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Abstract

This paper discusses issues in the design of ScaLAPACK, a software library for per-

forming dense linear algebra computations on distributed memory concurrent computers.

These issues are illustrated using the ScaLAPACK routines for reducing matrices to Hes-

senberg, tridiagonal, and bidiagonal forms. These routines are important in the solution

of eigenproblems. The paper focuses on how building blocks are used to create higher-level

library routines. Results are presented that demonstrate the scalability of the reduction

routines. The most commonly-used building blocks used in ScaLAPACK are the sequen-

tial BLAS, the Parallel BLAS (PBLAS) and the Basic Linear Algebra Communication

Subprograms (BLACS). Each of the matrix reduction algorithms consists of a series of

steps in each of which one block column (or panel), and/or block row, of the matrix is

reduced, followed by an update of the portion of the matrix that has not been factorized

so far. This latter phase is performed using Level 3 PBLAS operations, and contains the

bulk of the computation. However, the panel reduction phase involves a signi�cant amount

of communication, and is important in determining the scalability of the algorithm. The

simplest way to parallelize the panel reduction phase is to replace the BLAS routines ap-

pearing in the LAPACK routine (mostly matrix-vector and matrix-matrix multiplications)

with the corresponding PBLAS routines. However, in some cases it is possible to reduce

communication startup costs by performing the communication necessary for consecutive

BLAS operations in a single communication using a BLACS call. Thus, there is a tradeo�

between e�ciency and software engineering considerations, such as ease of programming

and simplicity of code.
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1. Introduction

This paper addresses issues in the design and implementation of ScaLAPACK, a software library

for performing dense linear algebra computations on distributed memory concurrent comput-

ers. Upon completion, ScaLAPACK (\Scalable LAPACK") will make available on distributed

memory machines the same set of library routines that LAPACK [1, 2] provides for vector and

shared memory architectures.

A set of Basic Linear Algebra Subprograms (Level 1, 2, and 3 BLAS) [8, 11, 20] is available

as a highly e�cient machine-speci�c implementation on many modern high-performance com-

puters. They provides high performance with portability and are used as the building blocks

of a number of applications, including LAPACK. The Basic Linear Algebra Communication

Subprograms (BLACS) [10] comprise a package that provides ease-of-use and portability for

message-passing in parallel linear algebra applications. The Parallel BLAS (PBLAS), which

provide a simpli�ed interface around the Parallel Block BLAS (PB-BLAS) [7], are intermedi-

ate level routines based on the sequential BLAS and the BLACS. The PBLAS provide all the

functionality supported by parallel versions of the Level 1, 2, and 3 BLAS on a restricted class

of matrices having a block cyclic data distribution. The ScaLAPACK routines are built using

the sequential BLAS, the BLACS, and the PBLAS modules. ScaLAPACK can be ported with

minimal code modi�cation to any machine on which the BLAS and the BLACS are available.

Of particular interest in this paper is the tradeo� between performance and modular algo-

rithm design. This tradeo� will be illustrated using routines that use Householder transfor-

mations to reduce a real general matrix to Hessenberg or bidiagonal form, and a symmetric

matrix to tridiagonal form. The reduction of a matrix to Hessenberg form is an important com-

putational component in the unsymmetric eigenvalue problem. The reduction to tridiagonal

form plays a similar role in the symmetric eigenvalue problem. Reduction to bidiagonal form

is important in evaluating the singular value decomposition (SVD) of a matrix, which in turn

is used in the least-squares solution of overdetermined systems of linear equations.

Currently ScaLAPACK also includes LU, QR, and Cholesky factorization routines with

their solvers. The implementation details, performance, and scalability of the ScaLAPACK

factorization routines are presented in a separate paper [4].

The design philosophy of the ScaLAPACK library is addressed in Section 2. In Section 3, we

induce the block equations of the reduction routines and describe the ScaLAPACK reduction

routines by comparing them with the corresponding LAPACK routines. Section 4 presents

performance results and scalability of the algorithms on the Intel family of computers: the

iPSC/860, the Touchstone Delta, and the Paragon. In Section 5, conclusions and future work

are presented.
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2. Design Philosophy

In ScaLAPACK, algorithms are presented in terms of processes, rather than the processors of

the physical hardware. A process is an independent thread of control with its own nonshared,

distinct memory. Processes communicate by pairwise point-to-point communication, or by col-

lective communication, as necessary. In general there may be several processes on a physical

processor, in which case it is assumed that the runtime system handles the scheduling of pro-

cesses. For example, execution of a process waiting to receive a message may be suspended and

another process scheduled, thereby overlapping communication and calculation. In the absence

of such a sophisticated operating system, ScaLAPACK has been developed and tested for the

case of one process per processor.

2.1. Factors A�ecting Performance

Two key factors in ensuring that the ScaLAPACK algorithms have good scalability and per-

formance characteristics are maintaining long vector lengths, and maximizing data reuse in the

upper levels of memory. Long vector lengths result in more e�ective use of the vector or RISC

processors found in many parallel computers. Thus, in implementing ScaLAPACK we must

avoid performing operations on small matrices and vectors. By reusing data in the upper levels

of memory (registers and cache) the longer latencies associated with accesses to lower levels

of memory (main memory, o�-processor memory) are avoided. In ScaLAPACK, high levels

of data reuse are ensured by the use of block partitioned algorithms that exploit locality of

reference. This reduces the frequency of communication between processes, thereby avoiding

message startup latency. The sequential computations performed by each process are mostly

expressed in terms of Level 2 and Level 3 Basic Linear Algebra Subprograms (BLAS) [8, 11].

