
Solving Secular Equations

Stably and E�ciently

Ren-Cang Li

Department of Mathematics

University of California at Berkeley

Berkeley, California 94720

April, 1993

Dedicated to B. N. Parlett and W. Kahan on the occasion of their 60th birthdays

Abstract

A divide-and-conquer method for solving symmetric tridiagonal

eigenproblems has evolved from work by Cuppen, Dongarra, Sorensen,

Tang, and most recently Gu and Eisenstadt. At the heart of their

methods is the solution of a so-called Secular Equation. Proposed

here is a more e�cient organization of the equation{solving process,

including some crucial implementation details.

1

1 Introduction

A continuing element in divide-and-conquer algorithms descended from Cup-

pen's [4, 5] is the solution of an eigensystem that di�ers from diagonal by

a rank{1 perturbation. Let D = diag (�1; � � � ; �n) be a real diagonal matrix,

� a nonzero real number, and z = (�1; � � � ; �n)T a real vector; the perturbed

system's matrix is

D +
1

�
zzT : (1)

Its eigenvalues are the zeros x = �1; � � � ; �n of the secular function (see [7])

f(x) = � +
nX

j=1

�2j

�j � x
; (2)

and the eigenvector corresponding to each �k is parallel to

(D � �kI)
�1z: (3)

(Here I is the n�n identity matrix.) Numerical di�culties arose when these
were not computed accurately enough to be orthogonal, but recent work
[11, 9] has overcome these di�culties. Ours is a small contribution to solving
the secular equation f(x) = 0 as accurately as necessary but faster than
before. Certain details necessary for robustness in the code will be discussed
too. Inattention to such details can cause accidents like Division by Zero,

which the author has encountered while testing others' programs.
The paper is organized as follows: In Section 2, we study various his-

toric ways to rationally interpolate the secular function (2) and then develop
three di�erent schemes for solving the equation f(x) = 0, two of which are
essentially due to [3] and the other one is new and fastest among the three.

The way to interpolate f(x) in Section 2 is not always e�cient because, in
which, attention is largely paid to the positions of two nearby poles. Sec-

tion 3 gives a closer look into cases when attention has to be paid not only to
the positions of most relevant poles but also to weights over particular poles.

Important implementation issues like securing initial guesses and selecting

the best scheme are discussed in detail in Sections 4 and 6. Numerical exam-

ples with detailed explanation are given in Section 7. Discussions of various

stopping criteria and justi�cations of our proposed stopping criteria, are pre-
sented in Section 5. Numerical examples with detailed explanation are given

in Section 7. Section 8 presents our conclusions.

2

Before we proceed, let's make some convenient assumptions. Without

loss of generality, we assume that

�1 < �2 < � � � < �n; and every �j 6= 0:

Otherwise, de
ation would give a new matrix of form (1) with a lower di-

mension [4, 5, 10]. Then it is easy to see that f(x) has precisely n zeros �i,

one in each open interval (�j; �j+1), and one to the right of �n if � > 0 or

to the left of �1 otherwise. To simplify our presentation, in the following we

assume � > 0, and set �n+1 = �n +
zT z

�
. Then the n eigenvalues �1; � � � ; �n of

the matrix (1) satisfy

�i < �i < �i+1; i = 1; � � � ; n:

2 Secular Equation Solvers (I)

One obvious method to solve the secular equation f(x) = 0 is Newton's
method. However, as argued in [3], since f(x) is a rational function having
poles at �1; � � � ; �n, Newton's method, based upon a local linear interpolation,
may not be a good method. Bunch, Nielsen and Sorensen [3] proposed a
method based upon rational osculatory interpolation. A major drawback of
their method is that it takes too many iterations in certain circumstances,

as we shall see.
The following subsection explores three rational approximations to f(x),

from which we will develop three iteration schemes to solve the equation
f(x) = 0. One of them we call the Middle Way is new and fastest. Most of
material in this section is presented for historic reasons and for comparisons.

2.1 Rational Osculatory Interpolations

In this section, we explore the osculatory interpolation of the secular function

f(x) in (2) by a combination of the following two kinds of simple rational

functions:

F (x; p; q)
def
=

q

p � x
and G(x; �; r; s)

def
= r +

s

� � x
: (4)

3

They will be used in conjunction with a partition of the secular function

f(x) = �+ k(x) + �k(x) where, for k = 1; 2; � � � ; or n,

 k(x) =
kX

j=1

�2j

�j � x
; �k(x) =

nX
j=k+1

�2j

�j � x
: (5)

(Convention sets �n(x) � 0.) The choice of k will depend upon which eigen-

value �k is being computed. It is easy to see that for �k < x < �k+1

�1 < k(x) < 0 < �k(x) < +1:

For any approximation y to �k, we shall approximate each of k(x) and �k(x)
by a simpler form F or G chosen to match k and �k in value and derivative
at x = y; in other words, we perform osculatory interpolation.

So far, nothing we have said di�ers from past practice [3, 5, 9]. What will

be novel will be the way we choose which of F and G should be used with
each of k and �k; in fact, we shall see that F is best not used at all.

2.1.1 Two Ways to Rationally Interpolate k(x)

Let y be a �xed approximation to �k somewhere between �k and �k+1. Now
we have a choice. We can choose parameters p and q in F (x; p; q) so that

F (y; p; q) = k(y); F 0(y; p; q) = 0k(y):

Or we can choose � = �k to match the pole of k(x) next to y (and �k) and
then choose parameters r and s in G(y; �k; r; s) so that

G(y; �k; r; s) = k(y); G
0(y; �k; r; s) = 0k(y):

Here are the formulas for the parameters:

� In F (x; p; q) = q=(p� x),

p = y + k(y)=
0

k(y) (6)

=
1

 0k(y)

kX
j=1

�2j

(�j � y)2
�j;

q = k(y)
2= 0k(y) > 0: (7)

4

� In G(x; �k; r; s) = r + s=(�k � x),

r = k(y)� (�k � y) 0k(y) (8)

=
k�1X
j=1

�j � �k

(�j � y)2
�2j � 0;

s = (�k � y)2 0k(y) > 0: (9)

In fact, �2k � s �
kP

j=1
�2j ; if k > 1,

k�1P
j=1

�2j =(�j � y) = k�1(y) < r < 0; and if

k = 1, r = 0.
Let these assignments to p; q; r; s hold throughout the rest of this x 2.1.1.

Here are some of the properties of the two osculatory interpolating functions

that our subsequent analysis will exploit.

Proposition 1 �1 < p < �k < y:

This proposition indicates that the pole p of F (x; p; q) lies farther from
y than �k does. Therefore F (x; p; q) may approximate k(x) poorly between
its pole �k and y. This happens when �k is relatively small, in which case �k
lies very close to �k, and therefore y will do likewise.

Since the interpolating rationals are unique, as we can see from the above
equations, they are identically equal to k(x) if k = 1.

