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Abstract

The classical perturbation theory for Hermitian matrix eigenvalue and singular
value problems provides bounds on invariant subspace variations that are proportional
to the reciprocals of absolute gaps between subsets of spectra or subsets of singular
values. These bounds may be bad news for invariant subspaces corresponding to
clustered eigenvalues or clustered singular values of much smaller magnitudes than
the norms of matrices under considerations when some of these clustered eigenvalues
or clustered singular values are perfectly relatively distinguishable from the rest. In
this paper, we consider how eigenspaces of a Hermitian matrix A change when it is
perturbed to eA = D�AD and how singular values of a (nonsquare) matrix B change

when it is perturbed to eB = D�

1
BD2, where D, D1 and D2 are assumed to be close

to identity matrices of suitable dimensions, or either D1 or D2 close to some unitary
matrix. It is proved that under these kinds of perturbations, the change of invariant
subspaces are proportional to the reciprocals of relative gaps between subsets of spectra
or subsets of singular values. We have been able to extend well-known Davis-Kahan
sin � theorems and Wedin sin � theorems. As applications, we obtained bounds for
perturbations of graded matrices.
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1 Introduction

Let A and eA be two n � n Hermitian matrices with eigendecompositions

A = U�U� � (U1; U2)

 
�1

�2

! 
U�1
U�2

!
; (1.1)

eA = eU e� eU� � ( eU1; eU2)
 e�1 e�2

! eU�1eU�2
!
; (1.2)

where U; eU 2 Un, U1; eU1 2 Cn�k (1 � k < n) and

�1 = diag(�1; � � � ; �k); �2 = diag(�k+1; � � � ; �n); (1.3)e�1 = diag(e�1; � � � ; e�k); e�2 = diag(e�k+1; � � � ; e�n): (1.4)

Suppose now that A and eA are close. The question is: How close are the eigenspaces

spanned by Ui and eUi? This question has been well answered by four celebrated theorems

so-called sin �, tan �, sin 2� and tan 2� due to Davis and Kahan [2, 1970] for arbitrary

additive perturbations in the sense that the perturbations to A can be made arbitrary

as long as eA � A is kept small. It is proved that the changes of invariant subspaces are

proportional to the reciprocals of absolute gaps between subsets of spectra. This paper,

however, will address the same question but under multiplicative perturbations: How close

are the eigenspaces spanned by Ui and eUi under the assumption that eA = D�AD for some

D close to I? Our bounds suggest that the changes of invariant subspaces be proportional

to the reciprocals of relative gaps between subsets of spectra. A similar question for

singular value decompositions will be answered also. To be speci�c, we will deal with

perturbations of the following kinds:

� Eigenvalue problems:

1. A and eA = D�AD for the Hermitian case, where D is nonsingular and close to

the identity matrix.

2. A = S�HS and eA = S� eHS for the graded nonnegative Hermitian case, where

it is assumed that H and eH are nonsingular and often that S is a highly graded

diagonal matrix (this assumption is not necessary to our theorems).

� Singular value problems:

1. B and eB = D�
1BD2, where D1 and D2 are nonsingular and close to identity

matrices or one of them close to an identity matrix and the other to some

unitary matrix.

2. B = GS and eB = eGS for the graded case, where it is assumed that G andeG are nonsingular and often that S is a highly graded diagonal matrix (this

assumption is not necessary to our theorems).
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These perturbations cover component-wise relative perturbations to entries of symmetric

tridiagonal matrices with zero diagonal [4, 9], entries of bidiagonal and biacyclic matrices

[1, 3, 4], and perturbations in graded nonnegative Hermitian matrices [5, 12], in graded

matrices of singular value problems [5, 12] and more [6]. Recently, Eisenstat and Ipsen [7,

1994] launched an attack towards the above mentioned perturbations except graded cases.

We will give a brief comparison among their results and ours.

This paper is organized as follows. We briey review Davis-Kahan sin � theorems for

Hermitian matrices and their generalizations|Wedin sin � theorems for singular value

decompositions in x3. We present in x4.1 our sin � theorems for eigenvalue problems

for A and eA = D�AD and for graded nonnegative Hermitian matrices. Theorems for

singular value problems for B and eB = D�
1BD2 and for graded matrices are given in x4.2.

We discuss how to bound from below relative gaps, for example, between �1 and e�2 by

relative gaps between �1 and �2 in x5. A word will be said in x6 regarding Eisenstat-

Ipsen's theorems in comparison with ours. Detailed proofs are postponed to xx7, 8, 9, and
10. Finally in x11, we present our conclusions and outline further possible extensions to

diagonalizable matrices.

2 Preliminaries

Throughout this paper, we will be following notation we used in the �rst part of this series

Li [11]. Most frequently used are the two kinds of relative distances: %p and � de�ned for

�; e� 2 C by

%p(�; e�) = j�� e�j
p
pj�jp + je�jp for 1 � p � 1, and ��; e�) = j�� e�jpj�e�j ;

with convention 0=0 = 0 for convenience.

Lemma 2.1 (Li) 1. For �; � 2 C, %p(�; �) � 2�1=p�(�; �).

2. For �; � 2 R and �� � 0, %p(�; �) � %p(�
2; �2) and 2�(�; �) � �(�2; �2).

3. %p is a metric on R.

4. For �; �; ! � 0, �(�; �) � �(�; !) + �(!; �) + 1
8�(�; �)�(�; !)�(!; �):

Since this paper concerns with the variations of subspaces, we need some metrics to mea-

sure the di�erence between two subspaces. In this, we follow Davis and Kahan [2, 1970],

Stewart and Sun [14]. Let X; eX 2 Cn�k (n > k) have full column rank k, and de�ne the

angle matrix �(X; eX) between X and eX as

�(X; eX)
def
= arccos((X�X)�

1

2X� eX( eX� eX)�1 eX�X(X�X)�
1

2 )�
1

2 :

The canonical angles between the subspace X = R(X) and eX = R( eX) are de�ned to be

the singular values of the Hermitian matrix �(X; eX), where R(X) denotes the subspace

spanned by the column vectors of X . The following lemma is well-known. For a proof of

it, the reader is referred to, e.g, Li [10, Lemma 2.1].
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Lemma 2.2 Suppose that ( eX; eX1) 2 Cn�n is a nonsingular matrix, and

( eX; eX1)
�1 =

 eY �
eY �
1

!
; eY 2 Cn�k :

Then for any unitarily invariant norm jjj � jjj���������sin�(X; eX)
��������� = ���������( eY �1 eY1)�1=2 eY �1 X(X�X)�1=2

��������� :
In this lemma, as well as many other places in the rest of this paper, we talk about the

\same" unitarily invariant norm jjj � jjj that applies to matrices of di�erent dimensions at

the same time. Such applications of a unitarily invariant norm are understood in the

following sense: First there is a unitarily invariant norm jjj � jjj on C
M�N for su�ciently

large integers M and N ; Then for a matrix X 2 C
m�n (m � M and N � n), jjjX jjj is

de�ned by appending X with zero blocks to make it M �N and then taking the unitarily

invariant norm of the enlarged matrix.

Taking X = U1 and eX = eU1 (see (1.1) and (1.2)), with Lemma 2.2 one has

�(U1; eU1) = arccos(U�1 eU1 eU�1U1)�1=2 and
���������sin �(U1; eU1)��������� = ��������� eU�2U1��������� : (2.5)

For more discussions on angles between subspaces, the reader is referred to Davis and

Kahan [2] and Stewart and Sun [14, Chapters I and II].

3 Davis-Kahan sin � Theorems and Wedin sin � Theorems

3.1 Eigenspace Variations

Let A and eA be two Hermitian matrices whose eigendecompositions are given by (1.1) and

(1.2):

A = U�U� = (U1; U2)

 
�1

�2

! 
U�1
U�2

!
, (1.1)

eA = eU e� eU� = ( eU1; eU2)
 e�1 e�2

! eU�1eU�2
!
, (1.2)

where U; eU 2 Un, U1; eU1 2 Cn�k (1 � k < n) and �i's and e�j 's are de�ned as in (1.3)

and (1.4). De�ne

R
def
= eAU1 � U1�1 = ( eA� A)U1: (3.1)

The following two theorems are the matrix versions of two sin � theorems due to Davis

and Kahan [2, 1970].

Theorem 3.1 (Davis-Kahan) Let A and eA be two Hermitian matrices with eigende-

compositions (1.1), (1.2), (1.3), and (1.4). If �
def
= min

1�i�k;1�j�n�k
j�i � e�k+j j > 0; then

k sin�(U1; eU1)kF � kRkF
�

=
k( eA� A)U1kF

�
: (3.2)
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In this theorem, the spectrum of �1 and that of e�2 are only required to be disjoint. In

the next theorem, they are required, more strongly, to be well-separated by intervals.