These computations are done using commercially available assembly coded routines that have

good data reuse characteristics, and make e�cient use of the target chip architecture.

In many of the ScaLAPACK routines, such as the factorization routines discussed in [16]

and the reduction routines in this paper, columns and/or rows of the matrix are eliminated

as the computation progresses. This leads to a tradeo� between data reuse and load balance.

This tradeo� has been discussed in an earlier paper [17], and may be controlled at the user

level by varying the parameters of the data distribution, as discussed in the next subsection.

2.2. Data Distribution

In many linear algebra algorithms the distribution of work may become uneven as the algorithm

progresses, as in LU factorization in which rows and columns become eliminated from the

computation. ScaLAPACK, therefore, makes use of the block cyclic data distribution in which

matrix blocks separated by a �xed stride in the row and column directions are assigned to the
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same process. A number of researchers have made use of the block cyclic data distribution in

parallel dense linear algebra algorithms [5, 6, 9, 13, 21]. The block cyclic data distribution is

parameterized by the four numbers P , Q, r, and c, where P � Q is the process template and

r� c is the block size. All ScaLAPACK routines work for arbitrary values of these parameters,

subject to certain \compatibility conditions." Thus, for example, in the LU factorization routine

we require that the blocks be square, since nonsquare blocks would lead to additional software

complexity and communication overhead. When multiplying two matrices, C = AB, we require

that all three matrices are distributed over the same P�Q process template; rectangular blocks

are permitted, but we require that if the blocks of matrix A are r � t, then those of B and C

must be t� c and r� c, respectively, so it is possible to multiply the individual blocks of A and

B to form blocks of C.

Suppose we have M objects indexed by the integers 0; 1; : : :;M �1. In the block cyclic data

distribution the mapping of the global index, m, can be expressed as m 7! (p; b; i), where p is

the logical process number, b is the block number in process p, and i is the index within block

b to which m is mapped. Thus, if the number of data objects in a block is r, the block cyclic

data distribution may be written

m 7�! hsmodP; bs=P c ; mmod ri (1)

where s = bm=rc, and P is the number of processes. The distribution of a block-partitioned

matrix can be regarded as the tensor product of two such mappings, one that distributes the

rows of the matrix over P processes, and another that distributes the columns over Q processes.

It should be noted that Eq. 1 reverts to the cyclic distribution when r = 1, with local index

i = 0 for all blocks. A block distribution is recovered when r = dM=P e, in which case there is

a single block in each process with block number b = 0. Thus, we have

m 7�! hm mod P; bm=P c; 0 i (2)

for a cyclic data distribution, and

m 7�! h bm=Lc ; 0;mmod L i ; (3)

for a block distribution, where L = dM=P e. A subtle distinction between the block distribution

given by Eq. 3 and that often used elsewhere (see for example [18, 24]) should be noted. Consider

the block distribution of 6 items over 4 processes. This is commonly distributed as (2,2,1,1), i.e.,

2 items in two of the processes and 1 item in the other two processes. The block distribution

given by Eq. 3 results in the distribution (2,2,2,0), so that one of the processes contains no data

items. Clearly, since the load imbalance is measured by the di�erence between the maximum

and the average loads, both distribution schemes have the same degree of load imbalance. We
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prefer the block distribution given by Eq. 3 because the arithmetic needed to convert between

global and local indices is simpler, and because of the symmetry between the equations for the

block and cyclic distributions (compare Eqs. 2 and 3). There appear to be no other compelling

reasons why one of the above forms of block distribution should be preferred to the other in all

cases.

2.3. Building Blocks

The ScaLAPACK routines are built out of a small number of modules. The most fundamental

of these are the Basic Linear Algebra Communication Subprograms (BLACS) [10, 14], that

perform commonmatrix-oriented communication tasks, and the sequential Basic Linear Algebra

Subprograms (BLAS) [8, 11, 20], in particular the Level 2 and 3 BLAS. ScaLAPACK can be

ported with minimal code modi�cation to any machine on which the BLACS and the BLAS

are available. The Parallel BLAS (PBLAS) provide a simpli�ed interface to the Parallel Block

BLAS (PB-BLAS) [7] | the PBLAS are essentially C wrappers around the PB-BLAS, which

in turn are intermediate-level routines based on the BLACS and sequential BLAS. The BLACS,

the sequential BLAS, and the PBLAS are the modules from which the higher level ScaLAPACK

routines are built. Thus, the entire ScaLAPACK package contains modules at a number of

di�erent levels. For many users the top level ScaLAPACK routines will be su�cient to build

applications. However, more expert users may make use of the lower level routines to build

customized routines not provided in ScaLAPACK.

The BLACS package attempts to provide the same ease of use and portability for MIMD

message-passing linear algebra communication that the BLAS provide for linear algebra com-

putation. Therefore, future software for dense linear algebra on MIMD platforms could consist

of calls to the PBLAS for computation and calls to the BLACS for communication. Since both

packages will have been optimized for each particular platform, good performance should be

achieved with relatively little e�ort.

In the ScaLAPACK routines all interprocess communication takes place within the PBLAS

and the BLACS, so the source code of the top software layer of ScaLAPACK looks very similar

to that of LAPACK. The BLACS have been implemented for the Intel family of computers,

the TMC CM-5, the IBM SP1 and SP2, the Cray T3D, and for PVM.

