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Abstract

Theory, algorithms and LAPACK{style software for computing a pair of deating

subspaces with speci�ed eigenvalues of a regular matrix pair (A;B) and error bounds

for computed quantities (eigenvalues and eigenspaces) are presented. The reordering

of speci�ed eigenvalues is performed with a direct orthogonal transformation method

with guaranteed numerical stability. Each swap of two adjacent diagonal blocks in

the real generalized Schur form, where at least one of them corresponds to a complex

conjugate pair of eigenvalues, involves solving a generalized Sylvester equation and

the construction of two orthogonal transformation matrices from certain eigenspaces

associated with the diagonal blocks. The swapping of two 1 � 1 blocks is performed

using orthogonal (unitary) Givens rotations. The error bounds are based on estimates

of condition numbers for eigenvalues and eigenspaces. The software computes reciprocal

values of a condition number for an individual eigenvalue (or a cluster of eigenvalues),

a condition number for an eigenvector (or eigenspace), and spectral projectors onto

a selected cluster. By computing reciprocal values we avoid overow. Changes in

eigenvectors and eigenspaces are measured by their change in angle. The condition

numbers yield both asymptotic and global error bounds. The asymptotic bounds are

only accurate for small perturbations (E;F ) of (A;B), while the global bounds work

for all k(E;F )k up to a certain bound, whose size is determined by the conditioning of

the problem. It is also shown how these upper bounds can be estimated. Fortran 77

software that implements our algorithms for reordering eigenvalues, computing (left and

right) deating subspaces with speci�ed eigenvalues and condition number estimation

are presented. Computational experiments that illustrate the accuracy, e�ciency and

reliability of our software are also described.
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1 Introduction

Given a matrix pair (A;B), where A and B are general n�n matrices with real or complex
entries. In the generalized eigenvalue problem (GEP) we are interested to �nd a few or
all eigenvalues �i and eigenvectors xi 6= 0 such that Axi = �iBxi. Mathematically, the
eigenvalues are the roots of the characteristic equation det(A� �B) = 0. If B = In, GEP
reduces to the standard eigenvalue problem (SEP). Moreover, if det(B) 6= 0, the problem
can in theory be transformed to Cx = �x, with C = B�1A. If det(B) = 0 and x 6= 0
is a null vector of B, then Bx = 0Ax, i.e. x is an eigenvector of the reciprocal problem
Bx = �Ax, with � = ��1 = 0. In other words, � = 1 is an eigenvalue of Ax = �Bx.
By restricting the matrix pencil A � �B (a family of matrices parameterized by �) such
that det(A � �B) = 0 if and only if � is an eigenvalue, (A;B) is a regular matrix pair, or
similarly, A � �B is a regular matrix pencil. If det(A � �B) � 0 for all �, A � �B is a
singular pencil and (A;B) is a singular matrix pair [12].

From a computational point of view it is more natural to de�ne GEP in cross{product
form �Ax = �Bx with � = �=�. An eigenvalue is represented as a pair (�; �), where a
�nite eigenvalue has � 6= 0 and an in�nite eigenvalue has � = 0. In this representation an
in�nite eigenvalue (�; 0) is not essentially di�erent from a zero eigenvalue (0; �). As in SEP
we both have right and left eigenvectors x 6= 0 and y 6= 0, respectively, de�ned as

�Ax = �Bx; �yHA = �yHB: (1.1)

In several applications (e.g., in control theory [22], [29], [20]) it is not necessary to compute
the eigenvectors, but merely to �nd eigenspaces associated with a speci�ed set of eigenvalues.
L andR are a pair (left and right) of deating subspaces of a regular A��B, if L = AR+BR
and dimL = dimR [25, 26]. One way of computing a pair of deating subspaces (with
orthogonal bases) is via the generalized Schur decomposition. As in the standard eigenvalue
problem we distinguish two cases.

The complex case: let A and B be n�n with complex entries. Then there exist unitary
U 2 Cn�n and V 2 Cn�n:

UH(A� �B)V = S � �T; (1.2)

where S and T are upper triangular. The eigenvalues are given by the pairs (sii; tii) 6= (0; 0).
The �nite eigenvalues are sii=tii, where tii 6= 0. If (sii; tii) = (0; 0) for some i, then (A;B)
is singular.

The real case: let A and B be n � n with real entries. Then there exist orthogonal
U 2 Rn�n and V 2 Rn�n:

UT (A� �B)V = S � �T; (1.3)

where S is upper quasi{triangular and T is upper triangular. A quasi{triangular matrix is
block upper triangular with 1� 1 or 2� 2 blocks on the diagonal. The 2� 2 blocks on the
diagonal of S � �T correspond to pairs of complex conjugate eigenvalues.

The columns of U and V , ui and vi; i = 1 : n, are left and right generalized Schur
vectors and the �rst k columns of U and V span a k{dimensional pair of deating subspaces
associated with the k � k (1; 1){block of (S; T ) in generalized Schur form. U and V can be
chosen so that the eigenvalues appear in any order along the (block) diagonals of S and T .
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More formally, let U = [U1; U2] and V = [V1; V2] be a conformal partitioning with respect
to the cluster of k eigenvalues in the (1; 1){block of (S; T ):"

UT
1

UT
2

#
(A� �B)

h
V1 V2

i
= S � �T �

"
S11 S12
0 S22

#
� �

"
T11 T12
0 T22

#
: (1.4)

Now, L = span(U1) and R = span(V1) form a pair of deating subspaces associated with
the cluster of (S11; T11). Moreover, span(V1) is a right eigenspace of (A;B), and span(U2)
is a left eigenspace of (A;B) associated with (S22; T22) [26]. Indeed, we can retrieve a left
eigenspace associated with (S11; T11) and a right eigenspace associated with (S22; T22) by
a second reordering of the eigenvalues of (S; T ) such that, now, the \new" (S22; T22) will
correspond to the speci�ed cluster. Moreover, by combining the Ui's and Vi's from the two
reorderings it is possible to construct a block{diagonalizing equivalence transformation [20].
Let

X�1 =

2
4 U

(2)
2

T

U
(1)
2

T

3
5 ; Y =

h
V
(1)

1 V
(2)

1

i
; (1.5)

where U
(j)
i and V

(j)
i are blocks i(= 1; 2) of U and V from the reordering j(= 1; 2). Then

X�1(A � �B)Y is block{diagonal with the speci�ed cluster in the (1; 1){block [20]. By
construction the two block columns of Y and the two block rows of X�1 have orthonormal
bases which ensure transformation matrices with optimal condition numbers [4]. Alterna-
tively, we can block{diagonalize (S; T ) in (1.4) in terms of a non{orthogonal equivalence
transformation directly by solving a generalized Sylvester equation (see Section 4.2.1).

In this paper we present underlying theory, algorithms and LAPACK{style software
for computing a pair of deating subspaces with speci�ed eigenvalues of a regular matrix
pair (A;B) and error bounds for computed quantities (eigenvalues and eigenspaces). The
error bounds are based on estimates of condition numbers for eigenvalues and eigenspaces.
Typically, the algorithm for computing a pair of deating subspaces is a two{step process.
First, compute a generalized Schur form of a matrix pair (A;B) using the QZ algorithm
[23]. Second, reorder the speci�ed eigenvalues to appear in the (1; 1){block of the general-
ized Schur form. The focus here is to perform the reordering (also in the real case) with a
direct method [18]. A reordering method based on the periodic Schur decomposition has
been proposed recently [5]. The rest of the paper is outlined as follows. In Section 1.1
we collect our notation. Section 2 gives an overview of the direct method for reordering
eigenvalues in the generalized real Schur form. In Section 3 we discuss direct reordering
algorithms with guaranteed backward stability. Section 4 collects theory and algorithms for
computing condition numbers and error bounds for eigenvalues and deating subspaces of
a regular (A;B). In Section 5 we present our Fortran 77 software for computing deating
subspaces with speci�ed eigenvalues, condition numbers and error bounds. Some computa-
tional experiments that illustrate the accuracy and reliability of our software are presented
in section 6. Finally, some conclusions are summarized in Section 7.

1.1 Notation

The following notation is used in the paper. In denotes an identity matrix of size n � n.
�(A;B) denotes the spectrum of a regular matrix pair (A;B) or pencil A � �B. kAk2
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denotes the spectral norm (2-norm) of a matrix A induced by the Euclidean vector norm.
kAkF denotes the Frobenius (or Euclidean) matrix norm. kAkM = maxi;j jaij j, i.e. the
maximum of the absolute values of the matrix entries. �max(A) and �min(A) denote the
largest and smallest singular values of A, respectively. For a square matrix A we have that
kAk2 = �max(A) and kA�1k2 = �min(A)

�1. A 
 B denotes the Kronecker product of two
matrices A and B whose (i; j)-th block element is aijB. The column vector col(A) denotes
an ordered stack of the columns of A from left to right starting with the �rst column. AT

denotes the transpose of A. AH denotes the conjugate transpose of A. jAj and jxj denote
the matrix and the vector whose elements are jaij j and jxij, respectively. Inequalities such
as jAj � jBj; jxj � jyj are interpreted componentwise. D = diag(x) denotes a diagonal
matrix with dii = xi.

We frequently measure distances between subspaces as their angular distances. �(x; y)
is the (acute) angle between two 1-dimensional subspaces spanned by the vectors x and y:

cos �(x; y) =
jxTyj
kxk2kyk2

:

Generalized to the (maximum) angle between two subspaces X and Y of equal dimension
k � 2 we have:

�max(X ;Y) = max
x2X

min
y2Y

�(x; y):

For computational purposes we use the following de�nition [13]:

�max(X ;Y) = arccos�min(X
TY );

where the columns of X and Y (of size n � k) span orthonormal bases for X and Y ,
respectively.

2 Direct Method for Reordering Eigenvalues in the Gener-

alized Real Schur Form

A direct reordering method for the A��B problem is presented in [18], which extends and
generalizes the direct SEP method in [2] to regular matrix pairs with real entries. Below
we give an overview of the direct method and its numerical properties.

Without loss of generality we consider the problem of reordering the diagonal blocks of
a matrix pair (A;B) in the block form,

A =

"
A11 A12

0 A22

#
; B =

"
B11 B12

0 B22

#
; (2.1)

where (A11; B11) and (A22; B22) are of size n1�n1 and n2�n2, respectively, and n1; n2 = 1
or 2. Throughout the paper we assume that (A11; B11) and (A22; B22) have no eigenvalues
in common, otherwise, the diagonal blocks need not be swapped.

We want to �nd orthonormal Q and Z of size (n1 + n2)� (n1 + n2) such that

QT

 "
A11 A12

0 A22

#
;

"
B11 B12

0 B22

#!
Z =

 "
Â22 Â12

0 Â11

#
;

"
B̂22 B̂12

0 B̂11

#!
� (Â; B̂);

(2.2)
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where (Aii; Bii) and (Âii; B̂ii) for i = 1; 2 are equivalent matrix pairs with the same eigen-
values but their positions are exchanged (swapped) along the block diagonal of (A;B).

The direct method for constructing Q and Z and swapping two diagonal blocks in the
generalized real Schur form of (A;B) is outlined below [18]:

� Solve for L and R of size n1 � n2 in the generalized Sylvester equation:

A11R� LA22 = �A12;

B11R� LB22 = �B12:
(2.3)

� Compute an orthogonal matrix Q:

QT

"
L

In2

#
=

"
TL
0

#
: (2.4)

� Compute an orthogonal matrix Z:h
In1 �R

i
Z =

h
0 TR

i
: (2.5)

� Apply Q and Z to (A;B) in an orthogonal equivalence transformation (2.2): "
Â22 Â12

0 Â11

#
;

"
B̂22 B̂12

0 B̂11

#!
�

 "
TLA22Z21 TLA22Z22 +QT

11A11TR
0 QT

12A11TR

#
;

"
TLB22Z21 TLB22Z22 + QT

11B11TR
0 QT

12B11TR

#!
;

(2.6)
where Q and Z are partitioned conformally with

X =

"
L In1
In2 0

#
; and Y =

"
0 In2
In1 �R

#
; respectively:

Notice that X and Y above are non{orthogonal transformation matrices that perform the
required swapping: "

A11 A12

0 A22

#
;

"
B11 B12

0 B22

#!
= X

 "
A22 0
0 A11

#
;

"
B22 0
0 B11

#!
Y: (2.7)

To solve (2.3) we can use the generalized Schur method [21, 19]. In our case, (Aii; Bii); i =
1; 2 are already in generalized Schur form and we end up solving a 2n1n2 � 2n1n2 linear
system Zx = b, where

Z =

"
In2 
 A11 �AT

22 
 In1
In2 
B11 �BT

22 
 In1

#
; x =

"
col(R)
col(L)

#
; b =

"
�col(A12)
�col(B12)

#
: (2.8)

Since n1; n2 = 1 or 2 the linear system (2.8) will be of size 2� 2; 4� 4 or 8� 8 (only 2� 2
systems in the complex case). Q in (2.4) and Z in (2.5) can be found by using Householder

7



or Givens transformations to compute a QR factorization and an RQ factorization, respec-
tively. Finally, the equivalence transformation (2.6) is just matrix{matrix multiplication
and add operations on A and B.

In the presence of rounding errors the conditioning and the solution of the generalized
Sylvester equation will have the greatest impact on the stability of the direct swapping
method [17]. Let (�L; �R) denote the computed solution of the generalized Sylvester equation
(2.3), where �L = L+ �L, �R = R+ �R and (L;R) is the exact solution. The residuals of
the computed solution are

R1 � A11
�R� �LA22 +A12;

R2 � B11
�R� �LB22 +B12:

(2.9)

Moreover, let �Q and �Z be the computed transformation matrices in (2.4) and (2.5). The
following theorem shows how the errors in these quantities propagate to the results of the
direct reordering method for swapping two 2� 2 diagonal matrix pairs.

Theorem 2.1 [18] By applying the computed transformation matrices �Q and �Z in an equiv-

alence transformation of (A;B) we get

�QTA �Z =

"
Â22 Â12

0 Â11

#
+

"
�A22 �A12

�A21 �A11

#
� Â+�A (2.10)

and

�QTB �Z =

"
B̂22 B̂12

0 B̂11

#
+

"
�B22 �B12

�B21 �B11

#
� B̂ +�B; (2.11)

where (Aii; Bii) and (Âii; B̂ii) for i = 1; 2 are equivalent matrix pairs as in (2.2) and up to

�rst order perturbations O(k(�A;�B)k2):

k�A11k2 �
1

(1 + �min
2(L))1=2

� �max(R)

(1 + �max
2(R))1=2

� kR1kF ; (2.12)

k�A21k2 �
1

(1 + �min
2(L))1=2

� 1

(1 + �min
2(R))1=2

� kR1kF ; (2.13)

k�A22k2 � �max(L)

(1 + �max
2(L))1=2

� 1

(1 + �min
2(R))1=2

� kR1kF : (2.14)

Similar bounds hold for k�B11k2; k�B21k2; k�B22k2 with R1 replaced by R2.

What can we say about the size of the errors (�A;�B) in Theorem 2.1? First of all,
k�Aijk2 and k�Bijk2 depend on kR1kF ; kR2kF , the norms of the residuals of the computed
solution (�L; �R) to the generalized Sylvester equation, and on the conditioning of the exact
solution (L;R). If �min(L) and �min(R) are small, the error can be as large as the norms of
the residuals.

In [17] a perturbation analysis of the generalized Sylvester equation is presented that
takes full account to the structure of the matrix equation, derives expressions for the back-
ward error of an approximate solution (�L; �R), and derives condition numbers that measure
the sensitivity of a solution to perturbations in A11; A12; A22 and B11; B12; B22, respectively.
Due to the special structure of the (generalized) Sylvester equation the relation for linear
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systems \relative backward error = relative residual" [24] does not hold in general [16],
[17]. Small relative backward errors will always result in small relative residuals. However,
the analysis shows that for very ill{conditioned cases the norm of the relative backward
errors can greatly exceed the norm of the relative residuals (in fact, by an arbitrary factor
[16]). This situation appears when (�L; �R) is an ill{conditioned (i.e., �min(�L) and �min( �R)
small) and large{normed (i.e., k(�L; �R)kF large) solution to the generalized Sylvester equa-
tion. However, as we will see later, these situations correspond to extremely ill{conditioned
eigenproblems.

3 Direct Reordering Algorithms with Guaranteed Back-

ward Stability

The error analysis of the direct method (summarized in Theorem 2.1) and numerical exper-
iments suggest that a practical implementation should reject a swap if it would result in too
large backward errors (i.e. instability). The test for stability can be performed directly and
to a small extra cost. A direct algorithm with controlled backward error for swapping two
diagonal blocks of a regular matrix pair (A;B) in generalized real Schur form is outlined
below [18]. In this section all quantities denote \computed" quantities.

Direct Swapping Algorithm

Step 1 Copy A and B to S and T , respectively.

S  A; T  B:

Step 2 Solve for (L;R) in the generalized Sylvester equation:

S11R� LS22 = �S12;
T11R� LT22 = �T12:

Use Gaussian elimination with complete pivoting to solve the corresponding linear
system and a scaling factor  to prevent against overow [19].

Step 3 Compute an orthogonal matrix Q:

QT

"
L

In2

#
=

"
TL
0

#
:

Use Householder transformations to compute a QR factorization [13], [1].

Step 4 Compute an orthogonal matrix Z:h
In1 �R

i
Z =

h
0 TR

i
:

Use Householder transformations to compute an RQ factorization [13], [1].
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Step 5 Perform the swapping tentatively with backward stability test:

S  QTSZ �
"
S11 S12
S21 S22

#
; T  QTTZ �

"
T11 T12
T21 T22

#
:

Step 6 If the swap is accepted, apply the equivalence transformation to (A;B):

A S; B  T:

Set the (2; 1){blocks to zero.

Step 7 Standardize existing 2� 2 blocks.

Use the LAPACK routine HGEQZ to standardize and (possibly) separate 2� 2 blocks
further [1].