Theorem 3.2 (Davis-Kahan) Let A and eA be two Hermitian matrices with eigende-

compositions (1.1), (1.2), (1.3), and (1.4). Assume there is an interval [�; �] and a � > 0

such that the spectrum of �1 lies entirely in [�; �] while that of e�2 lies entirely outside of

(� � �; � + �) (or such that the spectrum of e�2 lies entirely in [�; �] while that of �1 lies

entirely outside of (�� �; � + �)). Then for any unitarily invariant norm jjj � jjj

���������sin �(U1; eU1)��������� � jjjRjjj
�

=

���������( eA�A)U1���������
�

: (3.3)

3.2 Singular Space Variations

Now, turn to the perturbations of Singular Value Decompositions (SVD). Let B and eB be

two m� n (m � n) complex matrices with SVDs

B = U�V � � (U1; U2)

0
B@ �1 0

0 �2

0 0

1
CA
 
V �
1

V �
2

!
; (3.4)

eB = eU e�eV � � ( eU1; eU2)
0
B@
e�1 0

0 e�2

0 0

1
CA
 eV �

1eV �
2

!
; (3.5)

where U; eU 2 Um, V; eV 2 Un, U1; eU1 2 Cm�k, V1; eV1 2 Cn�k (1 � k < n) and

�1 = diag(�1; � � � ; �k); �2 = diag(�k+1; � � � ; �n); (3.6)e�1 = diag(e�1; � � � ; e�k); e�2 = diag(e�k+1; � � � ; e�n): (3.7)

De�ne residuals

RR
def
= eBV1 � U1�1 = ( eB �B)V1 and RL

def
= eB�U1 � V1�1 = ( eB� �B�)U1: (3.8)

The following two theorems are due to Wedin [15, 1972].

Theorem 3.3 (Wedin) Let B and eB be two m�n (m � n) complex matrices with SVDs

(3.4), (3.5), (3.6), and (3.7). If �
def
= min

�
min

1�i�k;1�j�n�k
j�i � e�k+j j; min

1�i�k
�i

�
> 0; then

q
k sin�(U1; eU1)k2F + k sin�(V1; eV1)k2F (3.9)

�
q
kRRk2F + kRLk2F

�
=

q
k( eB � B)V1k2F + k( eB� �B�)U1k2F

�
:
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Theorem 3.4 (Wedin) Let B and eB be two m�n (m � n) complex matrices with SVDs

(3.4), (3.5), (3.6), and (3.7). If there exist � > 0 and � > 0 such that

min
1�i�k

�i � �+ � and max
1�j�n�k

e�k+j � �;

then for any unitarily invariant norm jjj � jjj

max
n���������sin �(U1; eU1)��������� ; ���������sin�(V1; eV1)���������o (3.10)

� max fjjjRRjjj ; jjjRLjjjg
�

=
max

n���������( eB �B)V1��������� ; ���������( eB� �B�)U1���������o
�

:

4 Relative Perturbation Theorems

4.1 Eigenspace Variations

The following theorem is an extension of Theorem 3.1.

Theorem 4.1 Let A and eA = D�AD be two n � n Hermitian matrices with eigende-

compositions (1.1), (1.2), (1.3), and (1.4), where D is nonsingular and close to I. If

�2
def
= min

1�i�k; 1�j�n�k
%2(�i; e�k+j) > 0; then

k sin�(U1; eU1)kF �
q
k(I �D�1)U1k2F + k(I �D�)U1k2F

�2
: (4.1)

By imposing a stronger condition on the separation between the spectra of e�2 and �1, we

have the following bound on any unitarily invariant norm of sin �(U1; eU1).
Theorem 4.2 Let A and eA = D�AD be two n� n Hermitian matrices with eigendecom-

positions (1.1), (1.2), (1.3), and (1.4), where D is nonsingular and close to I. Assume

that there exist � > 0 and � > 0 such that the spectrum of �1 lies entirely in [��; �] while
that of e�2 lies entirely outside (����; �+�) (or such that the spectrum of �1 lies entirely

outside (�� � �; � + �) while that of e�2 lies entirely in [��; �]). Then for any unitarily

invariant norm jjj � jjj

���������sin �(U1; eU1)��������� �
q

q
jjj(I �D�1)U1jjjq + jjj(I �D�)U1jjjq

�
p

; (4.2)

where �
p

def
= %p(�; �+ �).

Now we consider eigenspace variations for a graded Hermitian matrix A = S�HS 2
C
n�n perturbed to eA = S� eHS. Set �H

def
= eH �H:
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Theorem 4.3 Let A = S�HS and eA = S� eHS be two n�n Hermitian matrices with eigen-

decompositions (1.1), (1.2), (1.3), and (1.4). H is positive de�nite and kH�1k2k�Hk2 <
1. If ��

def
= min

1�i�k; 1�j�n�k
�(�i; e�k+j) > 0; then

k sin�(U1; eU1)kF � kD �D�1kF
��

� kH�1k2p
1� kH�1k2k�Hk2

k�HkF
��

: (4.3)

where D = (I +H�1=2(�H)H�1=2)1=2 = D�.

Theorem 4.4 Let A = S�HS and eA = S� eHS be two n�n Hermitian matrices with eigen-

decompositions (1.1), (1.2), (1.3), and (1.4). H is positive de�nite and kH�1k2k�Hk2 <
1. Assume that there exist � > 0 and � > 0 such that

max
1�i�k

�i � � and min
1�j�n�k

e�k+j � �+ �

or

min
1�i�k

�i � �+ � and max
1�j�n�k

e�k+j � �:

Then for any unitarily invariant norm jjj � jjj
���������sin�(U1; eU1)��������� �

������D �D�1������
�
�

� kH�1k2p
1� kH�1k2k�Hk2

jjj�H jjj
�
�

; (4.4)

where �
�

def
= �(�; �+ �) and D = (I +H�1=2(�H)H�1=2)1=2 = D�.

4.2 Singular Space Variations

The following two theorems concern singular space perturbations.

Theorem 4.5 Let B and eB = D�
1BD2 be two m � n (m � n) (complex) matrices with

SVDs (3.4), (3.5), (3.6), and (3.7), where D1 and D2 are nonsingular and close to iden-

tities. Let

�2
def
=

8>><
>>:

min

�
min

1�i�k;1�j�n�k
%2(�i; e�k+j); min

1�i�k
%2(�i; 0)

�
; if m > n;

min

�
min

1�i�k;1�j�n�k
%2(�i; e�k+j)

�
; otherwise:

(4.5)

If �2 > 0, thenq
k sin�(U1; eU1)k2F + k sin�(V1; eV1)k2F (4.6)

�
q
k(I �D�

1)U1k2F + k(I �D�1
1 )U1k2F + k(I �D�

2)V1k2F + k(I �D�1
2 )V1k2F

�2
:
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Theorem 4.6 Let B and eB = D�
1BD2 be two m � n (m � n) (complex) matrices with

SVDs (3.4), (3.5), (3.6), and (3.7), where D1 and D2 are nonsingular and close to iden-

tities. If there exist � > 0 and � > 0 such that

min
1�i�k

�i � �+ � and max
1�j�n�k

e�k+j � �;

then for any unitarily invariant norm jjj � jjj

max
n���������sin�(U1; eU1)

��������� ; ���������sin�(V1; eV1)���������o (4.7)

�
1

�
p

max

�
q

q������(I �D�1

2
)V1
������q + jjj(D�

1
� I)U1jjj

q
;

q

q������(I �D�1

1
)U1

������q + jjj(D�

2
� I)V1jjj

q

�
;

�����
�����
�����
 

sin�(U1; eU1)

sin�(V1; eV1)
!�����
�����
����� (4.8)

�

q

s����
����
����
�

(I �D�1

1
)U1

(I �D�1

2
)V1

�����
����
����
q

+

����
����
����
�

(I �D�

1
)U1

(I �D�

2
)V1

�����
����
����
q

�
p

;

where �
p

def
= %p(�; �+ �).

In Theorems 4.5 and 4.6, we assumed that both D1 and D2 are close to identity matrices.

But, intuitively D2 should not a�ect U1 much as long as it is close to a unitary matrix. In

fact, if D2 2 Un, it does not a�ect U1 at all. The following theorems indeed con�rm this

observation.

Theorem 4.7 Let B and eB = D�
1BD2 be two m � n (m � n) (complex) matrices with

SVDs (3.4), (3.5), (3.6), and (3.7), where D1 and D2 are close to some unitary matrices.

Let �2 be de�ned by (4.5) and set

��
def
=

8>><
>>:

min

�
min

1�i�k;1�j�n�k
�(�i; e�k+j); min

1�i�k
�(�i; 0)

�
; if m > n;

min

�
min

1�i�k;1�j�n�k
�(�i; e�k+j)

�
; otherwise:

(4.9)

Assume1

�2 >
1

2
p
2
maxfkD�

1 �D�1
1 k2; kD�

2 �D�1
2 k2g: (4.10)

If D1 is close to identity, then

sin �(U1; eU1)
F
�
q
k(I �D�1

1 )U1k2F + k(I �D�
1)U1k2F

�2 � 2�3=2�2
+

�
1 +

�1

16
��

� kD�
2 �D�1

2 kF
2�� � �1

;

(4.11)

sin �(U1; eU1)
F
�
q
k(I �D�1

1 )U1k2F + k(I �D�
1)U1k2F

�2 � 2�3=2�2
+
kD�

2 �D�1
2 kF

23=2�2 � �1
; (4.12)

1This implies, by Lemma 2.1, �� >
1

2
maxfkD�

1 �D�1
1 k2; kD

�
2 �D�1

2 k2g.
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If D2 is close to identity, then

sin �(V1; eV1)
F
�
�
1 +

�2

16
��

� kD�
1 �D�1

1 kF
2�� � �2

+

q
k(I �D�1

2 )V1k2F + k(I �D�
2)V1k2F

�2 � 2�3=2�1
;

(4.13)

sin �(V1; eV1)
F
� kD

�
1 �D�1

1 kF
23=2�2 � �2

+

q
k(I �D�1

2 )V1k2F + k(I �D�
2)V1k2F

�2 � 2�3=2�1
; (4.14)

where �1 = kD�
1 �D�1

1 k2 and �2 = kD�
2 �D�1

2 k2.
Inequalities (4.11) and (4.12) which di�er slightly in their last term clearly says that D2

contributes to sin �(U1; eU1) with its departure from some unitary matrix, and similarly

do (4.13) and (4.14).