The PBLAS are distributed BLAS routines in which at least one of the matrix sizes is

limited to the block size. That is, at least one of the matrices consists of a single row or column

of blocks, and is located in a single row or column of the process template. An example of

a PBLAS operation would be the multiplication of a matrix of M � N blocks by a \vector"

of N blocks. The PBLAS make use of calls to the sequential BLAS for local computations,

and calls to the BLACS for communication. The PBLAS are used, for example, to perform
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Notation Meaning Type Size

A general matrix matrix m � n

Aj = [A]:;1:j matrix which includes �rst j columns of A matrix m � j

aj = [A]:;j jth column of A column vector m

ai;j = [A]i;j element (i; j) of A scalar 1

Table 1: Notation relating to an m � n matrix A.

block-oriented matrix/vector multiplications when reducing a column of blocks in the parallel

reduction algorithms described in Section 3.

3. Dense Reduction Routines

In this section, block-partitioned algorithms for reducing matrices to Hessenberg, tridiagonal,

and bidiagonal form by applying a sequence of orthogonal similarity transforms are discussed.

The basic approach for these algorithms is to aggregate Householder transforms [19] and to

apply them in a blocked fashion [3, 22], thus achieving algorithms that are rich in matrix-matrix

operations [12]. The sequential versions of the algorithms are derived and parallel versions are

presented. The block reduction to Hessenberg form algorithms are examined in detail to show

how the ScaLAPACK building blocks are used to parallelize the algorithm. We do not go into

such detail for the reduction to tridiagonal and bidiagonal forms since the same approach and

remarks apply as in the case of Hessenberg reduction.

The parallel algorithms described below extend and generalize previous work. Dongarra

and van de Geijn [15] have presented a parallel, block-partitioned algorithm for reduction to

Hessenberg form, and assumed a one-dimensional, block column data distribution. Their data

distribution corresponds to a 1�Q process template in the terminology of Section 2.2. Smith,

Hendrickson, and Jessup have described and implemented a parallel algorithm for Householder

tridiagonalization on a square process template [23]. In the terminology of Section 2.2 this

corresponds to the case nb = 1 with a P � P process template.

Before describing the routines we shall �rst introduce some notation. For anm�n matrixA,

[A]i:j;k:l denotes the submatrix of A consisting of elements of row i; � � � ; j and columns k; � � � ; l.

[A]:;k:l and [A]i:j;: will be used if all columns or rows of the matrix are involved, respectively.

And the meaning of Aj , aj , and ai;j is as given in Table 1, except where explicitly stated

otherwise.

3.1. Reduction to Hessenberg Form

A nonsymmetric M �M matrix A may be reduced to Hessenberg form H, by an orthogonal

similarity transform, QTAQ = H. The (upper) Hessenberg form has zeros below the �rst

subdiagonal. The transformation matrix Q is a product of Householder transformations, Q =
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Q(1)Q(2)� � �Q(M�2). Each of the matrices Q(k) for k = 1; 2; : : : ;M � 2 is symmetric. Thus, we

may write,

A(k+1) = Q(k)A(k)Q(k) = Q(k)Q(k�1): : :Q(1)AQ(1) : : :Q(k�1)Q(k) (4)

where A(1) = A and A(M�1) = H. The Householder matrices have the form, Q(k) = I � �vvT ,

where v = vk and � = �k = 2= k v k22, and we omit the (k) subscripts on v and � for notational

clarity. The Householder vector v is

v =

 
1

a
(k)

k+1;k + �

!�
x+ �ek+1

�

and � = sign(a
(k)

k+1;k)kxk2. Here, a
(k)

i;j denotes the (i; j)th element of A(k). The vector x is the

kth column of A(k) with the �rst k entries set to zero. The vector ei is zero except for the ith

entry which is 1. Thus,

v = (0; : : : ; 0; 1; wk+2; : : : ; wM)T ; where wi =
a
(k)

i;k

a
(k)

k+1;k + �
is a scalar,

for i = k + 2; : : : ;M .

Applying the matrix Q(k) to A(k) from the right, and then Q(k) from the left, introduces

zeros below the �rst subdiagonal of column k, and updates columns k + 1; : : : ;M of A(k) to

give A(k+1). Usually the algorithm is performed in-place, so A(k+1) overwrites A(k). And after

the M � 2 steps of the algorithm are completed, the original matrix A has been overwritten

by the Hessenberg form H. Furthermore, the kth column of A below the �rst subdiagonal is

overwritten by the last M � k � 1 elements of the Householder vector in step k. Since the

(k+1)th entry of the Householder vector is unity, it does not have to be explicitly stored. The

values of � for each step are stored in a vector, making it possible to reapply the Householder

transformations Q(k).

3.1.1. Sequential Block Hessenberg Reduction

We can rewrite the Eq. 4 as follows.

A(k+1) = Q(k)A(k)Q(k) = (I � � v vT )A(k) (I � � v vT ) = (I � � v vT ) � (A(k)
� y vT ) (5)

where y = � A(k) v.

By mathematical induction, assume that

A(k) = (I � Vk�1 T
T
k�1 V

T
k�1) � (A

(1)
� Yk�1 V

T
k�1) (6)



- 7 -

where Vk�1 and Yk�1 are M � (k� 1) matrices such that Vk�1 = (v1; v2; � � � ; vk�1) and Yk�1 =

(y1; y2; � � � ; yk�1). And Tk�1 is a (k � 1) � (k � 1) upper triangular matrix.