The backward stability test in step 5 is split in two parts:

Weak stability test: Check if k(S21; T21)kF � tol1 .

Strong stability test: Check if k(A� QSZT ; B � QTZT )kF � tol2.

The size of the (2; 1)-blocks are most crucial since their norms immediately reect the stabil-
ity of the swapping. Indeed, k(S21; T21)kF is the size of the optimal backward perturbation
(E; F ) of the reordered (S; T ) such that (S + E; T + F ) has the n2 �rst columns of Q
and Z as an exact pair of deating subspaces (see Section 4.2.4 and [28]). The size of the
(2; 1)-blocks are controlled by tol1 in the weak stability test and they should not exceed
O(�k(S; T )kF), where � is the relative machine precision. The strong stability test takes all
backward errors into account and by choosing tol2 of the size O(�k(A;B)kF ) and rejecting
the swap if the error is larger than tol2, we obtain guaranteed backward stability. If both
the weak and the strong stability tests hold then the swap is accepted, otherwise rejected.
We have used 10�k(A;B)kF for both tol1 and tol2.

One could argue that it is enough with the weak stability test and in fact we have (so
far) not been able to construct any example where the strong test fails while the weak test
does not. However, since the extra cost of the strong stability test is only marginal it is
included in our software.

After step 2 it would be possible to compute an optimal block{diagonalizing equivalence
transformation that minimizes the condition numbers of the transformationmatrices [6],[20].
Since the scaling factors (which possibly are large numbers) will show up in the Sij and Tij
blocks, we do not expect any substantial improvements in performing this block{diagonal
scaling. Computational experiments in Matlab con�rm this statement too.

The swapping of a 2� 2 block and a 1� 1 block (or vice versa) is performed similarly as
swapping two 2� 2 blocks. However, the swapping of two 1 � 1 blocks is performed using
orthogonal (unitary) Givens rotations [30]. In the complex case we perform all reordering
with unitary Givens rotations.
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3.1 Justi�cation for Rejecting a Swap

It is well{known that the generalized eigenvalue problem (as well as the standard unsym-
metric problem) is potentially ill{conditioned in the sense that eigenvalues and eigenspaces
may change drastically even under small perturbations of the data (e.g., see [26], [9]). If we
insist on performing a reordering of (S11; T11) and (S22; T22) for an ill{conditioned problem,
we may destroy any spectral information in A� �B. Our computational experiments show
that close eigenvalues or small separation between (S11; T11) and (S22; T22) are not enough
for rejecting a swap. It is the sensitivity of the eigenspaces that matters most, which in
turn is perfectly signaled by the norm of the solutions L and R to the associated generalized
Sylvester equation. As before, we illustrate with the case n1 = n2 = 2. From (2.7) we get
that after the reordering

L1 = span(

"
I2
0

#
); R1 = span(

"
I2
0

#
);

and

L2 = span(

"
L

I2

#
); R2 = span(

"
R

I2

#
);

are pairs of deating subspaces associated with the spectrum of the reordered blocks
(S11; T11) and (S22; T22), respectively. Informally, we see that when kLk and kRk are large
enough Li for i = 1; 2 and Ri for i = 1; 2 are almost linearly dependent. More formally; by
partitioning Q in (2.4) appropriately and using properties of the CS decomposition of Q,
we can show that

cos�max(L1;L2) = kQ11k2 =
�max(L)

(1 + �max
2(L))1=2

:

Now, �max(L1;L2) is close to zero if and only if kLk2 is large. A small largest angle between
L1 and L2, means that the left deating subspaces associated with (S11; T11) and (S22; T22)
are almost linearly dependent. Similarly, it can be shown that kRk2 is large if and only if
�max(R1;R2) is close to zero.

3.2 Algorithm Variants for the Stability Tests

In the following we present some di�erent variants to perform the stability tests for accepting
or rejecting a swap of two 2� 2 diagonal matrix pairs.

Method 1: Perform the weak and strong stability tests on (S; T ) as computed in step
5. Here S21 and T21 are full 2 � 2 blocks with possibly non{zero entries. If the swap is
accepted then set S21 and T21 to zero.

Method 2: Triangularize T (from step 5) with an orthogonal U from the left and apply
the transformation to S, i.e.

S  UTS �
"
S11 S12
S21 S22

#
; T  UTT �

"
T11 T12
0 T22

#
:

Now T is upper triangular and T21 is a zero 2�2 block, while S21 is still a full matrix block.
We also have the freedom to triangularize T (from step 5) with an orthogonal V from the
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right and apply the transformation to S similarly. The triangularization method (from left
or right) that produces the (2; 1){block of S with smallest (Frobenius) norm is chosen and
checked for stability. If the swap is accepted, then S21 is set to zero.

Method 3: Transform (S; T ) (from step 5) to generalized Hessenberg form:

(S; T ) QT
H(S; T )ZH �

 "
S11 S12
S21 S22

#
;

"
T11 T12
0 T22

#!
;

where S21 only has one non{zero element, namely in its (1; 2) position. Notice that we
cannot guarantee that this element is small, even if the original S21 is small. We apply the
QZ algorithm to (S; T ) in generalized Hessenberg form giving

(S; T ) QT
QZ(S; T )ZQZ �

 "
S11 S12
0 S22

#
;

"
T11 T12
0 T22

#!
:

If the strong stability test holds, then the swap is accepted, otherwise rejected.
Methods 1{2 are direct methods and they di�er in the way we transform the matrix

pair (S; T ) before we apply the stability tests. Our aim is to discard as little information as
possible in the reordered matrix pair when we impose the (2; 1){blocks to be zero. Method
1 is the generic variant and we discard information in both S and T . In method 2 we only
discard information in the S{part. Let ~Sij and ~Tij denote the (i; j){blocks of S and T before
the triangularization of T and Uij(Vij) the corresponding blocks of the orthogonal (unitary)
transformation U (or V ) used to triangularize from left (or right). The triangularization of
T from left results in T21 = 0 and S21 = UT

22(
~S21 � ~T21 ~T

�1
11

~S11), with

kS21k2 � k ~S21 � ~T21 ~T
�1
11

~S11kF : (3.1)

Similarly, the triangularization from right results in T21 = 0 and S21 = (~S21� ~S22 ~T
�1
22

~T21)V T
11,

with
kS21k2 � k ~S21 � ~S22 ~T

�1
22

~T21kF : (3.2)

Roughly speaking, if the bound (3.1) is smaller than the bound (3.2), then triangularization
from the left is to prefer, otherwise from the right. We have computational evidence that
the exact expressions for kS21k in (3.1) and (3.2) (and the bounds) can be smaller than the
information we discard in method 1 (see bounds for �A21 and �B21 in Theorem 2.1).

The expressions for S21 above can be traced back to expressions involving blocks of S
and T before the reordering (i.e. the original Aij and Bij (2.1)) and the residuals of the
generalized Sylvester equation in step 2 (R1 = A11R�LA22+A12 and R2 = B11R�LB22+
B12), resulting in the following bounds on the block S21 of S after the triangularization in
method 2:

Corollary 3.1 (i) Let S  UTS, where U is the exact orthogonal transformation that

triangularizes T from the left. Then (up to �rst order perturbations)

k�A21k2 � kS21k2 �
kR1 � R2B22

�1A22kF
(1 + �min

2(L))1=2(1 + �2min(R))
1=2

: (3.3)
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(ii) Similarly, let S  SV , where V is the exact orthogonal transformation that triangular-

izes T from the right. Then (up to �rst order perturbations)

k�A21k2 � kS21k2 �
kR1 � A11B11

�1R2kF
(1 + �2min(L))

1=2(1 + �2min(R))
1=2

: (3.4)

In both cases �B21 � T21 = 0.

Proof From the proof of Theorem 2.1 [18], we have (up to �rst order perturbations)
~S21 = QT

12R1Z21 and ~T21 = QT
12R2Z21, where Qij and Zij are blocks of Q and Z in

the orthogonal equivalence transformation (2.2) that performs the reordering of two di-
agonal blocks. Moreover, kZ21k2 = 1=(1 + �2min(R))

1=2 and kQT
12k2 = 1=(1 + �2min(L))

1=2

[18]. From (2.6) we get ~S11 = TLA22Z21 and ~T11 = TLB22Z21. Using these expressions in
S21 = UT

22(
~S21 � ~T21 ~T

�1
11

~S11) we get S21 = UT
22Q

T
12(R1 �R2B22

�1A22)Z21, and (3.3) follows
from well{known inequalities for matrix norms. The bound (3.4) can be proved similarly.
2

Besides backward stability of the reordering we strive to a�ect the eigenvalues as little
as possible. We have constructed examples where the triangularization (from left or right)
of S has great impact on the reordered eigenvalues.

In method 3 we let the QZ algorithm decide what information to discard, and hopefully
this should give us accurate eigenvalues after the swapping of two diagonal blocks. However,
applying the QZ algorithm also means that the method may be iterative in the last step.
In the worst case, already ordered eigenvalues may be reordered again. We use this variant
mainly for comparing results between our direct methods and a \best possible" hybrid
method.

4 Condition Numbers and Error Bounds for Eigenvalues

and Eigenspaces of a Regular (A;B)

A condition number of a problem measures the sensitivity of the solution to small changes
in the problem data. The problem is ill{conditioned if the condition number is large, and
ill{posed if the condition number is in�nite. Condition numbers can be used to bound
errors in computed quantities (e.g., eigenvalues, eigenvectors and deating subspaces). We
construct error bounds from forward perturbation bounds for the problem (that de�ne our
condition numbers) and the knowledge of the backward error corresponding to the computed
solution. The best we can ask for is to have an explicit expression for the optimal backward
error related to the residual of the computed solution. A residual{based expression of the
optimal backward error is algorithm{independent, i.e. it can be applied to an approximate
solution resulting from any algorithm used to solve the problem. Otherwise, we have to rely
to an upper bound on the backward error, resulting from a backward error analysis of the
algorithm used to compute the solution. If we use backward stable methods to compute an
eigendecomposition of a regular (A;B), then we know that the norm of the backward error
in (A+E;B + F ) is k(E; F )k= O(�k(A;B)k), where � is the relative machine accuracy.

Condition numbers may be very expensive to compute and therefore we will use inex-
pensive estimates. In the extreme case the exact condition number (separation between two
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matrix pairs) is an O(n6) operation while the estimate is computed in only O(n3) operations
[19]. Condition estimators are by de�nition approximations or bounds to the exact values
they try to estimate, and may therefore occasionally overestimate or underestimate the
true condition number by a large factor. Extensive computational experiments (on moder-
ately sized problems) show that this seldom happens, but it is of course always possible to
construct counter examples.

The condition numbers and estimates computed by our software and discussed here
are reciprocal values of a condition number for an individual eigenvalue (or a cluster of
eigenvalues), a condition number for an eigenvector (or eigenspace), and spectral projectors
onto a selected cluster. By computing reciprocal values we avoid overow. An in�nite
value or a condition number that would overow are reported by the reciprocal value zero.
This is in agreement with the condition estimation for the standard eigenvalue problem in
LAPACK [3].

These quantities appear in error bounds for eigenvalues and eigenspaces of a regular
(A;B), which we also review here. In agreement with the standard eigenvalue problem in
LAPACK we measure changes in eigenvectors or eigenspaces by their change in angle.
Moreover, our condition numbers yield both asymptotic and global error bounds. The
asymptotic bounds are only accurate for small perturbations (E; F ) of (A;B), while the
global bounds work for all k(E; F )k up to a certain bound. The size of this bound is
determined by the conditioning of the problem and may therefore be large (for a well{
conditioned problem) or small (for an ill{conditioned problem). We also show how these
upper bounds can be estimated. Finally, we present some new results (due to Sun [28])
that give us explicit expressions for the optimal backward error related to the residual of a
computed eigenspace, and which also lead to an residual{based global angular error bound
for computed left and right deating subspaces.

4.1 A Condition Number and Error Bounds for Simple Eigenvalues

Assume that (�; �) 6= (0; 0) is a simple eigenvalue of a regular matrix pair (A;B) with left
and right eigenvectors y and x, respectively, satisfying (1.1). Notice that all non{zero scalar
multiples of (�; �) is also an eigenvalue of (A;B). Therefore, it is natural to regard the
subspace spanned by the vector (�; �)T as the generalized eigenvalue of (A;B) [26]:

< �; � >= f�(�; �)T : � 2 C; (�; �) 6= (0; 0)g: (4.1)

In the perturbation theory for generalized eigenvalues we consider the distance between
pairs (�; �) and (�0; �0). A useful metric is the chordal distance of two pairs de�ned as

X ((�; �); (�0; �0)) = j��0 � ��0jpj�j2 + j�j2pj�0j2 + j�0j2 : (4.2)

If we set � = �=� and �0 = �0=�0, then we have

X (�; �0) = j�� �0jp
1 + j�j2p1 + j�0j2 :

Some characteristics of the chordal metric are summarized below [26]: The point at in�nity is
no more than unit distance from any other point (X (�;1) = 1=

p
1 + j�j2 � 1). If j�j; j�0j �
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1, then X (�; �0) behaves essentially like the Euclidean metric. The chordal distance between
two large numbers can be small (e.g., X (�; 2�) � 1=j�j, when � ! 1). Accordingly, large
numbers can have very small chordal distances, even when they have large relative errors.

In the following we review how to measure the sensitivity of simple eigenvalues of a reg-
ular matrix pair. Let (�; �) be a simple eigenvalue of (A;B) with left and right eigenvectors
y and x, respectively. Let (E; F ) be a perturbation of (A;B), and k(E; F )k2 = �2. Then
there is an eigenvalue (�0; �0) of (A+ E;B + F ) such that the following �rst order bound
holds [26]:

X ((�; �); (�0; �0)) � � � �2 +O(�2
2); (4.3)

where � is the condition number for a simple generalized eigenvalue:

� =
kxk2kyk2q

jyHAxj2 + jyHBxj2
: (4.4)

Notice that yHAx=yHBx is equal to � = �=�. By using yHAx and yHBx in (4.4), the
condition number is independent of the normalization of the eigenvectors and the corre-
sponding eigenvalue pair. Deleting higher order terms in (4.3) we get an asymptotic error
bound for a simple eigenvalue:

X ((�; �); (�0; �0)) <� �k(E; F )k2: (4.5)

By replacing k(E; F )k2 by k(E; F )kF in (4.5) we get a somewhat weaker but a more com-
putationally attractive bound.

The following example illustrates the de�nition of �. Let

Y H =

"
1 2��1

0 1

#
; X =

"
1 ��1

0 1

#
; and

Y HAX =

"
� 0
0 �2�

#
; Y HBX =

"
� 0
0 �

#
; i:e:

A =

"
� 3���1

0 �2�

#
; B =

"
� �3���1
0 �

#
:

By choosing � > 0 and � > 0 small we get �i = O(��1��1) for i = 1; 2 from (4.4) and X and
Y H above.

The eigenvalues of (A;B) are 1 (= �=�) and �2 (= �2�=�). Now, we consider the
equivalent pencil

(D�1A;D�1B) =

 "
1 3��1

0 �2

#
;

"
1 3��1

0 1

#!
;

where

D =

"
��1 0
0 ��1

#
:
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It has the same eigenvalues (and eigenvectors too!), but their individual condition numbers
are only �i = O(��1) for � � � > 0, showing that the eigenvalues 1 and �2 are better
conditioned for the equivalent pencil.

There also exist global error bounds which are not limited by the size of k(E; F )k (e.g.,
Bauer{Fike{style error bounds). In the following we assume that (A;B) is a diagonalizable
matrix pair such that

Y H(A;B)X = (diag(�i); diag(�i)): (4.6)

Let Y H and X be normalized such that j�ij2 + j�ij2 = 1 and kyik2 = 1, i.e. we overwrite
yi with yi=kyik2, (�i; �i) with (�i; �i)=(j�ij2+ j�ij2)1=2 and, �nally, xi with xikyik2=(j�ij2+
j�ij2)1=2. With this normalization the individual condition number for (�i; �i) is �i = kxik2.

Let (�0; �0) with j�0j2+ j�0j2 = 1 be an eigenvalue of (A+E;B+F ). Then we have the
following Bauer{Fike{style bound [8]:

min
i
X ((�0; �0); (�i; �i)) � min

i
j�i�0 � �i�

0j � kY Hk2kXk2k(E; F )kF : (4.7)

If X and Y are normalized as above, then kY Hk2 �
p
n and kXk2 �

p
nmaxi �i, which in

(4.7) give us a Bauer{Fike{style bound for the generalized eigenvalue problem:

min
i
X ((�0; �0); (�i; �i)) � nmax

i
�ik(E; F )kF : (4.8)

As for the standard eigenvalue problem, it is the most ill{conditioned eigenvalue that de-
termines the size of the error bound. In words, (4.7) and (4.8) bound the smallest distance
(measured in the chordal metric) between an eigenvalue of the perturbed and unperturbed
matrix pairs.

It is possible to strengthen the classical Bauer{Fike bound (for the standard problem)
giving a bound for each individual eigenvalue [7, 3], whose size is determined by the con-
ditioning of the individual eigenvalue. By applying the same technique (under the same
assumptions as for (4.8) ) we can prove that any eigenvalue (�0; �0) with j�0j2+ j�0j2 = 1 of
(A+E;B + F ) must lie in one of the regions (\balls")

f(�; �); j�j2+ j�j2 = 1 : X ((�; �); (�i; �i)) � n�ik(E; F )k2g: (4.9)

Notice that the sizes of the regions (bounds) are only a factor n larger than the �rst order
error bound (4.5). Moreover, the global error bound (4.9) with respect to an eigenvalue
(�i; �i) is only useful if it de�nes a region that does not intersect with regions corresponding
to other eigenvalues. If two or more regions intersect, then we can only say that an eigenvalue
of the perturbed matrix pair lies in the union of the overlapping regions.

