequences 

Representations of numbers in the last column of Table 5 are disguised in Table 6. 
 

    1      1     
   1 0 1     1 4    
  1 0 1 0 1    1 4 16   
 1 0 1 0 1 0 1   1 4 16 64  
1 0 1 0 1 0 1 0 1  1 4 16 64 256 

Table 6. A curious binary triangle and a ‘decimal relative’ 



13 

Can you find the sequence {1, 5, 21, 85, 341, 1365, 5461,…} in the two triangles of 
Table 6? Can you add along the various slopes (diagonals) and rows in Table 6 and come up 
with sequences? What are their recurrence relations? Can you develop other binary triangles? 

5 Concluding Comments 

The next challenge for the interested reader is to develop triangles associated with the other 
sequences and to play with other combinations of these sequences either directly or by treating 
the triangles as upper and lower triangular matrices, and by adding along the diagonals of the 
triangles, including Pascal’s triangle, as well as across rows and down columns (partial sums). 
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