
The Spectral Decomposition of Nonsymmetric Matrices on

Distributed Memory Parallel Computers

Z. Bai�, J. Demmely, J. Dongarraz, A. Petitetx, H. Robinson{, K. Stanleyk

January 9, 1995

Abstract

We study the implementation and performance of a class of algorithms for �nding
eigenvalues of nonsymmetric matrices on distributed memory parallel computers. The
algorithms perform spectral divide and conquer, i.e. they recursively divide the matrix
into smaller submatrices, each of which has a subset of the original eigenvalues as its
own. One algorithm uses the matrix sign function evaluated with Newton iteration.
The other algorithm avoids the matrix inverse required by Newton iteration, and so
is called the inverse free algorithm. Both algorithms are simply constructed from a
small set of highly parallelizable matrix building blocks, including matrixmultiplication,
QR decomposition and matrix inversion. E�cient implementations of these building
blocks are available on many machines. The price paid for easy parallelization of these
algorithms is potential loss of stability compared to the best serial algorithm in some
ill-conditioned cases. Fortunately, the program can detect and compensate for this loss
of stability.

In our implementation of the sign function algorithm on a 256 processor Intel Touch-
stone Delta system, the algorithm reached 31% e�ciency with respect to the underlying
PUMMA matrix multiplication on 4000-by-4000 matrices, and 82% e�ciency with re-
spect to the underlying ScaLAPACK 1.0 (beta version) matrix inversion. On a 32 node
Thinking Machines CM-5 with vector units, on 2048-by-2048 matrices the algorithm
reached 41% e�ciency with respect to the matrix multiplication in CMSSL 3.2. Our
performance model predicts the performance reasonably accurately.

To take advantage of the geometric nature of the spectral decomposition algorithm,
we have also designed a graphical user interface to let the user choose which eigenvalues
to compute.

1 Introduction

A standard technique in parallel computing is to build new algorithms from existing high

performance building blocks. For example, the LAPACK linear algebra library [1] is writ-
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ten in terms of the Basic Linear Algebra Subroutines (BLAS)[38, 23, 22], for which e�cient

implementations are available on many workstations, vector processors, and shared memory

parallel machines. The recently released ScaLAPACK 1.0(beta) linear algebra library [26]

is written in terms of the Parallel Block BLAS (PB-BLAS) [15], Basic Linear Algebra Com-

munication Subroutines (BLACS) [25], BLAS and LAPACK. ScaLAPACK includes routines

for LU, QR and Cholesky factorizations, and matrix inversion, and has been ported to the

Intel Gamma, Delta and Paragon, Thinking Machines CM-5, and PVM clusters. The Con-

nection Machine Scienti�c Software Library (CMSSL)[54] provides analogous functionality

and high performance for the CM-5.

In this work, we use these high performance kernels to build two new algorithms for

�nding eigenvalues and invariant subspaces of nonsymmetric matrices on distributed mem-

ory parallel computers. These algorithms perform spectral divide and conquer, i.e. they

recursively divide the matrix into smaller submatrices, each of which has a subset of the

original eigenvalues as its own. One algorithm uses the matrix sign function evaluated with

Newton iteration [8, 42, 6, 4]. The other algorithm avoids the matrix inverse required by

Newton iteration, and so is called the inverse free algorithm [30, 10, 44, 7]. Both algorithms

are simply constructed from a small set of highly parallelizable building blocks, including

matrix multiplication, QR decomposition and matrix inversion, as we describe in section 2.

By using existing high performance kernels in ScaLAPACK and CMSSL, we have

achieved high e�ciency. On a 256 processor Intel Touchstone Delta system, the sign func-

tion algorithm reached 31% e�ciency with respect to the underlying matrix multiplication

(PUMMA [16]) for 4000-by-4000 matrices, and 82% e�ciency with respect to the underly-

ing ScaLAPACK 1.0 matrix inversion. On a 32 processor Thinking Machines CM-5 with

vector units, the hybrid Newton-Schultz sign function algorithm obtained 41% e�ciency

with respect to matrix multiplication from CMSSL 3.2 for 2048-by-2048 matrices.

The nonsymmetric spectral decomposition problem has until recently resisted attempts

at parallelization. The conventional method is to use the Hessenberg QR algorithm. One

�rst reduces the matrix to Schur form, and then swaps the desired eigenvalues along the

diagonal to group them together in order to form the desired invariant subspace [1]. The

algorithm had appeared to required �ne grain parallelism and be di�cult to parallelize

[5, 27, 57], but recently Henry and van de Geijn[32] have shown that the Hessenburg QR

algorithm phase can be e�ectively parallelized for distributed memory parallel computers

with up to 100 processors. Although parallel QR does not appear to be as scalable as

the algorithms presented in this paper, it may be faster on a wide range of distributed

memory parallel computers. Our algorithms perform several times as many 
oating point

operations as QR, but they are nearly all within Level 3 BLAS, whereas implementations

of QR performing the fewest 
oating point operations use less e�cient Level 1 and 2 BLAS.

A thorough comparison of these algorithms will be the subject of a future paper.

Other parallel eigenproblem algorithms which have been developed include earlier par-

allelizations of the QR algorithm [29, 50, 56, 55], Hessenberg divide and conquer algo-

rithm using either Newton's method [24] or homotopies [17, 39, 40], and Jacobi's method

[28, 47, 48, 49]. All these methods su�er from the use of �ne-grain parallelism, instability,

slow or misconvergence in the presence of clustered eigenvalues of the original problem or

some constructed subproblems [20], or all three.

The methods in this paper may be less stable than QR algorithm, and may fail to
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converge in a number of circumstances. Fortunately, it is easy to detect and compensate

for this loss of stability, by choosing to divide the spectrum in a slightly di�erent location.

Compared with the other approaches mentioned above, we believe the algorithms discussed

in this paper o�er an e�ective tradeo� between parallelizability and stability.

The other algorithms most closely related to the approaches used here may be found

in [3, 9, 36], where symmetric matrices, or more generally matrices with real spectra, are

treated.

Another advantage of the algorithms described in this paper is that they can compute

just those eigenvalues (and the corresponding invariant subspace) in a user-speci�ed region

of the complex plane. To help the user specify this region, we will describe a graphical user

interface for the algorithms.

The rest of this paper is organized as follows. In section 2, we present our two algorithms

for spectral divide and conquer in a single framework, show how to divide the spectrum

along arbitrary circles and lines in the complex plane, and discuss implementation details.

In section 3, we discuss the performance of our algorithms on the Intel Delta and CM-5. In

section 4, we present a model for the performance of our algorithms, and demonstrate that

it can predict the execution time reasonably accurately. Section 5 describes the design of

an X-window user interface. Section 6 draws conclusions and outlines our future work.