There also exist other Bauer{Fike{style bounds for the generalized eigenvalue problem
and other generalizations (see [26] for a review and further references).

4.2 Conditioning and Error Bounds for Left and Right Deating Sub-

spaces Associated with a Cluster of Eigenvalues

If (A;B) has n distinct eigenvalues, then there exist non{singular matrices Y and X that
transform (A;B) to diagonal form (4.6). Moreover, their columns yi and xi are left and
right eigenvectors associated with the eigenvalues (�i; �i) (i = 1 : n). Let Y H � P�1 and
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from (4.6) we have that AX+BX = Pdiag(�i+�i), i.e. the columns pi and xi of P and X ,
respectively, span pairs of one{dimensional left and right deating subspaces. Accordingly,
conditioning and error bounds for individual eigenvectors can be regarded as a special case
of error bounds for left and right deating subspaces.

Without loss of generality we assume that (A;B) is in generalized Schur form

A =

"
A11 A12

0 A22

#
; B =

"
B11 B12

0 B22

#
: (4.10)

In the following we review condition numbers and error bounds for left and right deat-
ing subspaces associated with the cluster of m (1 � m � n � 1) eigenvalues (counting
multiplicities) of (A11; B11). To explain the bounds we need to introduce some de�nitions.

4.2.1 Block{diagonalization and Separation of Two Matrix Pairs

An equivalence transformation that block{diagonalizes (A;B) in generalized Schur form
(4.10) can be expressed as

"
Im �L
0 In�m

# "
A11 A12

0 A22

#
;

"
B11 B12

0 B22

#!"
Im R

0 In�m

#
=

 "
A11 0
0 A22

#
;

"
B11 0
0 B22

#!
:

(4.11)

Solving for (L;R) in (4.11) is equivalent to solve the generalized Sylvester equation

A11R� LA22 = �A12;

B11R� LB22 = �B12;
(4.12)

which can be rewritten as a 2m(n�m)� 2m(n�m) linear system Zux = b, where

Zu =

"
In�m 
A11 �AT

22 
 Im
In�m 
B11 �BT

22 
 Im

#
(4.13)

and

x =

"
col(R)
col(L)

#
; b =

"
�col(A12)
�col(B12)

#
:

Moreover, let
p = (1 + kLk2F )1=2; q = (1 + kRk2F )1=2: (4.14)

In the perturbation theory for the generalized eigenvalue problem, p and q play the same
role as the norm of the spectral projector does for the standard eigenvalue problem [9].
Indeed, if B = I , then p = q and p equals the norm of the projection onto an invariant
subspace of A. For the generalized eigenvalue problem we need both a left and a right
projection norm since the left and right deating subspaces are (normally) di�erent.

17



Another important quantity involved in the sensitivity analysis of deating subspaces
(and eigenvalues) is the separation of two matrix pairs (A11; B11) and (A22; B22) [25]:

Difu[(A11; B11); (A22; B22)] = inf
k(L;R)kF=1

k(A11R� LA22; B11R� LB22)kF : (4.15)

The generalized Sylvester operator (A11R�LA22; B11R�LB22) in the de�nition of Difu is
obtained from block{diagonalizing a regular matrix pair in upper block triangular form. Difu
is a generalization of the separation between two matrices (Sep(A11; A22) = �min(In�m 

A11 � AT

22 
 Im) [25]) to two matrix pairs and it measures the separation of their spectra
in the following sense. If (A11; B11) and (A22; B22) have a common eigenvalue, then Difu is
zero and it is small if there is a small perturbation of either (A11; B11) or (A22; B22) that
makes them have a common eigenvalue.

From the matrix representation (4.13) of the generalized Sylvester operator it can be
shown [9] that

Difu[(A11; B11); (A22; B22)] = �min(Zu): (4.16)

Moreover, it follows that the generalized Sylvester equation has a unique solution if and
only if Difu > 0 and we can bound the norm of (L;R) as

k(L;R)kF �
k(A12; B12)kF

Difu
: (4.17)

Notice that Difu[(A22; B22); (A11; B11)] does not generally equal Difu[(A11; B11); (A22; B22)]
(unless Aii and Bii are symmetric for i = 1; 2). Accordingly, the ordering of the arguments
plays a role for the separation of two matrix pairs, while it does not for the separation of
two matrices (Sep(A11; A22) = Sep(A22; A11)). Therefore, we introduce the notation

Difl[(A11; B11); (A22; B22)] = Difu[(A22; B22); (A11; B11)]: (4.18)

An associated generalized Sylvester operator (A22R�LA11; B22R�LB11) in the de�nition
of Dif l is obtained from block{diagonalizing a regular matrix pair in lower block triangular
form: "

Im 0
�L In�m

# "
A11 0
A21 A22

#
;

"
B11 0
B21 B22

#! "
Im 0
R In�m

#
=

 "
A11 0
0 A22

#
;

"
B11 0
0 B22

#!
:

4.2.2 Conditioning of Left and Right Deating Subspaces

Assume that (A;B) is in generalized Schur form (4.10) and that (A11; B11) contains the
cluster of m eigenvalues with left and right deating subspaces L and R, respectively.
Typically, L = spanfU1g and R = spanfV1g where U1 and V1 are the leading m columns of
the unitary (orthogonal) U and V in (1.2) that transform (A;B) to generalized Schur form.
Furthermore, let L0 = spanfU 01g and R0 = spanfV 01g be left and right deating subspaces
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of the perturbed matrix pair (A+E;B+F ). Then using the technique of Sun [27] one can
prove the following �rst order bounds:

sin�max(L;L0) � kU1 � U 01kF � k(E; F )kF
Dif l[(A11; B11); (A22; B22)]

+O(k(E; F )k2F);

sin�max(R;R0) � kV1 � V 01kF � k(E; F )kF
Dif l[(A11; B11); (A22; B22)]

+ O(k(E; F )k2F):

From the series expansion of the arcsine function we can simplify these bounds further,
giving the asymptotic angular bounds

�max(L;L0) <� k(E; F )kF
Dif l[(A11; B11); (A22; B22)]

; (4.19)

�max(R;R0) <� k(E; F )kF
Dif l[(A11; B11); (A22; B22)]

: (4.20)

These bounds imply that Dif l is the reciprocal of the condition number for eigenvectors
(m = 1) and deating subspaces (m > 1) of a regular (A;B).

4.2.3 Upper Bound on Perturbations and Global Error Bounds for Deating

Subspaces and Clustered Eigenvalues

In order to guarantee that the clusters in the (1; 1){blocks of (A;B) and the perturbed
matrix pair (A + E;B + F ) are of the same size m and uniquely de�ned, we have to put
restrictions on k(E; F )kF [9]:

k(E; F )kF �
min(Difu;Difl)

(p2 + q2)1=2 + 2max(p; q)
:

By imposing a somewhat stronger condition on k(E; F )kF , namely

k(E; F )kF �
min(Difu;Difl)

4max(p; q)
� �; (4.21)

� in (4.21) conform to the corresponding restriction for the standard eigenvalue problem
(Sep(A11; A22)=4p) [3].

We see that � may be small if the separation between the two matrix pairs is small
or the left and right projection norms are large, indicating that the (deating subspace)
problem is ill{conditioned. A larger k(E; F )kF (> �) may imply that one eigenvalue in
the cluster moves and coalesces with another eigenvalue (outside the cluster). Indeed, �
is a lower bound on the smallest k(E; F )kF such that an eigenvalue of (A11; B11) coalesces
with an eigenvalue of (A22; B22) under perturbation (E; F ). The bound � can be quite
conservative but is almost exact in some cases and a good estimate in many others. In
particular, the following global error bounds for a pair of deating subspaces is guaranteed
valid for k(E; F )kF � � [9].

As before, we assume that (A;B) is in generalized Schur form (4.10) and that (A11; B11)
contains the cluster of m eigenvalues with left and right deating subspaces L and R,
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respectively. Further, let L0 and R0 be left and right deating subspaces of (A+E;B+F ).
Then we have the following angle bounds for left and right deating subspaces of the
unperturbed and perturbed matrix pairs [9]:

If � � k(E; F )kF=� < 1, then

�max(L;L0) � arctan

�
�

p� �(p2 � 1)1=2

�
; (4.22)

�max(R;R0) � arctan

�
�

q � �(q2 � 1)1=2

�
: (4.23)

In other words, if � is small, then the perturbed pair of left and right deating subspaces
are small perturbations of the exact pair of deating subspaces.

The bounds (4.22), (4.23) are generalized and extended to pairs of reducing subspaces
for singular (A;B) [9, 10, 11].

We are also interested to bound the error in the average of the eigenvalues of the cluster
in (A11; B11). However, since we are faced with both �nite and in�nite eigenvalues it is not
clear how to de�ne the average of the m eigenvalues �i = �i=�i. Only if we require that
(A11; B11) contains a (proper) subset of the �nite eigenvalues or all in�nite eigenvalues (and
no �nite eigenvalues) does the average of the cluster make sense. In the following theorem
we distinguish these two cases and formulate error bounds for the average of the clustered
eigenvalues.

Theorem 4.1 Let (A11; B11) denote the block of the generalized Schur form of (A;B) that
correspond to the unperturbed cluster of eigenvalues, with

Difx[(A11; B11); (A22; B22)] > 0 for x = l; u:

Similarly, let (A011; B
0
11) denote the corresponding block with perturbed eigenvalues associ-

ated with (A+E;B + F ), where k(E; F )kF � � (4.21).

Case 1. (A11; B11) contains a (proper) subset of the �nite eigenvalues, i.e. B11 is non{

singular. Let �� denote the average of the m unperturbed eigenvalues of (A11; B11) and let
��0 be the corresponding average of the perturbed eigenvalues of (A011; B011). Then

j��� ��0j � 1

�min(B11)

�
1 +

�max(A011)

�min(B011)

�
3pk(E; F )kF : (4.24)

Case 2. (A11; B11) contains all in�nite eigenvalues and no �nite eigenvalues, i.e. A11 is

non{singular. Let �� = 0 denote the average of the m unperturbed eigenvalues of the recip-

rocal problem (B11; A11) and, similarly, let ��0 be the corresponding average of the perturbed

eigenvalues of (B011; A011). Then

j�� � ��0j � 1

�min(A11)

�
1 +

�max(B
0
11)

�min(A011)

�
3pk(E; F )kF : (4.25)

Proof In general, we can bound the average �� of the eigenvalues of an m�m matrix C as

j��j � 1

m

mX
i=1

j�ij � max
i
j�ij � kCk2 � kCkF :
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In case 1 we have

j��� ��0j � kB�111 A11 �B0
�1
11 A

0
11kF � kB�111 k2kA11 �A011kF + kB�111 �B0

�1
11 kF kA011k2:

Since B�111 �B0
�1
11 = �B0�111 (B11 �B011)B

�1
11 we have that

j��� ��0j � kB�111 k2(kA11 �A011kF + kB11 �B011kF kB0�111 k2kA011k2): (4.26)

With the assumptions in the theorem we can apply the technique of Stewart [25] and
prove that

kA11 �A011kF � 3pk(E; F )kF ; kB11 �B011kF � 3pk(E; F )kF ;

where p (4.14) is the norm of the left spectral projector.
Using these bounds in (4.26) give us the error bound (4.24).

In case 2 we have
j��� ��0j � kA�111 B11 � A0

�1
11 B

0
11kF ;

and the error bound (4.25) can be proved similarly. 2
In the following we make some comments to the error bounds in Theorem 4.1. If B11 (in

case 1) and A11 (in case 2) are well{conditioned with respect to inversion (i.e. �min(B11)� 0
and �min(A11)� 0, respectively) then the error bounds can be expressed as

j��� ��0j � c1pk(E; F )kF ; j��� ��0j � c2pk(E; F )kF ;

where c1 and c2 are modest constants. These bounds conform with the corresponding
error bound for the average of a cluster of eigenvalues to the standard eigenvalue problem
(2pkEkF). However, if �min(B11) (and �min(B011)) are small in case 1, or if �min(A11) (and
�min(A

0
11)) are small in case 2, then the average of the clustered eigenvalues can be quite

sensitive to perturbations in (A;B), which is signaled by the quantities

1

�min(B11)

�
1 +

�max(A011)

�min(B011)

�
;

and
1

�min(A11)

�
1 +

�max(B011)

�min(A011)

�
;

respectively, in the bounds (4.24) and (4.25). In case 1 this means that (A11; B11) is nearby
a pencil with an in�nite eigenvalue and in case 2 (A11; B11) is nearby a singular pencil.
Both cases represent ill{conditioned clustering problems. One way to tackle the most ill{
conditioned cases with multiple in�nite eigenvalues and an almost singular A11 is to compute
and separate the Jordan structure of the in�nite eigenvalue before any clustering takes place
[10, 11]. It is well{known that the QZ algorithm applied to defective in�nite eigenvalues
can a�ect otherwise well-conditioned eigenvalues of (A;B) [32]. By separating the in�nite
structure from the rest of the spectrum before applying the QZ algorithm we circumvent
this problem.

21



4.2.4 Optimal Backward Perturbation of Approximate Left and Right Deat-

ing Subspaces

Suppose that �L = span( �V1) and �R = span( �U1), with �U1
H �U1 = �V1

H �V1 = Im are approx-
imate left and right deating subspaces of (A;B). We are interested to �nd (backward)
perturbations of (A;B) such that the perturbed matrix pair has �L and �R as exact left and
right deating subspaces. Let

H � fH = (E; F ); E; F 2 Cn�n : (A+E) �R� �L; (B + F ) �R � �Lg;

i.e. H de�nes the set of perturbations H = (E; F ) such that (A+E;B + F ) has �L and �R
as exact left and right deating subspaces. Moreover, let the right residuals with respect to
the approximate deating subspaces be

Rres � (RAres; RBres) = (A �U1 � �V1 �A11; B �U1 � �V1 �B11);

where �A11 = �V1
H
A �U1 and �B11 = �V1

H
B �U1. Then there exist a unique optimal backward

perturbation Hopt = �Rres
�U1
H 2 H [28]:

kHoptk = min
H2H

kHk = kRresk; (4.27)

for any unitarily invariant norm.

4.2.5 Residual{based Error Bound for Approximate Left and Right Deating

Subspaces

Assume that �U = [ �U1; �U2] and �V = [ �V1; �V2] are computed transformations that take (A;B)
to generalized Schur form:

�V HA �U =

"
�A11

�A12

�A21
�A22

#
; �V HB �U =

"
�B11

�B12

�B21
�B22

#
;

where the entries of �A21 and �B21 are small and �U; �V unitary (orthogonal) to machine
precision accuracy.

Then �L = span( �V1) and �R = span( �U1) are approximate left and right deating subspaces
of (A;B) and we compute their left and right residuals:

Lres � (LAres; LBres) = ( �V1
H
A� �A11

�U1
H
; �V1

H
B � �B11

�U1
H
);

Rres � (RAres; RBres) = (A �U1 � �V1 �A11; B �U1 � �V1 �B11):

It is straightforward to show that

kLAreskF = k �A12kF ; kLBreskF = k �B12kF ; kRAreskF = k �A21kF ; kRBreskF = k �B21kF :
(4.28)

We see that the norm of the right residuals are always small, while in general we cannot
expect the norm of the left residuals to be small. However, knowing that there exist an op-
timal backward perturbation of approximate left and right deating subspaces it is possible
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to derive a residual{based error bound. We can rewrite the residual{based error bound for
deating subspaces in [28] as the following angular error bounds:

If � � 4kLreskF kRreskF =Dif l2 < 1, then

�max(L; �L) � arctan

�
2kRreskF
Dif l

�
; (4.29)

�max(R; �R) � arctan

�
2kRreskF
Dif l

�
: (4.30)

Notice that the bounds (4.29) and (4.30) are approximate in the sense that the theory
assumes that �U; �V are exactly unitary (orthogonal), while we can only guarantee that they
are unitary (orthogonal) to machine precision accuracy.

From the de�nition of � we also get a bound on k(E; F )kF similar to (4.21) that guar-
antees that the residual{based bounds are valid for perturbations (E; F ) ful�lling

k(E; F )kF � kRreskF �
Dif l

2

4kLreskF
� �r: (4.31)

4.3 Summary of Error Bounds for Eigenvalues and Eigenspaces

In Table 4.1 and Table 4.2 we summarize the error bounds presented in Section 4 (see earlier
subsections for de�nitions and notation used). Table 4.1 shows the asymptotic bounds for a
simple eigenvalue (�; �) where � = �=�, the average of a cluster of eigenvalues �� (or �� = 0
for the in�nite eigenvalues, i.e. �� = 1=��), a left and right eigenvector pair y and x, and a
pair (left and right) of deating subspaces L and R.

Table 4.1: Asymptotic error bounds for the generalized eigenvalue problem

Bounds for Error bound Comment

Simple eigenvalue: X ((�; �); (�0; �0)) <� �k(E; F )kF � = �=�

Eigenvalue cluster:

Average of �nite �i j��� ��0j <� c1pk(E; F )kF See also global bounds

Average of in�nite �i = 1=�i j��� ��0j <� c2pk(E; F )kF (c1 and c2 are constants)

Eigenvector pair:

Left �max(y ; y 0)
<� k(E; F )kF=Dif l m = 1

Right �max(x ; x
0)

<� k(E; F )kF=Difl m = 1

Deating subspace pair:

Left �max(L;L0) <� k(E; F )kF=Difl 1 < m � n � 1

Right �max(R;R0) <� k(E; F )kF=Difl 1 < m � n � 1

The asymptotic bounds are only valid for su�ciently small perturbations. If the prob-
lem is ill{conditioned, the asymptotic bounds may only hold for extremely small values
of k(E; F )k. Therefore, we also provide similar global error bounds (displayed in Table
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4.2), which are valid for all perturbations that satisfy an upper bound on k(E; F )k. These
restrictions are � (4.21) and �r (4.31), where �r is associated with residual{based error
bounds. For ill{conditioned problems these restrictions will also be small. Indeed, a small
value of � (or �r) shows that the cluster of eigenvalues in the leading m �m blocks of
(A;B) is ill{conditioned in the sense that small perturbations of (A;B) may imply that one
eigenvalue in the cluster moves and coalesces with another eigenvalue (outside the cluster).
Accordingly, this also means that the associated (left and right) deating subspaces are
sensitive for small perturbations, since the size of the perturbed subspaces may change for
small perturbations of (A;B).