Theorem 1 If k � 2, then for �k < x < +1 and x 6= y

G(x; �k; r; s) < k(x) < F (x; p; q):

Proof: The inequality F (x; p; q) > k(x) for �k < x < +1 was proved by

[3]. Now we prove G(x; �k; r; s) < k(x) for �k < x < +1 in a similar way.
Let g(x) = G(x; �k; r; s) � k(x). It su�ces to prove g(x) < 0 for �k <

x < +1. To this end, set

h(x) = g(x)
kY

j=1

(�j � x): (10)

5

Then

h(x) = r
kY

j=1

(�j � x) + (s� �2k)
k�1Y
j=1

(�j � x)

+
k�1X
i=1

�2i

kY
j=1;j 6=i

(�j � x); (11)

is a polynomial of degree k. It is easy to verify that h(y) = 0 and h0(y) = 0,

so we have

h(x) = �(x� y)2
k�2Y
j=1

(x�
j); (12)

for some �,
j. (In fact, � = (�1)kr, from (11).)

We claim that
j < �k for 1 � j � k � 2. The zeros of h(x) are the zeros
of g(x). There is a zero of g(x) in each interval (�j; �j+1) for j = 1; � � � ; k � 2.
Therefore h(x) has k� 2 of its zeros less than �k. As y > �k, we have proved
our claim.

Since � = (�1)kr and (from (8)) r < 0, so from (12) sign (h(x)) = (�1)k�1
when �k < x. On the other hand, for �k < x < +1, we �nd from (10) that

sign (g(x)) = sign (h(x))(�1)k = �1, which means g(x) < 0.

2.1.2 Two Ways to Rationally Interpolate �k(x)

Similarly, we can perform osculatory interpolations of �k(x) by F (x; p; q) and
by G(x; �k+1; r; s), respectively, such that

F (y; p; q) = �k(y); F 0(y; p; q) = �0k(y);

G(y; �k; r; s) = �k(y); G
0(y; �k; r; s) = �0k(y):

It is easily veri�ed that

p = y + �k(y)=�
0

k(y) (13)

=
1

�0k(y)

nX
j=k+1

�2j

(�j � y)2
�j; (14)

q = �k(y)
2=�0k(y) > 0; (15)

r = �k(y)� (�k+1 � y)�0k(y) (16)

6

=
nX

j=k+2

�j � �k+1

(�j � y)2
�2j > 0; (17)

s = (�k+1 � y)2�0k(y) > 0: (18)

Moreover �2k+1 � s � Pn
j=k+1 �

2
j ; if k < n� 1, 0 < r < �k+1; and if k = n� 1,

r = 0.

F and G are identically equal to �k(x) if k = n� 1.

Proposition 2 y < �k+1 < p < �n:

Proposition 2 indicates the same phenomenon as we observed in Propo-
sition 1.

Theorem 2 If k � n� 2, then for y 6= x < �k+1

F (x; p; q) < �k(x) < G(x; �k+1; r; s):

2.2 Solving f(x) = 0

Three ways come to mind to �nd the kth zero �k of the secular function (2)
by combining di�erent rational osculatory interpolating functions to k(x)
and �k(x) studied above.

The �rst one we are going to study is the one in [3], and we describe it

as Approaching from the Left because the algorithm will produce a sequence
of monotonically increasing approximations to �k provided the initial guess
is between �k and �k. We reproduce it here for completeness.

We describe the second one as Approaching from the Right for the same

reason.

The third iteration scheme is a new and fastest one which we shall call
the Middle Way.

Assume, we have a guess y to �k (with �k < y < �k+1); Later, in Section 4,
we shall discuss how to choose such a y.

2.2.1 Approaching from the Left

Assume for the moment 1 � k < n.

7

To approach from the left, we interpolate k(x) by F (x; p; q) and �k(x)

by G(x; �k+1; r; s), where p, q, r and s are determined by Equations (6), (7),

(16) and (18). Instead of solving �+ k(x) + �k(x) = 0, we solve

�+
q

p � x
+ r +

s

�k+1 � x
= 0 (19)

for x. Equation (19) has two roots x of which just one lies between p and

�k+1; that one is our new approximation y + �. Set �k+1 = �k+1 � y. Then

the correction � to y is

� =
a�

p
a2 � 4bc

2c
if a � 0; (20)

=
2b

a+
p
a2 � 4bc

if a > 0; (21)

where

a = f(y)

�k+1 +

 k(y)

 0k(y)

!
��k+1 k(y)

1 +

�0k(y)

 0k(y)

!
;

b = �k+1f(y)
 k(y)

 0k(y)
;

c = �+ r = �+ �k(y)��k+1�
0

k(y):

Eventually, as f(y)! 0, we �nd a > 0, so (21) will be used more often than
(20).

The case for k = n is special since �n � 0. Solving �+ q

p�x
= 0 gives

� = x� y =
� + n(y)

� 0n(y)
 n(y) =

f(y) n(y)

f 0(y)�
: (22)

Regarding the foregoing scheme, we have

Theorem 3 If �k < y < �k, then � > 0 and y < y + � < �k; if �k < y <

�k+1, then � < 0 and y + � < �k < y.

Proof: It is clear from Theorems 1 and 2.
Theorem 3 says, starting with an initial guess which is less than �k, the

foregoing scheme will yield a sequence of approximations converging mono-

tonically upwards to �k; on the other hand if the initial guess exceeds �k the

8

�rst increment � will be negative enough to make the next approximation less

than �k, and all later approximations will go upwards to �k again.

Remark: The above statement is true, generally, except for one case when

the initial guess exceeds �k so much that the next approximation falls below

�k. Recall that we can only guarantee p < y + � < �k+1 while p < �k
by Proposition 1. The author has encountered examples in which, because

of inaccurate initial guess y, the next approximation by Approaching from

the Left went indeed below �k. Care must be taken to prevent that from

happening.

2.2.2 Approaching from the Right

Reversing to the choice of interpolating rationals for k(x) and �k(x) in
Approaching from the Left, we now interpolate k(x) by G(x; �k; r; s) and

�k(x) by F (x; p; q), where p, q, r and s are determined by Equations (8), (9),
(13) and (15). Set �k = �k � y. Then the correction � to y is, again, given
by (20) and (21), but with

a = f(y)

�k +

�k(y)

�0k(y)

!
��k�k(y)

1 +

 0k(y)

�0k(y)

!
;

b = �kf(y)
�k(y)

�0k(y)
;

c = �+ r = �+ k(y)��k
0

k(y):

>From which we see eventually a > 0.
When k = n, we partition and interpolate the secular function f(x) the

same as we did for the case k = n� 1, but choose our new approximation to

�n to be the root of �+G(x; �n�1; r; s)+F (x; p; q) = 0 which lies between �n
and �n+1 if any. It is easy to see that F (x; p; q) � �n�1(x), and there is such
a root provided � + r > 0. The correction � to y is

� =
a+

p
a2 � 4bc

2c
if a � 0; (23)

=
2b

a�
p
a2 � 4bc

if a < 0;

with a; b; c as shown above for k = n� 1, which can be simpli�ed as

a = (�n�1 +�n)f(x)��n�1�nf
0(y);

9

b = �n�1�nf(y);

c = �+ r = � + n�1(y)��n�1
0

n�1(y)

= f(y)��n�1
0

n�1(y)�
�2n
�n

:

(23) is usable provided f(y)��n�1
0

n�1(y)�
�2n
�n

> 0 since otherwise y+� < �n

or � is in�nite. Eventually as f(y) ! 0, so does f(y) � �n�1
0

n�1(y) �
�2n
�n

become positive.

