
Chapter 4

Bernoulli Polynomials

4.1 Bernoulli Numbers

The “generating function” for the Bernoulli numbers is

x

ex − 1
=

∞
∑

n=0

Bn

n!
xn. (4.1)

That is, we are to expand the left-hand side of this equation in powers of x, i.e.,
a Taylor series about x = 0. The coefficient of xn in this expansion is Bn/n!.
Note that we can write the left-hand side of this expression in an alternative
form

x

ex − 1
=

x

ex/2
(

ex/2 − e−x/2
)

=
x e−x/2

2 sinh x
2

=
x

2

cosh x
2 − sinh x

2

sinh x
2

=
x

2
coth

x

2
−

x

2
. (4.2)

Note that x
2 coth x

2 is an even function of x, while x
2 is odd. Therefore we

conclude that all but one of the Bernoulli numbers of odd order are zero:

B1 = −
1

2
(4.3a)

B2k+1 = 0, k = 1, 2, 3, . . . . (4.3b)

By writing x = iy and noting that

coth
iy

2
= −i cot

y

2
, (4.4)
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we conclude that
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, (4.5)
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2
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y2n. (4.6)

By straightforward expansion in powers of x we can read off the first few
Bernoulli numbers:
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(4.7)

So by comparison with Eq. (4.1) we find

B0 = 1, B2 =
1

6
, B4 = −

1

30
, B6 =

1

42
, B8 = −

1

30
. (4.8)

What is the radius of convergence of the series

z

ez − 1
= −

z

2
+

∞
∑

n=0

B2n

(2n)!
z2n? (4.9)

Recall that a power series converges everywhere within its circle of convergence,
and diverges outside that circle. Since a uniformly convergent series must con-
verge to a continuous function, the power series must converge to a well-behaved
function within the circle of convergence. That is, the limit function must have
a singularity somewhere on the circle of convergence, but must be singularity-
free within the circle of convergence. The precise theorem, proved in Chapter
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n B2n Asymptotic value Relative error

0 1 −2 300%
1 1

6
1

π2 39%

2 − 1
30 − 3

π4 7.6%

3 1
42

45
2π6 1.7%

4 − 1
30 − 315

π8 0.41%

5 5
66

14175
2π10 0.099%

6 − 691
2730 − 467775

2π12 0.025%

7 7
6

42567525
4π14 0.0061%

8 − 3617
510 − 638512875

π16 0.0015%

9 43867
798

97692469875
2π18 0.00038%

10 − 174611
330 − 9280784638125

2π20 0.0000095%

Table 4.1: The Bernoulli numbers B2n for n from 0 to 10, compared with
the asymptotic values (4.12). The last column shows the relative error of the
asymptotic estimate. Note that the later rather rapidly approaches the true
value.

5, is that the radius of convergence of a power series is the distance from the
origin to the nearest singularity of the function the series represents.

In this case, it is clear that the generating function is singular wherever
ez = 1, except for z = 0. Thus the closest singularities to the real axis occur at
±2πi, so that the radius of convergence is 2π. On the other hand

(2π)2 = ρ2 = lim
n→∞

|B2n|

(2n)!

[2(n + 1)]!

|B2(n+1)|
= lim

n→∞

(2n + 2)(2n + 1)

∣

∣

∣

∣

B2n

B2n+2

∣

∣

∣

∣

, (4.10)

from which we can infer the fact that the Bernoulli numbers grow rapidly with
n,

|B2n| ∼
(2n)!

(2π)2n
, n → ∞. (4.11)

We cannot deduce the sign or overall constant from this analysis: The true
asymptotic behavior of B2n is

B2n ∼ 2(−1)n+1 (2n)!

(2π)2n
. (4.12)

The table shows the relative accuracy of the asymptotic approximation (4.12).
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4.2 Bernoulli Polynomials

The Bernoulli polynomials are defined by the generating function

F (x, s) =
x exs

ex − 1
=

∞
∑

n=0

Bn(s)
xn

n!
, (4.13)

that is, according to Eq. (2.94),
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(

∂

∂x

)n
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∣

∣

x=0

. (4.14)

From the properties of F (x, s) we can deduce all the properties of these poly-
nomials:

1. Note that

F (x, 0) =
x

ex − 1
=

∞
∑

n=0

Bn
xn

n!
. (4.15)

Therefore, we conclude that the Bernoulli polynomials at zero are equal
to the Bernoulli numbers,

Bn(0) = Bn. (4.16)