Table 4.2: Global error bounds for the generalized eigenvalue problem
Bounds for Error bound Restriction on k(E; F )kF
Simple eigenvalue: Bound (4.8) None (holds for all (E; F ))
(� = �=�; j�j2+ j�j2 = 1) Bound (4.9) None (holds for all (E; F ))

Eigenvalue cluster:
Average of �nite �i Bound (4.24) � � � min(Difu;Difl)=4max(p; q)
Average of in�nite �i = 1=�i Bound (4.25) � � � min(Difu;Difl)=4max(p; q)

Eigenvector pair:
Left Bound (4.22) � � � min(Difu;Difl)=4max(p; q)
Right Bound (4.23) � � � min(Difu;Difl)=4max(p; q)
Left (residual{based) Bound (4.29) � �r � Dif l

2=4kLreskF
Right (residual{based) Bound (4.30) � �r � Dif l

2=4kLreskF
Deating subspace pair:
Left Bound (4.22) � � � min(Difu;Difl)=4max(p; q)
Right Bound (4.23) � � � min(Difu;Difl)=4max(p; q)
Left (residual{based) Bound (4.29) � �r � Dif l

2=4kLreskF
Right (residual{based) Bound (4.30) � �r � Dif l

2=4kLreskF

It is interesting to compare the sizes of � and �r. We focus on ill{conditioned problems
where the separation between the two clusters are small (i.e. both Difl and Difu are small)
and the deating subspaces are sensitive (i.e. the associated generalized Sylvester equation
has large{normed solutions (L;R)). Since Dif l

2 appears in the nominator of �r while we
only have min(Difu;Difl) in the nominator of � it seems as if �r puts harder restrictions
on the perturbations. However, if we use the expressions (4.28) in �r, the bound (4.17)
on (L;R) to bound p and q giving that they are of size O(k( �A12; �B12)kF=Difu), then we
see that � and �r are qualitatively of the same size. It is of course possible to construct
examples where � is smaller than �r and vice versa.

4.4 Condition Estimates and Error Bounds Computed

Our software (described in more detail in Section 5) compute estimates of the following
quantities that appear in the condition numbers and error bounds summarized in tables 4.1
and 4.2.
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� S(�) = ��1, the reciprocal value of the condition number � (4.4) for an individual
eigenvalue � = �=�.

Given the left and right eigenvectors y and x corresponding to �, the reciprocal con-
dition number is computed in O(n2) ops (oating point operations) as

S(�) =

q
jyHAxj2 + jyHBxj2
kxk2kyk2

: (4.32)

If both � and � are zero, then (A;B) is singular and S(�) = �1 is reported.

The (left and right) eigenvectors computed by LAPACK are normalized such that the
largest component will have the sum of the modulus of the real and imaginary parts
equal to one (e.g., see GEGV).

� Difu (4.16) and Dif l (4.18), i.e. the separation(s) between two matrix pairs.

Difl is a reciprocal condition number for an individual (left or right) eigenvector or a
(left or right) deating subspace (see Section 4.2.2). Both Difu and Difl appear in �.
Our algorithms for estimating Difu and Dif l are discussed in Section 4.4.1.

� p�1 and q�1, the reciprocal values of the left and right projector norms as de�ned in
(4.14).

These values are computed straightforwardly using L and R from the generalized
Sylvester equation (4.12). The cost for solving (4.12) is 2m2(n �m) + 2m(n �m)2

ops, where m � 1 is the dimension of the deating subspace(s) corresponding to
the selected eigenvalues. Given L and R the cost for computing p�1 and q�1 is only
O(m(n�m)) ops.

By using the estimates of these quantities in the error bounds, the user gets enough
information for assessing the accuracy of computed eigenvalues (or the average of clustered
eigenvalues), eigenvectors or deating subspaces.

We also compute the algorithm{independent residual{based error bound(s) (4.29), (4.30)
and �, the condition that guarantees the validity of the bound(s). The residual{based
error bound and � are computed using a Frobenius normed{based estimate of Dif l (see
Section 4.4.1). The residuals (4.28) associated with the approximate deating subspaces
are computed straightforwardly.

4.4.1 Estimating Difu and Difl

LAPACK{style algorithms and software for estimating Difu (4.16) are presented in [19]. The
basic problem is to �nd a lower bound on Dif�1u [(A11; B11); (A22; B22)] � kZ�1u k2, where
Zu is the matrix representation (4.13) of the generalized Sylvester operator. It is possible
to compute lower bounds on Dif�1u by solving generalized Sylvester equations in triangular
form. Both Frobenius norm{based and one{norm{based Difu{estimators are discussed and
evaluated in [19]. The one{norm{based estimator makes the condition estimation uniform
with other parts of LAPACK (e.g., the standard eigenvalue problem). The Frobenius norm-
based estimator o�ers a low{cost and equally reliable estimator. The one{norm{based
estimator is a factor 3-10 times more expensive.
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By knowing a lower bound DIFINV on kZ�1u k2 we also have an upper bound DIF =
1=DIFINV on the separation between two regular matrix pairs. Since we use blocked al-
gorithms to solve the generalized Sylvester equations involved in computing DIFINV, our
estimators will mainly execute Level 3 operations. In the following we outline the algorithms
for the Difu{estimators. From the de�nition of Difl (4.18) we see that Dif l{estimators can
be computed by using our algorithms for estimating Difu. Our software provide (optionally)
both Frobenius norm{based and one{normed{based estimators for Difu and Dif l, respec-
tively (see Section 5).

A Frobenius Norm-Based Estimator From the Zux = b representation (4.13) of the
generalized Sylvester equation (4.12) we get a lower bound on Dif�1u :

k(L;R)kF =k(C; F )kF = kxk2=kbk2 � kZ�1u k2: (4.33)

To get an improved estimate we want to choose right hand sides (C�; F �) such that the
associated solution (L�; R�) has as large norm as possible. Then the quantity

�F � k(L�; R�)kF =k(C�; F �)kF ; (4.34)

is our lower bound on kZ�1u k2. The work to compute �F is comparable to solve a generalized
Sylvester equation, which costs O(m3 +m2(n �m) +m(n �m)2 + (n �m)3) ops (only
2m2(n � m) + 2m(n � m)2 if the matrix pairs are in generalized Schur form) [21]. This
is a very modest cost compared to compute the exact value of �min(Zu), which requires
O(m3(n�m)3) ops.

Two Frobenius norm{based estimators TDIFE and TDIFD are discussed in [19], which
are modi�cations of estimators BSOLVE and BSOLVD in [21]. The main di�erences concern
how contributions to �F from di�erent subsystems are computed and the look ahead strate-
gies of the estimators. TDIFE is the default Frobenius norm-based estimator in our software
(see Section 5).

An One{Norm{Based Estimator From the relationship

1p
2m(n�m)

kZ�1u k1 � kZ�1u k2 �
q
2m(n�m)kZ�1u k1; (4.35)

we know that kZ�1u k1 can never di�er more than a factor
p
2m(n�m) from kZ�1u k2. So it

makes sense to compute an one{norm{based estimator of Dif�1u .
The LAPACK routine LACON implements a method for estimating the one{norm of a

square matrix, using reverse communication for evaluating matrix{vector products [14, 15].
We apply this method to kZ�1u k1 by providing the solution vectors x and y of Zux = z and
a transposed system ZT

u y = z, where z is determined by LACON. In each step only one of
these generalized Sylvester equations is solved using blocked algorithms [19]. The cost for
computing this bound is roughly equal to the number of steps in the reverse communication
times the cost for one generalized Sylvester solve.

Notice, kZ�1u k1 also satisfy (4.35), i.e. can never di�er more than a factor
p
2m(n�m)

from kZ�1u k2. Moreover, since kBk
1

= kBT k1 the same method can be used to compute
an in�nity{norm{based estimate of Dif�1u .
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4.4.2 Estimating Dif l for Individual Eigenvectors Associated with a Complex

Conjugate Pair of Eigenvalues

The estimation of Difl discussed in the preceding subsection is applicable to pairs of deating
subspaces (m � 2) as well as to individual eigenvector pairs (m = 1). As before we assume
that (A;B) is transformed to generalized Schur form

QHAZ = S �
"
S11 S12
0 S22

#
; QHBZ = T �

"
T11 T12
0 T22

#
: (4.36)

In complex arithmetic we can always choose (S11; T11) to be the individual eigenvalue �1 =
�1=�1 = S11=T11 (real or complex) we want to consider. Moreover, the �rst column of Q
and Z form a pair of deating subspaces, where q1 also is a right eigenvector corresponding
to �1. In this case we can, for example, apply the one{normed{based estimator to estimate
Dif l.

What is said above also applies in real arithmetic to real eigenvalues of (A;B). However,
there is an extra complication to estimate Difl for the individual eigenvectors corresponding
to a complex conjugate pair of eigenvalues. For a real matrix pair, Q and Z in (4.36) are
orthogonal and (S11; T11) is a 2 � 2 matrix pair corresponding to the complex conjugate
pair of eigenvalues �1 and ��1. It exits unitary U1 and V1 such that

UH
1 S11V1 =

"
�1 x

0 �2

#
; UH

1 T11V1 =

"
�1 y

0 �2

#
; (4.37)

where �1 = 1 + i�1, �2 = 2 + i�2 and �1; �2 are real numbers. Now, the complex
conjugate pair of eigenvalues is given by �1 = �1=�1 and ��1 = �2=�2 (i.e. 1=�1 = 2=�2
and �1=�1 = �2=�2).

If we are interested to estimate Dif l associated with �1, then we can choose

U =

"
U1 0
0 In�2

#
; V =

"
V1 0
0 In�2

#
;

and we get

UHSV =

"
�1 S012
0 S022

#
; UHTV =

"
�1 T 012
0 T 022

#
: (4.38)

Notice that only (S012; T 012) and the �rst row of (S022; T 022) have complex entries. Moreover,
��1 = �2=�2 belongs to the spectrum of (S022; T

0
22).

From [9] we have the following explicit expression for Dif l:

Dif l[(�1; �1); (S
0
22; T

0
22)] = �min(Zl); (4.39)

where

Zl =

"
�1 
 In�1 �1
 S022
�1 
 In�1 �1
 T 022

#
; (4.40)

and Zl is a 2(n � 1) � 2(n � 1) matrix. Dif l associated with (�1; �1) and its conjugate
(�2; �2) have the same value.
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In contrary to the standard eigenvalue problem [3], there is no simple and inexpensive
trick to stay in real arithmetic and perform a one{normed{based estimate of kZl�1k2. The
LU factorization of Zl may give L and U with all entries having non{zero imaginary parts.
Accordingly, the cost for doing the estimation of Difl (in real arithmetic) is similar to the
cost for doing it entirely in complex arithmetic. From the de�nition of Dif l it is possible to
show the following two inequalities:

�min(Zl) � Dif l[(�1; �1); (�2; �2)] = �min

 "
�1 ��2
�1 ��2

#!
� d1; (4.41)

and

�min(Zl) � max(1;

����12
����)Difl[(S11; T11); (S22; T22)] � d2; (4.42)

where the Sii and Tii blocks are from the generalized real Schur form. Now, we choose
min(d1; d2) as our estimate for Difl = �min(Zl). This estimate can be weaker than the
estimate computed in complex arithmetic, but is normally a su�ciently good estimate. We
report results for both the real and complex estimators in Section 6.1.3 for a selection of
problems. If �1 and ��1 are close but well{separated from the rest of the spectrum, then
d1 is a good estimate of �min(Zl). Whether d2 is a good estimate to �min(Zl) will mainly
depend on the size of (S012; T

0
12) in (4.38) (i.e. the \departure from block{diagonality" of

the generalized Schur form).

5 Outline of the Software

Following the LAPACK conventions and standards [1], we have developed Fortran 77 rou-
tines that perform the following computations for a regular matrix pair (A;B)(in generalized
Schur form):

� reorder eigenvalues (diagonal blocks) in the generalized Schur form (routines TGEXC

and TGEX2),

� compute (left and right) deating subspaces with speci�ed eigenvalues (routine TGSEN),

� estimate condition numbers for speci�ed eigenvalues (or a cluster of eigenvalues) and
associated eigenvectors or deating subspaces (routines TGSNA, TGSEN), and compute
residual{based approximate error bounds for a pair of deating subspaces (routine
GSRBB).

Following the LAPACK conventions for naming, in YYZZZ stands for S(ingle), D(ouble),
C(omplex) or Z (Double complex). Routines for all four data types are available. In the
following, we describe these top{level computational routines in some detail, while the aux-
iliary routines are just mentioned briey. The software uses LAPACK routines to compute
machine dependent thresholds, generalized Schur forms of matrix pairs, eigenvalues and
eigenvectors, matrix factorizations (QR and RQ), matrix norms, and to copy matrices,
perform column{ and row{swapping and so on. BLAS routines are used to perform ba-
sic linear algebra operations such as matrix{matrix (Level 3), matrix{vector (Level 2) and
vector (Level 1) operations.
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5.1 Reordering of Diagonal Blocks

TGEXC reorders the diagonal blocks of (A;B) in generalized Schur form. The reordering
is speci�ed by the parameters IFST and ILST. The diagonal block with row index IFST is
moved to row ILST by a sequence of transpositions of adjacent blocks. If IFST (on entry)
pointed to the second row of a 2 � 2 block, it is changed to point to the �rst row. ILST

always points to the �rst row of the block in its �nal position, which may di�er from its
input value by +1 or �1. Each swap in the reordering is performed with a call to TGEX2

(see below), and optionally, the matrices of generalized Schur vectors Q and Z are updated
with the orthogonal (unitary) equivalence transformations performed. INFO reports if the
reordering was successful or if any swap was rejected due to ill-conditioning. The calling
sequence and the leading comment lines of DTGEXC are listed in Appendix A.

TGEX2 implements a direct algorithm with guaranteed backward stability for swapping
two adjacent diagonal blocks (A11; B11) and (A22; B22) of a matrix pair (A;B) in generalized
Schur form, where the diagonal blocks are of size N1� N1 and N2� N2, respectively. In the
real case N1 and N2 are 1 or 2. If at least one of them is 2, method 2 in Section 3.2 is
used to perform the swapping and stability tests. If both eigenvalues are real, N1 = N2 = 1
and the swapping is performed using (orthogonal) Givens rotations [30]. In the complex
case we perform all reordering with (unitary) Givens rotations. If the problem is too ill{
conditioned (i.e. the swap does not pass the stability tests), the swap is rejected. As for
TGEXC, this information is reported on exit by the parameter INFO. The user speci�es the
index of the �rst block (A11; B11) in parameter J1. Optionally, the routine also accumulates
the orthogonal (unitary) equivalence transformation in Q and Z. The calling sequence and
the leading comment lines of DTGEX2 are listed in Appendix B.

5.2 Computing Deating Subspaces with Speci�ed Eigenvalues

TGSEN computes (left and right) deating subspaces associated with some speci�ed eigen-
values of (A;B) in generalized Schur form. Using TGEXC, (A;B) is reordered so that a
selected cluster of M eigenvalues appears in the leading M � M diagonal blocks of A and B.
The logical array SELECT speci�es the eigenvalues in the cluster, and thereby the value of
M. In the real case, if an eigenvalue that belongs to a complex conjugate pair is selected,
then by default its conjugate will also belong to the selected cluster (which conforms to the
standard eigenvalue problem in LAPACK). Optionally, the matrices of generalized Schur
vectors Q and Z are updated with the orthogonal (unitary) equivalence transformations
performed. Then, the leading M columns of Q and Z form orthonormal (unitary) bases of
the associated left and right deating subspaces. By calling the LAPACK routine GEGV,
TGSEN also computes the generalized eigenvalue pairs (�i; �i) for i = 1 : n , where �i is a
complex number and �i is a real number. In the real case, real and imaginary parts of �i are
reported in ALPHAR(i) and ALPHAI(i), respectively, and �i in BETA(i). In the complex case,
they are reported in the complex arrays ALPHA and BETA. INFO reports if the reordering was
successful or if any swap was rejected due to ill-conditioning. The calling sequence and the
leading comment lines of DTGSEN are listed in Appendix C.
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5.3 Condition Estimation and Approximate Error Bounds

Optionally, TGSEN also computes estimates of quantities (condition numbers) that ap-
pear in the error bounds summarized in tables 4.1 and 4.2. These are the reciprocal
values of the left and right projection norms p and q (de�ned in (4.14)), and estimates
of the separation between two matrix pairs de�ned by Difu[(A11; B11); (A22; B22)] (4.16)
and Dif l[(A11; B11); (A22; B22)] (4.17). The reciprocal values of p and q are reported in
PL and PR, respectively, and estimates of Difu and Dif l in DIF(1) and DIF(2), respec-
tively. The functionality obtained from TGSEN is speci�ed by setting the parameter IJOB,
which includes the choice of estimator for Difu and Dif l (one{normed{based or Frobenius
normed{based).

TGSNA estimates the reciprocal condition numbers for speci�ed eigenvalues and eigen-
vectors of a matrix pair (A;B) in generalized Schur form. The logical array SELECT speci�es
the M eigenpairs (all or a subset) for which condition numbers are required. The reciprocal
values of estimates for the eigenvalue condition numbers S(�) (4.32) are reported in the
array S and the corresponding reciprocal values of (Frobenius normed{based) estimates for
the eigenvector condition numbers Dif l are reported in the array DIF. The calling sequence
and the leading comment lines of DTGSNA are listed in Appendix D.