The foregoing scheme is called Approaching from the Right because of
this:

Theorem 4 If �k < y < �k+1, then � < 0 and �k < y + � < y. If

�k < y < �k and k < n, then � > 0 and y < �k < y + �. If �n < y < �n and

y is not too close to �n, then y + � > �n.

Proof: It is clear from Theorems 1 and 2.
Remark: As we remarked after Theorem 3, in Theorem 4 it is possible

for y + � to jump above �k+1 when �k < y < �k. This must be prevented in

practice.

2.2.3 The Middle Way: a New Method

A new way (we call it theMiddle Way) to solve the secular equation f(x) = 0
will be developed here. Unlike the previous two ways, it need not yield
a sequence of approximations that converges monotonically to �k, but it

converges faster as we will see.

We interpolate both k(x) and �k(x) by rationals of type G(x; �; r; s),
taking both nearby poles into consideration. To be speci�c, when 0 < k < n

we let

r + s
�k � x

approximate to k(x); and

R + S
�k+1 � x

approximate to �k(x);

where(
s = �2

k
0

k(y) > 0;
r = k(y)��k

0

k(y) � 0;
and

(
S = �2

k+1�
0

k(y) > 0;

R = �k(y)��k+1�
0

k(y) � 0;

(24)

10

and �k = �k � y < 0 < �k+1 = �k+1 � y as before. We compute our new

\better" approximation y + � to �k by solving the equation

� + r +
s

�k � x
+R+

S

�k+1 � x
= 0: (25)

Equation (25) has two roots x, one of them in�nite if �+r+R = 0. The root

we need is the one between �k and �k+1. Set � = x� y. Then the correction

� to y has forms (20) and (21) with

a = (�k +�k+1)f(y)��k�k+1f
0(y);

b = �k�k+1f(y);

c = f(y)��k
0

k(y)��k+1�
0

k(y):

Eventually a > 0.
The case k = n is exactly the same as in x 2.2.2.
Remark: Quadratic convergence of Approaching from the left was proved

in [3]. A similar proof does likewise for Approaching from the Right , and
proves that the Middle Way converges at least quadratically.

3 Secular Equation Solvers (II): A Close Look

The Middle Way outperforms Approaching from the Left and Approaching

from the Right because it takes both nearby poles into considerations while
each of latter two uses one of the poles. However, as we shall see, the Middle

Way still behaves badly in a few circumstances. The following is a simple

intuitive explanation for why. In
�2j

�j�x
, �2j is the weight over the pole �j and

controls how much role the pole �j plays in the secular function f(x). Most of

the time the simple interpolating rational r + s

�k�x
approximates k(x) very

well, but there are situations when s overestimates �2k so much that iterations

are forced to move slowly towards the desired roots. Recall
s��2

k

�k�x
functions

for the rest of the poles in k(x). Similar things happen to �k, too. In this

section, we shall provide ways to conquer this as well as di�culties when just

employing two nearby poles is not enough.
The case k = n will not be handled here since the Middle Way (Ap-

proaching from the Right also) has used the two nearby poles on the left of
�n already while there is no pole on its right. We begin with a new look at

our iteration formulas whose
exibility will be of big help.

11

3.1 Iteration Formulas

Let y be a �xed approximation to �k somewhere between �k and �k+1. The

Middle Way is, eventually, based upon an osculatory interpolation of f(x)

at y by

Q(x; c; s; S)
def
= c+

s

�k � x
+

S

�k+1 � x
; (26)

for which

c+
s

�k � y
+

S

�k+1 � y
= f(y); (27)

s

(�k � y)2
+

S

(�k+1 � y)2
= f 0(y): (28)

However, if we start with Q(x; c; s; S) satisfying (27) and (28), we cannot
determine Q(x; c; s; S) uniquely because of three unknowns and only two
equations available. Therefore an additional condition has to be imposed in
order to determine Q(x; c; s; S). For the moment, let's not worry about this,
but instead assume Q(x; c; s; S) is a rational of form (26) with (27) and (28)

satis�ed.
The idea for computing a correction � to y for the next (\better") ap-

proximation y + � to �k is to solve the equation Q(x; r; s; S) = 0. Let

�k = �k � y; �k+1 = �k+1 � y; x = y + �:

Q(x; c; s; S) = 0 yields

c(�k � �)(�k+1 � �) + s(�k+1 � �) + S(�k � �) = 0;

giving

c�2 � �[c(�k +�k+1) + s+ S] + c�k�k+1 + s�k+1 + S�k = 0: (29)

Proposition 3 With c, s and S subject to (27) and (28), we have

c(�k +�k+1) + s+ S = (�k +�k+1)f(y)��k�k+1f
0(y);

c�k�k+1 + s�k+1 + S�k = �k�k+1f(y):

12

Proof: It follows from (27) and (28) that

s =
�2

k

�k ��k+1

(f(y)� c��k+1f
0(y));

S =
�2

k+1

�k+1 ��k

(f(y)� c��kf
0(y)):

Substituting them into c(�k +�k+1) + s+ S and c�k�k+1 + s�k+1 + S�k

leads to the desired results.

Proposition 3 illustrates a surprising fact that the iteration formula by

solving (29) depends only upon c, alone. As surely, the equations (27) and
(28) are solvable for any c. Without worrying about global convergence,
any c will give rise an ultimately at least quadratically convergent iteration
scheme!

In the case s > 0 and S > 0 in which we are interested, it follows from

(29) that

� =
a�

p
a2 � 4bc

2c
if a � 0; (30)

=
2b

a+
p
a2 � 4bc

if a > 0; (31)

where

a = (�k +�k+1)f(y)��k�k+1f
0(y);

b = �k�k+1f(y):

In what follows, for a particular iteration scheme, we shall provide the nec-
essary number c, as well as a proof for s > 0 and S > 0. Di�erent choices

of c give rise to di�erent iteration schemes. By choosing c properly, a very

e�cient iteration scheme may be obtained.
The Middle Way falls into the category, i.e., s > 0 and S > 0, and

c = f(y)��k
0

k(y)��k+1�
0

k(y)

= f(y)��k+1f
0(y)� 0k(y)(�k � �k+1)

= f(y)��kf
0(y)� �0k(y)(�k+1 � �k):

Reorganization of c is for the reader to see its di�erences from those in some
other schemes to which we are about to get.

13

3.2 The Fixed Weight Method

We have been aware that the weight �2k or �2k+1 may be overestimated in the

Middle Way. Although not all overestimations are harmful, there are cases

where iterations move slowly because of overestimations. In order to handle

these cases e�ciently, we propose the following scheme so-called the Fixed

Weight Method because it �xes one of the weights �2k and �
2
k+1 while satisfying

(27) and (28).