2. Next we notice that

F (x, 1) =
x ex

ex − 1
=

x

1 − e−x
=

−x

e−x − 1
= F (−x, 0), (4.17)

so that by comparing corresponding terms in the generating function ex-
pansion, we find

Bn(1) = (−1)nBn(0) = (−1)nBn. (4.18)

3. If we differentiate the generating function with respect to its second argu-
ment, we obtain the relation

∂

∂s
F (x, s) =

x2exs

ex − 1
=

∞
∑

n=0

B′

n(s)
xn

n!
. (4.19)

But obviously

x2exs

ex − 1
= xF (x, s) =

∞
∑

n=0

Bn
xn+1

n!
, (4.20)

so equating coefficients of xn/n! we conclude that

B′

n(s) = nBn−1(s). (4.21)
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(Note that B′

0(s) = 0 is consistent with this if B−1(s) is finite.)
Again, by direct power series expansion of the generating function we can

read off the first few Bernoulli polynomials:

F (x, s) ≈ x
1 + xs + 1

2 (xs)2 + 1
6 (xs)3

x + 1
2x2 + 1

3!x
3

≈ 1 + x

(

s −
1

2

)

+ x2

(

s2

2
−

s

2
−

1

6
+

1

4

)

+ . . . , (4.22)

from which we read off

B0(s) = 1, (4.23a)

B1(s) = s −
1

2
, (4.23b)

B2(s) = s2 − s +
1

6
. (4.23c)

By keeping two more terms in the expansion we find

B3(s) = s3 −
3

2
s2 +

1

2
s, (4.23d)

B4(s) = s4 − 2s3 + s2 −
1

30
. (4.23e)

Note that the properties (4.16) and (4.18) are satisfied. Note further we can
use the property (4.21) to derive higher Bernoulli polynomials from lower ones.
Thus from Eq. (4.23c) we know that

B′

3(s) = 3s2 − 3s +
1

2
. (4.24)

The expression for B3(s), (4.23d) is recovered, when it is recalled that B3 = 0.

4.3 Euler-Maclaurin Summation Formula

Using the above recursion relation (4.21) we can deduce a very important for-
mula which allows a precise relation between a discrete sum and a continuous
integral. First note that since B0 = B0(s) = 1 we can write

∫ 1

0

f(x)B0(x) dx =

∫ 1

0

f(x) dx, (4.25)

valid for any function f . But now we can integrate by parts using

B′

1(x) = B0(x) : (4.26)

∫ 1

0

f(x) dx =

∫ 1

0

f(x)B′

1(x) dx
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= f(x)B1(x)

∣

∣

∣

∣

1

x=0

−

∫ 1

0

f ′(x)B1(x) dx

=
1

2
[f(1) + f(0)] −

∫ 1

0

f ′(x)B1(x) dx. (4.27)

Here, we have used the facts that

B1(0) = B1 = −
1

2
, (4.28a)

B1(1) = −B1 =
1

2
. (4.28b)

Now we can continue integrating by parts by noting that

B1(x) =
1

2
B′

2(x), (4.29)

so that
∫ 1

0

f(x) dx =
1

2
[f(1) + f(0)] −

1

2
[f ′(1)B2(1) − f ′(0)B2(0)]

+
1

2

∫ 1

0

f ′′(x)B2(x) dx

=
1

2
[f(1) + f(0)] −

1

2
B2 [f ′(1) − f ′(0)]

+
1

2

∫ 1

0

f ′′(x)B2(x) dx. (4.30)

A general pattern is emerging. Let us assume the following formula holds
for some integer k (we have just proved it for k = 1):

∫ 1

0

f(x) dx =
1

2
[f(1) + f(0)]

−
k

∑

m=1

B2m

(2m)!

[

f (2m−1)(1) − f (2m−1)(0)
]

+
1

(2k)!

∫ 1

0

f (2k)(x)B2k(x) dx. (4.31)

We shall then prove that the same formula holds for k → k + 1, thereby es-
tablishing this formula, the Euler-Maclaurin summation formula, for all k. We
proceed as follows. Note that

B2k(x) =
B′

2k+1(x)

2k + 1
=

B′′

2k+2(x)

(2k + 1)(2k + 2)
, (4.32)

so that by integrating by parts, we rewrite the last term in Eq. (4.31) as

1

(2k)!

∫ 1

0

f (2k)(x)
1

(2k + 1)(2k + 2)
B′′

2k+2(x) dx
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=
1

(2k + 2)!