2 Parallel Spectral Divide and Conquer Algorithms

Both spectral divide and conquer (SDC) algorithms discussed in this paper can be presented

in the following framework. Let

A = X

 
J+ 0

0 J�

!
X�1 (2.1)

be the Jordan canonical form of A, where the eigenvalues of the l� l submatrix J+ are the

eigenvalues of A inside a selected region D in the complex plane, and the eigenvalues of the

(n � l) � (n � l) submatrix J� are the eigenvalues of A outside D. We assume that there

are no eigenvalues of A on the boundary of D, otherwise we reselect or move the region D
slightly. The invariant subspace of the matrix A corresponding to the eigenvalues inside D
are spanned by the �rst l columns of X . The matrix

P+ = X

 
I 0

0 0

!
X�1 (2.2)

is the corresponding spectral projector. Let P+ = QR� be the rank revealing QR decompo-

sition of the matrix P+, where Q is unitary, R is upper triangular, and � is a permutation

matrix chosen so that the leading l columns of Q span the range space of P+. Then Q yields

the desired spectral decomposition:

QHAQ =

 
A11 A12

0 A22

!
(2.3)

where the eigenvalues of A11 are the eigenvalues of A inside D, and the eigenvalues of A22

are the eigenvalues of A outside D. By substituting the complementary projector I � P+
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for P+ in (2.2), A11 will have the eigenvalues outside D and A22 will have the eigenvalues

inside D.
The crux of a parallel SDC algorithm is to e�ciently compute the desired spectral

projector P+ without computing the Jordan canonical form.

2.1 The SDC algorithm with Newton iteration

The �rst SDC algorithm uses the matrix sign function, which was introduced by Roberts

[46] for solving the algebraic Riccati equation. However, it was soon extended to solving

the spectral decomposition problem [8]. More recent studies may be found in [11, 42, 6].

The matrix sign function, sign(A), of a matrix A with no eigenvalues on the imaginary

axis can be de�ned via the Jordan canonical form of A (2.1), where the eigenvalues of J+
are in the open right half plane D, and the eigenvalues of J� are in the open left half plane
�D. Then sign(A) is

sign(A) � X

 
I 0

0 �I

!
X�1:

It is easy to see that the matrix

P+ =
1

2
(I + sign(A)) (2.4)

is the spectral projector onto the invariant subspace corresponding to the eigenvalues of A

in D. l = trace(P+) = rank(P+) is the number of the eigenvalues of A in D. I�P+ = P� =
1
2(I � sign(A)) is the spectral projector corresponding to the eigenvalues of A in �D.

Now let P+ = QR� be the rank revealing QR decomposition of the projector P+. Then

Q yields the desired spectral decomposition (2.3), where the eigenvalues of A11 are the

eigenvalues of A in D, and the eigenvalues of A22 are the eigenvalues of A in �D.
Since the matrix sign function, sign(A), satis�es the matrix equation (sign(A))2 = I ,

we can use Newton's method to solve this matrix equation and obtain the following simple

iteration:

Aj+1 =
1

2
(Aj +A�1j ); j = 0; 1; 2; : : : with A0 = A: (2.5)

The iteration is globally and ultimately quadratically convergent with limj!1Aj = sign(A),

provided A has no pure imaginary eigenvalues [46, 35]. The iteration fails otherwise, and

in �nite precision, the iteration could converge slowly or not at all if A is \close" to having

pure imaginary eigenvalues.

There are many ways to improve the accuracy and convergence rate of this basic iteration

[12, 33, 37]. For example, if kA2�Ik < 1, we may use the so called Newton-Schulz iteration

Ai+1 =
1

2
Ai(3I �A2

i ) with A0 = A (2.6)

to avoid the use of the matrix inverse. Although it requires twice as many 
ops, it is more

e�cient whenever matrix multiply is at least twice as e�cient as matrix inversion. The

Newton-Schulz iteration is also quadratically convergent provided that kA2 � Ik < 1. A

hybrid iteration might begin with Newton iteration until kA2
i � Ik < 1 and then switch to

Newton-Schulz iteration (we discuss the performance of one such hybrid later).
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Hence, we have the following algorithm which divides the spectrum along the pure

imaginary axis.

Algorithm 1 (The SDC Algorithm with Newton Iteration)

Let A0 = A;

For j = 0; 1; : : : until convergence or j > jmax do

Aj+1 =
1
2
(Aj + A�1j );

if kAj+1 � Ajk1 � �kAjk1, p = j + 1, exit

End for;

Compute 1
2(Ap + I) = QR�; (rank revealing QR decomposition)

Let l = rank(R);

Compute QHAQ =

 
A11 A12

E21 A22

!
;

Compute kE21k1=kAk1.

Here � is the stopping criterion for the Newton iteration (say, � = n", where " is the

machine precision), and jmax limits the maximum number of iterations (say jmax = 60). On

return, the generally nonzero quantity kE21k1=kAk1 measures the backward stability of the

computed decomposition, since by setting E21 to zero and so decoupling the problem into

A11 and A22, a backward error of kE21k1=kAk1 is introduced.
For simplicity, we just use the QR decomposition with column pivoting to reveal rank,

although more sophisticated rank-revealing schemes exist [14, 31, 34, 51].

All the variations of the Newton iteration with global convergence still need to compute

the inverse of a matrix explicitly in one form or another. Dealing with ill-conditioned

matrices and instability in the Newton iteration for computing the matrix sign function

and the subsequent spectral decomposition is discussed in [11, 6, 4] and the references

therein.

2.2 The SDC algorithm with inverse free iteration

The above algorithm needs an explicit matrix inverse. This could cause numerical instability

when the matrix is ill-conditioned. The following algorithm, originally due to Godunov,

Bulgakov and Malyshev [30, 10, 44] and modi�ed by Bai, Demmel and Gu [7], eliminates

the need for the matrix inverse, and divides the spectrum along the unit circle instead of

the imaginary axis. We �rst describe the algorithm, and then brie
y explain why it works.
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Algorithm 2 (The SDC Algorithm with Inverse Free Iteration)

Let A0 = A, B0 = I ;

For j = 0; 1; : : : until convergence or j > jmax do 
Bj

�Aj

!
=

 
Q11 Q12

Q21 Q22

! 
Rj

0

!
; (QR decomposition)

Aj+1 = QH
12Aj ;

Bj+1 = QH
22Bj ;

if (j > 1 & kRj �Rj�1k1 � �kRj�1k1), p = j + 1, exit

End for;

Compute (Ap + Bp)
�1Bp = QR�; (rank revealing QR decomposition)

Let l = rank(R);

Compute QHAQ =

 
A11 A12

E21 A22

!
;

Compute kE21k1=kAk1.

As in Algorithm 1, we need to choose a stopping criterion � in the inner loop, as well as

a limit jmax on the maximum number of iterations. On convergence, the eigenvalues of

A11 are the eigenvalues of A inside the unit disk D, and the eigenvalues of A22 are the

eigenvalues of A outside D. It is assumed that no eigenvalues of A are on the unit circle.