1. The Case �k closer to �k: We set s = �2k , then

s = �2k ; (32)

S = �2
k+1

f 0(y)� �2k

�2
k

!
(33)

= �2k+1 +
X

j 6=k;k+1

�2
k+1

�2
j

�2j > �2k+1;

c = f(y)� �2k
�k

��k+1

f 0(y)� �2k

�2
k

!

= f(y)��k+1f
0(y)� �2k

�2
k

(�k � �k+1): (34)

2. The Case �k closer to �k+1: We set S = �2k+1, then

s = �2
k

f 0(y)� �2k+1

�2
k+1

!
(35)

= �2k +
X

j 6=k;k+1

�2
k

�2
j

�2j > �2k ;

S = �2k+1; (36)

c = f(y)��kf
0(y)� �2k+1

�2
k+1

(�k+1 � �k): (37)

The following theorem gives a basic property of the interpolating function

Q(x; c; s; S) and the next approximation y + � to �k.

Theorem 5 If c, s and S are de�ned by (32), (33) and (34), then f(x) �
Q(x; c; s; S) for �k < x < �k+1 and either �k < y < y + � < �k < �k+1 or

14

�k < y + � < �k < y < �k+1; if, on the other hand, c, s and S are de�ned by

(35), (36) and (37), then f(x) � Q(x; c; s; S) for �k < x < �k+1 and either

�k < �k < y + � < y < �k+1 or �k < y < �k < y + � < �k+1.

3.3 Gragg's Scheme, a Scheme of Ultimately Cubic

Convergence

Gragg proposed to choose c, s and S so that Q(x; c; s; S) matches f(x) at

y up to the second derivative. In another word, besides (27) and (28), it is
also required that

s

(�k � y)3
+

S

(�k+1 � y)3
=
f 00(y)

2
; (38)

which, together with (27) and (28), yield

s =
�3

k�k+1

�k ��k+1

f 0(y)

�k+1

� f 00(y)

2

!

= �2k +
(�k � y)3

�k � �k+1

X
i6=k; k+1

�i � �k+1

(�i � y)3
�2i > �2k ;

S =
�k�

3
k+1

�k+1 ��k

f 0(y)

�k

� f 00(y)

2

!

= �2k+1 +
(�k+1 � y)3

�k+1 � �k

X
i6=k; k+1

�i � �k

(�i � y)3
�2i > �2k+1;

c = f(y)� (�k +�k+1)f
0(y) + �k�k+1

f 00(y)

2
:

This scheme needs to compute the second derivative of the secular function
f(x). Thus it needs more work.

Remark: Gragg's scheme will yield a sequence of approximations which

converge monotonically to the desired eigenvalue �k for 1 � k < n (ref.
[8] and notice the di�erence between their secular function and ours). The
interpolation of f(x) for �nding �n should be done in the same way as for

�nding �n�1, except monotonic convergence is lost.

15

3.4 Using Three Poles When Necessary: a Hybrid

Scheme

The Middle Way and the Fixed Weight Method can be combined to design

more powerful secular equation solvers by properly switching between the

two. But there are cases where three poles have to be used in order to make

iterations go faster. For m = 2; � � � ; n� 1, set

fm(x) = �+
nX

j=1;j 6=m

�2j

�j � x
;

which is the secular function f(x) with the mth term in the summation
removed. It is easy to see that fm(x) has a zero between �m�1 and �m+1.

Numerically, we have discovered the following cases are possible di�cult ones:

1. �k < �k <
�k+�k+1

2
and fk(x) has a zero between �k and �k;

2. �k+�k+1
2

< �k < �k+1 and fk+1(x) has a zero between �k and �k+1.

To see why the �rst case may be di�cult, we let �2k ! 0, then, as functions

of �2k , �k�1 goes monotonically upward until it hits �k while �k goes mono-
tonically downward until it hits the zero of fk(x) between �k and �k. Now,
on the contrary, let �2k go back from zero to its original value, what we will
see is the exact contrary phenomena. Based on this simple observation, we
can think, roughly, that �k�1 depends largely on the pole �k and its weight

�2k and, therefore, the Fixed Weight Method should be good at �nding it. On
the other hand, �k depends on the pole �k and its weight �2k and the zero of
fk(x) where it starts from and which is controlled roughly by the the poles
�k�1 and �k+1 with appropriate weights. Similar intuitive arguments apply

to the second case above.

The treatment of the two cases is almost identical. In what follows, we
discuss the �rst case only. A natural way to handle the �rst case is to

interpolate f(x) with the following simple rational:

eQ(x; c; s; S) def
= c+

s

�k�1 � x
+

�2k
�k � x

+
S

�k+1 � x
: (39)

The parameters c, s and S can be determined by either interpolating fk(x) =

�+ k�1(x)+�k(x) in the way that the Middle Way does or in the way that

16

the Fixed Weight Method does depending on situations. Once we have (39),

its zero between �k and �k+1 can be computed in various iterative ways with

negligible cost. However, care has to be taken in evaluating eQ(x; c; s; S) at
a given point. As a matter of fact, because of roundo�, sometimes (though

rarely) computed eQ(y; c; s; S) di�ers signi�cantly from computed f(y) though

the two should be the same by interpolation in theory. It turns out that we

can evaluate eQ(x; c; s; S) in an indirectly way to avoid this from happening.

Since cimputed f(y) is available at the time we interpolate the secular func-

tion f(x), we do not compute eQ(y; c; s; S) at all while simply setting it to

be f(y). At the very next time when we need to compute eQ(x; c; s; S) we
update f(y) by adding a correction to it because

eQ(x; c; s; S) = eQ(y; c; s; S) + (eQ(x; c; s; S)� eQ(y; c; s; S))
= f(y) + (x� y)

s

(�k�1 � y)� (x� y)

+
�2k

(�k � y)� (x� y)
+

S

(�k+1 � y)� (x� y)

!
:

Subsequent evaluation of eQ(x; c; s; S) is done in the same way by adding
correction to its value at the previous x.

According to our experience, proper treatment of poles and their weights
is crucial and delicate, especially in di�cult cases as we discussed above. It
accelerates convergence signi�cantly in the sense that it reduces the over-
all average number of iterations per eigenvalue �nding and keeps the peak
number of iterations for �nding an eigenvalue reasonably small. which is

essential for avoiding load-balancing in parallel computations. In view of

this, we propose the following scheme{the Hybrid Scheme which combines
the Middle Way and the Fixed Weight Method in a clever way and which of
course employs three poles when necessary: Suppose we are computing �k
and suppose �k < �k < (�k+�k+1)=2. In practice, we compute �k��k instead
of �k itself. We have an initial guess �k+ � for �k for which �k < �k+ � < �k
is guaranteed (ref. Section 4). The value of the secular function is evaluated

in such a way

f(�k + �) = fk(�k + �) +
�2k
�� < 0

17

that fk(�k + �) is obtained as a by-product. At this point, we will make a

decision between using two poles or three poles:

if fk(�k + �) > 0, then

two poles �k and �k+1 are used;

else

three poles �k�1, �k and �k+1 are used.

end if

After the decision is made, we use the Fixed Weight Method to interpolate
f(x) if the decision favors two poles or interpolate fk(x) if the decision favors
three poles, and do one iteration to get an new approximation �1. If f(�k +
�1) < 0 and jf(�k+ �1)j > 0:1� jf(�k + �)j, we switch to the Middle Way for
the next iteration starting at �k + �1. >From now on, just for guarding, we
compare the value fnew of the secular function at the newest approximation

with its value fpre at the previous one and another switch is made from
the current iterative scheme to the other one if fnewfpre > 0 and jfnewj >
0:1� jfprej.