Remark. When one of the D1 and D2 is I , assumption (4.10) can actually be weakened

to �2 > 0, as shall be seen from our proofs.

Theorem 4.8 Let B and eB = D�
1BD2 be two m � n (m � n) (complex) matrices with

SVDs (3.4), (3.5), (3.6), and (3.7), where D1 and D2 are close to some unitary matrices.

Suppose that there exist � > 0 and � > 0 such that

min
1�i�k

�i � �+ � and max
1�j�n�k

e�k+j � �:

Assume2

%p(�; �+ �) >
1

21+1=p
maxfkD�

1 �D�1
1 k2; kD�

2 �D�1
2 k2g: (4.15)

If D1 is close to identity, then for any unitarily invariant norm jjj � jjj

���������sin�(U1; eU1)��������� �
q

r���������(I �D�1
1 )U1

���������q + jjj(I �D�
1)U1jjjq

�
p
� 2�1�1=p�2

+

�
1 +

�1

16
�
�

� ���������D�
2 �D�1

2

���������
2�

�
� �1

;

(4.16)

���������sin�(U1; eU1)��������� �
q

r���������(I �D�1
1 )U1

���������q + jjj(I �D�
1)U1jjjq

�
p
� 2�1�1=p�2

+

���������D�
2 �D�1

2

���������
21+1=p�

2
� �1

; (4.17)

If D2 is close to identity, then

���������sin�(V1; eV1)��������� �
�
1 +

�2

16
�
�

� ���������D�
1 �D�1

1

���������
2�

�
� �2

+

q

r���������(I �D�1
2 )V1

���������q + jjj(I �D�
2)V1jjjq

�
p
� 2�1�1=p�1

;

(4.18)

���������sin�(V1; eV1)��������� �
���������D�

1 �D�1
1

���������
21+1=p�

p
� �2

+

q

r���������(I �D�1
2 )V1

���������q + jjj(I �D�
2)V1jjjq

�
p
� 2�1�1=p�1

: (4.19)

2This implies, by Lemma 2.1, �
�
> 1

2
maxfkD�

1 �D�1
1 k2; kD

�
2 �D�1

2 k2g.
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where �
p

def
= %p(�; �+�), �

�

def
= �(�; �+�), and �1 = kD�

1�D�1
1 k2 and �2 = kD�

2�D�1
2 k2.

Remark. If either D1 or D2 is I , (4.15) can actually be removed.

Now, Let's briey mention a possible application of Theorems 4.5, 4.6, 4.7 and 4.8. It

has something to do with deation in computing the singular value systems of a bidiagonal

matrix. Taking account of the remarks we have made, we get

Corollary 4.1 Assume D1 = I and D2 takes the form

D2 =

 
I X

I

!
;

where X is a matrix of suitable dimensions. Let �2 be de�ned by (4.5), and �� by (4.9).

If �2 > 0, then

sin �(U1; eU1)
F
� kXkFp

2 ��
; (4.20)

rsin�(U1; eU1)2
F
+
sin�(V1; eV1)2

F
�
p
2kXkF
�2

: (4.21)

Proof: Inequality (4.21) follows from (4.6). Inequality (4.20) follows from (4.11) and

D�
2 �D�1

2 =

 
X

X�

!
) kD�

2 �D�1
2 kF =

p
2kXkF:

Corollary 4.2 Assume D2 = I and D1 takes the form

D1 =

 
I X

I

!
;

where X is a matrix of suitable dimensions. Let �2 be de�ned by (4.5), and �� by (4.9).

If �2 > 0, then

sin�(V1; eV1)
F
� kXkFp

2 ��
;

rsin�(U1; eU1)2
F
+
sin�(V1; eV1)2

F
�
p
2kXkF
�2

:

Corollary 4.3 Assume D1 = I and D2 takes the form

D2 =

 
I X

I

!
;

where X is a matrix of suitable dimensions. Suppose that there exist � > 0 and � > 0

such that

min
1�i�k

�i � �+ � and max
1�j�n�k

e�k+j � �:
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Then

���������sin�(U1; eU1)��������� � 1

2�
�

�����
�����
�����
 

X

X�

!�����
�����
����� ;

���������sin�(V1; eV1)��������� � jjjX jjj
�
p

; (4.22)

where �
p

def
= %p(�; �+ �), �

�

def
= �(�; �+ �).

Proof: The �rst inequality in (4.22) follows from (4.16), and the second from (4.7).

Corollary 4.4 Assume D2 = I and D1 takes the form

D1 =

 
I X

I

!
;

where X is a matrix of suitable dimensions. Suppose that there exist � > 0 and � > 0

such that

min
1�i�k

�i � �+ � and max
1�j�n�k

e�k+j � �:

Then ���������sin�(U1; eU1)��������� � jjjX jjj
�
p

;
���������sin �(V1; eV1)��������� � 1

2�
�

�����
�����
�����
 

X

X�

!�����
�����
����� ;

where �
p

def
= %p(�; �+ �), �

�

def
= �(�; �+ �).

Now, we consider singular space variations for a graded matrix B = GS 2 Cn�n per-

turbed to eB = eGS 2 Cn�n, whereG is nonsingular. Set �G
def
= eG�G. If k(�G)G�1k2 < 1,

then eG = G+�G = [I + (�G)G�1]G is nonsingular also.

Theorem 4.9 Let B = GS 2 Cn�n and eB = eGS 2 Cn�n with SVDs (3.4), (3.5), (3.6),

and (3.7), where G is nonsingular. Assume k(�G)G�1k2 < 1. If

�2
def
= min

1�i�k;1�j�n�k
%2(�i; e�k+j) > 0;

then rsin�(U1; eU1)2
F
+
sin�(V1; eV1)2

F
(4.23)

�
q
k(�G)G�1U1k2F + k[I +G��(�G)�]�1G��(�G)�U1k2F

�2

� kG�1k2
s
1 +

1

(1� kG�1k2k�Gk2)2
k�GkF
�2

;



Ren-Cang Li: Relative Perturbation Theory 12

and

sin�(V1; eV1)
F
� kI + (�G)G�1 � (I + (�G)G�1)��kF

2 ��
(4.24)

�
 
k(�G)G�1 +G��(�G)�kF

k(�G)G�1kF
+
k(�G)G�1k2

1� k(�G)G�1k2

!
k(�G)G�1kF

2 ��

�
�
1 +

1

1� kG�1k2k�Gk2

� kG�1k2k�GkF
2 ��

;

where ��
def
= min

1�i�k;1�j�n�k
�(�i; e�k+j):

Proof: Write eB = eGS = [I + (�G)G�1]GS = D�
1BD2, where D

�
1 = I + (�G)G�1 and

D2 = I . Then apply Theorem 4.5 to get (4.23), and apply Theorem 4.7 to get (4.24).

Theorem 4.10 Let B = GS 2 Cn�n and eB = eGS 2 Cn�n with SVDs (3.4), (3.5), (3.6),

and (3.7), where G is nonsingular. Assume k(�G)G�1k2 < 1. If there exist � > 0 and

� > 0 such that

min
1�i�k

�i � �+ � and max
1�j�n�k

e�k+j � �

or, the other way around, i.e.,

max
1�i�k

�i � � and min
1�j�n�k

e�k+j � �+ �;

then for any unitarily invariant norm jjj � jjj

max
n���������sin�(U1; eU1)��������� ; ���������sin�(V1; eV1)���������o (4.25)

� max
�������(�G)G�1U1������ ; ������[I +G��(�G)�]�1G��(�G)�U1

������	
�1

� kG�1k2
1� kG�1k2k�Gk2

jjj�Gjjj
�1

;�����
�����
�����
 

sin�(U1; eU1)
sin �(V1; eV1)

!�����
�����
����� (4.26)

�
q

q
jjj(�G)G�1U1jjjq + jjj[I +G��(�G)�]�1G��(�G)�U1jjjq

�
p

� kG�1k2 q

s
1 +

1

(1� kG�1k2k�Gk2)q
jjj�Gjjj
�
p

;

and

���������sin�(V1; eV1)��������� �
������I + (�G)G�1 � (I + (�G)G�1)�1

������
2 �

�

(4.27)
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�
 ������(�G)G�1 +G��(�G)�

������
jjj(�G)G�1jjj +

k(�G)G�1k2
1� k(�G)G�1k2

! ������(�G)G�1������
2 �

�

�
�
1 +

1

1� kG�1k2k�Gk2

� kG�1k2 jjj�Gjjj
2 �

�

:

where �
p

def
= %p(�; �+ �), and �

�

def
= �(�; �+ �).