As with Algorithm 1, the quantity kE21k1=kAk1 measures the backward stability.

To illustrate how the algorithm works we will assume that all matrices we want to invert

are invertible. From the inner loop of the algorithm, we see that 
QH
11 QH

21

QH
12 QH

22

! 
Bj

�Aj

!
=

 
QH
11Bj � QH

21Aj

QH
12Bj � QH

22Aj

!
=

 
Rj

0

!

so QH
12Bj = QH

22Aj or BjA
�1
j = Q�H

12 QH
22. Therefore

A�1j+1Bj+1 = A�1j Q�H
12 QH

22Bj = (A�1j Bj)
2

so the algorithm is simply repeatedly squaring the eigenvalues, driving the ones inside the

unit circle to 0 and those outside to 1. Repeated squaring yields quadratic convergence.

This is analogous to the sign function iteration where computing (A+A�1)=2 is equivalent

to taking the Cayley transform (A � I)(A + I)�1 of A, squaring, and taking the inverse

Cayley transform. Further explanation of how the algorithm works can be found in [7].

An attraction of this algorithm is that it can equally well deal with the generalized

nonsymmetric eigenproblem A � �B, provided the problem is regular, i.e. det(A � �B) is

not identically zero. One simply has to start the algorithm with B0 = B instead of B0 = I .

Regarding the QR decomposition in the inner loop, there is no need to form the entire

2n � 2n unitary matrix Q in order to get the submatrices Q12 and Q22. Instead, we can

compute the QR decomposition of the 2n� n matrix (BH
j ;�AH

j )
H , which leaves Q stored

implicitly as Householder vectors in the lower triangular part of the matrix and another n
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dimensional array. We can then apply Q | without computing it | to the 2n� n matrix

(0; I)T to obtain the desired matrices Q12 and Q22.

We now show how to compute Q in the rank revealing QR decomposition of (Ap +

Bp)
�1Ap without computing the explicit inverse (Ap+Bp)

�1 and subsequent products. This

will yield the ultimate inverse free algorithm. Recall that for our purposes, we only need the

unitary factor Q and the rank of (Ap+Bp)
�1Ap. It turns out that by using the generalized

QR decomposition technique developed in [45, 2], we can get the desired information without

computing (Ap +Bp)
�1. In fact, in order to compute the QR decomposition with pivoting

of (Ap+Bp)
�1Ap, we �rst compute the QR decomposition with pivoting of the matrix Ap:

Ap = Q1R1�; (2.7)

and then we compute the RQ factorization of the matrix QH
1 (Ap + Bp):

QH
1 (Ap + Bp) = R2Q: (2.8)

From (2.7) and (2.8), we have (Ap+Bp)
�1Ap = QH(R�12 R1)�. The Q is the desired unitary

factor. The rank of R1 is also the rank of the matrix (Ap + Bp)
�1Ap.

2.3 Spectral Transformation Techniques

Although Algorithms 1 and 2 only divide the spectrum along the pure imaginary axis and

the unit circle, respectively, we can use M�obius and other simple transformations of the

input matrix A to divide along other more general curves. As a result, we can compute

the eigenvalues (and corresponding invariant subspace) inside any region de�ned as the

intersection of regions de�ned by these curves. This is a major attraction of this kind of

algorithm.

Let us show how to use M�obius transformations to divide the spectrum along arbitrary

lines and circles. Transform the eigenproblem Az = �z to

(�A+ �I)z =
��+ �


�+ �
(
A+ �I)z

Then if we apply Algorithm 1 to A0 = (
A+ �I)�1(�A + �I) we can split the spectrum

with respect to a region

<
�
��+ �


�+ �

�
> 0:

If we apply Algorithm 2 to (A0; B0) = (�A+ �I; 
A+ �I), we can split along the curve������+ �


�+ �

���� = 1:

For example, by computing the matrix sign function of (A + (r � �)I)�1(�A + (r + �)I),

then Algorithm 1 will split the spectrum of A along a circle centered at � with radius r. If

A is real, and we choose � to be real, then all arithmetic will be real.

If A0 = A��I and B0 = rI , then Algorithm 2 will split the spectrum of A along a circle

centered at � with radius r. If A is real, and we choose � to be real, then all arithmetic in

the algorithm will be real.
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Figure 1: Di�erent Geometric Regions for the Spectral Decomposition

Other more general regions can be obtained by taking A0 as a polynomial function of

A. For example, by computing the matrix sign function of (A � �I)2, we can divide the

spectrum within a \bowtie" shaped region centered at �. Figure 1 illustrates the regions

which the algorithms can deal with assuming that A is real and the algorithms use only

real arithmetic.

2.4 Tradeo�s

Algorithm 1 computes an explicit inverse, which could cause numerical instability if the

matrix is ill-conditioned. The inverse free Algorithm 2 provides an alternative approach for

achieving better numerical stability. There are some very di�cult problems where Algorithm

2 gives a more accurate answer than Algorithm 1. Numerical examples can be found in [7].

However, neither algorithm avoids all accuracy and convergence di�culties associated with

eigenvalues very close to the boundary of the selected region.

The stability advantage of the inverse free approach is obtained at the cost of more

storage and arithmetic. Algorithm 2 needs 4n2 more storage space than Algorithm 1. This

will certainly limit the problem size we will be able to solve. Furthermore, one step of the

Algorithm 2 does about 6 to 7 times more arithmetic than the one step of Algorithm 1.

QR decomposition, the major component of Algorithm 2, and matrix inversion, the main

component of Algorithm 1, require comparable amounts of communication per 
op. (See

table 4 for details.) Therefore, Algorithm 2 can be expected to run signi�cantly slower than

Algorithm 1.

Since Algorithm 1 is faster but somewhat less stable than Algorithm 2, and since testing

stability is easy (compute kE21k1=kAk1), we may use the following 3 step algorithm:

1. Try to use Algorithm 1 to split the spectrum. If it succeeds, stop.
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2. Otherwise, try to split the spectrum using Algorithm 2. If it succeeds, stop.

3. Otherwise, use the QR algorithm.

This 3-step approach works by trying the fastest but least stable method �rst, falling back

to slower but more stable methods only if necessary. The same paradigm is also used in

other parallel algorithms [19].

If a fast parallel version of the QR algorithm[32] becomes available, it would probably

be faster than the inverse free algorithm and hence would obviate the need for the second

step listed above. Algorithm 2 would still be of interest if only a subset of the spectrum is

desired (the QR algorithm necessarily computes the entire spectrum), or for the generalized

eigenproblem of a matrix pencil A� �B.

3 Implementation and Performance

We started with a Fortran 77 implementation of Algorithm 1. This code is built using the

BLAS and LAPACK for the basic matrix operations, such as LU decomposition, triangular

inversion, QR decomposition and so on. Initially, we tested our software on SUN and

IBM RS6000 workstations, and then the CRAY. Some preliminary performance data of

the matrix sign function based algorithm have been reported in [6]. In this report, we will

focus on the implementation and performance evaluation of the algorithms on distributed

memory parallel machines, namely the Intel Delta and the CM-5.