The philosophy behind our switch making is that, taking �k < �k + � <

�k <
�k+�k+1

2
for example where �k + � is an initial guess, after �rst inter-

polation using the Fixed Weight Method �k + � < �k + �1 < �k. Now if
jf(�k + �1)j > 0:1 � jf(�k + �)j, it indicates that iteration is going slow with
the Fixed Weight Method . Generally, it is always a danger when the values
of f(x) at two consecutive approximations have the same sign but the lastest
value improves little in comparing with the previous one.

If, however, we are computing �k under (�k+�k+1)=2 < �k < �k+1, similar

principle can be applied in a straightforward way.
Remark: A theorem similar to Theorem 5 holds for eQ(x; c; s; S) if we use

the Fixed Weight Method to interpolate fk(x) or fk+1(x).

4 Initial Guesses

An iteration that could ultimately converge quadratically, which is quite fast,

may get converge slowly (if at all) from a su�ciently bad �rst guess. This sad

possibility becomes a probability when �k or �k+1 is tiny compared with the

18

other �j's, in which case �k is very close to �k or �k+1. In extreme cases, as

we have already observed, the iterations Approaching from the left or Right

can even jump out from between �k and �k+1.

In what follows we will present an inexpensive way to obtain relatively

accurate initial guesses. At the same time we shall show how to decide

which of �k and �k+1 is closes to �k. This decision is important because, if

decided wrongly, roundo� could cause an iterate to collide with an endpoint

�k or �k+1, or even overshoot it. A collision would soon lead to Division

by Zero; overshooting could jeopardize subsequent convergence. To avoid

these problems, we shall translate the origin temporarily, while �k is being
computed, to whichever of �k or �k+1 is closer.

A natural and e�ective way to make the correct decision is to look at the
sign of f

�
�k+�k+1

2

�
. If this value is positive, we know �k is closer to �k than

to �k+1 and thus the origin should be translated to �k; otherwise �k is closer
to �k+1 and the origin should be translated to there. If, however, roundo�

obscures the sign of f
�
�k+�k+1

2

�
, in which case �k is almost half way between

the two poles, the origin could be translated to either one of them without
making much di�erence. The computation of f

�
�k+�k+1

2

�
can be done in such

a way that an initial guess y is obtained as a by-product.
First we consider the case 1 � k < n.
Rewrite the secular function (2) as f(x) = g(x) + h(x), where

g(x) = �+
nX

j=1;j 6=k;k+1

�2j

�j � x
; and h(x) =

�2k
�k � x

+
�2k+1

�k+1 � x
: (40)

We choose our initial guess y to be that one of the two roots of the equation

g

�k + �k+1

2

!
+ h(y) = 0: (41)

lying between �k and �k+1, where g
�
�k+�k+1

2

�
was retained from the compu-

tation of f
�
�k+�k+1

2

�
. (Thus it is a gift!) By sketching the graph of the sum

of the last two terms on the left hand-side of (41), we can tell without any

di�culty which root is needed. In case f
�
�k+�k+1

2

�
� 0, Equation (41) should

be solved for � = y � �k, while in case f
�
�k+�k+1

2

�
< 0, it should be solved

for � = y � �k+1. De�ne � = �k+1 � �k and c = g
�
�k+�k+1

2

�
. Here are the

19

formulas for � :

� = y � �K =
a�

p
a2 � 4bc

2c
if a � 0; (42)

=
2b

a+
p
a2 � 4bc

if a > 0;

where if f
�
�k+�k+1

2

�
� 0,

K = k; a = c�+ (�2k + �2k+1); b = �2k�; (43)

and if f
�
�k+�k+1

2

�
< 0,

K = k + 1; a = �c�+ (�2k + �2k+1); b = ��2k+1�: (44)

Theorem 6 If f
�
�k+�k+1

2

�
> 0, then � given by (42) and (43) satis�es

�k < �k + � < �k <
�k + �k+1

2
;

If f
�
�k+�k+1

2

�
< 0, then � given by (42) and (44) satis�es

�k + �k+1

2
< �k < �k+1 + � < �k+1:

Proof: One way to see these is to sketch graphs. It can also be seen by
subtracting one from the other of the following two equations

�2k
�k � �k

+
�2k+1

�k+1 � �k
= �g(�k);

�2k
�k � y

+
�2k+1

�k+1 � y
= �g

�k + �k+1

2

!
;

which produces

(�k � y)

�2k

(�k � �k)(�k � y)
+

�2k+1
(�k+1 � �k)(�k+1 � y)

!

=

�k + �k+1

2
� �k

! X
j 6=k;k+1

�2j�
�j � �k+�k+1

2

�
(�j � �k)

: (45)

20

Thus �k � y has the same sign as has
�k+�k+1

2
� �k.

For the case of k = n, we partition the secular function f(x) = g(x)+h(x)

as when k = n� 1. An initial guess y is obtained basically by solving

g

�n + �n+1

2

!
+ h(y) = 0:

A detail but simple analysis yields the following formula for � = y � �n:

� The case: �n+�n+1
2

� �n, i.e., f
�
�n+�n+1

2

�
� 0.

1. If g
�
�n+�n+1

2

�
� �h(�n+1), then � = y � �n = zT z=�.

2. If g
�
�n+�n+1

2

�
> �h(�n+1), then

� = y � �n =
a+

p
a2 � 4bc

2c
if a � 0; (46)

=
2b

a�
p
a2 � 4bc

if a < 0;

where � = �n � �n�1, c = g
�
�n+�n+1

2

�
and

a = �c�+ (�2n�1 + �2n); b = ��2n�: (47)

It can be proved that in this case �n+�n+1
2

� �n < �n + � < �n+1.

� The case: �n+�n+1
2

> �n, i.e., f
�
�n+�n+1

2

�
> 0. Then g

�
�n+�n+1

2

�
>

�h(�n+1). We compute � = y� �n by (46) and (47). It is easy to show

that in this case �n < �n + � < �n <
�n+�n+1

2
.

The approach to compute initial guesses we just proposed costs marginal
since to make program robust we have to calculate f

�
�k+�k+1

2

�
anyway.