Then,

A(k+1) = (I � � v vT ) �A(k)
� (I � � v vT )

= (I � � v vT ) (I � Vk�1 T
T
k�1 V

T
k�1) � (A

(1)
� Yk�1 V

T
k�1) (I � � v vT )

=
�
I � � v vT � Vk�1 T

T
k�1 V

T
k�1 + � v vT Vk�1 T

T
k�1 V

T
k�1

�
�

�
A(1)

� Yk�1 V
T
k�1 � � (A(1) v � Yk�1V

T
k�1 v)v

T
�

=

0
B@I � (Vk�1; v)

0
@ Tk�1 �� Tk�1 V

T
k�1 v

0 �

1
A

T

(Vk�1; v)
T

1
CA

�

�
A(1)

� (Yk�1; y) (Vk�1; v)
T
�

=
�
I � Vk T

T
k V T

k

�
�

�
A(1)

� Yk V
T
k

�
(7)

where

y = � (A(1) v � Yk�1 V
T
k�1 v); (8)

Tk =

0
@ Tk�1 �� Tk�1 V

T
k�1 v

0 �

1
A : (9)

If we assumed that T1 = �1, Eq. 6 is true for k = 2. By Eq. 7, Eq. 6 is true for all k (k � 2).

Suppose the matrixA is partitioned into panels, with each panel consisting of nb consecutive

columns of A. In step k of the block-partitioned version of the Hessenberg reduction algorithm,

the kth panel is reduced. The Householder vectors for each column of the panel are found and

are used to update the next column of the panel, but the updating of panels to the right is

deferred until the reduction of the current panel is completed.

Step k of the LAPACK routine, DGEHRD, proceeds in three main phases.

1. DLAHRD: Reduce the kth panel of the matrix and compute V , Y , and T .

[ Repeat nb times for i = 1; � � � ; nb (let ki = (k � 1)nb + i) ]

1. Compute the Householder vector vi.

2. Compute yi = � (Avi � Yi�1V
T
i�1vi).

3. Compute [Ti]1:i�1;i = �� Ti�1V
T
i�1vi.

4. Update the ki+1th column of A ([A]:;ki+1) if necessary.

�Apply the block Householder vector from the right: [A]:;ki+1 ( [A]:;ki+1�Yi [Vi]ki+1;:.

�Apply the block Householder vector from the left: [A]:;ki+1 (
�
I � ViT

T
i V

T
i

�
[A]:;ki+1 .
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2. DGEMM; Update A with Y and V , A( A� Y V .

3. DLARFB: Apply the block Householder vector from the left, A( (I � V TTV T )A.

where we omit the (nb) subscripts on Y , V , and T for notational simplicity. And subroutines

called by DGEHRD are speci�ed in the front of each procedure.

To understand better how the parallel version of the algorithm is implemented we shall

examine the �rst of these 3 phases in more detail. The reduction of each M � nb panel is

similar to the unblocked algorithm described in Section 3.1. The Householder vector for each

column in the panel is evaluated in turn, and all such vectors computed so far are used to

update the next column in the panel. As each column of a panel is processed a new column of

V , Y , and T is constructed. At the start of processing the ith column of some panel the �rst

i�1 columns of V , Y , and T are known. The columns of V are simply the Householder vectors.

In the LAPACK Hessenberg reduction algorithm, the routine DLARFG is called to evaluate the

Householder vector vi and the value of � .

Calls to the Level 2 BLAS routine, DGEMV, which multiplies a matrix by a vector, are then

used to evaluate Avi and V T
i�1vi. A third call to DGEMV evaluates Avi � Yi�1(V

T
i�1vi), which

is then scaled by � to give yi according to Eq. 8. The �rst (i � 1) entries of the ith column

of Ti are found by scaling V T
i�1vi by � , and then calling the Level 2 BLAS routine, DTRMV,

which multiplies a triangular matrix by a vector, to give [Ti]1:i�1;i by Eq. 9. This completes

the evaluation of the ith columns of V , Y , and T .

The next task is to update the (i + 1)th column of the panel of A by applying the e�ects

of the i Householder vectors evaluated so far for this panel. This involves a series of calls to

the Level 2 BLAS routines, DGEMV and DTRMV. We update the (i+ 1)th column in the panel by

computing [A]:;ki � Yi [Vi]ki;: and then apply (I � ViT
T
i V

T
i ) to this column.

We have described how each column in a panel is processed and updated by calls to Level

2 BLAS routines. In the next section we shall consider how the same operations are performed

using the building blocks of the ScaLAPACK library.

3.1.2. Parallel Hessenberg Reduction

The number of rows and columns in a block of the data distribution are chosen to be equal to

the block size of the computation nb, i.e., r = c = nb. An important consequence of this is that

each panel lies in a single column of the process template. Moreover, the triangular matrix T

lies in just one process.

The general structure of the parallel Hessenberg reduction algorithm is the same as in the

sequential case. The routine PDLAHRD is called to reduce each panel. The PBLAS routine

PDGEMM is called to apply the block re
ector for a panel from the left, and PDLARFB applies the

block re
ector from the right. We shall now examine PDLAHRD in more detail.
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The structure of PDLAHRD is also very similar to that of DLAHRD. For the ith column of a

panel, the routine PDLARFG is called to evaluate the Householder vector vi and the value of � .

The Householder vector is distributed over the processes in one column of the process template.

The next step is the evaluation of Avi and V T
i�1vi as preliminary steps in �nding the next

column of Y and T . In the parallel algorithm these matrix-vector products are performed by

the PBLAS routine, PDGEMV. Computing the next column of T is done on one process by calling

DTRMV and DSCAL, which require no communication.

Evaluation of the (i + 1)th column in the panel of [A]:;ki � Yi [Vi]ki;: requires matrix-vector

multiplication which is performed by a single PDGEMV call. Next, (I�ViT
T
i V

T
i ) is applied to the

column. This involves a series of calls to general matrix-vector multiplications, and triangular

matrix-vector multiplications.