GSRBB computes an algorithm{independent residual{based error bound for a pair (left
and right) deating subspaces of a matrix pair (C;D) = QH(A;B)Z, where Q and Z

transform the original matrix pair (A;B) to generalized Schur canonical form such that the
M-by-M (1,1){block of (C;D) holds a selected cluster of eigenvalues. Optionally, a (Frobenius
normed{based) estimate of Dif l[(C11; C11); (D22; D22)] is reported in DIF. An estimate of
the bound(s) (4.29), (4.30) is reported in RBB, and an estimate on �, which should be less
than 1, is reported in CNDTN. RRES is the norm of the backward perturbation kHoptk (4.27)
associated with the computed pair of deating subspaces (i.e. the �rst M columns of Q and
Z). INFO is set to 1 if CNDTN � 1. The calling sequence and the leading comment lines of
DGSRBB are listed in Appendix E.

Notice, that it is only in TGSEN where the user has the option to choose between one{
normed{based or Frobenius normed{based estimates of Difu and Dif l. The estimation of
Dif l for eigenvectors in TGSNA and for deating subspaces in GSRBB make use of the less
expensive but equally reliable Frobenius normed{based estimator (see Section 4.4).

6 Computational Experiments

We have performed an extensive testing of our software on problems ranging from well{
conditioned to extremely ill{conditioned. In the following we report detailed results from
a selection of test problems as well as a summary of results from the test programs. All
results presented in the coming sections are computed on a Sun SPARC station 2 in double
precision real (and complex) arithmetic with unit roundo� � = EPS � 2.2D-16.

6.1 Accuracy and Reliability Results

We have chosen to illustrate the stability and accuracy of our software for a selection of
problems \tagged" from 1 to 23, where the basic operation is a swapping of two 2�2 blocks
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in a 4� 4 matrix pair (A;B) in generalized real Schur form

A =

"
A11 A12

0 A22

#
; B =

"
B11 B12

0 B22

#
:

The stability tests guarantees that the swapping of two diagonal blocks at most results in
O(�k(A;B)kF) changes in the original matrix pair. In certain (ill{conditioned) cases this
perturbation is enough to change individual eigenvalues a lot (e.g., a real multiple eigenvalue
� of multiplicity k might spread around in a circle in the complex plane with center � and
radius O(�1=k)). However, for well{conditioned or only moderately ill{conditioned cases
the change of the eigenvalues is an adequate measure on the reliability and accuracy of a
reordering method. Besides, comparing di�erent reordering methods (including the variants
discussed in Section 3.2 and the QZ{based method in [30]), we also report estimates of
condition numbers and error bounds for eigenvalues and eigenspaces.

6.1.1 Test Problems

The �rst group of problems (1, 6 and 11) are adopted from [2], and here we treat a standard
eigenvalue problem as a generalized one, making it more ill-conditioned. We choose A in
(A;B) as

0
BBB@

2 �87 �20000 1000
5 2 �20000 �1000

1 �11
37 1

1
CCCA ;

0
BBB@

1 �3 3576 4888
1 1 �88 �1440

1:0001 �3
1:0001 1:0001

1
CCCA ;

0
BBB@

1 �100 400 �1000
0:001 1 1200 �10

1:0001 �3
100 1:0001

1
CCCA ;

for problems 1, 6 and 11, respectively, and B = I4. Notice that all (1; 2){blocks of A have
quite large norm.

The following matrix pair (A;B) de�nes the second group of problems (2, 7 and 12):

A =

0
BBB@

1 1 7 5
�1 1 5 9

1 1
�1 1

1
CCCA ; B =

0
BBB@

�

�

1
1

1
CCCA ; (6.1)

with the eigenvalues �1;2 = ��1�i��1 and �3;4 = 1�i, which move along the lines starting at
origin and passing (1; i) and (1;�i), respectively. When 0 < � < 1 decreases, the eigenvalues
�1;2 move away from �3;4 along these lines. Notice that Difl = Difu is constant � 0:7E � 2
for problems 2, 7 and 12 corresponding to � = 1E�3, 1E�9 and 1E�15, respectively.

The following matrix pair (A;B) de�nes the third to �fth group of problems ((3, 8, 13),
(4, 9, 14) and (5, 10, 15)):

A =

0
BBB@

1 � x x

�� 1 0 x

1 + � �

�� 1 + �

1
CCCA ; B =

0
BBB@

1 0 x x

0 1 0 x

1 0
0 1

1
CCCA ;
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Table 6.1: Problem characteristics, chordal distances and reciprocal condition numbers

Tag � � x X (�1; �2) X (�1; �3) S(�1;2) S(�3;4) p�1 q�1 Difl
1 - - - 1E�1 3E�3 6E�4 6E�4 2E�05 2E�05 1E�02

6 - - - 7E�1 3E�4 1E�6 1E�6 4E�07 4E�07 3E�04

11 - - - 7E�1 3E�4 3E�8 3E�8 2E�08 2E�08 1E�07

2 1E�3 - - 1E�3 6E�1 1E+0 3E�1 1E�01 1E+00 7E�01

7 1E�9 - - 1E�9 6E�1 1E+0 3E�1 1E�01 1E+00 7E�01

12 1E�15 - - 1E�15 6E�1 1E+0 3E�1 1E�01 1E+00 7E�01

3 1E�3 1E+0 5E�1 7E�1 3E�4 4E�3 4E�3 2E�03 2E�03 4E�04

8 1E�3 1E+3 5E�1 2E�3 1E�9 5E�3 5E�3 4E�06 4E�06 7E�07

13 1E�3 1E+9 5E�1 2E�9 1E�21 5E�3 5E�3 8E�07 8E�07 8E�09

4 1E�1 1E�1 5E�1 1E�1 5E�2 3E�1 3E�1 2E�01 2E�01 5E�02

9 1E�4 1E�4 5E�1 1E�4 5E�5 3E�4 3E�4 2E�04 2E�04 5E�05

14 1E�9 1E�9 5E�1 1E�9 5E�10 3E�9 3E�9 2E�09 2E�09 5E�10

5 1E�5 1E�5 0 1E�5 5E�6 1E+0 1E+0 1E+00 1E+00 5E�06

10 1E�5 1E�5 1E+2 1E�5 5E�6 2E�7 2E�7 8E�08 8E�08 5E�06

15 1E�5 1E�5 1E+4 1E�5 5E�6 2E�9 2E�9 8E�10 8E�10 5E�06

16 1E�3 - - 0 1E�3 3E�22 1E�9 5E�10 5E�10 4E�10

17 1E�6 - - 0 1E�6 2E�29 1E�18 5E�19 5E�19 2E�16

18 1E�3 - - 2E�7 1E�3 1E�13 1E�9 5E�10 5E�10 4E�10

19 1E�6 - - 1E�7 1E�6 8E�20 1E�18 9E�16 9E�16 5E�18

20 1E�3 - - 0 1E�3 3E�16 3E�16 2E�06 2E�06 4E�10

21 1E�6 - - 0 1E�6 3E�16 3E�12 2E�12 2E�12 2E�16

22 1E�3 - - 1E�7 1E�3 7E�8 3E�6 2E�06 2E�06 4E�10

23 1E�6 - - 2E�7 1E�6 5E�16 3E�12 7E�12 7E�12 2E�16
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where x represents a uniformly distributed random number 2 (�x; x). The eigenvalues
of (A;B) are �1;2 = 1 � i� and �3;4 = 1 + � � i�. For problems 3, 8 and 13 we keep �

(= 1E�3) and x (= 0.5) constant and vary � (= 1, 1E+3 and 1E+9, respectively). This
implies that the eigenvalues move along the vertical lines through 1 and 1 + � and form
two separated clusters. For problems 4, 9 and 14 we keep x (= 0.5) constant and varies
� = � (= 1E�1, 1E�4 and 1E�9, respectively). For � small enough we just have one cluster
of close eigenvalues. For problems 5, 10 and 15 we keep � = � (= 1E�5) constant and
vary x (= 0, 1E+2 and 1E+4, respectively). Problem 5 corresponds to a homogeneous
generalized Sylvester equation and in this group of problems we only increase the departure
from "block-diagonality", while keeping one cluster of close eigenvalues.

Problems 16{23 are all modi�cations of a problem in [16], where (A;B) is de�ned as
[18]:

A11 =

 
1 �1
1 �1

!
; A22 = A11 � �

 
1 + � 0
0 �1

!
; B11 = B22 = I2:

For problems 16 � 19, col(A12) is equal to the left singular vector corresponding to �min(I2

A11�AT

22
I2) and B12 = I2. For problems 20 � 23, col(A12; B12) is equal to the left singular
vector corresponding to �min(Zu), where Zu is de�ned in (4.13). The parameter � = 1E�3
for problems 16, 18, 20 and 22 and � = 1E�6 for problems 17, 19, 21 and 23. The last two
problems in each group (i.e. 18, 19 and 22, 23) are orthogonally equivalent to the �rst two
(i.e. 16, 17 and 20, 21, respectively).

Table 6.1 shows problem characteristics, including the chordal distance between �1 and
�2 and �1 and �3, reciprocal values of the individual condition numbers for the two complex
conjugate pairs (computed by DTGSNA), reciprocal values of (left and right) projector norms
(computed by DTGSEN) and exact values of Difl (computed as �min(Zl)). Several of these
problems represent ill{conditioned eigenvalue problems, where both individual eigenvalues,
the cluster of eigenvalues in the (1; 1){block and associated pair of deating subspaces have
large condition numbers.

6.1.2 Comparing Di�erent Reordering Methods

We report results from the three method variants discussed in Section 3.2 and the QZ{
based Algorithm 590 [30]. Results from a prototype implementation in Matlab of Method
1 in Section 3.2 (the generic method) has been reported earlier [18]. Besides, the �rst and
the last two groups of problems above, results were reported for problems with �nite and
in�nite eigenvalues (simple as well as defective).

Let ( �A; �B) denote the computed matrix pair after the swapping of two diagonal blocks
and �Q; �Z be the computed transformation matrices that perform the requested reordering.
Now, we consider the following questions:

� How close is ( �Q �A �ZT ; �Q �B �ZT ) to the original matrix pair (A;B)?

� How nearly orthogonal are the computed transformation matrices �Q and �Z?

� How close are the eigenvalues of (Aii; Bii) (before the swapping) and ( �Aii; �Bii) (after
the swapping)?
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To answer the �rst two questions we measure the quantities

EA;B =
k(A� �Q �A �ZT ; B � �Q �B �ZT )kF

�k(A;B)kF
; (6.2)

k( �A21; �B21)kF ; (6.3)

EQ =
kIn � �QT �QkF

�
; EZ =

kIn � �ZT �ZkF
�

; (6.4)

where � is the relative machine precision. Ideally, EA;B and EQ; EZ should be of size O(1)
and the norms of the (2; 1)-blocks (6.3) should be of size O(�).

In tables 7.1, 7.2, 7.4 and 7.5 we display these quantities and the absolute backward error
k(E; F )kF � k(A� �Q �A �ZT ; B� �Q �B �ZT )kF for Method 1, Method 2, Method 3 and Algorithm
590, respectively. In summary, Method 3 and Algorithm 590 (which both are based on QZ

iterations) perform the swapping in all cases with small backward errors in (A;B). The
direct methods 1 and 2 reject the swaps for problems 18, 19, 22 and 23. Moreover, Method
2 rejects the swap for problem 13. In Table 7.3 we show computed stability test values and
tolerances. We accept a swap if and only if both the weak and the strong stability test
values are smaller than tol1 = tol2 (see Section 3.2). If a swap is rejected due to (severe)
ill{conditioning we can still impose a swap by increasing the tolerances in the stability tests,
which is done for methods 1 and 2 to get the results for the \rejected swaps" in tables 7.1
and 7.2.

To answer the last question we display computed eigenvalues after the reordering. Num-
bers in bold font show the absolute error in computed eigenvalues. Table 6.2 and Table
6.3 illustrate the well{known fact that small backward errors do not necessarily imply small
errors in the computed eigenvalues. Here the direct Method 2 produces much more accu-
rate eigenvalues than Algorithm 590. For these examples Method 1 and Method 2 produce
exactly the same eigenvalues but this is not always the case as we will see later.

Table 6.2: Eigenvalues after reordering for problems 1, 6 and 11
Tag Alg. 590 { Real parts Alg. 590 { Imaginary parts

1 0.1000000000637105E+01 � 0.2017424100339241E+02

0.1999999999360595E+01 � 0.2085665361375716E+02

6 0.1000999999900501E+01 � 0.1732916616366925E+01

0.1000000000099329E+01 � 0.1732050807522568E+01

11 0.1000998004480817E+01 � 0.1000004238589241E+01

0.1000001995519146E+01 �0.9999957594733729E+00

Tag Method 2 { Real parts Method 2 { Imaginary parts

1 0.1000000000000001E+01 � 0.2017424100183201E+02

0.2000000000000000E+01 � 0.2085665361461420E+02

6 0.1001000000000000E+01 � 0.1732916616574496E+01

0.9999999999999999E+00 � 0.1732050807568877E+01

11 0.1000999999999995E+01 � 0.1000000000000186E+01

0.9999999999999991E+00 � 0.9999999999999453E+00
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Table 6.3: Eigenvalues after reordering for problems 5, 10 and 15
Tag Alg. 590 { Real parts Alg. 590 { Imaginary parts

5 0.1000010000000000E+01 � 0.1000000000006551E-04

0.1000000000000001E+01 � 0.9999999999996121E-05

10 0.1000010015362113E+01 � 0.9986863986519929E-05

0.9999999846379060E+00 � 0.1002579812190853E-04

15 0.1000063691043548E+01 �0.0000000000000000E+00

0.1000011414827676E+01 � 0.1394322538135408E-04

Tag Method 2 { Real parts Method 2 { Imaginary parts

5 0.1000010000000000E+01 � 0.1000000000000000E-04

0.1000000000000000E+01 � 0.1000000000000000E-04

10 0.1000010000000000E+01 � 0.9999999999295905E-05

0.9999999999999998E+00 � 0.1000000000003913E-04

15 0.1000010000000000E+01 � 0.9999999999775261E-05

0.1000000000000001E+01 � 0.1000000000094131E-04

Table 6.4: Eigenvalues after reordering for problem 12
Method Real part Imaginary part

590 0.9999999999999998E+00 � 0.9999999999999994E+00

0.1000005074603372E+11 � 0.9999999999642134E+10

3 0.9999999999998981E+00 � 0.9999999999999978E+00

0.1000000000000006E+11 � 0.9999999999999947E+10

2 0.9999999999998981E+00 � 0.9999999999999993E+00

B = QR 0.1000000000000003E+11 � 0.9999999999999968E+10

1 0.9999999999998976E+00 � 0.9999999999999988E+00

0.9999917788454498E+10 � 0.1000004769348030E+11
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In Table 6.4 we show that Method 2 and Method 3 compute the most accurate eigenval-
ues for problem 12, and are superior to Method 1 and Algorithm 590. Moreover, we have
not found any example where Method 1 preserves eigenvalues better than Method 2.

Notice that in all cases where Method 2 rejected a swap (except problem 13), Algorithm
590 produced eigenvalues with no accuracy at all (as all methods did when a rejected
swap was imposed!). For problem 13, Algorithm 590 produced eigenvalues to half machine
precision after the reordering. On the other hand, if SMIN, the threshold for checking non{
zero diagonal entries in the LU factorization routine DGELUF in the generalized Sylvester
solver (see [19]) is set to the relative machine precision � instead of �kZkM (where kZkM
is the modulus of the largest element in the matrix to factorize), Methods 1{3 perform the
swap of the eigenvalues to almost full machine precision. These results are \tagged" 13* in
tables 7.1, 7.2, 7.3 and 7.6.

6.1.3 Results from Condition Estimation and Error Bounds

In Table 6.1 we reported some condition estimation results, namely reciprocal values of the
individual condition numbers for the two complex conjugate pairs (computed by DTGSNA)
and reciprocal values of (left and right) projector norms (computed by DTGSEN). The exact
values of Dif l = Difu (computed as �min(Zl)) were also displayed. In Table 7.6 we display
Difu before and after the reordering for our selection of problems. Moreover, we show the
ratios Difu/DIF(1)-F and Difu/DIF(1)-1, where DIF(1)-F and DIF(1)-1 are the Frobenius
normed{based and one{normed{based estimates of Difu, respectively. We see that 20 ex-
amples are within a factor 10 and the remaining 3 examples are within a factor 100 of the
exact value of Difu. In the last two columns we report estimates of the reciprocal values
of Dif l, the condition number for the individual eigenvectors corresponding to the complex
conjugate pair �1;2 computed by DTGSNA and ZTGSNA, respectively.

For a more complete comparison between our Difx-estimators (x = l; u) including accu-
racy, performance and reliability results we refer to [19]. Moreover, estimates of condition
numbers and error bounds are also checked by the test programs discussed in the next
section.

6.2 A Summary of the Results from the Test Programs

We have developed two test programs CHK3 and CHK4 for testing and veri�cation of TGSEN

and GSRBB, and TGSNA, respectively.
The test program CHK3 veri�es that the backward error is small, the transformation

matrices �Q and �Z that performed the reordering are orthogonal (unitary), the estimated
values DIF(1:2) do not di�er too much from the true values of Difu and Dif l, respectively,
the chordal distance between \the same" eigenvalues before and after the reordering is small,
and that the norm of the (2; 1){blocks of the reordered pencil is small. The scheme is to
initialize A11; A22; B11; B22; R and L and they de�ne the (1; 2){blocks A12 and B12 (as in
(4.12)). The program reorders all eigenvalues in (A22; B22) to the (1; 1){block of the matrix
pair and checks if everything went well.

The test program CHK4 veri�es that the computed eigenvalue and eigenvector error
bounds hold. This is accomplished by using pencils for which the exact eigenvalues and
eigenvectors are known.
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6.2.1 Test problems for CHK3

The test problems for CHK3 are chosen from �ve di�erent types, generated as follows. The
size n of a problem is chosen � 10 and m = 1; 2; : : : ; 9;n � m = 1; : : : ; 10 � m), where
(A11; B11) are m�m and (A22; B22) are (n�m)� (n�m). Note that Type 1 corresponds
to a standard eigenvalue problem but the others are regular generalized eigenvalue problems.