We have implemented Algorithm 1, and collected a large set of data for the performance

of the primitive matrix operation subroutines on our target machines. More performance

evaluation and comparison of these two algorithms and their applications are in progress.

3.1 Implementation and Performance on Intel Touchstone Delta

The Intel Touchstone Delta computer system is 16 � 32 mesh of i860 processors with a

wormhole routing interconnection network [41], located at the California Institute of Tech-

nology on behalf of the Concurrent Supercomputing Consortium. The Delta's communica-

tion characteristics are described in [43].

In order to implement Algorithm 1, it was natural to rely on the ScaLAPACK 1.0

library (beta version) [26]. This choice requires us to exploit two key design features of this

package. First, the ScaLAPACK library relies on the Parallel Block BLAS (PB-BLAS)[15],

which hides much of the interprocessor communication. This hiding of communication

makes it possible to express most algorithms using only the PB-BLAS, thus avoiding explicit

calls to communication routines. The PB-BLAS are implemented on top of calls to the

BLAS and to the Basic Linear Algebra Communication Subroutines (BLACS)[25]. Second,

ScaLAPACK assumes that the data is distributed according to the square block cyclic

decomposition scheme, which allows the routines to achieve well balanced computations

and to minimize communication costs. ScaLAPACK includes subroutines for LU, QR and

Cholesky factorizations, which we use as building blocks for our implementation. The

PUMMA routines [16] provide the required matrix multiplication.
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Figure 2: Performance of ScaLAPACK 1.0 (beta version) subroutines on 256 (16� 16) PEs

Intel Touchstone Delta system.

The matrix inversion is done in two steps. After the LU factorization has been computed,

the upper triangular U matrix is inverted, and A�1 is obtained by substitution with L. Using

blocked operations leads to performance comparable to that obtained for LU factorization.

The implementation of the QR factorization with or without column pivoting is based

on the parallel algorithm presented by Coleman and Plassmann [18]. The QR factorization

with column pivoting has a much larger sequential component, processing one column at

a time, and needs to update the norms of the column vectors at each step. This makes

using blocked operations impossible and induces high synchronization overheads. However,

as we will see, the cost of this step remains negligible in comparison with the time spent in

the Newton iteration. Unlike QR factorization with pivoting, the QR factorization without

pivoting and the post- and pre-multiplication by an orthogonal matrix do use blocked

operations.

Figure 2 plots the timing results obtained by the PUMMA package using the BLACS

for the general matrix multiplication, and ScaLAPACK 1.0 (beta version) subroutines for

the matrix inversion, QR decomposition with and without column pivoting. Corresponding

tabular data can be found in the Appendix.

To measure the e�ciency of Algorithm 1, we generated random matrices of di�erent

sizes, all of whose entries are normally distributed with mean 0 and variance 1. All com-

putations were performed in real double precision arithmetic. Table 1 lists the measured

results of the backward error, the number of Newton iterations, the total CPU time and the

mega
ops rate. In particular, the second column of the table contains the backward errors

and the number of the Newton iterations in parentheses. We note that the convergence

rate is problem-data dependent. From Table 1, we see that for a 4000-by-4000 matrix, the

algorithm reached 7.19/23.12=31% e�ciency with respect to PUMMA matrix multiplica-

tion, and 7.19/8.70=82% e�ciency with respect to the underlying ScaLAPACK 1.0 (beta)

matrix inversion subroutine. As our performance model shows, and tables 9, 10, 11, 12,

and 14 con�rm, e�ciency will continue to improve as the matrix size n increases. Our
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Table 1: Backward accuracy, timing in seconds and mega
ops of Algorithm 1 on a 256 node

Intel Touchstone Delta system.

n kE21k1=kAk1 Timing M
ops M
ops GEMM-M
ops INV-M
ops

(iter) (seconds) (total) (per node) (per node) (per node)

1000 7:0e� 13(18) 134.22 293.05 1.14 9.04 1.41

2000 1:6e� 12(21) 448.69 808.28 3.16 15.51 3.88

3000 3:1e� 12(18) 792.18 1340.60 5.23 19.95 6.43

4000 5:9e� 12(19) 1436.14 1841.98 7.19 23.12 8.70

1000 2000 3000 4000 5000 6000 7000 8000 9000
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G
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Figure 3: Performance of Algorithm 1 on the Intel Delta system as a function of matrix size

for di�erent numbers of processors.

performance model is explained in section 4. Figure 3 shows the performance of Algorithm

1 on the Intel Delta system as a function of matrix size for di�erent numbers of processors.

Table 2 gives details of the total CPU timing of the Newton iteration based algorithm,

summarized in Table 1). It is clear that the Newton iteration (sign function) is most

expensive, and takes about 90% of the total running time.

To compare with the standard sequential algorithm, we also ran the LAPACK driver

routine DGEES for computing the Schur decomposition (with reordering of eigenvalues) on

one i860 processor. It took 592 seconds for a matrix of order 600, or 9.1 mega
ops/second.

Assuming that the time scales like n3, we can predict that for a matrix of order 4000, if the

matrix were able to �t on a single node, then DGEES would take 175,000 seconds (48 hours)

to compute the desired spectral decomposition. In contrast, Algorithm 1 would only take

1,436 seconds (24 minutes). This is about 120 times faster! However, we should note that

DGEES actually computes a complete Schur decomposition with the necessary reordering

of the spectrum. Algorithm 1 only decomposes the spectrum along the pure imaginary axis.

In some applications, this may be what the users want. If the decomposition along a �ner

region or a complete Schur decomposition is desired, then the cost of the Newton iteration

based algorithms will be increased, though it is likely that the �rst step just described will
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Table 2: Performance Pro�le on a 256 processor Intel Touchstone Delta system (time in

seconds)

n Sign-Func(%) QRP(%) QTAQ(%) total

1000 123.06(91%) 6.87(5%) 4.27(5%) 134.22

2000 413.95(92%) 18.60(4%) 16.13(4%) 448.69

3000 717.04(90%) 36.76(5%) 38.37(5%) 792.18

4000 1300.16(90%) 63.13(5%) 72.80(5%) 1436.14

take most of the time [13].

3.2 Implementation and Performance on the CM-5

The Thinking Machines CM-5 was introduced in 1991. The tests in this section were run on

a 32 processor CM-5 at the University of California at Berkeley. Each CM-5 node contains a

33 MHz Sparc with an FPU and 64 KB cache, four vector 
oating points units, and 32 MB

of memory. The front end is a 33 HMz Sparc with 32 MB of memory. With the vector

units, the peak 64-bit 
oating point performance is 128 mega
ops per node (32 mega
ops

per vector unit). See [53] for more details.