The general matrix-vector multiplications are performed by calls to PBLAS routine, PDGEMV.

The triangular matrices (T is upper triangular and the top part of V is unit lower triangular)

lie in just one process, so the triangular matrix-vector multiplications are performed by the

sequential BLAS routine, DTRMV.

3.2. Reduction to Tridiagonal Form

If A is a symmetric M �M matrix, then application of the Householder transformations de-

scribed in Section 3.1 reduces A to tridiagonal form. In this section, we describe the reduction

algorithm for the symmetric lower triangular matrix. The algorithm for symmetric the upper

triangular matrix is very similar.

3.2.1. Sequential Block Tridiagonal Reduction

As before, we assume A is partitioned into panels of width nb columns, and in the kth step

of the algorithm the kth panel is reduced. A series of the Householder re
ectors is applied

to A, but in this case we make use of the symmetry of A to express the update as a block

update of rank 2. We describe �rst the unblocked version of the algorithm, and then expand

the algorithm to the blocked version.

A(k+1) = Q(k)A(k)Q(k) = (I � � v vT )A(k) (I � � v vT )

= A(k)
� �vvTA(k)

� �AvvT + �2vvTA(k)vvT

= A(k)
� vxT � xvT + � (vTx)vvT

where x = �A(k)v. Let w = x� �v(vTx)=2, then

A(k+1) = A(k)
� vwT

�wvT : (10)
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By mathematical induction, assume that

A(k) = A(1)
� Vk�1W

T
k�1 �Wk�1V

T
k�1 (11)

where Vk�1 = (v1; v2; � � � ; vk�1) and Wk�1 = (w1; w2; � � � ; wk�1). Then

A(k+1) = A(k)
� vwT

� wvT

= A(1)
� Vk�1W

T
k�1 �Wk�1V

T
k�1 � vwT

�wvT

= A(1)
� (Vk�1; v) (Wk�1; w)

T
� (Wk�1; w) (Vk�1; v)

T

= A(1)
� VkW

T
k �WkV

T
k : (12)

And

x = �A(k)v = �
�
A(1)

� Vk�1W
T
k�1 �Wk�1V

T
k�1

�
v

= �
�
A(1)v � Vk�1W

T
k�1v �Wk�1V

T
k�1v

�
; (13)

w = x� �v(vT x)=2: (14)

By comparing Eq. 10 with Eq. 11, Eq. 11 is true for k = 2. And from Eq. 12, Eq. 11 is true

for all k � 2.

In LAPACK, a real symmetric matrix is reduced to tridiagonal form by calling the routine

DSYTRD. Step k of the block algorithm proceeds as follows:

1. DLATRD: Reduce the kth panel of the matrix and compute V and W .

[ Repeat nb times for i = 1; � � � ; nb (let ki = (k � 1)nb + i) ]

1. Compute the Householder vector vi.

2. Compute xi = �
�
A(1)vi �Wi�1(V

T
i�1vi):� Vi�1(W

T
i�1vi)

�
.

3. Compute wi = xi � �vi(v
T
i xi)=2.

4. Update the ki+1th column of A ([A]:;ki+1) if necessary.

2. DSYR2K: Apply a block rank-2 update, A( A� V WT �W V T .

DSYTRD reduces each panel of A in turn by �rst calling DLATRD to generate V and W , and

then calling DSYR2K to apply the block rank 2 update. The routine DLATRD loops over columns

of the panel and in the ith pass applies the previous (i � 1) Householder vectors to update

column i of the panel, and adds a new column i to the matrices V and W .

The routine DLARFG is then called to evaluate the Householder transformation, (�; vi). vi is

the ith column of the matrix V , which overwrites the lower triangular portion of A. The vector

xi is found next by Eq.13. The symmetric matrix-vector multiplication Avi is performed by a
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Level 2 BLAS routine, DSYMV, and the other matrix-vector multiplications needed to evaluate

xi are performed by four calls to DGEMV. The evaluation of xi is completed by a DSCAL call

to scale xi by � . Then wi is computed by calls to DDOT to evaluate vTi xi, and then DAXPY to

subtract the two terms on the righthand side of Eq. 14, and it is overwritten to xi. Denoting

column i of the panel by [A]:;ki , [A]:;ki is updated from Eq. 11 as follows,

[A]:;ki  [A]:;ki � Vi�1w
T
i �Wi�1 v

T
i : (15)

This update is performed by two calls to the Level 2 BLAS routine, DGEMV.

After the routine DLATRD has looped over the nb columns of the panel, the construction of

the M � nb matrices V and W is complete. Upon return from DLATRD, V and W are passed to

the routine DSYR2K which applies a block rank 2 update to the unprocessed panels of A. This

update is a Level 3 BLAS operation, and is the main computational task in the reduction to

tridiagonal form.

3.2.2. Parallel Block Tridiagonal Reduction

The conversion of the sequential routine for reduction to tridiagonal form DSYTRD to the parallel

version PDSYTRD is quite straightforward. The parallel routine calls PDLATRD to reduce a panel

and to evaluate the corresponding matrices V andW . Then the routine PDSYR2K uses V andW

to apply the Householder transformations for the panel to the unprocessed part of the matrix.

The routine DLATRD is parallelized by replacing the calls to the Level 2 BLAS routines, DSYMV,

DGEMV, DSCAL, DDOT, and DAXPY by calls to the corresponding PBLAS routines, PDSYMV, PDGEMV,

PDSCAL, PDDOT, and PDAXPY The call to DLARFG to evaluate the Householder transformation is

replaced by a call to the equivalent parallel routine, PDLARFG.