[

f (2k)(1)B′

2k+2(1) − f (2k)(0)B′

2k+2(0)

−

∫ 1

0

f (2k+1)(x)B′

2k+2(x) dx

]

=
1

(2k + 2)!

[

− f (2k+1)(1)B2k+2(1) + f (2k+1)(0)B2k+2(0)

+

∫ 1

0

f (2k+2)(x)B2k+2(x) dx

]

, (4.33)

where we have noted that for k > 0

B′

2k+2(0) = (2k + 2)B2k+1(0) = 0, (4.34a)

B′

2k+2(1) = (2k + 2)B2k+1(1) = −(2k + 2)B2k+1(0) = 0. (4.34b)

Hence
∫ 1

0

f(x) dx =
1

2
[f(1) + f(0)]

−

k+1
∑

m=1

B2m

(2m)!

[

f (2m−1)(1) − f (2m−1)(0)
]

+
1

(2k + 2)!

∫ 1

0

f (2k+2)(x)B2k+2(x) dx. (4.35)

This is exactly Eq. (4.31) with k replaced by k + 1; so since the formula is true
for k = 1 it is true for all integers k ≥ 1. Notice that the last term in this
formula, the remainder, can also be written in the form

−
1

(2k + 3)!

∫ 1

0

f (2k+3)(x)B2k+3(x) dx. (4.36)

Now consider the integral (N a positive integer)

∫ N

0

f(s) ds =

N−1
∑

k=0

∫ k+1

k

f(s) ds =

N−1
∑

k=0

∫ 1

0

f(k + t) dt, (4.37)

where we have introduced a local variable t. For the latter integral, we can use
the Euler-Maclaurin sum formula, which here reads

∫ 1

0

f(k + t) dt =
1

2
[f(k + 1) + f(k)]

−

n
∑

m=1

B2m

(2m)!

[

f (2m−1)(k + 1) − f (2m−1)(k)
]

+
1

(2n)!

∫ 1

0

f (2n)(k + t)B2n(t) dt. (4.38)
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Now when we sum the first term here on the right-hand side over k we obtain

N−1
∑

k=0

1

2
[f(k + 1) + f(k)] =

N
∑

k=0

f(k) −
1

2
[f(0) + f(N)], (4.39)

while the second term when summed on k involves

N−1
∑

k=0

[

f (2m−1)(k + 1) − f (2m−1)(k)
]

= f (2m−1)(N) − f (2m−1)(0). (4.40)

Thus we find

∫ N

0

f(s) ds =

N
∑

k=0

f(k) −
1

2
[f(0) + f(N)]

−
n

∑

m=1

1

(2m)!
B2m

[

f (2m−1)(N) − f (2m−1)(0)
]

+
1

(2n)!

∫ 1

0

N−1
∑

k=0

f (2n)(t + k)B2n(t) dt. (4.41)

Equivalently, we can write this as a relation between a finite sum and an integral,
with a remainder Rn:

N
∑

k=0

f(k) =

∫ N

0

f(s) ds +
1

2
[f(0) + f(N)]

+

n
∑

m=1

1

(2m)!
B2m

[

f (2m−1)(N) − f (2m−1)(0)
]

+ Rn, (4.42)

where the remainder

Rn = −
1

(2n)!

∫ 1

0

N−1
∑

k=0

f (2n)(t + k)B2n(t) dt. (4.43)

is often assumed to vanish as n → ∞. Note that the remainder can also be
written as

Rn = −
1

(2n)!

∫ N

0

f (2n)(t)B2n(t − ⌊t⌋) dt, (4.44)

where ⌊t⌋ signifies the greatest integer less than or equal to t.

4.3.1 Examples

1. Use the Euler-Maclaurin formula to evaluate the sum
∑N

n=0 cos(2πn/N).