Algorithm 1 was implemented in CM Fortran (CMF) version 2.1 { an implementation of

Fortran 77 supplemented with array-processing extensions from the ANSI and ISO (draft)

standard Fortran 90 [53]. CMF arrays come in two 
avors. They can be distributed across

CM processor memory (in some user de�ned layout) or allocated in normal column major

fashion on the front end alone. When the front end computer executes a CM Fortran pro-

gram, it performs serial operations on scalar data stored in its own memory, but sends any

instructions for array operations to the CM. On receiving an instruction, each node executes

it on its own data. When necessary, CM processors can access each other's memory by any

of three communication mechanisms, but these are transparent to the CMF programmer

[52].

We also used CMSSL version 3.2, [54], TMC's library of numerical linear algebra rou-

tines. CMSSL provides data parallel implementations of many standard linear algebra

routines, and is designed to be used with CMF and to exploit the vector units.

CMSSL's QR factorization (available with or without pivoting) uses standard House-

holder transformations. Column blocking can be performed at the user's discretion to

improve load balance and increase parallelism. Scaling is available to avoid situations when

a column norm is close to
p
under
ow or

p
over
ow, but this is an expensive \insurance

policy". Scaling is not used in our current CM-5 code, but should perhaps be made available

in our toolbox for the informed user. The QR with pivoting (QRP) factorization routine,

which we shall use to reveal rank, is about half as fast as QR without pivoting. This is

due in part to the elimination of blocking techniques when pivoting, as columns must be

processed sequentially.

Gaussian elimination with or without partial pivoting is available to compute LU factor-

izations and perform back substitution to solve a system of equations. Matrix inversion is
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Figure 4: Performance of some CMSSL 3.2 subroutines on 32 PEs with VUs CM-5

performed by solving the system AX = I . The LU factors can be obtained separately { to

support Balzer's and Byers' scaling schemes to accelerate the convergence of Newton, and

which require a determinant computation { and there is a routine for estimating kA�1k1
from the LU factors to detect ill-conditioning of intermediate matrices in the Newton iter-

ation. Both the factorization and inversion routines balance load by permuting the matrix,

and blocking (as speci�ed by the user) is used to improve performance.

The LU, QR and Matrix multiplication routines all have \out-of-core" counterparts to

support matrices/systems that are too large to �t in main memory. Our current CM5

implementation of the SDC algorithms does not use any of the out-of-core routines, but in

principle our algorithms will permit out-of-core solutions to be used.

Figure 4 summarizes the performance of the CMSSL routines underlying this implemen-

tation Algorithm 1.

We tested the Newton-Schulz iteration based algorithm for computing the spectral de-

composition along the pure imaginary axis, since matrix multiplication can be twice as

fast as matrix inversion; see Figure 4. The entries of random test matrices were uniformly

distributed on [�1; 1]. We use the inequality kAi+1 � Aik1 �
p
n as switching criterion

from the Newton iteration (2.5) to the Newton-Schulz iteration (2.6), i.e., we relaxed the

convergence condition kA2
i � Ik < 1 for the Newton-Schulz iteration to

kA2
i � Ik1 = kAi(Ai �A�1i )k1 = 2kAi(Ai+1 �Ai)k1 � 2

p
nkAik1;

because this optimized performance over the test cases we ran.

Table 3 shows the measured results of the backward accuracy, total CPU time and

mega
ops rate. The second column of the table is the backward error, the number of

Newton iterations and the number of the Newton-Schulz iterations, respectively. From

the table, we see that by comparing to CMSSL 3.2 matrix multiplication performance, we

obtain 32% to 45% e�ciency with the matrices sizes from 512 to 2048, even faster than the

CMSSL 3.2 matrix inverse subroutine.

We pro�led the total CPU time on each phase of the algorithm, and found that about

83% of total time is spent on the Newton iteration, 9% on the QR decomposition with pivot-
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Actual Predicted GEMM- Inverse-

n kE21k1=kAk1 Time Time M
ops M
ops M
ops M
ops

(iter1, iter2) (seconds) (seconds) (total) (per node) (per node) (per node)

256 4e� 14(16,2) 25.4 18.9 0.72 0.96 12.57 0.69

512 2e� 13(16,2) 58.6 50.8 106.88 3.34 22.14 2.62

768 2e� 13(15,2) 99.23 97.1 203.84 6.37 30.32 5.05

1024 2e� 13(14,2) 143.92 159.5 318.40 9.95 37.71 7.81

1280 3e� 13(15,2) 231.12 239.6 405.44 12.67 42.06 10.64

1536 2e� 12(14,2) 296.99 338.8 520.64 16.27 46.61 13.49

1792 7e� 13(16,1) 423.42 458.9 579.84 18.12 51.47 16.16

2048 7e� 13(14,2) 506.11 601.3 732.16 22.88 55.72 18.87

Table 3: Backward accuracy, timing in seconds and mega
ops of the SDC algorithm with

Newton-Schulz iteration on a 32 PEs with VUs CM-5.

ing, and 7.5% on the matrix multiplication for the Newton-Schulz iteration and orthogonal

transformations.

4 Performance Model

Our model is based on the actual operation counts of the ScaLAPACK implementation and

the following problem parameters and (measured) machine parameters.

n Matrix size

p Number of processors

b Block size (in the 2D block cyclic matrix data layout) [20]

�lat Time required to send a zero length message from one processor to another.

�band Time required to send one double word from one processor to another.

�DGEMM Time required per BLAS3 
oating point operation

Models for each of the building blocks are given in Table 4. Each model was created

by counting the actual operations in the critical path. The load imbalance cost represents

the discrepancy between the amount of work which the busiest processor must perform and

the amount of work which the other processors must perform. Each of the models for the

building blocks were validated against the performance data shown in the appendix. The

load imbalance increases as the block size increases.

Because it is based on operation counts, we can not only predict performance, but also

estimate the importance of various suggested modi�cations either to the algorithm, the

implementation or the hardware. In general, predicting performance is risky because there

are so many factors which control actual performance, including the compiler and various

library routines. However, since the majority of the time spent in Algorithm 1 is spent in

either the BLACS or the level 3 PB-BLAS[15] (which are in turn implemented as calls to the

BLACS[25] and the BLAS[38, 23, 22]), as long as the performance of the BLACS and the BLAS
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Computation Communication Cost Load Imbalance Cost