On exit from DLATRD, the diagonal elements of the reduced matrix are returned in the

separate vector d. All the processes in a column of the process template hold the portions of

d that they were involved in computing, i.e., d is block cyclically distributed over the columns

of the template. This requires the process containing the diagonal block of the matrix A to

communicate the nb values of d evaluated by a call to PDLATRD to the other process in the

template column before returning from PDLATRD. This is done by calls to the BLACS routines

DGEBS2D and DGEBR2D.

In reducing a panel in PDLATRD, all processes are involved in the call to PDSYMV to evaluate

Avi. However, all the other computation in reducing a panel involves processes in a single

column of the process template. Thus, the panel reduction phase su�ers from load imbalance.

In general all processes are involved in updating the unprocessed portion of the matrix in

PDSYR2K, and this phase of the computation is well load balanced.
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3.3. Reduction to Bidiagonal Form

If A is aM�N matrix then Householder transformations can be used to reduce it to bidiagonal

form QTAP = B. If M � N , the reduced matrix B is upper bidiagonal, and otherwise is lower

bidiagonal. We describe below the reduction to upper bidiagonal form; the algorithm for

reduction to lower bidiagonal form is very similar.

3.3.1. Sequential Bidiagonal Reduction

We describe �rst the unblocked version of the algorithm to reduce an M � N matrix to the

bidiagonal form.

A(k+1) = Q(k)A(k)P (k) = (I � �vvv
T )A(k) (I � �uuu

T )

= A(k)
� �vvv

TA(k)
� �uA

(k)uuT + �v�uvv
TA(k)uuT

= A(k)
� vyT � (z � �uvy

T u)uT

where y = �vA
(k)Tv and z = �uA

(k)u. Let x = z � �uvy
Tu. Then,

A(k+1) = A(k)
� vyT � xuT : (16)

By mathematical induction, assume that

A(k) = A(1)
� Vk�1Y

T
k�1 �Xk�1U

T
k�1; (17)

where Vk�1 = (v1; � � � ; vk�1), Uk�1 = (u1; � � � ; uk�1), Xk�1 = (x1; � � � ; xk�1), and Yk�1 =

(y1; � � � ; yk�1). Eq. 17 is true for k = 2.

A(k+1) = A(k)
� vyT � xuT

= A(1)
� Vk�1Y

T
k�1 �Xk�1U

T
k�1 � vyT � xuT

= A(1)
� (Vk�1; v) (Yk�1; y)

T
� (Xk�1; x) (Uk�1; u)

T

= A(1)
� VkY

T
k �XkU

T
k : (18)

And

yT = �vA
(k)Tv = � (A(1)

� Vk�1Y
T
k�1 �Xk�1U

T
k�1)

T v

= �v (A
(1)Tv � Yk�1V

T
k�1v � Uk�1X

T
k�1v); (19)

x = z � �uvy
T u = �uA

(k)u� �uvy
Tu

= �u

�
A(1)

�Xk�1U
T
k�1 � Vk�1Y

T
k�1

�
u� �uvy

T u

= �u

�
A(1)u�Xk�1U

T
k�1u� (Vk�1; v) (Yk�1; y)

T
�
u
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= �u

�
A(1)u�Xk�1U

T
k�1u� VkY

T
k

�
u: (20)

From Eqs. 16 and 18, Eq. 17 is true for all k � 2. A is assumed to be partitioned into

square blocks of size nb � nb. In step k, the kth column of blocks (column panel) and the kth

row of blocks (row panel) of A are reduced, after which the block re
ectors are applied to the

unprocessed trailing submatrix.

In LAPACK, a real matrix is reduced to bidiagonal form by calling the routine DGEBRD.

Step k of the block algorithm proceeds as follows:

1. DLABRD: Reduce the kth panel of the matrix and compute Vnb
, Unb

, Ynb
, and Xnb

.

[ Repeat nb times for i = 1; � � � ; nb (let ki = (k � 1)nb + i) ]

1. Update the kith column of A.

2. Compute the ith column Householder vector of A, vi.

3. Compute yTi = �v
�
ATvi � Yi�1V

T
i�1vi � Ui�1X

T
i�1vi

�
.

4. Update the kith row of A.

5. Compute the ith row Householder vector of A, ui.

6. Compute xi = �u
�
Aui �Xi�1U

T
i�1ui � ViY

T
i ui

�
.

2. DGEMM: Update A with V and Y , A( A� V Y T .

3. DGEMM: Update A with X and U , A( A �X UT .

DGEBRD reduces each column panel and row panel of A in turn to generate the matrices V ,

U , Y , and X. The diagonal and o�-diagonal elements of the reduced matrix are returned in

two vectors. DGEBRD calls the routine, DLABRD, to do the column and row panel reductions, and

then makes two calls to the general matrix multiplication routine, DGEMM, to apply the updates

to the trailing submatrix of A.