An alternative approach proposed by [3] is to solve the equation (41) with

g
�
�k+�k+1

2

�
replaced by g(�k+1) or g(�k), which yields two guesses that hap-

pen to be a lower bound and an upper bound for �k. First of all their

guesses require extra work. Second, this extra work may not be worth do-
ing. Take the case �k <

�k+�k+1
2

, for example. In this case, this lower bound
is worse than our guess while the upper bound may possibly be greater

21

than
�k+�k+1

2
. In a divide-and-conquer code from Sorensen and Tang1, they

simply solve the equation (41) with g
�
�k+�k+1

2

�
replaced by � to obtain ini-

tial guesses for 1 � k � n � 1. They handle the case k = n by solving

�+ n�1(�n+1) + �n�1(y) = 0. In any event, we believe our approach should

be better averagely. Our numerical experience con�rms our intuition.

5 Two Stopping Criteria

People have discovered in order to guarantee the computed eigenvectors by
(3) to be fully orthogonal one must be able to compute the distances between
each �i and �j to almost full accuracy [10, 11]. So simulated \double" double

precision was invented to evaluate the value of the secular function extra
precisely when necessary. To guarantee full accuracy of computed distances
�i � �j, the stopping criterion was set to be

j�j � c�mminfj�k � xj; j�k+1 � xjg; (48)

where x is the current iterate, � is the last iterative correction that was com-
puted, �m is the machine's roundo� threshold and c is fairly small constant
[1, 5, 11]. (c = 24 in Sorensen and Tang's code.) However we decide to stop

when
�2 � �mminfj�k � xj; j�k+1 � xjg(j�0j � j�j); (49)

where �0 is the correction before last. This new stopping criterion often
save one iteration per eigenvalue found. The following observation due to
W. Kahan justi�es (49).

Let fxjg1j=1 be a sequence of numbers, produced by some rapidly conver-

gent iteration scheme, such that lim
j!1

xj = z. If jxj+1 � xjj=jxj � xj�1j are
decreasing for j � k, and if jxk+1 � xkj=jxk � xk�1j < 1, then

jxk+1 � zj < jxk+1 � xkj2
jxk � xk�1j � jxk+1 � xkj

:

1I would like to thank Prof. D. Sorensen and Dr. Peter Tang for sending me their
divide and conquer code.

22

To see why this observation works, let's denote
 = jxk+1�xkj=jxk�xk�1j.
For i > k, we have

xi+1 � xi =
iY

j=k

xj+1 � xj

xj � xj�1
(xk � xk�1):

which gives jxi+1 � xij �
i�k+1jxk � xk�1j. Therefore

jxk+1 � zj =

������
1X

i=k+1

(xi � xi+1)

������
� jxk � xk�1j

1X
i=k+1

i�k+1 =
jxk+1 � xkj2

jxk � xk�1j � jxk+1 � xkj
;

as required.

Recently, Gu and Eisenstadt [9] found a new way to compute eigenvec-
tors after all eigenvalues are computed. This new way makes the simulated
\double" double precision unnecessary, and the stopping criterion was set to
be

jf(x)j � n�m

0
@�+ nX

j=1

����� �2j

�j � x

�����
1
A (50)

by [9]. However, for large n, it may allow too much error while for small n
there is a danger that it might never be satis�ed. Note that not every term

in secular equation is of the same magnitude. Generally, only two terms
will dominate all others. In our code, we decide to compute error bounds
with marginal costs at each iteration. Our implementation is as follows: We

compute k(x) by summing up each term from j = 1 to k, while �k(x) from
j = n to k + 1 (refer to (5)) since hopefully in this way we add terms from

small magnitude to large ones. Note that we actually work with

f(�K + �) = �+
nX

j=1

�2j

(�j � �K)� �
; (51)

where � = x� �K and K = k if �k comes more close to �k than to other �j
and K = k + 1 otherwise. It is easy to show that

jf(�K + �)� (Computedf(�K + �))j � �me;

23

where

e = 2� +
kX

j=1

(k � j + 6)

����� �2j

�j � x

�����+
k+1X
j=n

(j � k + 5)

����� �2j

�j � x

�����+ jf(�K + �)j;

which can be computed recursively on our way to compute k(x) and �k(x)

and costs about 2n additions for each iteration cycle. On the other hand, if �

is a neighbor of the desired zero � � to the function (51), i.e., j� � � �j � �mj� j,
then

jf(�K + �)� 0j � j� � � �j jf 0(�K + �)j+O(j� � � �j2)
� �mj� j jf 0(�K + �)j+O(j� � � �j2):

In view of these, we set our stopping criterion to be

jf(�K + �)j � e�m + �mj� j jf 0(�K � �)j (52)

This stopping criterion is more reasonable and tighter than (50). The last

term in (52) is usually much smaller than e�m since j� j � j�k+1 � �kj=2.

6 Choosing the Right Scheme

With many di�erent iterative schemes at hand, which one is the right one
that we should use in order to achieve best performance that we could get
from the divide-and-conquer method? Obviously, they could not be equally
e�cient. Based on our intuition and numerical experience, we think the
Hybrid Scheme is the best choice.

Approaching from the Left has been used for �nding zeros of the secular

function (2) for over a decade since it �rst appeared in [3]. Why was it

favored and why were not the other schemes? Two possible reasons are:

� Only a small portion of the total cost for Cuppen's divide-and-conquer

algorithm is spent on solving secular equations2. Therefore a faster
secular equation solver might a�ect the overall performance of the al-
gorithm so little that people's attention were not caught.

2This is not true if only eigenvalues are requested because, in this case, the total cost
is O(n2) [6].

24

� Approaching from the Left yields a sequence of approximations that

converge monotonically to the desired eigenvalue. Monotonicity is

good, for example, no need to compute error bound (refer to Section 5),

but simply stop whenever monotonicity is lost.

The rational interpolation resulting in Approaching from the Left forces �k+1
to be the pole of the interpolating rational G(x; �k+1; r; s) for �k(x), while

pushes the pole �k to the left to p as the pole of the interpolating rational

F (x; p; q) for k(x). The former is quite reasonable; on the other hand,

the latter raises a question: Are rationals of form F (x; p; q) good enough as
candidates to interpolate k(x), especially for the case when x comes close
to �k? The answer turns out to be \No", as it becomes clear from numerical
results in the following section. This gives us an idea that Approaching from
the Left works better in the case when �k comes closer to �k+1 than in the
case when �k closer to �k.

The above argument applies to Approaching from the Right. And the
Middle Way should work perfectly in any case in the sense that it matches
the better one of the two.

The average number of iteration of Gragg's cubic scheme, which needs to
compute the second derivative of the secular function f(x), is about the same

as that of our Hybrid Scheme. But, as we will see later, it does iterates more
in some cases where poles and weights have to be taken into considerations
more closely.

Few cases have been encountered by the author in which there are big
di�erences in numbers of iterations for �nding �n. Our suggestion is strongly

supported by numerical results below.