Task Cost latency bandwidth�1 computation bandwidth�1

LU 2
3
n3

p
�DGEMM (6+lg p)n�lat (3+

lg p
4

)
n2p
p
�band

bn2p
p
�DGEMM (1+

lg p
4

)bn�band

TRI 4
3
n3

p
�DGEMM 2n�lat (2+

3
2
lg p)

n2p
p
�band

2bn2p
p
�DGEMM

3bn lg p
2

�band

Matrix

multiply
2
n3

p
�DGEMM (1+

lg p
2

)
p
p�lat (1+

lg p
2

)
n2p
p
�band

QR 4
3
n3

p
�DGEMM 3n lg p�lat

3 lg p
4

n2p
p
�band

Householder

application
2
n3

p
�DGEMM 2

n2p
p
lg p�band

Table 4: Models for each of the building blocks

20 matrix QR 2 Householder Total

inversions applications

Computation cost �n3

p
�DGEMM 40

4
3

4 45

Latency cost �n�lat 160+20 lgp 3 lg p 160+23lg p

Bandwidth cost � n2p
p
�band 90+35 lg p

3
4
lg p 4 90+40 lgp

Imbalanced

computation cost
� bn2p

p
�DGEMM 60 60

Imbalanced

bandwidth cost
�bn�band 20+35 lg p 20+35 lgp

Table 5: Model of Algorithm 1

are well understood and the input matrix is not too small, we can predict the performance

of Algorithm 1 on any distributed memory parallel computer. In Table 5, the predicted

running time of each of the steps of Algorithm 1 is displayed. Summing the times in Table 5

yields:

total time =

 
45
n3

p
+ 60

bn2p
p

!
�DGEMM+ (160 + 23 lg p)n�lat + 

(90 + 40 lg p)
n2p
p
+ (20 + 35 lg p)bn

!
�band: (4.9)

Using the measured machine parameters given in Table 8 with equation (4.9) yields the pre-

dicted times in Table 7 and Table 3. To get Table 4 and Table 5 and hence equation (4.9), we

have made a number of simplifying assumptions based on our empirical results. We assume

that 20 Newton iterations are required. We assume that the time required to send a single

message of d double words is �lat + d�band, regardless of how many messages are being sent

in the system. Although there are many patterns of communication in the ScaLAPACK

implementation, the majority of the communication time is spent in collective communica-

tions, i.e. broadcasts and reductions over rows or columns. We therefore choose �lat and

�band based on programs that measure the performance of collective communications. We

assume a perfectly square
p
p-by-

p
p processor grid. These assumptions allow us to keep

the model simple and understandable, but limit its accuracy somewhat.
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Table 6: Performance of the Newton iteration based algorithm (Algorithm 1) for the spectral

decomposition along the pure imaginary axis, all backward errors kE21k1=kAk1 � 10�11.

Delta 8� 16 PEs 16� 16 PEs 16� 32 PEs

n iter time M
ops iter time M
ops iter time M
ops

(sec) (total) (sec) (total) (sec) (total)

1000 { { 18 134.21 293.05 19 110.83 372.94

2000 21 502.57 678.43 21 448.69 808.28 21 336.34 1978.27

3000 18 1037.03 1024.07 18 792.18 1340.60 18 576.68 1841.55

4000 { { 19 1436.13 1841.98 19 1014.63 2607.18

8000 { { { { 20 4268.35 5197.94

Table 7: Predicted performance of the Newton iteration based algorithm (Algorithm 1) for

the spectral decomposition along the pure imaginary axis.
Delta 8� 16 PEs 16� 16 PEs 16� 32 PEs

n actual predicted actual predicted actual predicted

time (sec) time (sec) time (sec) time (sec) time (sec) time ( sec)

1000 { { 134.21 120.1 110.83 112.4

2000 502.57 444.3 448.69 362.3 336.34 310.8

3000 1037.03 994.7 792.18 756.8 576.68 610.4

4000 { { 1436.13 1334. 1014.63 1026.

8000 { { { { 4268.35 4152.

As Tables 6 and 7 show, our model underestimates the actual time on the Delta by no

more than 20% for the machine and problem sizes that we timed. Table 3 shows that our

model matches the performance on the CM5 to within 25% for all problem sizes except the

smallest, i.e. n = 256.

The main sources of error in our model are:

1. uncounted operations, such as small BLAS1 and BLAS2 calls, data copying and norm

computations,

2. non-square processor con�gurations,

3. di�ering numbers of Newton iterations required

4. communications costs which do not �t our linear model,

5. matrix multiply costs which do not �t our constant cost/
op model, and

6. the higher cost of QR decomposition with pivoting.

We believe that uncounted operations account for the main error in our model for small

n. The actual number of Newton iterations varies between 18 and 22, whereas we assume

exactly 20 Newton iterations are needed. Non-square processor con�gurations are slightly

less e�cient than square ones. Actual communication costs do not �t a linear model and

depend upon the details such as how many processors are sending data simultaneously and

to which processors they are sending. Actual matrix multiply costs depend upon the matrix
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Model Performance measured values �s

Parameter Description limited by CM5 Delta

�DGEMM BLAS3 peak 
op rate 1/90. 1/34.

�lat message latency comm. software 150 157

�band bandwidth�1 comm. hardware 1.62 1.67

Table 8: Machine parameters

sizes involved, the leading dimensions and the actual starting locations of the matrices. The

cost of any individual call to the BLACS or to the BLAS may di�er from the model by 20%

or more. However, these di�erences tend to average out over the entire execution.

Data layout, i.e. the number of processor rows and processor columns and the block

size, is critical to the performance of this algorithm. We assume an e�cient data layout.

Speci�cally that means a roughly square processor con�guration and a fairly large block

size (say 16 to 32). The cost of redistributing the data on input to this routine would be

tiny, O((n2=p)�band), compared to the total cost of the algorithm.

The optimal data layout for LU decomposition is di�erent from the optimal data layout

for computing U�1L�1. The former prefers slightly more processor rows than columns while

the latter prefers slightly more processor columns than rows. In addition, LU decomposi-

tion works best with a small block size, 6 on the Delta for example, whereas computing

U�1L�1 is best done with a large block size, 30 on the Delta for example. The di�erence

is signi�cant enough that we believe a slight overall performance gain, maybe 5% to 10%,

could be achieved by redistributing the data between these two phases, even though this

redistribution would have to be done twice for each Newton step.

Table 3 shows that except for n < 512 our model estimates the performance Algorithm

1 based on CMSSL reasonably well. Note that this table is for a Newton-Shultz iteration

scheme which is slightly more e�cient on the CM5 than the Newton based iteration. This

introduces another small error. The fact that our model matches the performance of the

CMSSL based routine, whose internals we have not examined, indicates to us that the im-

plementation of matrix inversion on the CM5 probably requires roughly the same operation

counts as the ScaLAPACK implementation.

The performance �gures in Table 8 are all measured by an independent program, except

for the CM5 BLAS3 performance. The communication performance �gures for the Delta in

Table 8 are from a report by Little�eld1 [43]. The communication performance �gures for the

CM5 are as measured by Whaley2[58]. The computation performance for the Delta is from

the Linpack benchmark[21] for a 1 processor Delta. There is no entry for a 1 processor CM5

in the Linpack benchmark, so �DGEMM in Table 8 above is chosen from our own experience.