Proof: Again write eB = eGS = [I + (�G)G�1]GS = D�
1BD2, where D

�
1 = I + (�G)G�1

and D2 = I . Then apply Theorem 4.6 to get (4.25) and (4.26), and apply Theorem 4.8 to

get (4.27).

Remark. Inequalities (4.24) and (4.27) may provide much tighter bounds than (4.23)

and (4.25), especially when (�G)G�1 is very close to a skew Hermitian matrix.

5 More on Relative Gaps

In the theorems of x4, various relative gaps play an indispensable role. Those gaps are

imposed on either between �1 and e�2 or between �1 and e�2. In some applications, it may

be more convenient to have theorems where only positive relative gaps between �1 and

�2 or between �1 and �2 are assumed. Based on results of Ostrowski [13, 1959] (see also

[8, pp.224{225]), Barlow and Demmel [1, 1990], Demmel and Veseli�c [5, 1992], Eisenstat

and Ipsen [6, 1993], Mathias [12, 1994], and Li [11, 1994], theorems in x4 can be modi�ed

to accommodate this need. In what follows, we list inequalities for how to bound relative

gaps between �1 and e�2 or between �1 and e�2 from below for each theorem by relative

gaps between �1 and �2 or between �1 and �2. The derivations of these inequalities

depends on the fact listed in Lemma 2.1.

For Theorem 4.1: �2 � min
1�i�k; 1�j�n�k

%2(�i; �k+j)� kI �D�Dk2:

For Theorem 4.2: Assume that there exist �̂ > 0 and �̂ > 0 such that the spectrum of

�1 lies entirely in [��̂; �̂] while that of �2 lies entirely outside (��̂ � �̂; �̂+ �̂) (or

such that the spectrum of �1 lies entirely outside (��̂ � �̂; �̂ + �̂) while that of �2

lies entirely in [��̂; �̂]). If %p(�̂; �̂ + �̂) > kI � D�Dk2, then there are � > 0 and

� > 0 as the theorem requires, and

�
p
� %p(�̂; �̂+ �̂)� kI �D�Dk2:

For Theorem 4.3: �� > min
1�i�k; 1�j�n�k

�(�i; �k+j)� 1
2kD �D�1k2.

For Theorem 4.4: Assume that there exist �̂ > 0 and �̂ > 0 such that

max
1�i�k

�i � �̂ and min
1�j�n�k

�k+j � �̂+ �̂
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or

min
1�i�k

�i � �̂+ �̂ and max
1�j�n�k

�k+j � �̂:

If �(�̂; �̂ + �̂) > 1
2
kD � D�1k2, then there are � > 0 and � > 0 as the theorem

requires, and

�
�
� �(�̂; �̂+ �̂)� 1

2
kD�D�1k2

1 +
kD�D�1k2

16
�(�̂; �̂+ �̂)

:

For Theorem 4.5: �2 � �̂2 � �, where � = 1
2
p
2
(kD�

1 � D�1
1 k2 + kD�

2 � D�1
2 k2) (or � =

maxfj1� �min(D1)�min(D2)j; j1� �max(D1)�max(D2)jg) and

�̂2
def
=

8>><
>>:

min

�
min

1�i�k;1�j�n�k
%2(�i; e�k+j); min

1�i�k
%2(�i; 0)

�
; if m > n;

min

�
min

1�i�k;1�j�n�k
%2(�i; e�k+j)

�
; otherwise:

(5.1)

For Theorems 4.6: Assume there exist �̂ > 0 and �̂ > 0 such that

min
1�i�k

�i � �̂+ �̂ and max
1�j�n�k

�k+j � �̂:

If %p(�̂; �̂+ �̂) > �, then there are � > 0 and � > 0 as the theorem requires, and

�
p
� %p(�̂; �̂+ �̂)� �;

where � = 1
21+1=p

(kD�
1�D�1

1 k2+kD�
2�D�1

2 k2) (or � = maxfj1��min(D1)�min(D2)j; j1�
�max(D1)�max(D2)jg).

For Theorems 4.7: Let �̂2 be de�ned by (5.1) and set

�̂�
def
=

8>><
>>:

min

�
min

1�i�k;1�j�n�k
�(�i; �k+j); min

1�i�k
�(�i; 0)

�
; if m > n;

min

�
min

1�i�k;1�j�n�k
�(�i; �k+j)

�
; otherwise:

(5.2)

If �̂2 >
1

2
p
2
(�1 + �2 +maxf�1; �2g); then

�2 � �̂2 � 1

2
p
2
(�1 + �2) and �� �

�̂� � 1
2(�1 + �2)=

�
1 + 1

32�1�2

�
1 + �1+�2

16 �̂�=
�
1 + 1

32�1�2

� :

For Theorems 4.8: Suppose that there exist �̂ > 0 and �̂ > 0 such that

min
1�i�k

�i � �̂+ �̂ and max
1�j�n�k

�k+j � �̂:

If %p(�̂; �̂+ �̂) > 1
21+1=p

(�1+ �2+maxf�1; �2g); then there are � > 0 and � > 0 as the

theorem requires, and

�
p
� %p(�̂; �̂+�̂)�

1

21+1=p
(�1+�2) and �

�
�
�(�̂; �̂+ �̂)� 1

2(�1 + �2)=
�
1 + 1

32�1�2

�
1 + �1+�2

16 �(�̂; �̂+ �̂)=
�
1 + 1

32�1�2

� :
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For Theorem 4.9:

�2 � �̂2 �
1

2
p
2
� and �� �

�̂� � �=2

1 + �
16
�̂�
;

where �̂2
def
= min

1�i�k;1�j�n�k
%2(�i; �k+j), �̂�

def
= min

1�i�k;1�j�n�k
�(�i; �k+j), � = kD� �

D�1k2, and D = I + (�G)G�1.

For Theorem 4.10: Suppose there exist �̂ > 0 and �̂ > 0 such that

min
1�i�k

�i � �̂+ �̂ and max
1�j�n�k

�k+j � �̂

or, the other way around, i.e.,

max
1�i�k

�i � �̂ and min
1�j�n�k

�k+j � �̂+ �̂;

If %p(�̂; �̂+ �̂) > 1
21+1=p

�, then there are � > 0 and � > 0 as the theorem requires,

and

�
p
� %p(�̂; �̂+ �̂)� 1

21+1=p
� and �

�
� �(�̂; �̂+ �̂)� �=2

1 + �
16�(�̂; �̂+ �̂)

;

where � = kD� �D�1k2 and D = I + (�G)G�1.

6 A Word on Eisenstat-Ipsen's Theorems

Eisenstat and Ipsen [7, 1994] have obtained a few bounds on eigenspace variations for

A and eA = D�AD and on singular space variations for B and = eB = D�
1BD2. Their

bounds for subspaces of dimension k > 1 contain a factor
p
k which makes their results

less competitive to ours. For this reason we will not compare their bounds for subspaces

of dimension k > 1 with ours.

For the problem studied in Theorem 4.1, Eisenstat and Ipsen [7, 1994] tried to bound

the angle �j between euj and R(U1), where eu1; eu2; � � � ; euk are the columns of eU1. They

showed

sin �j � kI �D��D�1k2
�j

+ kI �Dk2; (6.1)

where

�j
def
=

8<
: min

k+1�i�n
j�i�e�jj
je�jj ; if e�j 6= 0,

1 otherwise:

Inequality (6.1) does provide a nice bound. Unfortunately it does not bound straightfor-

wardly k sin�(U1; eU1)k2, and generally,

sin �j � k sin�(U1; eU1)k2 for j = 1; 2; : : : ; k
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and all of them may be strict. In the worst case, k sin�(U1; eU1)k2 could be as large asp
k max
1�j�k

sin �j . To make a fair comparison to our inequality (4.1), we consider the case

k = 1. One infers from inequality (4.1) that3

sin �1 �
q
kI �D�1k22 + kI �D�k22

min
2�i�n

%2(�i; e�1) : (6.2)

It looks that (6.1) may be potentially sharper because �1 may be much larger than

min
2�i�n

%2(�i; e�1). But this is not quite true because of the extra term kI � Dk2 in (6.1)

which stays no matter how large �1 is. We present our arguments as follows.