Type 1: Upper triangular problem adapted from [31]: A11 = Jm(1;�1); B11 = Im and
A22 = Jn�m(1 � �; 1); B22 = In�m, where Jk(d; s) denotes a Jordan block of dimension
k with d and s as diagonal and superdiagonal elements, respectively. In our tests we use
� =

p
EPS, and 1=

p
EPS. For 0 < � < 1, the size of Dif is O(�n�1). The entries in L = R

are chosen as rij = 20(0:5� sin(i=j)); where i = 1; : : : ; m and j = 1; : : : ; n.
Type 2: Upper triangular problem with

aij = 2(0:5� sin(i)); bij = 2(0:5� sin(i � j)); i = 1; : : : ; m; j = i; : : : ; m:

aij = 2(0:5� sin(i+ j)); bij = 2(0:5� sin(j)); i = m+ 1; : : : ; n�m; j = i; : : : ; n�m:

rij = 20(0:5� sin(i � j)); lij = 20(0:5� sin(i+ j)); i = 1; : : : ; m; j = 1; : : : ; n�m:

Type 3: Quasi upper triangular problem, where the entries in A;B;R and L at �rst are
chosen as for Type 2. Then each second diagonal block in A11 and each third diagonal block
in A22 are made 2� 2 by setting ak+1;k+1 = akk and ak+1;k = � sin(ak;k+1) for appropriate
values of k.

Type 4: Dense problem at block level, with

aij = 20(0:5� sin(i � j)); bij = 2(0:5� sin(i+ j)); i = 1; : : : ; m; j = 1; : : : ; m:

aij = 20(0:5�sin(i+j)); bij = 2(0:5�sin(i�j)); i = m+1; : : : ; n�m; j = m+1; : : : ; n�m:

rij = 2(0:5� sin(i=j)); lij = 20(0:5� sin(i � j)); i = 1; : : : ; m; j = 1; : : : ; n�m:

Type 5: (A;B) has potentially close or common eigenvalues, and large or very large
departure from block diagonality. First A11 is chosen as the m �m leading submatrix of
A1, where

A1 =

0
BBBBBBBBBBBBBB@

1 �

�� 1
1 + � �

�� 1 + �

� 1
�1 �

�� 1
�1 ��

1

1
CCCCCCCCCCCCCCA

;
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then A22 is chosen as the (n�m)� (n�m) leading submatrix of A2, where

A2 =

0
BBBBBBBBBBBBBB@

�1 �

�� �1
1� � �

�� 1� �

� 1 + �

�1� � �

�� 1 + �

�1� � ��
1� �

1
CCCCCCCCCCCCCCA

:

B11 and B22 are chosen as the identity matrices Im and In�m, respectively. The values
of � = 20=� and � = �1:5=� are used for � =

p
EPS and 1=

p
EPS. The entries in R and

L are chosen as rij = �(0:5 � sin(i � j))=20 and lij = �(0:5 � sin(i + j))=20; where i =
1; : : : ; m and j = 1; : : : ; n �m. All integer values m;n�m � 0 such that 2 � n � 10 are
chosen.

6.2.2 A Summary of the Results from CHK3

The results from the real and complex test runs were similar, only that 60 of the 2700
problems had to be omitted in the complex case because the LAPACK routine CGEGS

did not manage to compute the generalized Schur form for these examples. We run both
programs on two di�erent target machines, both supporting IEEE oating point standards.
A Sun SPARC station only using non{optimized BLAS, and an IBM RS6000/530, where
we used the ESSL library for BLAS calls. All programs were compiled with the -O option.
The relative machine precision EPS is � 2:22D � 16 for both machines. In the following,
we always start to list a number for Sun SPARC followed by the corresponding number (in
parentheses) for IBM RS6000/530.

A total number of 2700 test con�gurations (including di�erent functionality tests for
some problems) are generated in DCHK3 and in total we do around 20790 adjacent swaps.
The minimum and maximum values of the backward error were 0.458D-19 (0.458D-19)
and 0.193D-14 (0.169D-14), respectively. Minimum and maximum values of kIn � �QT �QkF
were 0.0 (0.0) and 0.375D-14 (0.326D-14), respectively. Minimum and maximum values
of kIn � �ZT �ZkF were 0.0 (0.0) and 0.335D-14 (0.289D-14), respectively. These residuals
were larger than 10 � EPS in 120 (114) and 144 (78) cases out of 2700, respectively. The
estimates of Difu and Dif l di�ered more than a factor 100 from true values in 170 (184)
cases out of 1800, respectively. The maximum value of Difx is 1.41 and the corresponding
estimate DIF(*) was 1.00 for both machines. The minimum value of Difx is 0.210D-19
(0.480D-19) and corresponding estimate DIF(*) was computed as 0.774D-19 (0.774D-19).
However, if Difx is close to machine epsilon there exists cases where DIF(*) reports an even
smaller value (but signals the ill{conditioning correctly). The minimum and maximum
values of k(A21; B21kF (i.e. RRES) were 0.0 and 0.360D-6 for both machines and for the
same problem. RRES was larger than EPSk(A;B)kF in 18 (0) cases out of 1350, respectively.
The chordal distance, X (�before; �after) was larger than EPSk(A;B)kF in 192 (192) cases
out of 39600 but never larger than 0.226D-6 (0.266D-6), for the two machines. Minimum
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and maximum values of the residual based bound on the acute angle between exact and
computed deating subspaces, RBB, were 0.0 (0.0) and 0.184D-6 (0.184D-6), respectively.
The maximum value occurred for the very last problem (i.e. Type 5 with m = 9, n�m = 1
and � = 1=

p
(EPS)). Notice that the condition � < 1 in (4.29) was not ful�lled in 794 (794)

cases out of 1350, showing that it is stronger than necessary (since all error bounds gave
meaningful information).

We also substituted the sin-function in all problems and � and � in problems of Type 5
with a uniformly random number 2 (0; 1), giving similar results as reported above.

6.2.3 Test Problems and a Summary of the Results from CHK4

The program CHK4 for testing TGSNA checks how much the estimates S of the reciprocal
value for the eigenvalue condition number S(�) (4.32) di�er from the ones computed by
using the exact (known) eigenvectors. The program also checks how much the estimates
DIF of the reciprocal value for the eigenvector condition number Dif l di�er from the exact
computed values �min(Zl). In the tests two types of matrix pairs (A;B) � Y �H(Da; Db)X

�1

are used:
Type 1:

Da =

0
BBBBB@

1 + �

2 + �

3 + �

4 + �

5 + �

1
CCCCCA :

Type 2:

Da =

0
BBBBB@

1 �1
1 1

1
1 + � 1 + �

�1� � 1 + �

1
CCCCCA :

For both types Db = I5 and the exact left and right eigenvectors of (A;B) are the rows and
columns of

Y H =

0
BBBBB@

1 �y y �y
1 �y y �y

1
1

1

1
CCCCCA ; and X =

0
BBBBB@

1 �x �x x

1 x �x �x
1

1
1

1
CCCCCA ;

respectively, where �; �; x and y are given all values independently of each other from
fEPS1=4; 0:1; 1; 10;EPS�1=4g. So, a total of 1250 di�erent pencils (A;B) are generated in the
tests. Note that B 6= I5 in (A;B) = Y �H(Da; Db)X

�1.
In summary, the test results are good. The ratio between S and the corresponding

S(�) computed by using the exact (known) eigenvectors is 1.0 up to 8 decimal digits for all
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examples. The reciprocal values for the eigenvector condition numbers Difl di�er less than
a factor 100 from the exact computed value �min(Zl) in about 90%; 94%; 99% and 100% of
the 2500 cases for the four di�erent data types D, S, Z and C, respectively. This veri�es that
in real arithmetic TGSNA more often computes a weaker estimate of Difl associated with
complex conjugate pairs of eigenvalues than in complex arithmetic (see Section 4.4.2).

7 Some Conclusions

Our error analysis of the direct methods and computational experiments (presented in
Section 6) give us support to state the following conclusions about our algorithms and
software.

� Accuracy and reliability results comparing di�erent reordering methods (Method 1,
Method 2 and Method 3 discussed in Section 3.2 and Algorithm 590 [30]) show that
Method 2 is to prefer. It is a direct method which is very reliable and it also computes
the most accurate eigenvalues of the four methods. Method 2 is implemented in the
software presented in Section 5.

� The numerical stability is guaranteed and controlled by computing the size of the
backward error and rejecting the swap if it exceeds a certain threshold.

As mentioned earlier, the generalized eigenvalue problem (as well as the standard
unsymmetric problem) is potentially ill{conditioned in the sense that eigenvalues and
eigenspaces may change drastically even under small perturbations of the data. If
we insist on performing a reordering of (S11; T11) and (S22; T22) for an ill{conditioned
problem, we may destroy any spectral information in A � �B. Close eigenvalues or
small separation between (S11; T11) and (S22; T22) are not enough for rejecting a swap.
It is the sensitivity of the eigenspaces that matters most, which in turn is perfectly
signaled by the norm of the solutions L and R to the associated generalized Sylvester
equation for the direct methods discussed here.

� Qualitative results from our test software on both well{conditioned and ill{conditioned
problems, including estimates of reciprocal values of condition numbers for individual
eigenvalues, a cluster of eigenvalues, (left and right) eigenvectors, and a pair of (left
and right) deating subspaces, show the reliability and robustness of the algorithms
and software presented.
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Table 7.1: Computed errors after the reordering using Method 1
Tag kA21; B21kF EA;B EQ EZ k(E;F )kF
1 2E�18 4E+00 4E+00 3E+00 3E�11

6 1E�21 3E+00 3E+00 5E+00 4E�12

11 4E�19 2E+00 2E+00 2E+00 5E�13

2 4E�16 2E+00 8E+00 3E+00 7E�15

7 5E�16 2E+00 3E+00 2E+00 5E�15

12 2E�15 3E+00 7E+00 5E+00 7E�14

3 2E�18 3E+00 5E+00 3E+00 2E�15

8 2E�18 3E+00 4E+00 5E+00 2E�12

13 2E�13 3E+00 5E+00 2E+00 1E�06

13* 1E�18 2E+00 2E+00 3E+00 9E�07

4 8E�16 3E+00 5E+00 4E+00 2E�15

9 7E�19 3E+00 6E+00 2E+00 2E�15

14 8E�24 2E+00 3E+00 4E+00 1E�15

5 0E+00 0E+00 0E+00 0E+00 0E+00

10 4E�22 1E+00 3E+00 2E+00 5E�14

15 5E�24 3E+00 7E+00 3E+00 1E�11

16 5E�19 3E+00 6E+00 2E+00 2E�15

17 1E�21 1E+00 2E+00 2E+00 1E�15

18 5E�14 6E+01 4E+00 2E+00 5E�14

19 3E�06 4E+09 6E+00 2E+00 3E�06

20 3E�16 3E+00 7E+00 3E+00 2E�15

21 3E�16 3E+00 2E+00 4E+00 2E�15

22 3E�11 4E+04 4E+00 2E+00 3E�11

23 2E�10 3E+05 4E+00 2E+00 2E�10
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Table 7.2: Computed errors after the reordering using Method 2
Tag kA21; B21kF EA;B EQ EZ k(E;F )kF
1 3E�19 1E+00 3E+00 3E+00 1E�11

6 6E�22 3E+00 3E+00 5E+00 4E�12

11 2E�20 2E+00 3E+00 4E+00 6E�13

2 1E�15 2E+00 8E+00 2E+00 7E�15

7 5E�16 2E+00 9E�01 1E+00 6E�15

12 1E�15 3E+00 6E+00 3E+00 7E�14

3 2E�18 3E+00 5E+00 3E+00 2E�15

8 1E�18 3E+00 4E+00 5E+00 2E�12

13 1E�04 3E+02 4E+00 2E+00 1E�04

13* 1E�18 2E+00 2E+00 3E+00 9E�07

4 3E�16 3E+00 4E+00 4E+00 2E�15

9 7E�19 2E+00 4E+00 2E+00 2E�15

14 6E�24 2E+00 3E+00 4E+00 1E�15

5 0E+00 0E+00 0E+00 0E+00 0E+00

10 4E�22 1E+00 3E+00 2E+00 5E�14

15 2E�24 3E+00 7E+00 3E+00 1E�11

16 6E�19 4E+00 6E+00 2E+00 3E�15

17 9E�22 1E+00 2E+00 2E+00 1E�15

18 5E�14 6E+01 3E+00 2E+00 5E�14

19 3E�06 4E+09 5E+00 1E+00 3E�06

20 1E�16 3E+00 6E+00 4E+00 2E�15

21 2E�16 3E+00 2E+00 5E+00 3E�15

22 6E�12 7E+03 3E+00 3E+00 6E�12

23 2E�10 3E+05 2E+00 2E+00 2E�10
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Table 7.3: Method 2 { Computed stability test values and tolerances
Tag Weak(B = QR) Weak(B = RQ) Strong tol1;2
1 8.17E�19 3.16E�19 8.53E�12 7.02E�11

6 7.03E�22 1.05E�21 3.03E�12 1.38E�11

11 2.41E�19 2.55E�21 6.544E�13 3.59E�12

2 9.75E�16 3.88E�13 6.56E�15 3.06E�14

7 3.19E�16 4.75E�08 3.57E�15 3.06E�14

12 1.58E�15 3.99E�6 4.92E�14 3.06E�14

3 6.97E�19 7.27E�19 1.60E�15 7.94E�15

8 5.26E�19 8.56E�19 9.49E�13 4.44E�12

13 1.20E�04 1.20E�04 1.20E�04 4.44E�06

13* 6.09E�19 9.02E�19 7.64E�07 4.44E�06

4 1.41E�16 2.20E�16 1.45E�15 6.75E�15

9 1.33E�19 1.33E�19 1.36E�15 6.58E�15

14 5.91E�25 5.91E�25 8.83E�16 6.58E�15

5 0.00E+00 0.00E+00 0.00E+00 6.28E�15

10 2.38E�22 2.38E�22 5.97E�14 3.93E�13

15 1.41E�24 1.41E�24 1.09E�11 3.93E�11

16 7.82E�17 7.85E�17 1.25E�15 6.28E�15

17 7.85E�17 7.85E�17 7.71E�16 6.28E�15

18 4.62E�14 4.62E�14 4.62E�14 8.01E�15

19 3.05E�06 3.05E�06 3.05E�06 8.01E�15

20 2.94E�16 4.14E�16 1.88E�15 5.91E�15

21 1.95E�16 4.22E�18 1.17E�15 5.88E�15

22 5.73E�12 5.79E�12 5.73E�12 8.01E�15

23 2.38E�10 2.38E�10 2.38E�10 8.01E�15
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Table 7.4: Computed errors after the reordering using Method 3
Tag kA21; B21kF EA;B EQ EZ k(E;F )kF
1 7E�19 5E+00 5E+00 3E+00 3E�11

6 4E�22 1E+00 6E+00 3E+00 1E�12

11 3E�20 3E+00 4E+00 3E+00 9E�13

2 5E�16 4E+00 8E+00 5E+00 1E�14

7 5E�16 9E�01 4E+00 1E+00 3E�15

12 1E�15 4E+00 4E+00 3E+00 1E�14

3 9E�19 3E+00 2E+00 5E+00 3E�15

8 9E�19 5E+00 6E+00 4E+00 2E�12

13 1E�07 4E+00 1E+01 4E+00 2E�06

4 2E�16 4E+00 7E+00 4E+00 3E�15

9 1E�18 2E+00 6E+00 3E+00 1E�15

14 5E�24 3E+00 5E+00 2E+00 2E�15

5 0E+00 0E+00 0E+00 0E+00 0E+00

10 5E�22 2E+00 4E+00 1E+00 8E�14

15 3E�24 4E+00 5E+00 2E+00 2E�11

16 1E�18 4E+00 7E+00 1E+00 3E�15

17 2E�16 2E+00 2E+00 3E+00 2E�15

18 3E�16 2E+00 2E+00 3E+00 2E�15

19 2E�18 5E+00 8E+00 1E+01 4E�15

20 9E�17 4E+00 5E+00 5E+00 3E�15

21 2E�16 3E+00 4E+00 5E+00 3E�15

22 2E�16 3E+00 5E+00 2E+00 2E�15

23 4E�16 1E+01 2E+01 8E+00 8E�15
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Table 7.5: Computed errors after the reordering using Algorithm 590
Tag kA21; B21kF EA;B EQ EZ k(E;F )kF
1 2E�12 3E+00 5E+00 2E+00 2E�11

6 2E�13 2E+00 5E+00 3E+00 2E�12

11 2E�13 6E+00 1E+01 8E+00 2E�12

2 8E�16 5E+00 6E+00 4E+00 2E�14

7 1E�15 6E+00 5E+00 5E+00 2E�14

12 3E�15 7E+00 7E+00 3E+00 2E�14

3 2E�16 3E+00 4E+00 4E+00 2E�15

8 1E�13 2E+00 3E+00 3E+00 7E�13

13 4E�07 7E+00 6E+00 1E+01 3E�06

4 5E�16 3E+00 3E+00 4E+00 2E�15

9 3E�16 3E+00 4E+00 4E+00 2E�15

14 6E�16 3E+00 3E+00 3E+00 2E�15

5 3E�16 4E+00 6E+00 4E+00 2E�15

10 1E�14 3E+00 6E+00 4E+00 1E�13

15 2E�12 2E+00 1E+00 2E+00 8E�12

16 3E�19 2E+00 2E+00 3E+00 2E�15

17 3E�22 3E+00 3E+00 3E+00 2E�15

18 5E�16 4E+00 5E+00 5E+00 3E�15

19 5E�16 4E+00 6E+00 5E+00 3E�15

20 2E�16 1E+00 2E+00 1E+00 1E�15

21 1E�16 1E+00 2E+00 2E+00 1E�15

22 2E�16 3E+00 4E+00 3E+00 2E�15

23 4E�16 4E+01 4E+01 4E+01 3E�14
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Table 7.6: Method 2 { Some computed quantities before and after the reordering

Tag Difu-before Difu-after Difu/DIF(1)-F Difu/DIF(1)-1 Difl(DTGSNA) Difl(ZTGSNA)

1 1E�02 1E�02 0.57 1.90 3E�2 3E�4

6 3E�04 3E�06 0.63 1.30 4E�4 1E�6

11 1E�07 1E�07 0.96 1.20 2E�7 3E�6

2 7E�01 1E�01 0.52 1.00 1E�3 2E�3

7 7E�01 1E�01 0.52 1.00 1E�9 2E�9

12 7E�01 1E�02 0.52 1.00 1E�15 2E�15

3 4E�04 4E�04 0.87 1.60 7E�4 7E�4

8 7E�07 7E�07 0.71 1.40 1E�6 2E�6

13 8E�09 2E�07 0.73 1.50 1E�7 4E�7

13* 8E�09 2E�10 2E+02 4E+02 - -

4 5E�02 4E�03 0.35 1.30 9E�2 2E�2

9 5E�05 2E�06 0.19 1.10 9E�5 2E�8

14 5E�10 2E�10 0.19 1.10 0 0

5 5E�06 5E�06 0.55 1.40 9E�6 7E�6

10 5E�06 2E�07 0.19 1.10 9E�6 1E�12

15 5E�06 2E�07 0.19 1.10 9E�6 1E�14

16 4E�10 4E�10 0.35 1.40 3E�22 4E�22

17 2E�16 2E�17 20.00 79.00 3E�28 4E�28

18 4E�10 4E�10 0.42 1.60 6E�10 3E�13

19 5E�18 6E�16 0.35 1.40 8E�16 3E�19

20 4E�10 3E�06 0.71 1.50 3E�16 3E�16

21 2E�16 3E�12 0.71 1.50 3E�16 3E�16

22 4E�10 3E�06 0.71 1.50 2E�8 2E�7

23 2E�16 4E�17 44.00 100.00 1E�16 3E�16
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A Calling sequence DTGEXC

Here we display the parameter list and the leading comment lines of the double precision
routine DTGEXC.