In DLABRD, nb loops are performed in each of which a new column of V , U , Y , and X is

evaluated. V and UT overwrite the lower and upper triangular portions of A, respectively. X

and Y are stored in M � nb and N � nb work arrays, respectively. In the ith loop, two calls

are made to DGEMV to reduce the ith column of the column panel [A]:;ki :

[A]:;ki  [A]:;ki � Vi�1 y
T
i �Xi�1 u

T
i : (21)

Next, the routine DLARFG is called to generate the Householder transformation (�v; vi) that

introduces zeros below the diagonal in the ith column of the column panel. From Eq. 19, a

sequence of �ve calls to the matrix-vector multiplication routine DGEMV, and a call to the scaling

routine DSCAL, evaluates yi.
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Denoting the ith row of the current row panel of A as [A]ki;:, it is reduced using two DGEMV

calls:

[A]ki;:  [A]ki;: � Yi v
T
i � Ui�1 x

T
i�1: (22)

The routine DLARFG is called again to generate the Householder transformation (�u; ui) that

introduces zeros to the right of the superdiagonal in the ith row of the row panel. It should be

noted that this reduction is performed after applying the transformations for the previous i�1

loops, and the transformation (�v; vi) for the current loop. Thus, in this algorithm Householder

transformations are applied �rst on the lefthand side, and then from the righthand side. This

is why Yi, which has i nonzero columns, is used in Eq. 20, rather than Yi�1. Then �ve calls to

DGEMV, and one call to DSCAL, are used to evaluate xi.

3.3.2. Parallel Bidiagonal Reduction

The conversion of the sequential routine for reducing a real matrix to bidiagonal form, DGEBRD,

to the parallel ScaLAPACK version, PDGEBRD, is straightforward. The ScaLAPACK routine

calls PDLABRD to reduce the kth column and row panels. This routine also returns the matrices

X and Y needed to update the unprocessed portion of the matrix, and the scalar variables, �v

and �u. The unprocessed portion of the matrix is then updated as in Eq. 17 by two calls to the

PBLAS matrix multiplication routine, PDGEMM.

The ScaLAPACK routine PDLABRD is implemented from the LAPACK routine DLABRD by

replacing the calls to DLARFG, DGEMV, and DSCAL by calls to the corresponding parallel routines

PDLARFG, PDGEMV, and PSCAL, respectively.

There is one complicating factor related to how columns of the matrix Y are computed and

stored. The matrix Y is an N � nb matrix, and for a particular panel reduction phase, it lies

in a single row of the process template. Thus, to conform to the data layout requirements of

the PBLAS, Y is stored in transposed form as an nb � N matrix, in the same way that U is

also stored. The ith column of Y evaluated in Eq. 19 is stored as row i of Y T . In our Fortran

code better performance is obtained if this row is evaluated as a temporary column vector of

contiguous elements, stored in working space, and then transposed to be stored in Y T .

4. Results and Discussion

In the ScaLAPACK versions of the three reduction routines the block size of the block cyclic

data distribution is taken as nb � nb. Thus, each column (row) panel lies in one column (row)

of the process template. AllM �nb matrices lie within one column of the process template, all

nb�N matrices (i.e., UT and Y T in the algorithm for reduction to bidiagonal form) lie within

one row of the process template, and all nb � nb matrices lie in just one process.

In the panel reductions most of the Level 2 BLAS operations involve only processes in a
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single row or column of the process template. Thus, the panel reduction phase su�ers from load

imbalance. In general all processes are involved in the Level 3 BLAS operations that update

the unprocessed portion of the matrix, and this phase of the computation is well load balanced.

The ScaLAPACK reduction routines were produced by parallelizing the corresponding LA-

PACK routines. This involved 3 basic tasks: (1) writing a parallel version of the routine DLARFG

to compute the Householder transformation for a given vector; (2) inserting control statements

to control which columns and rows of the process template are involved in di�erent phases of

the algorithms; (3) replacing the BLAS calls in the LAPACK code by corresponding calls to

the PBLAS. Note that we do not have to replace the calls to DTRMV since these involve a nb�nb

matrix on a single process. All three of these tasks are quite straightforward, thus parallelizing

the reduction routines was rather easy. The ease with which the reduction algorithms could be

parallelized is largely due to the availability of well-designed, lower-level modules from which

to construct them, in particular the PBLAS.

Although replacing the sequential Level 1, 2, and 3 BLAS routines in LAPACK with the

corresponding parallel PBLAS routines is a simple strategy for parallelization, in some cases

better performance may be obtained by directly using the sequential BLAS and BLACS. The

tradeo� between performance and software modularity arises in the restructuring of algorithms

to reduce communication startup costs. Consider, for example, two successive independent

calls to PBLAS routines in which the same pattern of communication is performed in each

routine. Rather than sending two messages, it would be more e�cient to combine them, and

perform the communication with just one message. To \piggyback" messages in this way we

would need to replace the PBLAS calls with calls to the BLACS and sequential BLAS. This

situation arises in the parallel algorithm for reduction to Hessenberg form discussed in Section

3.1.1. In evaluating yi in step k of the algorithm (see Eq. 8) we must �rst �nd Yi�1V
T
i�1vi.

This requires V T
i�1vi to be broadcast over a column of the process template. The subsequent

evaluation of the (i+1)th column of A� YiV
T
i requires row nb(k� 1) + i of V to be broadcast

in the same way. Thus, the two broadcasts can be combined. In this instance, however, we

have found the performance gain to be small, and so have chosen to use calls to the PBLAS for

these operations, rather than piggybacking messages and using lower level calls to the BLACS

and the sequential BLAS.