7 Numerical Examples

In numerical results that follows, double precision arithmeticwas used through-

out. Both stopping criteria will be used for testing. We will demonstrate
numerically

1. How good are our initial guesses?

2. Approaching from the Left and Right are bad schemes;

25

3. The stopping criterion (52) usually terminates computations 1{2 iter-

ations earlier than (49);

4. Comparisons among theMiddle Way, the Fixed Weight Method, Gragg's

scheme and the Hybrid Scheme.

Our �rst example is taken from [11]: n = 4, �1 = 1, �2 = 2��, �3 = 2+�

and �4 = 31
3
, where � = 10�` is a parameter chosen on purpose to make

�1 close to �2 and �3 close to �2. We make �2 = 2 in exact arithmetic,

half way between �2 and �3, by letting wT = (2; �; �; 2), � = kwk�2 and
z = (�1; �2; �3; �4)

T = w=kwk.
In the following table, we compare the numbers of iterations taken by

using Approaching from the Left with our initial guesses (the third row) and
with those taken by using Sorensen and Tang's secular equation solver code.
Iteration stops whenever (49) is satis�ed, and extra precise evaluations [11]
of secular functions are invoked.

Table 1: Initial Guess Issue3

� = 10�3 � = 10�6 � = 10�10

Eigenvalues 1 2 3 4 1 2 3 4 1 2 3 4

Left 5 2 13 4 5 1 24 4 5 2 37 4

Sorensen & Tang's 12 15 16 4 18 26 25 5 28 37 38 4

This example shows our initial guesses provide better starting points. But
still the third eigenvalue �3 takes lots of iterations before required accuracy
is reached. The reason is that �3 is extremely close to �3 and Approaching

from the Left behaves badly in this situation. In exact arithmetic, �2 = 2 lies

exactly in the half way between �2 and �3. However, as Table 1 indicates, a

few iterations are still required even with our way of initial guessing, which
should give correct result in this situation in exact arithmetic. As a matter
of fact, the corresponding problem that computer had seen is the one after

a few roundo�s. The second eigenvalue to that problem is 2+O(�m), which,

in general, does not lie in the half way between rounded �2 and rounded �3.
At the end of computation, extra precise evaluations of the secular function

basically yields �2 as 2+� with � computed to certain relative accuracy which
is unnecessarily lot more for just computing the eigenvalue but is necessary

for computing the full orthogonal eigenvectors later on [11].

3The initial guess is not counted. This is also the case for all following tables.

26

>From now on, our way of initial guessing is always used except in Sorensen
and Tang's code. The following table exhibits how many iterations are re-
quired respectively by the three di�erent zero �nders we discussed in Sec-
tion 2. Invoke extra precise evaluation [11] whenever necessary.

Table 2: Schemes in Subsection 2.2

� = 10�3 � = 10�6 � = 10�10

Eigenvalues 12 23 33 44 12 23 33 44 12 23 33 44
Left 5 2 13 4 5 1 24 4 5 2 37 4

Right 13 2 5 4 23 1 6 4 36 2 5 4

Middle 5 2 5 4 5 1 6 4 5 2 5 4

In this table each item ij in the second row says that the corresponding
column is for �nding the ith eigenvalue with origin translated to �j. The
�rst column lists which iteration schemes in Subsection 2.2 are being used.
Others are numbers of iterations required.

Table 2 con�rms our previous speculations. As �2 sits \right" on the
half way between �2 and �3, the three di�erent schemes required almost the
same number of iterations; Approaching from the Left is suitable for �nding
�1 while Approaching from the Right is obviously not because �1 comes very
close to �2; the contrary conclusion holds for �nding �3 because �3 comes

very close to �3. In any event, the Middle Way is the best among the three.
The stopping criterion (52) usually terminates an eigenvalue computing

1{2 iterations earlier than the stopping criterion (49). The following table
illustrates the point.

Table 3: (49) vs. (52)

� = 10�3 � = 10�6 � = 10�10

Eigenvalues 12 23 33 44 12 23 33 44 12 23 33 44
Middle with (49) 5 2 5 4 5 1 6 4 5 2 5 4

Middle with (52) 4 0 5 3 4 0 5 3 3 0 3 3

Table 4 lists the numbers of iterations for an example of a rank{1 per-
turbed diagonal eigensystem arising in applying the divide-and-conquer algo-
rithm to the glued Wilkinson matrix, i.e., the matrices in Test 1 of [11]. Here
n = 30. The �rst column refers to which eigenvalue and the corresponding
temporary origin translated to. The 2nd to 4th columns refer to the three
iteration schemes in Subsection 2.2 with stopping criterion (49). The 5th
column refers to the divide-and-conquer code from Sorensen and Tang. The
last column refers to the Middle Way with stopping criterion (52).

27

Table 4

Left Right Middle Sorensen & Tang Middle & (52)
11 2 2 2 2 1

22 2 2 2 3 1

33 2 2 2 4 1

44 2 2 2 4 1

55 2 2 2 4 1

66 2 2 2 4 1

77 2 2 2 4 1

88 2 2 2 4 1

99 3 2 2 5 2

1010 2 2 2 3 1

1112 4 19 4 8 2

1212 28 11 11 28 9

1313 3 2 2 5 1

1415 4 18 3 6 2

1515 27 16 16 27 15

1617 2 6 2 7 1

1718 3 24 3 23 2

1818 34 13 12 37 10

1919 7 2 2 7 1

2021 2 3 2 6 1

2121 16 17 17 19 16

2222 7 2 2 7 1

2323 3 2 3 6 2

2424 5 2 2 7 2

2525 3 3 3 7 3

2626 5 2 2 5 1

2727 3 3 3 3 2

2829 2 6 2 7 2

2929 8 7 7 10 6

3030 1 1 1 6 0

Table 4 has demonstrated all the points we have made about the schemes
in Section 2 and about our initial guesses over Sorensen and Tang's. On
the other hand, it also explodes the inability of the Middle Way to compute
the 12th, 15th, 18th and 21st eigenvalues e�ciently. The reason is exactly
what we have made at the beginning of Section 3 and which motivates us
to create the Fixed Weight Method and the Hybrid Scheme. The following
table presents numbers of iterations required by the Middle Way, the Fixed
Weight Method, Gragg's scheme and the Hybrid scheme on �nding these four
\di�cult" eigenvalues. >From now on, all tests are done under the stopping
criterion (52) (except for Gragg's scheme) as we have observed neither stop-

28

ping criterion a�ects demonstrations on the e�ciency of a particular scheme.
For Gragg's scheme, we stop whenever we detect loss of monotonicity, and
thus last iterations might be wastes.