5 XI : A Graphical User Interface to SDC

To take advantage of the graphical nature of the spectral decomposition process, a graphical

user interface (GUI) has been implemented for SDC. Written in C and based on X11R5's

1The BLACS use protocol 2, and the communication pattern most closely resembles the \shift" timings.
2
�lat is from Table 8 in[58] and �band is from Table 5.
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Figure 5: The X11 Interface (XI) and SDC

standard Xlib library, the Xt toolkit and MIT's Athena widget set, it has been nicknamed

XI for \X11 Interface". When XI is paired with code implementing SDC we call the union

XSDC.

The programmer's interface to XI consists of seven subroutines designed independently

of any speci�c SDC implementation. ThusXI can be attached to any SDC code. At present,

it is in use with the CM-5 CMF/CMSSL implementation and the Fortran 77 version of our

algorithm (both of which use real arithmetic only). Figure 1 shows the coupling of the SDC

code and the XI library of subroutines.

Basically, the SDC code calls an XI routine which handles all interaction with the user

and returns only when it has the next request for a parallel computation. The SDC code

processes this request on the parallel engine, and if necessary calls another XI routine to

inform the user of the computational results. If the user had selected to split the spectrum,

then at this point the size of the highlighted region, and the error bound on the computation

(along with some performance information) is reported, and the user is given the choice of

con�rming or refusing the split. Appropriate action is taken depending on the choice. This

process is repeated until the user decides to terminate the program.

All data structures pertaining to the matrix decomposition process are managed by

XI. A binary tree records the size and status (solved/not solved) of each diagonal block

corresponding to a spectral region, the error bounds of each split, and other information.

Having the X11 interface manage the decomposition data frees the SDC programmer of

these responsibilities and encapsulates the decomposition process. The SDC programmer

obtains any useful information via the interface subroutines.

Figure 6 pictures a sample session of xsdc on the CM-5 with a 500� 500 matrix. The

large, central window (called the \spectrum window") represents the region of the complex

plane indicated by the axes. Its title { \xsdc :: Eigenvalues and Schur Vectors" { indicates

that the task is to compute eigenvalues and Schur vectors for the matrix under analysis.



Figure 6: A sample xsdc session

The lines on the spectrum window (other than the axes) are the result of spectral divide

and conquer, while the shading indicates that the \bowtie" region of the complex plane is

currently selected for further analysis. The other windows (which can be raised/lowered at

the user's request) show the details of the process and will be described later.

The buttons at the top control I/O, the appearance of the spectrum window, and algo-

rithmic choices:

� File lets one save the matrix one is working on, start on a new matrix, or quit.

� Zoom lets one navigate around the complex plane by zooming in or out on part of the

spectrum window.

� Toggle turns on or o� the features of the spectrum window (for example the axes,

Gershgorin disks, eigenvalues).

� Function lets one modify the algorithm, or display more or less detail about the

progress being made.

The buttons at the bottom are used in splitting the spectrum. For example clicking

on Right halfplane and then clicking at any point on the spectrum window will split the

spectrum into two halfplanes at that point, with the right halfplane selected for further

division. This would signal the SDC code to decompose the matrix A to

 k n� k

k A11 A12

n� k 0 A22

!
;
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where the k eigenvalues of A11 are the eigenvalues of A in the right halfplane, and the

eigenvalues ofA22 are the eigenvalues ofA in the left halfplane. The button Left Halfplane

works similarly, except that the left halfplane would then be selected for further processing

and the roles of A11 and A22 would be reversed. In the same manner, Inside Circle and

Outside Circle divide the complex plane at the boundary of a circle, while East-West

Crosslines and North-South Crosslines split the spectrum with lines at 45 degrees to

the real axis (described below).

The Split Information window in the lower right corner of Figure 2 keeps track of

the matrix splitting process. It reports the two splits performed to arrive at this current

(shaded) spectral region. The �rst, an East-West Crossline split at the point 1.5 on the

real axis, divided the entire complex plane into four sectors by drawing two lines at � 45

degrees through the point 1.5 on the real axis. SDC decomposed the starting matrix into:

 260 240

260 A11 A12

240 0 A22

!

where the East and West sectors correspond to the A11 block while the North and South

sectors correspond to the A22 block.

Continuing in the East-West sectors as indicated by the previous split, that region is

divided into two sub{regions separated by the boundary of the circle of radius 4 centered

at the origin. The circle is drawn, making sure that its boundary only intersects the East

and West sectors, and the matrix is reduced to:

0
B@
106 154 240

106 A11 A12 A13

154 0 A22 A23

240 0 0 A33

1
CA

The shading indicates that the \bowtie" region (corresponding to the interior of the circle,

and the A11 block) is currently selected for further analysis.

In the upper right corner of Figure 2 the Matrix Information window displays the

status of the matrix decomposition process. Each of the three entries corresponds to a

spectral region and a square diagonal block of the 3 � 3 block upper triangular matrix,

and informs us of the block's size, whether its eigenvalues (eigenvectors, Schur vectors)

have been computed or not, and the maximum error bound encountered along this path

of the decomposition process. The highlighted entry corresponds to the shaded region and

reports that the A11 block contains 106 eigenvalues, has been solved, and is in error by up

to 1:44�10�13. The eigenvalues { listed in the window overlapping the Matrix Information

window { can be plotted on the spectrum at the user's request.

The user may select any region of the complex plane (and hence any sub-matrix on the

diagonal) for further decomposition by clicking the pointer in the desired region. A click at

the point 10 on the imaginary axis for example, would unhighlight the current region and

shade the North and South sectors. Since this region corresponds to the A33 block, the third

entry in the Matrix-Information window would be highlighted. The Split-Information
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window would also be updated to detail the single split performed in arriving at this region

of the spectrum.

Once a block is small enough, the user may choose to solve it (via the Function button

at the top of the spectrum window). In this case the eigenvalues, and Schur vectors for that

block would be computed using QR (as per the user's request) and the eigenvalues plotted

on the spectrum.

The current XI code supports real SDC only. It will be extended to handle the complex

case as implementations of complex SDC become available.

6 Conclusions and Future work

We have written codes that solve one of the hardest problems of numerical linear algebra:

spectral decomposition of nonsymmetric matrices. Our implementation uses only highly

e�cient matrix computation kernels, which are available in the public domain and from

distributed memory parallel computer vendors. The performance attained is encouraging.

This approach merits consideration for other numerical algorithms.

The object oriented user interface XI developed in this paper provides a paradigm for

us in the future to design a more user friendly interface in the massively parallel computing

environment.

We note that all the approaches discussed here can be extended to compute the both

right and left de
ating subspaces of a regular matrix pencil A � �B. See [4, 7] for more

details.

As the spectrum is repeatedly partitioned in a divide-and-conquer fashion, there is

obviously task parallelism available because of the independent submatrices that arise, as

well as the data parallel-like matrix operations considered in this paper. Analysis in [13]

indicates that this task parallelism can contribute at most a small constant factor speedup,

since most of the work is at the root of the divide-and-conquer tree. This can simplify the

implementation.