1. These relative perturbation bounds are most likely to be used when the closest

eigenvalue �` among all f�igni=2 to e�1 has about the same magnitude as e�1, i.e.,
when j�`j � je�1j and

�1 � j�` � e�1j=je�1j � p2%2(�`; e�1) � p2 min
2�i�n

%2(�i; e�1):
In such a situation, if I �D is very tiny, thenq

kI �D�1k22 + kI �D�k22 �
p
2kI �Dk2 + O(kI �Dk22);

kI �D��D�1k2 � 2kI �Dk2 + O(kI �Dk22):

Hence asymptotically, inequalities (6.2) and (6.1) read, respectively

sin �1 �
p
2kI �Dk2
%2(�`; e�1) +O(kI �Dk22);

sin �1 �
p
2kI �Dk2
%2(�`; e�1) + kI �Dk2 + O(kI �Dk22):

So our bound (6.2) is asymptotically sharper by amount kI �Dk2.
2. On the other hand, if the closest eigenvalue �` among all f�igni=2 to e�1 has much

bigger magnitude than je�1j, i.e., j�`j � je�1j, then
min
2�i�n

%2(�i; e�1) � 1:

Thus asymptotically, inequality (6.2) read

sin �1 �
p
2kI �Dk2 + O(kI �Dk22)

which cannot be much worse than (6.1).

3By treating A and eA symmetrically, one can see Theorem 4.1 remains valid with the relative gap �2
between �1 and e�2 replaced by the relative gap min

1�i�k; 1�j�n�k
%2(e�i; �k+j) between e�1 and �2.
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To be short, we have shown that it is possible for our inequality (6.2) to be less sharp than

(6.1) by a constant factor and in the case when these bounds are most likely to be used

in estimating errors (6.2) is sharper.

Another point we like to make is that we had given up some sharpness for elegantness

in the derivation of (6.2). Recall that we have, besides (7.1), also

e�1
eU�1U2 � eU�1U2�2 = e�1

eU�1 (I �D�1)U2 + eU�1 (D� � I)U2�2: (6.3)

When e�1 = 0, this equation reduces to � eU�1U2 = eU�1 (I �D�)U2 which implies

k sin�(U1; eU1)k2 � kD� � Ik2;

a better bound than (6.2), provided �j 6= 0 for j = k + 1; � � � ; n. Equation (6.3) implies

eu�1U2 = eu�1(D�1 � I)U2e�1(e�1I � �2)
�1 + eu�1(I �D�)U2�2(e�1I � �2)

�1;

which can be used to obtain an identity for sin �1 = keu�1U2k2! Generally (6.3) produces

k sin�(U1; eU1)k2
� max

1�i�k; 1�j�n�k
je�ij

je�i � �k+j jkI �D
�1k2 + max

1�i�k; 1�j�n�k
j�k+j j

je�i � �k+j j
kD� � Ik2

which would be a better bound than (4.1) in the case when

either min
1�i�k

je�ij � max
1�j�n�k

j�k+j j or max
1�i�k

je�ij � min
1�j�n�k

j�k+j j:

Eisenstat and Ipsen [7, 1994] treated singular value problems in a very similar way as

they did to eigenspaces. This makes our arguments above apply to our bounds and their

bounds for singular value problems.

Eisenstat and Ipsen [7, 1994] did not study bounds in other matrix norms.

7 Proofs of Theorems 4.1 and 4.2

Let R = eAU1 � U1�1 = ( eA� A)U1 as de�ned in (3.1). Notice that

eU�2R = eU�2 eAU1 � eU�2U1�1 = e�2
eU�2U1 � eU�2U1�1;eU�2R = eU�2 ( eA�A)U1 = eU�2 [D�AD �D�A+D�A� A]U1

= eU�2 hD�AD(I �D�1) + (D� � I)A
i
U1

= e�2
eU�2 (I �D�1)U1 + eU�2 (D� � I)U1�1:

Thus, we have

e�2
eU�2U1 � eU�2U1�1 = e�2

eU�2 (I �D�1)U1 + eU�2 (D� � I)U1�1: (7.1)
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Lemma 7.1 Let 
 2 Cs�s and � 2 Ct�t be two Hermitian matrices, and let E; F 2 Cs�t.
If �(
)

T
�(�) = ;, then matrix equation 
X � X� = 
E + F� has a unique solution,

and moreover kXkF �
q
kEk2F + kFk2F

.
�2, where �2

def
= min

!2�(
); 2�(�)
%2(!; ).

Proof: For any unitary matrices P 2 Us and Q 2 Ut, the substitutions


 P �
P; � Q��Q; X  P �XQ; E  P �EQ; and F  P �FQ

leave the lemma unchanged, so we may assume without loss of generality that


 = diag(!1; !2; : : : ; !s) and � = diag(1; 2; : : : ; t).

Write X = (xij), E = (eij), and F = (fij). Entrywise, equation 
X�X� = 
E+F�

reads !ixij � xijj = !ieij + fijj . Thus xij exists uniquely provided !i 6= j which is

guaranteed by the assumption �(
)
T
�(�) = ;, and moreover

j(!i � j)xij j2 = j!ixij � xijj j2 = j!ieij + fijj j2 � (j!ij2 + jj2)(jeijj2 + jfij j2)

by the Cauchy-Schwarz inequality. This implies

jxij j2 �
jeij j2 + jfij j2
[%2(!i; j)]

2 �
jeij j2 + jfij j2

�22

) kXk2F =
X
i; j

jxij j2 �

P
i; j
jeij j2 +

P
i; j
jfij j2

�22
=
kEk2F + kFk2F

�22
;

as was to be shown.

Proof of Theorem 4.1: By Lemma 7.1 and equation (7.1), we have

k eU�2U1k2F � k eU�2 (I �D�1)U1k2F + k eU�2 (D� � I)U1k2F
�22

� 1

�22

�
k(I �D�1)U1k2F + k(D� � I)U1k2F

�
:

This completes the proof of Theorem 4.1, since k sin�(U1; eU1)kF = k eU�2U1kF.
Lemma 7.2 Let 
 2 Cs�s and � 2 Ct�t be two Hermitian matrices, and let E; F 2 Cs�t.
If there exist � > 0 and � > 0 such that

k
k2 � � and k��1k�12 � � + �

or

k
�1k�12 � �+ � and k�k2 � �;

then matrix equation 
X �X� = 
E + F� has a unique solution, and moreover for any

unitarily invariant norm jjj � jjj, jjjX jjj � q

q
jjjEjjjq + jjjF jjjq

.
�
p
, where �

p

def
= %p(�; �+ �).
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Proof: First of all, the conditions of this lemma imply �(
)
T
�(�) = ;, thus X exists

uniquely by Lemma 7.1. In what follows, we present a proof of the bound for jjjX jjj for the
case k
k2 � � and k��1k�12 � �+�. A proof for the other case is analogous. Post-multiply

equation 
X �X� = 
E + F� by ��1 to get


X��1 �X = 
E��1 + F: (7.2)

Under the assumptions k
k2 � � and k��1k�12 � �+ � ) k��1k2 � 1
�+� , we have���������
X��1 �X

��������� � jjjX jjj �
���������
X��1

��������� � jjjX jjj � k
k2 jjjX jjj k��1k2
� jjjX jjj � � jjjX jjj 1

�+ �
=

�
1� �

�+ �

�
jjjX jjj ;

and ���������
E��1 + F
��������� � ���������
E��1���������+ jjjF jjj � k
k2 jjjEjjj k��1k2 + jjjF jjj
� � jjjEjjj 1

�+ �
+ jjjF jjj � p

s
1 +

�p

(�+ �)p
q
q
jjjEjjjq + jjjF jjjq:

By equation (7.2), we deduce that

�
1� �

�+ �

�
jjjX jjj � p

s
1 +

�p

(�+ �)p
q

q
jjjEjjjq + jjjF jjjq

from which the desired inequality follows.

Proof of Theorem 4.2: By Lemma 7.2 and equation (7.1), we have

��������� eU�2U1��������� � q

r��������� eU�2 (I �D�1)U1
���������q + ��������� eU�2 (D� � I)U1

���������q
,

�
p

� q

q
jjj(I �D�1I)U1jjjq + jjj(D� � I)U1jjjq

�
�
p
;

as required since
���������sin�(U1; eU1)��������� = ��������� eU�2U1���������.

8 Proofs of Theorems 4.3 and 4.4

Notice that

A = S�HS = (H1=2S)�H1=2S;eA = S�H1=2(I +H�1=2(�H)H�1=2)H1=2S

=
�
(I +H�1=2(�H)H�1=2)1=2H1=2S

��
(I +H�1=2(�H)H�1=2)1=2H1=2S:
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Set B = S�H1=2 and eB = S�H1=2(I + H�1=2(�H)H�1=2)1=2 def
= BD, where

D =
�
I +H�1=2(�H)H�1=2

�1=2
. Given the eigendecompositions of A and eA as in (1.1),

(1.2), (1.3), and (1.4), one easily see that B and eB admit the following SVDs.