SUBROUTINE DTGEXC(WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,

$ LDZ, IFST, ILST, WORK, LWORK, INFO )

*

IMPLICIT NONE

*

* --- (preliminary version) ---

* Bo Kagstrom and Peter Poromaa, Institute of Information Processing,

* Univ. of Umea, S-901 87 Sweden.

* Jan. 1994

*

* .. Scalar Arguments ..

LOGICAL WANTQ, WANTZ

INTEGER INFO, LDA, LDB, LDZ, LDQ, N, IFST, ILST,

$ LWORK

* ..

* .. Array Arguments ..

DOUBLE PRECISION Q( LDQ, * ), A( LDA, * ), B(LDB, *),

$ Z(LDZ, *), WORK( * )

* ..

*

* Purpose

* =======

*

* DTGEXC reorders the generalized real Schur decomposition of a real matrix pair,

* using an orthogonal equivalence transformation (A, B) = Q * (A, B) * Z',

* so that the diagonal block of (A, B) with row index IFST is moved

* to row ILST.

*

* (A, B) must be in generalized real Schur canonical form (as returned by

* DGEGS), i.e. A is block upper triangular with 1-by-1 and 2-by-2 diagonal

* blocks. B is upper triangular.

*

* Optionally, the matrices Q and Z of generalized Schur vectors are updated.

*

* Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)'

* Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)'

*

* References

* ==========

*

* [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the

* Generalized Real Schur Form of a Regular Matrix Pair (A, B), in

* M.S. Moonen et al (eds), Linear Algebra for Large Scale and

* Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.

*

* [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
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* Eigenvalues of a Regular Matrix Pair (A, B) and Condition

* Estimation: Theory, Algorithms and Software, Report UMINF - 94.04,

* Inst. of Information Processing, University of Umea, S-901 87 Umea,

* Sweden, Febrauary 1994. (also published as LAPACK Working Note xx)

*

* [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software for

* Solving the Generalized Sylvester Equation and Estimating the Separa-

* tion between Regular Matrix Pairs, Report UMINF - 93.23, Inst. of

* Information Processing, University of Umea, S-901 87 Umea, Sweden,

* November 1993.(also published as LAPACK Working Note xx)

*

* Arguments

* =========

*

* WANTQ (input) LOGICAL

* .TRUE. : update the left transformation matrix Q;

* .FALSE.: do not update Q.

*

* WANTZ (input) LOGICAL

* .TRUE. : update the right transformation matrix Z;

* .FALSE.: do not update Z.

*

* N (input) INTEGER

* The order of the matrices A and B. N >= 0.

*

* A, B (input/output) DOUBLE PRECISION arrays, dimensions (LDA(B),N)

* On entry, the matrix pair (A, B), in generalized real Schur

* canonical form.

* On exit, the updated matrix pair (A, B), again in generalized

* real Schur canonical form.

*

* LDA (input) INTEGER

* The leading dimension of the array A. LDA >= max(1,N).

*

* LDB (input) INTEGER

* The leading dimension of the array B. LDB >= max(1,N).

*

* Q (input/output) DOUBLE PRECISION array, dimension (LDZ,N)

* On entry, if WANTQ is .TRUE., the orthogonal matrix Q.

* On exit, if WANTQ is .TRUE., the updated matrix Q.

* If WANTQ is .FALSE., Q is not referenced.

*

* LDQ (input) INTEGER

* The leading dimension of the array Q.

* LDQ >= 1; and if WANTQ is .TRUE., LDQ >= N.

*

* Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)

* On entry, if WANTZ is .TRUE., the orthogonal matrix Z.

* On exit, if WANTZ is .TRUE., the updated matrix Z.

* If WANTZ is .FALSE., Z is not referenced.

*
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* LDZ (input) INTEGER

* The leading dimension of the array Z.

* LDZ >= 1; and if WANTZ is .TRUE., LDZ >= N.

*

* IFST (input/output) INTEGER

* ILST (input/output) INTEGER

* Specify the reordering of the diagonal blocks of (A, B).

* The block with row index IFST is moved to row ILST, by a

* sequence of transpositions between adjacent blocks.

* On exit, if IFST pointed on entry to the second row of

* a 2-by-2 block, it is changed to point to the first row;

* ILST always points to the first row of the block in its

* final position (which may differ from its input value by

* +1 or -1). 1 <= IFST, ILST <= N.

*

* WORK (workspace) DOUBLE PRECISION array, dimension (LWORK)

*

* LWORK (input) INTEGER

* The dimension of the array WORK. LWORK >= 4*N + 16.

*

* INFO (output) INTEGER

* 0: Successful exit.

* 1: The transformed matrix pair (A, B) would be too far from

* generalized Schur form; the problem is ill-conditioned.

* (A, B) may have been partially reordered, and ILST points

* to the first row of the current position of the block

* being moved.

* -k: The k:th argument had an illegal value. If k = 14

* WORK(1) will hold an appropriate value of LWORK.

*

B Calling sequence DTGEX2

Here we display the parameter list and the leading comment lines of the double precision
routine DTGEX2.

SUBROUTINE DTGEX2(WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,

$ LDZ, J1, N1, N2, WORK, LWORK, INFO )

*

IMPLICIT NONE

*

* --- (preliminary version) ---

* Bo Kagstrom and Peter Poromaa, Institute of Information Processing,

* Univ. of Umea, S-901 87 Sweden.

* Apr. 1994

*

* .. Scalar Arguments ..

LOGICAL WANTQ, WANTZ

INTEGER INFO, LDA, LDB, LDZ, LDQ, N, N1, N2,

$ LWORK, J1
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* ..

* .. Array Arguments ..

DOUBLE PRECISION Q( LDQ, * ), A( LDA, * ), B(LDB, *),

$ Z(LDZ, *), WORK( * )

* ..

*

* Purpose

* =======

*

* DTGEX2 swaps adjacent diagonal blocks (A11, B11) and (A22, B22)

* of size 1-by-1 or 2-by-2 in an upper (quasi) triangular matrix pair

* (A, B) by an orthogonal equivalence transformation.

*

* (A, B) must be in generalized real Schur canonical form (as returned by

* DGEGS), i.e. A is block upper triangular with 1-by-1 and 2-by-2 diagonal

* blocks. B is upper triangular.

*

* Optionally, the matrices Q and Z of generalized Schur vectors are updated.

*

* Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)'

* Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)'

*

* References

* ==========

*

* [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the

* Generalized Real Schur Form of a Regular Matrix Pair (A, B), in

* M.S. Moonen et al (eds), Linear Algebra for Large Scale and

* Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.

*

* [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified

* Eigenvalues of a Regular Matrix Pair (A, B) and Condition

* Estimation: Theory, Algorithms and Software, Report UMINF - 94.04,

* Inst. of Information Processing, University of Umea, S-901 87 Umea,

* Sweden, Febrauary 1994. (also published as LAPACK Working Note xx)

*

* Arguments

* =========

*

* WANTQ (input) LOGICAL

* .TRUE. : update the left transformation matrix Q;

* .FALSE.: do not update Q.

*

* WANTZ (input) LOGICAL

* .TRUE. : update the right transformation matrix Z;

* .FALSE.: do not update Z.

*

* N (input) INTEGER

* The order of the matrices A and B. N >= 0.

*

* A, B (input/output) DOUBLE PRECISION arrays, dimensions (LDA(B),N)
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* On entry, the matrix pair (A, B), in generalized real Schur

* canonical form.

* On exit, the updated matrix pair (A, B), again in generalized

* real Schur canonical form.

*

* LDA (input) INTEGER

* The leading dimension of the array A. LDA >= max(1,N).

*

* LDB (input) INTEGER

* The leading dimension of the array B. LDB >= max(1,N).

*

* Q (input/output) DOUBLE PRECISION array, dimension (LDZ,N)

* On entry, if WANTQ is .TRUE., the orthogonal matrix Q.

* On exit, if WANTQ is .TRUE., the updated matrix Q.

* If WANTQ is .FALSE., Q is not referenced.

*

* LDQ (input) INTEGER

* The leading dimension of the array Q.

* LDQ >= 1; and if WANTQ is .TRUE., LDQ >= N.

*

* Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)

* On entry, if WANTZ is .TRUE., the orthogonal matrix Z.

* On exit, if WANTZ is .TRUE., the updated matrix Z.

* If WANTZ is .FALSE., Z is not referenced.

*

* LDZ (input) INTEGER

* The leading dimension of the array Z.

* LDZ >= 1; and if WANTZ is .TRUE., LDZ >= N.

*

* J1 (input) INTEGER

* The index to the first block (A11, B11). 1 <= J1 <= N.

*

* N1 (input) INTEGER

* The order of the first block (A11, B11). N1 = 0, 1 or 2.

*

* N2 (input) INTEGER

* The order of the second block (A22, B22). N2 = 0, 1 or 2.

*

* WORK (workspace) DOUBLE PRECISION array, dimension LWORK.

*

* LWORK (input) INTEGER

* The dimension of the array WORK.

* LWORK >= MAX((N * (N2 + N1)), ((N2 + N1) * (N2 + N1) * 2))

*

* INFO (output) INTEGER

* 0: Successful exit

* 1: The transformed matrix (A, B) would be too far from

* Generalized Schur form; the blocks are not swapped

* and (A, B) and (Q, Z) are unchanged. Problem too

* ill-conditioned.

* -14: LWORK is to small. Appropriate value for LWORK is
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* returned in WORK(1).

*

C Calling sequence DTGSEN

Here we display the parameter list and the leading comment lines of the double precision
routine DTGSEN.

SUBROUTINE DTGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,

$ ALPHAR, ALPHAI, BETA,

$ Q, LDQ, Z, LDZ, M, PL, PR, DIF, WORK,

$ LWORK, IWORK, LIWORK, INFO )

*

IMPLICIT NONE

*

* --- (preliminary version) ---

* Bo Kagstrom and Peter Poromaa, Institute of Information Processing,

* Univ. of Umea, S-901 87 Sweden.

* Jan. 1994

*

* .. Scalar Arguments ..

LOGICAL WANTQ, WANTZ

INTEGER IJOB, N, LDA, LDB, LDQ, LDZ, LWORK, LIWORK, M,

$ INFO

DOUBLE PRECISION PL, PR

* ..

* .. Array Arguments ..

LOGICAL SELECT( * )

INTEGER IWORK( * )

DOUBLE PRECISION Q( LDQ, * ), A( LDA, * ), B(LDB, *),

$ Z(LDZ, *), ALPHAR(*), ALPHAI(*),

$ BETA(*), DIF(*), WORK(*)

* ..

*

* Purpose

* =======

*

* DTGSEN reorders the generalized real Schur decomposition of a real

* matrix pair (A, B) (in terms of an orthonormal equivalence trans-

* formation Q' * (A, B) * Z), so that a selected cluster of eigenvalues

* appears in the leading diagonal blocks of the upper quasi-triangular

* matrix A and and the upper triangular B. The leading columns of Q and Z

* form orthonormal bases of the corresponding left and right eigenspaces

* (deflating subspaces).

*

* DTGSEN also computes the generalized eigenvalues

*

* w(j) = (ALPHAR(j) + i*ALPHAI(j))/BETA(j)

*

* of the reordered matrix pair (A, B).
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*

* (A, B) must be in generalized real Schur canonical form (as returned by

* DGEGS), i.e. A is block upper triangular with 1-by-1 and 2-by-2 diagonal

* blocks. B is upper triangular.

*

* Optionally, the matrices Q and Z of generalized Schur vectors are updated.

*

* Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)'

* Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)'

*

* Optionally, the routine computes estimates of reciprocal condition numbers

* for eigenvalues and eigenspaces. These are Difu[(A11,B11), (A22,B22)]

* and Difl[(A11,B11), (A22,B22)], i.e. the separation(s) between the matrix

* pairs (A11, B11) and (A22,B22) that correspond to the selected cluster and

* the eigenvalues outside the cluster, respectively, and norms of "projections"

* onto left and right eigenspaces w.r.t. the selected cluster in the (1,1)-block.

*

* References

* ==========

*

* [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the

* Generalized Real Schur Form of a Regular Matrix Pair (A, B), in

* M.S. Moonen et al (eds), Linear Algebra for Large Scale and

* Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.

*

* [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified

* Eigenvalues of a Regular Matrix Pair (A, B) and Condition

* Estimation: Theory, Algorithms and Software, Report UMINF - 94.04,

* Inst. of Information Processing, University of Umea, S-901 87 Umea,

* Sweden, February 1994. (also published as LAPACK Working Note xx)

*

* [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software for

* Solving the Generalized Sylvester Equation and Estimating the Separa-

* tion between Regular Matrix Pairs, Report UMINF - 93.23, Inst. of

* Information Processing, University of Umea, S-901 87 Umea, Sweden,

* November 1993.(also published as LAPACK Working Note xx)

*

* Arguments

* =========

*

* IJOB (input) integer

* Specifies what functionality is to be obtained.

* 0 : Only reorder w.r.t. SELECT. No extras.

* 1 : Reciprocal of norms of "projections" onto left and right eigenspaces

* w.r.t. the selected cluster (PL and PR).

* 2 : Upper bounds on Difu and Difl. F-norm-based estimate (DIF(1:2)).

* 3 : Estimate of Difu and Difl. 1-norm-based estimate (DIF(1:2)).

* About 5 times as expensive as IJOB = 2.

* 4 : Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic-version to

* get it all.

* 5 : Compute PL, PR and DIF (i.e. 0, 1 and 3 above)
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*

* WANTQ (input) LOGICAL

* .TRUE. : update the left transformation matrix Q;

* .FALSE.: do not update Q.

*

* WANTZ (input) LOGICAL

* .TRUE. : update the right transformation matrix Z;

* .FALSE.: do not update Z.

*

* SELECT (input) LOGICAL array, dimension (N)

* SELECT specifies the eigenvalues in the selected cluster.

* To select a real eigenvalue w(j), SELECT(j) must be set to

* .TRUE.. To select a complex conjugate pair of eigenvalues

* w(j) and w(j+1), corresponding to a 2-by-2 diagonal block,

* either SELECT(j) or SELECT(j+1) or both must be set to

* .TRUE.; a complex conjugate pair of eigenvalues must be

* either both included in the cluster or both excluded.

*

* N (input) INTEGER

* The order of the matrices A and B. N >= 0.

*

* A (input/output) DOUBLE PRECISION array, dimension(LDA,N)

* On entry, the upper quasi-triangular matrix A, with (A, B) in

* generalized real Schur canonical form.

* On exit, A is overwritten by the reordered matrix A, again (A, B)

* in generalized real Schur canonical form, with the selected

* eigenvalues in the leading diagonal blocks.

*

* LDA (input) INTEGER

* The leading dimension of the array A. LDA >= max(1,N).

*

* B (input/output) DOUBLE PRECISION array, dimension(LDB,N)

* On entry, the upper triangular matrix B, with (A, B) in

* generalized real Schur canonical form.

* On exit, B is overwritten by the reordered matrix B, again (A, B)

* in generalized real Schur canonical form, with the selected

* eigenvalues in the leading diagonal blocks.

*

* LDB (input) INTEGER

* The leading dimension of the array B. LDB >= max(1,N).

*

* ALPHAR (output) DOUBLE PRECISION array, dimension (N)

* ALPHAR(1:N) will be set to the real parts of the diagonal

* elements of A that would result from reducing (A, B) to

* generalized Schur form and then further reducing them both to

* triangular form using unitary transformations s.t. the diagonal

* of B is non-negative real. Thus, if A(j,j) is a 1x1 block

* (i.e., A(j+1,j) = A(j,j+1) = 0), then ALPHAR(j) = A(j,j).