The three ScaLAPACK reduction routines were developed on a 128-node Intel iPSC/860

hypercube. Extensive performance evaluation has been done on the Intel iPSC/860, Delta,

and Paragon computers. In Figure 1, we plot performance on the Intel Delta measured in

G
ops (giga
ops per second) against number of processors while keeping the size of the matrix

per processor �xed at 9 Mbytes. For an N � N matrix, the 
oating point operation count

was assumed to be 10
3
N3 for reduction to Hessenberg form, 8

3
N3 for reduction to bidiagonal
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Figure 1: Isogranularity plots for the Hessenberg (HRD), tridiagonal (TRD), and bidiagonal
reduction (BRD) routines on the Intel Delta. The matrix size per processor is �xed at 9 Mbytes.

form, and 4
3
N3 for reduction to tridiagonal form. The algorithms for reduction to Hessenberg

and bidiagonal form run at 11.5 and 10.5 G
ops on 512 processors, respectively, while that

for reduction to tridiagonal form runs at about 6.5 G
ops. This di�erence is attributable

to the fact that the tridiagonal reduction routine involves operations on a symmetric matrix,

that is, the main updating computation routine, PDSYR2K, in Eq. 12 involves only the half of

the matrix: upper or lower triangular part of the matrix. Thus, the total number of 
oating

point operations is less than in the Hessenberg and bidiagonal reduction algorithms. The

communication overhead, however, is similar in all cases, and so the ratio of computation

to communication is lower for the tridiagonal reduction algorithm, and its performance is

consequently poorer [15]. The fact that the plots in Figure 1 are almost linear shows that the

algorithms scale well on the Intel Delta at a granularity of 9 Mbytes/node. The isogranularity

plots at 5 Mbytes/node are also almost linear, showing that good scalability is achieved when

only about half of the available memory is used.

Figures 2, 3, and 4 show the performance of the three reduction algorithms as a function of

matrix size for the 128-node Intel iPSC/860, the 512-node Intel Delta, and the 512-node Intel

Paragon, respectively. Again, the di�erences in performance between the algorithms is largely

attributable to their di�erent 
oating-point operation counts.

Figure 5 compares the performance of the algorithm for reduction to Hessenberg form for
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Figure 2: Perfomance of the Hessenberg (HRD), tridiagonal (TRD), and bidiagonal reduction
(BRD) routines on the 128-node Intel iPSC/860 as a function of matrix size N . The optimium
block size nb = 6 was used.
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Figure 3: Perfomance of the Hessenberg (HRD), tridiagonal (TRD), and bidiagonal reduction
(BRD) routines on the 512-node Intel Delta as a function of matrix size N . The optimium
block size nb = 8 was used.
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Figure 4: Perfomance of the Hessenberg (HRD), tridiagonal (TRD), and bidiagonal reduction
(BRD) routines on the 512-node Intel Paragon as a function of matrix size N . The optimium
block size nb = 6 was used.
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Figure 5: Performance of the algorithm for reduction to Hessenberg form as a function of matrix
size N , on the Intel iPSC/860, Delta, and Paragon.



- 19 -

the three Intel computers. For each machine we choose the optimum layout of the process

template and the optimum block size. The Intel iPSC/860 and Delta machines both use the

same 40MHz i860 processor, so we attribute the better performance of the Delta compared with

the iPSC/860 to its higher communication bandwidth. The Paragon uses the faster 50MHz

i860XP processor, and has a larger communication bandwidth than the Delta and iPSC/860.

Hence, the performance of the Paragon is signi�cantly faster than the other two machines.

The Hessenberg, bidiagonal, and tridiagonal reduction routines attained 11.6, 10.9 and 6.7

G
ops for N = 26000 on the 512-node Intel Delta. This corresponds to 22.7, 21.2 and 13.1

M
ops per processor, respectively. The peak performance of the sequential assembly-coded

BLAS routine, DGEMM, on the Delta is about 36.2 M
ops for a 400� 400 matrix multiplication.

Thus the routines achieve 62.7 %, 58.6 %, and 36.1 % of the maximum achieved performance

for matrix multiply on the Intel Delta. On the Intel Paragon, the peak performance of DGEMM

is about 46.3 M
ops for a 400 � 400 matrix multiplication, the communication bandwidth is

higher, and there is more memory per processor. The ratio between the communication vs

computations goes down as the problem size increases, as the communication cost is O(n2) and

the computational cost is O(n3). Thus for a matrix problem of size n = 36000 on the Paragon,

the routines achieve 81.3 %, 75.0 %, and 50.9 % of the peak, respectively.

5. Conclusions

We have shown how dense matrix reduction algorithms can be parallelized fairly easily using a

small set of low-level modules, namely the sequential BLAS, the BLACS, and the PBLAS. The

PBLAS, which themselves are built using the sequential BLAS and BLACS, are particularly

useful in simplifying the task of parallelizing dense linear algebra algorithms. In general, calls

to the Level 1, 2, and 3 BLAS in the LAPACK code can be replaced on a one-for-one basis by

the corresponding PBLAS routine.

The tradeo� between performance and software design considerations, such as modularity

and clarity, is particularly important in the design of software libraries. In Section 3.1.2,

we have discussed how nonstandard storage schemes for the matrix Y can result in better

performance. We have also discussed, in Section 4, how the piggybacking of messages can

reduce communication costs, again at the cost of replacing calls to the PBLAS by calls to the

lower level BLACS and sequential BLAS. Here we have found the gain in performance too small

to justify the loss in software modularity, and so do not piggyback messages.

Our results on the Intel family of parallel computers show that the ScaLAPACK reduction

routines have good performance and scalability characteristics on these machines. Future work

will involve similar performance studies on more recent machines, such as the CRAY T3D and

the IBM SP1 and SP2.
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The ScaLAPACK reduction routines are currently available through netlib for all numeric

data types, such as single and double precision real and complex. To obtain the routines, send

the message \send index from scalapack" to netlib@ornl.gov.
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