B = U�1=2V � � (U1; U2)

 
�
1=2
1

�
1=2
2

! 
V �
1

V �
2

!
;

eB = eU e�1=2 eV � � ( eU1; eU2)
 e�1=2

1 e�1=2
2

! eV �
1eV �
2

!
;

where U; eU are the same as in (1.1) and (1.2), V1; eV1 2 Cn�k . Notice that

eA� A = eB eB� �BB� = eBD�B� � eBD�1B� = eB(D� �D�1)B�:

Pre- and post-multiply the equations by eU� and U , respectively, to get e� eU�U � eU�U� =e�1=2 eV �(D� �D�1)V�1=2 which yields

e�2
eU�2U1 � eU�2U1�1 = e�1=2

2
eV �2 (D� �D�1)V1�

1=2
1 : (8.1)

The following inequality will be very useful in the rest of our proofs.��������� eV �
2 (D

� �D�1)V1
��������� � ���������D� �D�1

���������
=

����
����
�����I +H�1=2(�H)H�1=2�1=2 � �I +H�1=2(�H)H�1=2��1=2����

����
����

� k
�
I +H�1=2(�H)H�1=2��1=2 k2 ���������H�1=2(�H)H�1=2

���������
� kH�1k2 jjj�H jjjp

1� kH�1k2k�Hk2
:

Lemma 8.1 Let 
 2 C
s�s and � 2 C

t�t be two nonnegative de�nite Hermitian ma-

trices, and let E 2 C
s�t. If �(
)

T
�(�) = ;, then matrix equation 
X � X� =


1=2E�1=2 has a unique solution X 2 C
s�t, and moreover kXkF � kEkF=��, where

��
def
= min

!2�(
); 2�(�)
�(!; ).

Proof: For any unitary matrices P 2 Us and Q 2 Ut, the substitutions


 P �
P; 
1=2 (P �
P )1=2; � Q��Q; �1=2  (Q��Q)1=2;

X  P �XQ; and E  P �EQ

leave the lemma unchanged, so we may assume without loss of generality that


 = diag(!1; !2; : : : ; !s) and � = diag(1; 2; : : : ; t).

Write X = (xij), E = (eij). Entrywise, equation 
X � X� = 
1=2E�1=2 reads

!ixij � xijj = p!ieijpj. As long as !i 6= j , xij exists uniquely, and

jxij j2 = jeij j2=�(!i; j) � jeij j2=��
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summing which over 1 � i � s and 1 � j � t leads to the desired inequality.

Proof of Theorem 4.3: Equation (8.1) and Lemma 8.1 imply

sin�(U1; eU1)
F
=
 eU�2U1

F
� k

eV �2 (D� �D�1)V1kF
��

� kD
� �D�1kF
��

;

as required.

Lemma 8.2 Let 
 2 Cs�s and � 2 Ct�t be two nonnegative de�nite Hermitian matrices,

and let E 2 Cs�t. If there exist � > 0 and � > 0 such that

k
k2 � � and k��1k�12 � � + �

or

k
�1k�12 � �+ � and k�k2 � �;

then matrix equation 
X � X� = 
1=2E�1=2 has a unique solution X 2 C
s�t, and

moreover jjjX jjj � jjjEjjj =�
�
, where �

�

def
= �(�; �+ �).

Proof: The existence and uniqueness of X are easy to see because the conditions of this

lemma imply �(
)
T
�(�) = ;. To bound jjjX jjj, we present a proof for the case k
k2 � �

and k��1k�12 � � + �. A proof for the other case is analogous. Post-multiply equation


X �X� = 
1=2E�1=2 by ��1 to get


X��1 �X = 
1=2E��1=2: (8.2)

Under the assumptions k
k2 � � and k��1k�12 � � + � ) k��1k2 � 1
�+� , we have������
X��1 �X������ � �1� �

�+�

�
jjjX jjj as in the proof of Lemma 7.2 and

���������
1=2E��1=2
��������� � k
1=2k2 jjjEjjj k��1=2k2 �

p
� jjjEjjj 1p

�+ �
:

By equation (8.2), we deduce that

�
1� �

� + �

�
jjjX jjj �

r
�

� + �
jjjEjjj

from which the desired inequality follows.

Proof of Theorem 4.4: Equation (8.1) and Lemma 8.2 imply

���������sin �(U1; eU1)��������� = ��������� eU�2U1��������� �
��������� eV �

2 (D
� �D�1)V1

���������
�
�

�
������D� �D�1������

�
�

;

as required.
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9 Proofs of Theorems 4.5 and 4.6

Let RR = eBV1� U1�1 = ( eB �B)V1 and RL = eB�U1 � V1�1 = ( eB� �B�)U1 as de�ned in

(3.8).

9.1 The Square Case: m = n

When m = n, the SVDs (3.4) and (3.5) read

B = U�V � � (U1; U2)

 
�1

�2

! 
V �
1

V �
2

!
;

eB = eU e� eV � � ( eU1; eU2)
 e�1 e�2

! eV �
1eV �
2

!
:

Notice that

eU�2RR = eU�2 eBV1 � eU�2U1�1 = e�2
eV �
2 V1 � eU�2U1�1;eU�2RR = eU�2 ( eB �B)V1 = eU�2 (D�

1BD2 �D�
1B +D�

1B �B)V1
= eU�2 h eB(I �D�1

2 ) + (D�
1 � I)B

i
V1

= e�2
eV �
2 (I �D�1

2 )V1 + eU�2 (D�
1 � I)U1�1

to get e�2
eV �2 V1 � eU�2U1�1 = e�2

eV �2 (I �D�1
2 )V1 + eU�2 (D�

1 � I)U1�1: (9.1)

On the other hand,

eV �2 RL = eV �2 eB�U1 � eV �
2 V1�1 = e�2

eU�2U1 � eV �
2 V1�1:eV �2 RL = eV �2 ( eB� � B�)U1 = eV �

2 (D
�
2B

�D1 �D�
2B

� +D�
2B

� � B�)U1
= eV �2 h eB�(I �D�1

1 ) + (D�
2 � I)B�

i
U1

= e�2
eU�2 (I �D�1

1 )U1 + eV �
2 (D

�
2 � I)V1�1

which produce

e�2
eU�2U1 � eV �2 V1�1 = e�2

eU�2 (I �D�1
1 )U1 + eV �

2 (D
�
2 � I)V1�1: (9.2)

Equations (9.1) and (9.2) take an equivalent forms as a single matrix equation with di-

mensions doubled. e�2e�2

! eU�2U1 eV �2 V1
!
�
 eU�2U1 eV �

2 V1

! 
�1

�1

!
(9.3)

=

 e�2e�2

! eU�2 (I �D�1
1 )U1 eV �

2 (I �D�1
2 )V1

!

+

 eU�2 (D�
1 � I)U1 eV �2 (D�

2 � I)V1

! 
�1

�1

!
:
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Proof of Theorem 4.5: Notice that the eigenvalues of

 e�2e�2

!
are �e�k+j and these of 

�1

�1

!
are ��i, and that

%2(�i;�e�k+j) � %2(�i; e�k+j) and %2(��i; e�k+j) � %2(�i; e�k+j):
By Lemma 7.1 and equation (9.3), we have

keU�

2
U1k

2

F + keV �

2
V1k

2

F

�
1

�2
2

h
keU�

2
(I �D�1

1
)U1k

2

F + keU�

2
(D�

1
� I)U1k

2

F + keV �

2
(I �D�1

2
)V1k

2

F + keV �

2
(D�

2
� I)V1k

2

F

i

�
1

�2
2

�
k(I �D�1

1
)U1k

2

F + k(D�

1
� I)U1k

2

F + k(I �D�1

2
)V1k

2

F + k(D�

2
� I)V1k

2

F

�
which completes the proof.

Lemma 9.1 Let 
 2 C
s�s and � 2 C

t�t be two Hermitian matrices, and let

X; Y; E; eE; F; eF;2 Cs�t satisfying


X � Y � = 
E + F� and 
Y �X� = 
 eE + eF�:
If there exist � > 0 and � > 0 such that

k
k2 � � and k��1k�12 � � + �

or

k
�1k�12 � �+ � and k�k2 � �;

then for any unitarily invariant norm jjj � jjj,

max fjjjX jjj ; jjjY jjjg � 1

�
p

max

(
q
q
jjjEjjjq + jjjF jjjq; q

r��������� eE���������q + ��������� eF ���������q
)
; (9.4)

where �
p

def
= %p(�; �+ �).

Proof: We present a proof for the case k
k2 � � and k��1k�12 � � + �. A proof for the

other case is analogous. Consider �rst the subcase jjjX jjj � jjjY jjj. Post-multiply equation


Y �X� = 
 eE + eF� by ��1 to get


Y ��1 �X = 
 eE��1 + eF : (9.5)

Then we have, by k
k2 � � and k��1k�12 � �+ � ) k��1k2 � 1
�+� , that���������
Y ��1 �X��������� � jjjX jjj+�

���������
Y ��1��������� � jjjX jjj � k
k2 jjjY jjj k��1k2
� jjjX jjj � � jjjY jjj 1

�+ �
� jjjX jjj � � jjjX jjj 1

� + �

=

�
1� �

� + �

�
jjjX jjj
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and ���������
 eE��1 + eF ��������� � ���������
 eE��1���������+ ��������� eF ��������� � k
k2 ��������� eE��������� k��1k2 + ��������� eF ���������
� �

��������� eE��������� 1

�+ �
+
��������� eF ��������� � p

s
1 +

�p

(�+ �)p
q

r��������� eE���������q + ��������� eF ���������q:
By equation (9.5), we deduce that

�
1� �

� + �

�
jjjX jjj � p

s
1 +

�p

(�+ �)p
q

r��������� eE���������q + ��������� eF ���������q

which produce that if jjjX jjj � jjjY jjj, jjjX jjj � 1
�
p

q

r��������� eE���������q + ��������� eF ���������q: Similarly if jjjX jjj < jjjY jjj,

from 
X�Y � = 
E+F� we can obtain jjjY jjj � 1
�
p

q

q
jjjEjjjq + jjjF jjjq: Inequality (9.4) now

follows.