N
∑

n=0

cos
2πn

N
=

∫ N

0

dn cos
2πn

N
+

1

2
(1 + 1) + 0 = 1, (4.45)
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because
f (2m−1)(0) = f (2m−1)(N) = 0 (4.46)

and
∫ N

0

dn cos
2nπ

N
=

N

2π

∫ 2π

0

dx cosx = 0. (4.47)

Of course, the sum may be carried out directly,

N
∑

n=0

cos
2πn

N
=

1

2

N
∑

0

(

ei2πn/N + e−i2πn/N
)

=
1

2

[

1 − e2πi(N+1)/N

1 − e2πi/N
+

1 − e−2πi(N+1)/N

1 − e−2πi/N

]

=
1

2
(1 + 1) = 1. (4.48)

2. The following sum occurs, for example, in computing the vacuum energy
in a cosmological model:

∞
∑

l=0

(2l + 1)e−l(l+1)t. (4.49)

How does this behave as t → 0? We will answer this question by using the
Euler-Maclaurin formula assuming that the remainder Rn tends to zero
as n → ∞. Thus we will write the limiting form of that sum formula as

∞
∑

l=0

f(l) =

∫

∞

0

dl f(l) +
1

2
[f(∞) + f(0)]

+

∞
∑

k=1

B2k

(2k)!

[

f (2k−1)(∞) − f (2k−1)(0)
]

. (4.50)

Here
f(l) = (2l + 1)e−l(l+1)t, (4.51)

so that
f(∞) = f (2k−1)(∞) = 0, (4.52)

while a very simple calculation shows

f(0) = 1, (4.53a)

f ′(0) = 2 − t, (4.53b)

f ′′′(0) = −12t + 12t2 − t3, (4.53c)

f (5)(0) = 120t2 − 180t3 + 30t4 − t5, (4.53d)

f (7)(0) = −1680t3 + 3360t4 − 840t5 + 56t6 − t7, (4.53e)

f (2k−1)(0) = O(t4), k ≥ 5. (4.53f)



38 Version of September 16, 2011CHAPTER 4. BERNOULLI POLYNOMIALS

Thus Eq. (4.50) yields

∞
∑

l=0

(2l + 1)e−l(l+1)t =

∫

∞

0

dl (2l + 1)e−l(l+1)t +
1

2

−
B2

2
f ′(0) −

B4

4!
f ′′′(0) − . . .

=
1

t

∫

∞

0

du e−u +
1

2
+

1

2

(

1

6

)

(t − 2)

+
1

4!

(

−
1

30

)

[12t + O(t2)] + O(t2)

=
1

t
+

1

3
+

t

15
+

4

315
t2 +

1

315
t3 + . . . . (4.54)

Here the integral was evaluated by making the substitution u = l(l + 1)t,
du = (2l+1)t dl, and in the last line we have displayed the next two terms
in this asymptotic expansion for small t.

3. The Riemann zeta function (2.50) is defined by

ζ(α) =
∞
∑

n=1

1

nα
, Re α > 1. (4.55)

Suppose we approximate this by the first M terms in the sum occurring
in the Euler-Maclaurin formula (4.42):

ζ(α, M) =
1

α − 1
+

1

2
−

M
∑

m=1

B2m

(2m)!
f (2m−1)(1), (4.56)

where f(n) = n−α, and the first two terms here come from the integral
and the 1

2f(1) terms in the EM formula. It is easy to see that

f (2m−1)(1) = −
Γ(α + 2m − 1)

Γ(α)
. (4.57)

Given the asymptotic behavior of the Bernoulli numbers in (4.12), it is
apparent that the limit M → ∞ of ζ(α, M) does not exist. This limit is
an example of an asymptotic series. However, in Table 4.2 we compare the
sum of the first N terms of the series in (4.55) with the first N terms in the
series defined by (4.56), that is ζ(α, N), for α = 3, where ζ(3) = 1.2020569.
The original series converges monotonically to the correct limiting value,
but not spectacularly fast. For N = 9 terms, the relative error is about
−0.5%. The asymptotic series is divergent; however, the N = 1 term is in
error by only 4%, and the average of the N = 1 and N = 2 is larger than
the true value by only +0.5%. This illustrates a characteristic feature of
asymptotic series: A few terms in the series approximates the function
rather well, but as more and more terms are included the series deviates
from the true value by an ever increasing amount.
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N
∑N

n=1 n−3 ζ(3, N) 1
2 [ζ(3, N) + ζ(3, N + 1)]

1 1 1.25 1.208
2 1.125 1.1667 1.208
3 1.1620 1.25 1.175
4 1.1777 1.1 1.308
5 1.1857 1.5167 0.694
6 1.1903 −0.1286
7 1.1932 8.6214
8 1.1952 −51.6619
9 1.1965 470.564

Table 4.2: Two approximations compared for ζ(3) = 1.20206 . . .: N terms in
the defining series (4.55) and N terms (without the remainder) in the Euler-
Maclaurin sum (4.56). The former converges monotonically to the limit from
below, while the later diverges, yet approximates the true value to better than
1% for low values of N .