Our future work will include the implementation and performance evaluation of the

inverse free iteration based algorithm, comparison with parallel QR, the extension of the

algorithms to the generalized spectral decomposition problem, and the integration of the

3-step approach (see section 2.3) to an object oriented user interface.
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Appendix: Performance data

In this appendix, we record performance data of PUMMA (version 1.0) for matrix

multiplication and ScaLAPACK 1.0 (beta version) matrix inversion (LU factorization plus

triangular matrix inversion), QR decomposition with and without column pivoting on In-

tel Touchstone Delta system and performance data of CMSSL 3.2 subroutines for matrix

multiplication, matrix inversion, QR decomposition with and without column pivoting on

32 PEs VUs CM-5. Parts of data are used to draw Figures 2 and 4.
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Table 9: Performance of PUMMA (version 1.0) matrix multiplication, use BLACS, block-

size=10
Delta 16� 16 PEs 16� 32 PEs

n time M
ops time M
ops

(seconds) (total) (seconds) (total)

1000 0.86 2314.70 0.62 3237.47

2000 4.03 3971.61 2.57 6236.89

3000 10.57 5108.06 6.49 8320.18

4000 21.63 5918.57 13.61 9406.20

5000 40.27 6207.39 24.54 10187.36

6000 65.80 6565.66 39.52 10930.53

7000 { { 60.43 11352.03

8000 { { 87.96 11641.05

9000 { { 126.01 11570.10

Table 10: Performance of matrix inversion (LU + Triangular inversion), blocksize=30.

Delta 16� 16 PEs 16� 32 PEs

n LU time TRI time M
ops LU time TRI time M
ops

(seconds) (seconds) (total) (seconds) (seconds) (total)

1000 2.709 2.821 361.67 2.049 2.419 447.63

2000 6.743 9.337 995.01 4.990 7.471 1284.01

3000 12.472 20.460 1639.76 8.971 15.668 2191.66

4000 20.287 37.164 2227.98 14.167 27.431 3077.04

5000 30.676 60.773 2733.78 20.895 43.253 3897.24

6000 44.031 92.136 3172.57 29.258 64.015 4631.52

7000 60.771 132.391 3551.41 39.558 89.561 5312.95

8000 81.240 176.255 3976.78 51.908 117.107 6058.62

9000 106.045 243.910 4166.25 66.579 157.781 6498.48

10000 135.381 316.825 4422.77 83.737 202.448 6988.48
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Table 11: Performance of QR decomposition method for solving the least squares problem

(QR decomposition + Triangular solver), blocksize=6.

Delta 16� 16 PEs 16� 32 PEs

n QR time Solve time M
ops QR time Solve time M
ops

(seconds) (seconds) (total) (seconds) (seconds) (total)

1000 4.514 1.0033 242.77 3.440 0.3975 348.26

2000 11.495 2.1829 781.61 8.381 0.8433 1157.63

3000 21.791 3.6266 1418.44 15.414 1.3375 2150.73

4000 36.150 5.3768 2057.21 24.752 1.8519 3209.40

5000 55.513 7.2712 2656.98 36.911 2.3994 4241.71

6000 80.682 9.5162 3195.36 52.452 3.0455 5191.39

7000 112.359 12.0318 3678.94 71.531 3.6736 6083.12

8000 151.524 14.7269 4108.54 94.682 4.3310 6896.66

9000 198.830 17.8164 4488.82 122.305 5.0823 7632.18

10000 255.710 20.9755 4821.16 154.792 5.8376 8302.54

Table 12: Performance of QR decomposition with column pivoting.
Delta 16� 16 PEs 16� 32 PEs

n time M
ops time M
ops

(seconds) (total) (seconds) (total)

1000 6.6254 201.25 4.6249 288.29

2000 18.1142 588.86 11.8456 900.48

3000 35.8709 1003.60 22.3526 1610.55

4000 62.3064 1369.58 37.2151 2292.98

5000 98.1878 1697.43 57.3836 2904.43

6000 147.1279 1957.48 83.2704 3458.61

7000 209.4396 2183.61 116.7009 3918.85

8000 286.0408 2386.61 157.7757 4326.82

9000 { { 207.2685 4689.57

10000 { { 265.6364 5019.39
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Table 13: Backward accuracy, timing in seconds and mega
ops of the SDC algorithm with

Newton iteration on a 32 PEs with VUs CM-5.
n kE21k1=kAk1 Timing M
ops M
ops GEMM-M
ops INV-M
ops

(iter) (seconds) (total) (per node) (per node) (per node)

256 4e� 14(18) 33.3 21.76 0.68 12.57 0.69

512 2e� 13(18) 67.7 84.48 2.64 22.14 2.62

768 3e� 13(17) 115.1 160.00 5.00 30.32 5.05

1024 3e� 13(16) 165.0 251.52 7.86 37.71 7.81

1280 4e� 13(18) 259.1 329.28 10.29 42.06 10.64

1536 2e� 12(16) 331.4 422.72 13.21 46.61 13.49

1792 9e� 13(17) 456.9 512.32 16.01 51.47 16.16

2048 1e� 12(16) 552.0 601.60 18.80 55.72 18.87

Table 14: Performance of matrix multiplication and matrix inversion, and QRP, CMSSL

version 3.2
CM-5 GEMM Inversion QRP

n time M
ops time M
ops time M
ops

(seconds) (per node) (seconds) (per node) (seconds) (per node)

256 0.08 12.57 1.51 0.69 2.23 0.63

512 0.38 22.14 3.21 2.62 5.01 2.23

768 0.93 30.32 5.60 5.05 8.96 4.21

1024 1.78 37.71 8.59 7.81 13.29 6.73

1280 3.12 42.06 12.32 10.64 20.41 8.56

1536 4.86 46.61 16.80 13.49 27.32 11.05

1792 6.99 51.47 22.26 16.16 35.65 13.45

2048 9.64 55.72 28.45 18.87 45.21 15.83

2304 15.64 48.89 35.86 21.32 62.51 16.30

2560 20.12 52.12 44.17 23.74 77.45 18.05

2816 25.28 55.22 54.03 25.83 94.06 19.78

3072 31.82 56.94 64.77 27.98 113.20 21.34

3328 39.16 58.83 76.76 30.01 134.75 22.79

3584 47.30 60.83 90.97 31.63 159.38 24.07

3840 56.91 62.19 106.30 33.29 187.37 25.18

4096 66.32 64.76 123.23 34.85 218.05 26.26

4352 78.60 65.55 142.09 36.26 273.52 25.11

4608 91.35 66.94 161.77 37.80 313.53 26.00

4864 105.56 68.13 192.56 37.35 377.39

5120 120.80 69.44 216.21 38.80 407.42 27.47

5376 { { { 38.80 493.26 26.25

5632 { { { 38.80 554.36 26.85

5888 { { { 38.80 628.69 27.06

6144 { { { 38.80 699.88 27.62