Table 5

Eigenvalues 12 15 18 21 Total Per Eig Peak

Middle 9 15 10 16 91 3.03 16

Fixed 2 2 2 2 42 1.40 5

Gragg's 2 2 3 2 56 1.87 4

Hybrid 1 1 1 2 38 1.27 4

Here, \Total" refers to the total number of iterations required by the
corresponding scheme for �nding all 30 eigenvalues; \Per Eig" the average
number of iterations required per eigenvalue; and \Peak" the largest one
among numbers of iterations for �nding each of the eigenvalues. Three poles
were used by the Hybrid Scheme for the 12th, 15th and 18th eigenvalues.
One might interpret Table 5 in a wrong way that the Fixed Weight Method
is good enough and there is no necessity for developing the Hybrid Scheme.
To discover the drawback of the Fixed Weight Method , we invented another
arti�cial problem in which n = 50 and in which the 31st eigenvalue is so
special that the Fixed Weight Method takes as many as 31 iterations to
compute it. In that problem, �32 and �33 agree as many as 9 decimal digits,
while �232 is much smaller than �233. The �31, however, is fairly away from both
of its nearby poles though it comes closer to �32. In this case, setting S = �232
underestimate the role played by �33 and the rest other than �32 so much
that the iterations generated by the Fixed Weight Method go unbearably
slow. Numerical data are displayed in Table 6. One thing we have to say is
that for the Middle Way the �rst iteration overshoots because of roundo�
errors in computing the correction. We handle this by restarting the iteration
at the middle point between �31 and �32.

Table 6

Middle Fixed Gragg's Hybrid

Eigenvalue 31 4 31 10 3

Total 159 181 150 145

Per Eig 3.18 3.62 3.00 2.90

Peak 6 31 10 5

To see how iterations go, we list values of the secular function after each
iteration:

29

Middle: 1.4D+08!-2.0D+00!1.5D-02!3.6D-07!0.0D+00

Fixed: 1.4D+08! 6.9D+07!3.5D+07!1.7D+07!8.7D+06

! 4.3D+06!2.2D+06!1.1D+06!5.4D+05

! 2.7D+05!1.4D+05! � � �

Gragg's: 1.4D+08! 6.9D+07!2.6D+07!7.2D+06!1.2D+06

! 1.0D+05!2.6D+03!1.1D+01!1.1D-02

! 9.4D-10!0.0D+00

Hybrid: 1.4D+08! 1.4D-02!4.2D-07!9.0D-16

The following is another table justifying that including three most rele-
vant poles helps. It is about a problem of n = 30.

Table 7

Eigenvalues 12 15 19 22 Total Per Eig Peak

Middle 6 7 6 10 65 2.17 10

Fixed 7 7 8 7 64 2.13 8

Gragg's 5 6 6 5 65 2.17 6

Hybrid 3 3 6 6 53 1.77 6

In theory all the schemes we studied share a fundamental property that

every correction is in the right direction. To be more speci�c, whenever the
value of the secular function is negative the next correct must be positive and
vice versa. However, it does not hold in the face of roundo�. To handle this,
we simply do one Newton step instead whenever fatal roundo� in computing
corrections is detected. In Table 7, for the Fixed Weight Method the �rst
iterations for the 19th and 22nd eigenvalues are Newton steps.

Numerous other examples generated either randomly or arti�cially have
been run. The results turn out to be very satisfactory. And randomly gen-
erated problems do not give di�culties. Table 8 below lists a few more data
on real rank-1 perturbed problems extracted from applying the divide-and-
conquer algorithm to either randomly generated symmetric tridiagonal ma-
trices or to symmetric tridiagonal matrices obtained by reducing randomly
generated symmetric dense matrices to tridiagonal forms.

30

Table 8

n = 100 n = 364 n = 700

Total Per Eig Peak Total Per Eig Peak Total Per Eig Peak

Middle 175 1.75 10 1084 2.98 6 2125 3.04 7

Fixed 146 1.46 6 1106 3.04 6 2157 3.08 7

Gragg's 185 1.85 6 1031 2.83 5 2054 2.93 5

Hybrid 146 1.46 5 1074 2.95 5 2093 2.99 5

It is worth mentioning an problem suggested to the author by W. B.
Gragg: D = diag (1; 2; � � � ; n), � = 1 and z = (1; 10�1; � � � ; 10�(n�1))T . In
practice, there will be lots of de
ation for large n. But for the purpose of
testing the robustness of our code, we run it on this problem for n as large
as 100 without de
ating. The numerical results indicate our code has no

di�culties in solving the problems.

8 Conclusions

We have studied di�erent rational interpolations for the secular function,
each of which has di�erent strong points and based upon which many schemes
have been proposed and studied. A proper combination leads to the Hybrid
Scheme which competes with Gragg's cubic convergent scheme on random
problems, however, as our numerical results indicated, there are arti�cial

problems in which the regions of at least quadratic convergence for the Hybrid
Scheme are larger than those of cubic convergence for Gragg's scheme. Also
the Hybrid Scheme keeps peak number of iterations relatively small, which
is extremely helpful for solving the secular equation in parallel because the

total time is determined roughly by whichever eigenvalue takes the largest

number of iterations.

We also discussed a few implementation details for making a robust code

and for achieving the desired solution as accurately as possible.
Acknowledgments. The author is grateful for the supervision of Pro-

fessor W. Kahan. Thanks also go to Professors J. Demmel and B. N. Parlett
for valuable discussions.

31

References

[1] J. L. Barlow, Error analysis of update methods for the symmetric eigen-

value problem, submitted for publication.

[2] C. F. Borges and W. B. Gragg, A parallel divide and conquer algo-

rithm for the generalized real symmetric de�nite tridiagonal eigenprob-

lem, Working paper, (1992).

[3] J. R. Bunch, Ch. P. Nielsen, and D. C. Sorensen, Rank-one modi�cation
of the symmetric eigenproblem, Numer. Math., 31(1978), 31{48.

[4] J. J. M. Cuppen, A divide and conquer method for the symmetric tridi-
agonal eigenproblem, Numer. Math., 36(1981), 177{195.

[5] J. J. Dongarra and D. C. Sorensen, A fully parallel algorithm for the
symmetric eigenvalue problem, SIAM J. Sci. Stat. Comput., 8(1987),
s139{s154.

[6] D. Gill and E. Tadmor, An O(N2) method for computing the eigensys-
tem of N�N symmetric tridiagonal matrices by the divide and conquer
approach, SIAM J. Sci. Stat. Comput., 11(1990), 161{173.

[7] G. H. Golub, Some modi�ed matrix eigenvalue problems, SIAM rev.,

15(1973), 318{334.

[8] W. B. Gragg, J. R. Thornton, and D. D. Warner, Parallel divide and
conquer algorithms for the symmetric tridiagonal eigenproblem and bidi-
agonal singular value problem, in Modeling and Simulation, vol. 23, part
1, W. G. Vogt and M. H. Mickle, eds., Univ. Pittsburgh School of En-

gineering, 1992, 49{56.

[9] Ming Gu and S. C. Eisenstadt, A stable and e�cient algorithm for the

rank{one modi�cation of the symmetric eigenproblems, Research Report

YaleU/DCS/RR{916, 1992.

[10] W. Kahan, Symmetric rank-1 perturbed diagonal's eigensystem,

preprint, 1989.

32

[11] D. C. Sorensen, and P. T. P. Tang, On the orthogonality of eigenvectors

computed by divide-and-conquer techniques, SIAM J. Numer. Anal.,

28(1991), 1752{1775.

33