*

* ALPHAI (output) DOUBLE PRECISION array, dimension (N)

* ALPHAI(1:N) will be set to the imaginary parts of the diagonal
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* elements of A that would result from reducing (A, B) to

* generalized Schur form and then further reducing them both to

* triangular form using unitary transformations s.t. the diagonal

* of B is non-negative real. Thus, if A(j,j) is a 1x1 block

* (i.e., A(j+1,j) = A(j,j+1) = 0), then ALPHAI(j) = 0.

*

* BETA (output) DOUBLE PRECISION array, dimension (N)

* BETA(1:N) will be set to the (real) diagonal elements of B

* that would result from reducing (A, B) to generalized Schur form

* and then further reducing them both to triangular form using

* unitary transformations s.t. the diagonal of B is

* non-negative real. Thus, if A(j,j) is a 1x1 block (i.e.,

* A(j+1,j) = A(j,j+1) = 0), then BETA(j) = B(j,j).

* (Note that BETA(1:N) will always be non-negative real, and

* no BETAI is necessary.)

*

* Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N)

* Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)

* On entry, if WANTQ and/or WANTZ, the matrices Q and Z of generalized

* Schur vectors.

* On exit, if WANTQ and/or WANTZ, Q and/or Z have been postmultiplied

* by the orthogonal transformation matrices which reorder (A, B);

* The leading M columns of Q and Z form orthonormal bases for the

* specified pair of left and right eigenspaces (deflating subspaces).

* If WANTQ = .FALSE., Q is not referenced.

* If WANTZ = .FALSE., Z is not referenced.

*

* LDQ (input) INTEGER

* The leading dimension of the array Q.

* LDQ >= 1; and if WANTQ, LDQ >= N.

*

* LDZ (input) INTEGER

* The leading dimension of the array Z.

* LDZ >= 1; and if WANTZ, LDZ >= N.

*

* M (output) INTEGER

* The dimension of the specified pair of left and right eigen-

* spaces (deflating subspaces). 0 <= M <= N.

*

* PL, PR (output) DOUBLE PRECISION

* If IJOB = 1, 4 or 5, PL, PR are lower bounds on the reciprocal

* of the norm of "projections" onto left and right eigenspaces,

* respectively, w.r.t. the selected cluster. 0 < PL, PR <= 1.

* See also further details and references [2-3].

* If M = 0 or M = N, PL = PR = 1.

* If IJOB = 0, 2 or 3, PL and PR are not referenced.

*

* DIF (output) DOUBLE PRECISION array, dimension (2).

* If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl,

* respectively. If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds

* on Difu and Difl, respectively. If IJOB = 3 or 5, DIF(1:2) are 1-norm-
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* based estimates of Difu and Difl, respectively, computed using

* reversed communication with DLACON. See also further details and

* references [2-3].

* If M = 0 or N, DIF(1:2) = F-norm([A, B]).

* If IJOB = 0 or 1, DIF is not referenced.

*

* WORK (workspace) DOUBLE PRECISION array, dimension (LWORK)

*

* LWORK (input) INTEGER

* The dimension of the array WORK. LWORK >= (2 * N * N) + N.

* If IJOB >= 4 LWORK >= MAX(2*N*N+N, 4*M*(N-M)).

*

* IWORK (workspace) INTEGER, dimension (LIWORK)

* IF IJOB = 0 , IWORK is not referenced.

*

* LIWORK (input) INTEGER

* The dimension of the array IWORK. LIWORK >= N + 6.

* If IJOB = 3 or 5, LIWORK >= MAX(2*M*(N-M), N+6).

*

* INFO (output) INTEGER

* 0: Successful exit.

* < 0: If INFO = -i, the i-th argument had an illegal value.

* 1: Reordering of (A, B) failed because the transformed

* matrix pair (A, B) would be too far from generalized

* Schur form; the problem is very ill-conditioned.

* (A, B) may have been partially reordered.

* If requested, 0 is returned in DIF(*), PL and PR.

*

D Calling sequence DTGSNA

Here we display the parameter list and the leading comment lines of the double precision
routine DTGSNA.

SUBROUTINE DTGSNA( JOB, HOWMNY, SELECT, N, A, LDA, B, LDB,

$ VL, LDVL, VR, LDVR, S, DIF, MM, M,

$ WORK, LWORK, IWORK, INFO )

IMPLICIT NONE

*

* --- (preliminary version) ---

* Bo Kagstrom and Peter Poromaa, Institute of Information Processing,

* Univ. of Umea, S-901 87 Sweden.

* May 1994

*

*

* .. Scalar Arguments ..

CHARACTER HOWMNY, JOB

INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK,

$ M, MM, N

* ..
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* .. Array Arguments ..

LOGICAL SELECT( * )

INTEGER IWORK( * )

DOUBLE PRECISION S( * ), DIF( * ), A( LDA, * ), B(LDB, *),

$ VL( LDVL, * ), VR( LDVR, * ), WORK( * )

* ..

*

* Purpose

* =======

*

* DTGSNA estimates reciprocal condition numbers for specified

* eigenvalues and/or eigenvectors of a matrix pair (A, B) in

* generalized real Schur canonical form (or of any matrix pair

* (Q*A*Z**T, Q*B*Z**T) with Q and Z orthogonal).

*

* (A, B) must be in generalized real Schur form (as returned by DGEGS), i.e.

* A is block upper triangular with 1-by-1 and 2-by-2 diagonal blocks.

* B is upper triangular.

*

* References

* ==========

*

* [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the

* Generalized Real Schur Form of a Regular Matrix Pair (A, B), in

* M.S. Moonen et al (eds), Linear Algebra for Large Scale and

* Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.

*

* [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified

* Eigenvalues of a Regular Matrix Pair (A, B) and Condition

* Estimation: Theory, Algorithms and Software, Report UMINF - 94.04,

* Inst. of Information Processing, University of Umea, S-901 87 Umea,

* Sweden, February 1994. (also published as LAPACK Working Note xx)

*

* [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software for

* Solving the Generalized Sylvester Equation and Estimating the Separa-

* tion between Regular Matrix Pairs, Report UMINF - 93.23, Inst. of

* Information Processing, University of Umea, S-901 87 Umea, Sweden,

* November 1993.(also published as LAPACK Working Note xx)

*

* Arguments

* =========

*

* JOB (input) CHARACTER*1

* Specifies whether condition numbers are required for

* eigenvalues (S) or eigenvectors (DIF):

* = 'E': for eigenvalues only (S);

* = 'V': for eigenvectors only (DIF);

* = 'B': for both eigenvalues and eigenvectors (S and DIF).

*

* HOWMNY (input) CHARACTER*1

* = 'A': compute condition numbers for all eigenpairs;
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* = 'S': compute condition numbers for selected eigenpairs

* specified by the array SELECT.

*

* SELECT (input) LOGICAL array, dimension (N)

* If HOWMNY = 'S', SELECT specifies the eigenpairs for which

* condition numbers are required. To select condition numbers

* for the eigenpair corresponding to a real eigenvalue w(j),

* SELECT(j) must be set to .TRUE.. To select condition numbers

* corresponding to a complex conjugate pair of eigenvalues w(j)

* and w(j+1), either SELECT(j) or SELECT(j+1) or both, must be

* set to .TRUE..

* If HOWMNY = 'A', SELECT is not referenced.

*

* N (input) INTEGER

* The order of the square matrix pair (A, B). N >= 0.

*

* A (input) DOUBLE PRECISION array, dimension (LDA,N)

* The upper quasi-triangular matrix A, where (A, B) is in

* generalized Schur canonical.

*

* LDA (input) INTEGER

* The leading dimension of the array A. LDA >= max(1,N).

*

* B (input) DOUBLE PRECISION array, dimension (LDB,N)

* The upper triangular matrix B, where (A, B) is in

* generalized Schur canonical.

*

* LDB (input) INTEGER

* The leading dimension of the array B. LDB >= max(1,N).

*

* VL (input) DOUBLE PRECISION array, dimension (LDVL,M)

* If JOB = 'E' or 'B', VL must contain left eigenvectors of (A, B),

* corresponding to the eigenpairs specified by HOWMNY and SELECT.

* The eigenvectors must be stored in consecutive columns of VL, as

* returned by DTGEVC or DGEGV. If job = 'V', VL is not referenced.

*

* LDVL (input) INTEGER

* The leading dimension of the array VL.

* LDVL >= 1; and if JOB = 'E' or 'B', LDVL >= N.

*

* VR (input) DOUBLE PRECISION array, dimension (LDVR,M)

* If JOB = 'E' or 'B', VR must contain right eigenvectors of (A, B),

* corresponding to the eigenpairs specified by HOWMNY and SELECT.

* The eigenvectors must be stored in consecutive columns ov VR, as

* returned by DTGEVC or DGEGV. If job = 'V', VR is not referenced.

*

* LDVR (input) INTEGER

* The leading dimension of the array VR.

* LDVR >= 1; and if JOB = 'E' or 'B', LDVR >= N.

*

* S (output) DOUBLE PRECISION array, dimension (MM)
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* If JOB = 'E' or 'B', the reciprocal condition numbers of the

* selected eigenvalues, stored in consecutive elements of the

* array. For a complex conjugate pair of eigenvalues two

* consecutive elements of S are set to the same value. Thus

* S(j), DIF(j), and the j-th columns of VL and VR all

* correspond to the same eigenpair (but not in general the

* j-th eigenpair, unless all eigenpairs are selected).

* If JOB = 'V', S is not referenced.

*

* DIF (output) DOUBLE PRECISION array, dimension (MM)

* If JOB = 'V' or 'B', the estimated reciprocal condition

* numbers of the selected eigenvectors, stored in consecutive

* elements of the array. For a complex eigenvector two

* consecutive elements of DIF are set to the same value. If

* the eigenvalues cannot be reordered to compute DIF(j), DIF(j)

* is set to 0; this can only occur when the true value would be

* very small anyway.

* If JOB = 'E', DIF is not referenced.

* For each eigenvalue/vector specified by SELECT, DIF() stores a

* Frobenius norm-based estimate of Difl.

*

* MM (input) INTEGER

* The number of elements in the arrays S and DIF. MM >= M.

*

* M (output) INTEGER

* The number of elements of the arrays S and DIF used to store

* the specified condition numbers; for each selected real

* eigenvalue one element is used, and for each selected complex

* conjugate pair of eigenvalues, two elements are used. If

* HOWMNY = 'A', M is set to N.

*

* WORK (workspace) DOUBLE PRECISION array, dimension (LWORK)

*

* LWORK (input) INTEGER

* The dimension of the array WORK. LWORK >= 2*N*(N+2)+32.

*

* IWORK (workspace) INTEGER array, dimension (N + 6)

* If JOB = 'E', IWORK is not referenced.

*

* INFO (output) INTEGER

* = 0: successful exit

* < 0: if INFO = -i, the i-th argument had an illegal value

*

E Calling sequence DGSRBB

Here we display the parameter list and the leading comment lines of the double precision
routine DGSRBB

SUBROUTINE DGSRBB( INPUTS, N, A, LDA, B, LDB, C, LDC, D, LDD,

$ Q, LDQ, Z, LDZ, M, RBB, CNDTN, DIF, RRES, WORK,
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$ LWORK, IWORK, LIWORK, INFO )

*

IMPLICIT NONE

* --- (preliminary version) ---

* Bo Kagstrom and Peter Poromaa, Institute of Information Processing,

* Univ. of Umea, S-901 87 Sweden.

* Jan. 1994

*

*

* .. Scalar Arguments ..

CHARACTER INPUTS

INTEGER N, LDA, LDB, LDC, LDD, LDQ, LDZ, M,

$ INFO, LIWORK, LWORK

DOUBLE PRECISION DIF, CNDTN, RBB, RRES

* ..

* .. Array Arguments ..

INTEGER IWORK(*)

DOUBLE PRECISION Q( LDQ, * ), A( LDA, * ), B(LDB, *),

$ Z(LDZ, *), C(LDC, *), D(LDD, *), WORK(*)

* ..

*

* Purpose

* =======

*

* DGSRBB computes an algorithm-independent residual-based error bound for

* left and right eigenspaces (deflating subspaces) of a matrix pair (C, D) =

* Q' * (A, B) * Z, where Q and Z transform the original matrix pair (A, B) to

* generalized real Schur canonical form such that the M-by-M (1,1)-block

* of (C, D) holds a selected cluster of eigenvalues. Such a decomposition

* can be computed using DGEGS (generalized Schur) and DTGEXC (eigenvalue

* reordering). The leading M columns of Q and Z form an orthonormal basis

* for the selected pair of left and right eigenspaces (deflating subspaces).

*

* (C, D) in generalized Schur form means that C is block upper triangular with

* 1-by-1 and 2-by-2 diagonal blocks. D is upper triangular.

*

* References

* ==========

*

* [1] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified

* Eigenvalues of a Regular Matrix Pair (A, B) and Condition

* Estimation: Theory, Algorithms and Software, Report UMINF - 94.04,

* Inst. of Information Processing, University of Umea, S-901 87 Umea,

* Sweden, February 1994. (also published as LAPACK Working Note xx)

*

* [2] J-G. Sun; Backward Perturbation Analysis of Certain Characteristic

* Subspaces, Numerische Mathematik, 65 (1993), pp 357-382.

*

* Arguments

* =========

*
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* INPUTS (input) CHARACTER

*

* 'N': The values of DIF and (C, D) are ignored and computed by this

* routine.

* 'D': On input DIF must hold the value of Difl[(C11, D11),(C22, D22)]

* or an estimate of Difl (e.g., computed by DTGSYL, DTGSYX or DTGSEN).

* 'M': On input C and D must be the transformed matrices

* C = Q'*A*Z, D = Q'*B*Z, where the (2,1)-blocks may have been set

* to zero by some algorithm.

* 'B': On input the values of DIF (see above) and (C,D) are all supplied.

*

*

* N (input) INTEGER

* The order of the matrices A and B. N >= 0.

*

* A (input/output) DOUBLE PRECISION array, dimension(LDA,N)

* On entry, the general matrix A.

* On exit: if INPUTS = 'N', A = Q'*A*Z, else A is unchanged.

*

* LDA (input) INTEGER

* The leading dimension of the array A. LDA >= max(1,N).

*

* B (input/output) DOUBLE PRECISION array, dimension(LDB,N)

* On entry, the general matrix B.

* On exit: if INPUTS = 'N', B = Q'*B*Z, else B is unchanged.

*

* LDB (input) INTEGER

* The leading dimension of the array B. LDB >= max(1,N).

*

* C (input/output) DOUBLE PRECISION array, dimension(LDC, N)

* On entry, if INPUTS = 'M' or 'B', C = Q'*A*Z, where the (2,1)-block

* may have been set to zero by some algorithm.

* Note: If A and C are the same formal parameters and INPUTS = 'N',

* C = A will be overwritten by Q'*A*Z, else C is unchanged.

*

* LDC (input) INTEGER

* The leading dimension of the array C. LDC >= 1.

* If INPUTS = 'M' or 'B', LDC >= N.

*

* D (input/output) DOUBLE PRECISION array, dimension(LDD, N)

* On entry, if INPUTS = 'M' or 'B', D = Q'*B*Z, where the (2,1)-block

* can have been set to zero by some algorithm.

* Note: If B and D are the same formal parameters and INPUTS = 'N',

* D = B will be overwritten by Q'*B*Z, else D is unchanged.

*

* LDD (input) INTEGER

* The leading dimension of the array D. LDD >= 1.

* If INPUTS = 'M' or 'B', LDD >= N.

*

* Q (input) DOUBLE PRECISION array, dimension (LDQ,N)

* Z (input) DOUBLE PRECISION array, dimension (LDZ,N)
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* On entry, Q and Z are the orthogonal transformation matrices

* which reorder (A, B) with the selected eigenvalues in the

* (1,1)-block of (C, D); Q'*(A, B)*Z = (C, D). The leading M

* columns of Q and Z form an orthonormal basis for the specified

* pair of left and right eigenspaces (deflating subspaces).

*

* LDQ (input) INTEGER

* The leading dimension of the array Q.

* LDQ >= N.

*

* LDZ (input) INTEGER

* The leading dimension of the array Z.

* LDZ >= N.

*

* M (input) INTEGER

* The dimension of the specified pair of deflating subspaces.

*

* RBB (output) DOUBLE PRECISION

* On exit, an approximate residual-based error bound for

* selected left and right eigenspaces (deflating subspaces).

* See further details.

*

* CNDTN (output) DOUBLE PRECISION

* On exit, the value of the restriction on the perturbations, which

* should be less than 1 for the bound RBB to hold. See further details.

*

* DIF (input/output) DOUBLE PRECISION

* On entry, if INPUTS = 'D' or 'B', DIF = Difl[(C11, D11),(C22, D22)].

* This could be an estimate (e.g., computed by DTGSYL, DTGSYX or DTGSEN).

* On exit, if INPUTS = 'N' or 'M', DIF = an estimate of

* Difl[(C11, D11),(C22, D22)] computed by DTGSYL.

* If INPUTS = 'D' or 'B', DIF is not changed.

*

* RRES (output) DOUBLE PRECISION

* On exit, the Frobenius norm of the (2,1)-blocks of

* (C, D) = Q'*(A, B)*Z, i.e. the norm of the optimal

* backward error corresponding to the computed pair of

* deflating subspaces (the first M columns of Q and Z).

*

* WORK (workspace) DOUBLE PRECISION array, dimension (LWORK)

*

* LWORK (input) INTEGER

* The dimension of the array WORK. LWORK >= N*N.

*

* IWORK (workspace) INTEGER, dimension (LIWORK)

* If INPUTS = 'D' or 'B', IWORK is not referenced.

*

* LIWORK (input) INTEGER

* The dimension of the array IWORK. LIWORK >= 1.

* If INPUTS = 'N' or 'M', LIWORK >= N + 6;

*
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* INFO (output) INTEGER

* 0: Successful exit

* < 0: If INFO = -i, the i-th argument had an illegal value

* 1: CNDTN > 1, see further details.

*
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