Proof of Theorem 4.6: By equations (9.1) and (9.2) and Lemma 9.1, we have

max
n��������� eU�

2
U1

��������� ; ���������eV �

2
V1

���������o

�
1

�
p

max

(
q

r���������eV �

2
(I �D�1

2
)V1

���������q + ���������eU�

2
(D�

1
� I)U1

���������q ;
q

r��������� eU�

2
(I �D�1

1
)U1

���������q + ���������eV �

2
(D�

2
� I)V1

���������q
)

�
1

�
p

max

�
q

q������(I �D�1

2
)V1
������q + jjj(D�

1
� I)U1jjj

q
;

q

q������(I �D�1

1
)U1

������q + jjj(D�

2
� I)V1jjj

q

�
;

as required. Turning to inequality (4.8), we have by equation (9.3) and Lemma 7.2 that�����
�����
�����
 eU�

2
U1 eV �

2
V1

!�����
�����
����� � 1

�
p

 �����
�����
�����
 eU�

2
(I �D�1

1
)U1 eV �

2
(I �D�1

2
)V1

!�����
�����
�����
q

(9.6)

+

�����
�����
�����
 eU�

2
(D�

1
� I)U1 eV �

2
(D�

2
� I)V1

!�����
�����
�����
q!1=q

;

since the conditions of Theorem 4.6 imply


 e�2e�2

!
2

� �;


 

�1

�1

!�1
2

� 1

�+ �
:

Since eU�2U1 and sin�(U1; eU1) have the same nonzero singular values and so do eV �
2 V1 and

sin �(V1; eV1), �����
�����
�����
 eU�2U1 eV �

2 V1

!�����
�����
����� =

�����
�����
�����
 

sin�(U1; eU1)
sin �(V1; eV1)

!�����
�����
����� : (9.7)



Ren-Cang Li: Relative Perturbation Theory 25

Note also eU�

2
(I �D�1

1
)U1 eV �

2
(I �D�1

2
)V1

!
=

 eU�

2 eV �

2

!�
(I �D�1

1
)U1

(I �D�1

2
)V1

�
;

 eU�

2
(D�

1
� I)U1 eV �

2
(D�

2
� I)V1

!
=

 eU�

2 eV �

2

!�
(D�

1
� I)U1

(D�

2
� I)V1

�
:

Thus, one has�����
�����
�����
 eU�

2
(I �D�1

1
)U1 eV �

2
(I �D�1

2
)V1

!�����
�����
����� �

����
����
����
�

(I �D�1

1
)U1

(I �D�1

2
)V1

�����
����
���� ; (9.8)

�����
�����
�����
 eU�

2
(D�

1
� I)U1 eV �

2
(D�

2
� I)V1

!�����
�����
����� �

����
����
����
�

(D�

1
� I)U1

(D�

2
� I)V1

�����
����
���� : (9.9)

Inequality (4.8) is a consequence of (9.6), (9.7), (9.8) and (9.9).

9.2 The Non-Square Case: m > n

Augment B and eB by a zero block 0m;m�n to Ba = (B; 0m;m�n) and eBa = ( eB; 0m;m�n).
From eB = D�

1BD2, we get

eBa = D�
1Ba

 
D2

Im�n

!
def
= D�

1BaDa2:

From the SVDs (3.4) and (3.5) of B and eB, one can calculate the SVDs of Ba and eBa:

Ba = U�aV
�
a = (U1; U2)

 
�1

�a2

! 
V �
a1

V �
a2

!
; (9.10)

eBa = eU e�a
eV �a = ( eU1; eU2)

 e�1 e�a2

! eV �
a1eV �
a2

!
; (9.11)

where

�a2 =

 
�2

0m�n;m�n

!
; Va1 =

 
V1

0m�n;k

!
; Va2 =

 
V2

Im�n

!
;

similarly for e�a2, eVa1 and eVa2. The following fact is easy to establish���������sin �(Va1; eVa1)��������� = ���������sin�(V1; eV1)��������� :
Applying the square case of Theorems 4.5 and 4.6 to m � m matrices Ba and eBa just

de�ned will complete the proofs.
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10 Proofs of Theorems 4.7 and 4.8

We have seen in x9 how to deal with the nonsquare case by transforming it to the square

case. So here we will only give proofs for the square case: m = n: Let B̂ = D�
1B and

�B = BD2 and their SVDs be

B̂ = Û �̂V̂ � � (Û1; Û2)

 
�̂1

�̂2

! 
V̂ �
1

V̂ �
2

!
; (10.1)

�B = �U ���V � � ( �U1; �U2)

 
��1

��2

! 
�V �
1
�V �
2

!
; (10.2)

where eU; �U 2 Un, eV ; �V 2 Un, U1; �U1 2 Cn�k , V1; �V1 2 Cn�k and

�̂1 = diag(�̂1; � � � ; �̂k); �̂2 = diag(�̂k+1; � � � ; �̂n);
��1 = diag(��1; � � � ; ��k); ��2 = diag(��k+1; � � � ; ��n):

Partitionings in (10.1) and (10.2) shall be done in such a way that

max
1�i�n

�(�i; �̂i) � 1
2kD�

1 �D�1
1 k2; max

1�i�n
�(�̂i; e�i) � 1

2kD�
2 �D�1

2 k2;

max
1�i�n

�(�i; ��i) � 1
2kD�

2 �D�1
2 k2; max

1�i�n
�(��i; e�i) � 1

2kD�
1 �D�1

1 k2:
(10.3)

Such partitionings are possible because of the relative perturbation theorems proved in

Li [11]. By the fact %p(�; �) � 2�1=p�(�; �) (see Lemma 2.1 below), these inequalities imply

max
1�i�n

%p(�i; �̂i) � 1
21+1=p

kD�
1 �D�1

1 k2; max
1�i�n

%p(�̂i; e�i) � 1
21+1=p

kD�
2 �D�1

2 k2;

max
1�i�n

%p(�i; ��i) � 1
21+1=p

kD�
2 �D�1

2 k2; max
1�i�n

%p(��i; e�i) � 1
21+1=p

kD�
1 �D�1

1 k2:
(10.4)

Consider B̂ and eB = B̂D2. We have

B̂B̂� = Û �̂�̂�Û� � (Û1; Û2)

 
�̂2
1

�̂2
2

! 
Û�1
Û�2

!
; (10.5)

eB eB� = eU e�e�� eU� � ( eU1; eU2)
 e�2

1 e�2
2

! eU�1eU�2
!
: (10.6)

Notice that eB eB� � B̂B̂� = eBD�
2B̂

� � eBD�1
2 B̂� = eB(D�

2 �D�1
2 )B̂�;

Pre- and post-multiply the equations by eU� and Û , respectively, to get e�2 eU�Û� eU�Û �̂2 =e� eV �(D�
2 �D�1

2 )V̂ �̂ which gives

e�2
2
eU�2 Û1 � eU�2 Û1�̂2

1 =
e�2
eV �2 (D�

2 �D�1
2 )V̂1�̂1: (10.7)
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Consider now �B and eB = D�
1
�B. We have

�B� �B = �V ������V � � ( �V1; �V2)

 
��2
1

��2
2

! 
�V �1
�V �2

!
; (10.8)

eB� eB = eV e��e� eV � � ( eV1; eV2)
 e�2

1 e�2
2

! eV �1eV �2
!
: (10.9)

Notice that eB� eB � �B� �B = eB�D�
1
�B � eB�D�1

1
�B = eB�(D�

1 �D�1
1 ) �B:

Pre- and post-multiply the equations by eV � and �V , respectively, to get e�2 eV � �V � eV � �V ��2 =e� eU�(D�
1 �D�1

1 ) �U �� which gives

e�2
2
eV �2 �V1 � eV �2 �V1��2

1 =
e�2
eU�2 (D�

1 �D�1
1 ) �U1��1: (10.10)

Two other eigendecompositions that will be used later in the proofs are

BB� = U���U� � (U1; U2)

 
�2
1

�2
2

! 
U�1
U�2

!
; (10.11)

B�B = V���V � � (V1; V2)

 
�2
1

�2
2

! 
V �
1

V �
2

!
: (10.12)

Proof of Theorem 4.7: Equations (10.7) and (10.10) and Lemma 8.1 produce

sin�(Û1; eU1)
F
=
 eU�2 Û1

F
�

 eV �
2 (D

�
2 �D�1

2 )V̂1


F

��(�̂2
1;
e�2
2)

;

sin �( �V1; eV1)
F
=
 eV �

2
�V1


F
�

 eU�2 (D�
1 �D�1

1 ) �U1


F

��(��
2
1;
e�2
2)

;

where4 ��(�̂
2
1;
e�2
2)

def
= min

1�i�k;1�j�n�k
�(�̂2i ; e�2k+j) and ��(��2

1;
e�2
2)

def
= min

1�i�k;1�j�n�k
�(��2i ; e�2k+j):

On the other hand, applying Theorem 4.1 to BB� and B̂B̂� = D�
1BB

�D1 leads to (see

(10.5) and (10.11))

sin �(U1; Û1)
F
�
q
k(I �D�1

1 )U1k2F + k(I �D�
1)U1k2F

�2(�2
1; �̂

2
2)

;

where �2(�
2
1; �̂

2
2)

def
= min

1�i�k;1�j�n�k
%2(�

2
i ; �̂

2
k+j); Applying Theorem 4.1 toB�B and �B� �B =

D�
2B

�BD2 leads to (see (10.8) and (10.12))

sin �(V1; �V1)
F
�
q
k(I �D�1

2 )V1k2F + k(I �D�
2)V1k2F

�2(�
2
1;
��2
2)

;

4We abuse notation �� here for convenience. As we recall, �� has its own assignment in the statement
of Theorem 4.7. However, it is re-de�ned as a function in this proof. Hopefully, this would not cause any

confusion.
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where �2(�
2
1;
��2
2)

def
= min

1�i�k;1�j�n�k
%2(�

2
i ; ��

2
k+j); Let �1 = kD�

1 � D�1
1 k2 and �2 = kD�

2 �
D�1
2 k2. We claim

��(�̂
2
1;
e�2
2) � 2 ��(�̂1; e�2) �

8><
>:

2��(�1;e�2)��1
1+

�1
16
��(�1;e�2) ;

23=2�2(�1; e�2)� �1:

(10.13)

This is because

�(�̂2i ; e�2k+j) � 2�(�̂i; e�k+j) � 21+1=2%2(�̂i; e�k+j) (by Lemma 2.1)

� 23=2 [%2(�i; e�k+j)� %2(�̂i; �i)] (%2 is a metric on R)

� 23=2
h
%2(�i; e�k+j)� 2�3=2�1

i
(by (10.4)

and because

�(�i; e�k+j) � �(�i; �̂i) + �(�̂i; e�k+j) + 1

8
�(�i; �̂i)�(�̂i; e�k+j)�(�i; e�k+j):

) �(�̂i; e�k+j) � �(�i; e�k+j)� �(�i; �̂i)
1 + 1

8�(�i; �̂i)�(�i; e�k+j) �
�(�i; e�k+j)� �1=2
1 + �1

16�(�i; e�k+j) : (by (10.4)

Similarly, we have

��(��
2
1;
e�2
2) � 2 ��(��1; e�2) �

8><
>:

2��(�1;e�2)��2
1+

�2
16
��(�1;e�2) ;

23=2�2(�1; e�2)� �2;

�2(�
2
1; �̂

2
2) � �2(�1; �̂2) � �2(�1; e�2)� 2�3=2�2;

�2(�
2
1;
��2
2) � �2(�1; ��2) � �2(�1; e�2)� 2�3=2�1:

The proof will be completed by employingsin�(U1; eU1)
F
�

sin �(U1; Û1)
F
+
sin�(Û1; eU1)

F
;sin�(V1; eV1)

F
�

sin �(V1; �V1)
F
+
sin�( �V1; eV1)

F
;

since k sin�( � ; � )kF is a metric on the space of k-dimensional subspaces [14].

Proof of Theorems 4.8: Denote � = � + �. Let �̂ and �� be the largest positive numbers

such that

�(�; �̂) � 1

2
kD�

2 �D�1
2 k2 and �(�; ��) � 1

2
kD�

1 �D�1
1 k2

which guarantee that k�̂2k2 � �̂, k��2k2 � ��, and

%p(�; �̂) � 1

21+1=p
kD�

2 �D�1
2 k2 and %p(�; ��) � 1

21+1=p
kD�

1 �D�1
1 k2;
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and let �̂ and �� be the smallest numbers such that

�(�; �̂) � 1

2
kD�

1 �D�1
1 k2 and �(�; ��) � 1

2
kD�

2 �D�1
2 k2

which guarantee that k�̂�11 k�12 � �̂, k���11 k�12 � ��, and

%p(�; �̂) � 1

21+1=p
kD�

1 �D�1
1 k2 and %p(�; ��) � 1

21+1=p
kD�

2 �D�1
2 k2:

(4.15) implies minf�̂; ��g > � and � > maxf�̂; ��g.
Equations (10.7) and (10.10) and Lemma 8.2 produce

���������sin �(Û1; eU1)��������� = ��������� eU�2 Û1��������� �
��������� eV �2 (D�

2 �D�1
2 )V̂1

���������
�(�2; �̂2)

;

���������sin�( �V1; eV1)��������� = ��������� eV �2 �V1��������� �
��������� eU�2 (D�

1 �D�1
1 ) �U1

���������
�(�2; ��2)

:

On the other hand, applying Theorem 4.2 to BB� and B̂B̂� = D�
1BB

�D1 leads to (see

(10.5) and (10.11))

���������sin�(U1; Û1)��������� �
q

r���������(I �D�1
1 )U1

���������q + jjj(I �D�
1)U1jjjq

�(�̂2; �2)
;

Applying Theorem 4.1 to B�B and �B� �B = D�
2B

�BD2 leads to (see (10.8) and (10.12))

���������sin�(V1; �V1)��������� �
q

r���������(I �D�1
2 )V1

���������q + jjj(I �D�
2)V1jjjq

�(��2; �2)
:

Notice that

�(�2; �̂2) � 2�(�; �̂) �
8<
:

2�(�;�)��1
1+

�1
16
�(�;�)

;

21+1=p%p(�; �)� �1;

�(�2; ��2) � 2�(�; ��) �
8<
:

2�(�;�)��2
1+

�2
16
�(�;�)

;

21+1=p%p(�; �)� �2;

%p(�̂
2; �2) � %p(�̂; �) � %p(�; �)� 21+1=p�2;

%p(��
2; �2) � %p(��; �) � %p(�; �)� 21+1=p�1;

where �1 = kD�
1�D�1

1 k2 and �2 = kD�
2�D�1

2 k2. The proof will be completed by employing���������sin �(U1; eU1)��������� � ���������sin�(U1; Û1)���������+ ���������sin �(Û1; eU1)��������� ;���������sin �(V1; eV1)��������� � ���������sin�(V1; �V1)���������+ ���������sin�( �V1; eV1)��������� :
since jjjsin�( � ; � )jjj is a metric on the space of k-dimensional subspaces [14].
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11 Conclusions and Further Extensions to Diagonalizable

Matrices

We have developed a relative perturbation theory for eigenspace and singular space vari-

ations under multiplicative perturbations. In the theory, extensions of Davis-Kahan sin �

theorems and Wedin sin � theorems from the classical perturbation theory are made. Our

unifying treatment covers almost all previously studied cases over the last six years or so.

Using the similar technique in this paper, one can also develop a relative perturbation

theory for eigenspaces of diagonalizable matrices: A and eA = D�
1AD2 are diagonalizable,

where D1 and D2 are close to the identity matrix. We outline a way of doing this. Let

eigendecompositions of A and eA be

AX = X� � (X1; X2)

 
�1

�2

!
and eA eX = eX e� � ( eX1; eX2)

 e�1 e�2

!
;

where X; eX 2 Cn�n are nonsingular, and X1; eX1 2 Cn�k (1 � k < n) and

�1 = diag(�1; � � � ; �k); �2 = diag(�k+1; � � � ; �n);e�1 = diag(e�1; � � � ; e�k); e�2 = diag(e�k+1; � � � ; e�n):
�i's and e�j 's may be complex. Partition

X�1 =

 
Y �
1

Y �
2

!
and eX�1 =

 eY �
1eY �
2

!
;

where Y1; eY1 2 Cn�k . De�ne R def
= eAX1 �X1�1 = ( eA� A)X1. We have

eY �
2 R = eY �2 eAX1 � eY �2 X1�1 = e�2

eY �2 X1 � eY �2 X1�1;eY �
2 R = eY �2 ( eA�A)X1 = eY �2 (D�

1AD2 �D�
1A+D�

1A� A)X1

= eY �2 h eA(I �D�1
2 ) + (D�

1 � I)A
i
X1

= e�2
eY �2 (I �D�1

2 )X1 + eY �2 (D�
1 � I)X1�1:

Thus we have the following perturbation equation

e�2
eY �2 X1 � eY �

2 X1�1 = e�2
eY �2 (I �D�1

2 )X1 + eY �2 (D�
1 � I)X1�1

from which various bounds on sin�(X1; eX1) can be derived under certain conditions. For

example, let �2
def
= min

1�i�k; 1�j�n�k
%2(�i; e�k+j). If �2 > 0, then by Lemma 7.1 we have

k eY �2 X1kF � 1

�2

q
k eY �

2 (I �D�1
2 )X1k2F + k eY �2 (D�

1 � I)X1k2F

� 1

�2
k eY �2 k2kX1k2

q
kI �D�1

2 k2F + kD�
1 � Ik2F:
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Notice that by Lemma 2.2

k sin�(X1; eX1)kF = k( eY �2 eY2)�1=2 eY �2 X1(X
�
1X1)

�1=2kF
� k( eY �2 eY2)�1=2k2k eY �

2 X1kFk(X�
1X1)

�1=2k2:
Then a bound on k sin�(X1; eX1)kF is immediately available.
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