
Relative Perturbation Theory:

(I) Eigenvalue and Singular Value Variations �

Ren-Cang Li
Mathematical Science Section
Oak Ridge National Laboratory

P.O. Box 2008, Bldg 6012
Oak Ridge, TN 37831-6367
(li@msr.epm.ornl.gov)

LAPACK working notes # 84 (�rst published July, 1994, revised January, 1996)

Abstract

The classical perturbation theory for matrix eigenvalue and singular value prob-
lems provides bounds on the absolute di�erences between approximate eigenvalues
(singular values) and the true eigenvalues (singular values) of a matrix. These bounds
may be bad news for small eigenvalues (singular values), which thereby su�er worse
relative uncertainty than large ones. However, there are situations where even small
eigenvalues are determined to high relative accuracy by the data, much more accu-
rately than the classical perturbation theory would indicate. In this paper, we study
how eigenvalues of a matrix A change when it is perturbed to eA = D�

1
AD2 and how

singular values of a (nonsquare) matrixB change when it is perturbed to eB = D�

1
BD2,

where D1 and D2 are assumed to be close to unitary matrices of suitable dimensions.
It is proved that under these kinds of perturbations, small eigenvalues (singular values)
su�er relative changes no worse than large eigenvalues (singular values). We have been
able to extend many well-known perturbation theorems, including Ho�man-Wielandt
theorem and Weyl-Lidskii theorem. As applications, we obtained bounds for pertur-
bations of graded matrices in both singular value problems and nonnegative de�nite
Hermitian eigenvalue problems.
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1 Introduction

The classical perturbation theory for matrix eigenvalue problems provides bounds on the

absolute di�erences j� � e�j between approximate eigenvalues e� and the true eigenvalues

� of a symmetric matrix A. When e� is computed using standard numerical software, the

bounds on j�� e�j are typically only moderately bigger than �kAk [14, 33, 42], where � is
the rounding error threshold characteristics of the computer's arithmetic. These bounds

are bad news for small eigenvalues, which thereby su�er worse relative uncertainty than

large ones.

Generally, the classical error bounds are best possible if perturbations are arbitrary.

However, there are situations where perturbations have special structures and under these

special perturbations even small eigenvalues (singular values) are determined to high rel-

ative accuracy by the data, much more accurately than the classical perturbation theory

would indicate. The relative perturbation theory is then called for to exploit the situations

to provide bounds on the relative di�erences between e� and �.

The development of such a theory went back to as early as Kahan [18, 1966] and is

becoming a very active research area in the last six years or so and ever since [1, 6, 7, 8,

9, 10, 11, 13, 15, 21, 29, 34]. In this paper, we develop a theory by a unifying treatment

that sharpens existing bounds and covers almost all previously studied cases.

1.1 What to be Covered?

This paper deals with perturbations of the following kinds:

� Eigenvalue problems:

1. A and eA = D�AD for Hermitian case, where D is nonsingular and close to the

identity matrix or more generally to a unitary matrix;

2. A and eA = D�
1AD2 for general diagonalizable case, where D1 and D2 are

nonsingular and close to the identity matrix or more generally to some unitary

matrix;

3. A = S�HS and eA = S� eHS for the graded nonnegative Hermitian case, where

it is assumed that H and eH are nonsingular and often that S is a highly graded

diagonal matrix (this assumption is not necessary to our theorems).

� Singular value problems:

1. B and eB = D�
1BD2, where D1 and D2 are nonsingular and close to identity

matrices or more generally to unitary matrices;

2. B = GS and eB = eGS for the graded case, where it is assumed that G andeG are nonsingular and often that S is a highly graded diagonal matrix (this

assumption is not necessary to our theorems).

These perturbations cover component-wise relative perturbations to entries of symmetric

tridiagonal matrices with zero diagonal [8, 18], entries of bidiagonal and biacyclic matrices
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[1, 7, 8], and perturbations in graded nonnegative Hermitian matrices [9, 29], in graded

matrices of singular value problems [9, 29] and more [10]. What distinguishes these pertur-

bations from the most general additive perturbations studied by the classical perturbation

theory is their multiplicative structures. For this reason, we call such perturbations multi-

plicative perturbations. (The above perturbations for graded matrices can be transformed

to take forms of multiplicative perturbations as will be seen from proofs of this paper.)

Additive perturbations are the most general in the sense that if A is perturbed to eA,
only possible known information is on some norm of �A

def
= eA � A. Such perturbations,

no matter how small, can not guarantee relative accuracy in eigenvalues (singular values)

of the matrix under considerations. For example, A is singular, then eA can be made

nonsingular no matter how small a norm of �A is; thus some zero eigenvalues are perturbed

to nonzero ones and therefore lose their relative accuracy completely. (Retaining any

relative accuracy of zero at all ends up not changing it.)

1.2 Notation

We will adopt this convention: capital letters denote unperturbed matrices and capital

letters with tilde denote their perturbed ones. For example, X is perturbed to eX.

Throughout the paper, capital letters are for matrices, lower case Latin letters for

column vectors or scalars, and lower case Greek letters for scalars. The following is a

detailed list of our special notation. Others will be introduced when it appears for the

�rst time.

C
m�n: the set of m� n complex matrices;

C
m: C

m�1;

C: C
1;

R
m�n: the set of m� n real matrices;

R
m: R

m�1;

R: R
1;

Un: the set of n� n unitary matrices;

0m;n: the m� n zero matrix (we may simply write 0 instead);

In: the n� n identity matrix (we may simply write I instead);

X�: the complex conjugate of a matrix X ;

�(X): the set of the eigenvalues of X , counted according to their algebraic

multiplicities;

�(X): the set of the singular values of X , counted according to their algebraic

multiplicities;

�min(X): the smallest singular value of X 2 Cm�n;

�max(X): the largest singular value of X 2 Cm�n;

kXk2: the spectral norm of X , i.e., �max(X);

kXkF: the Frobenius norm of X , i.e.,
rP

i; j
jxij j2, where X = (xij);

kXkp: the p-H�older operator norm of X to be de�ned later;

jjjX jjj: some unitary invariant norm of X to be de�ned later.
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1.3 Organization of the Paper

We �rst in x2 summarize what we have accomplished in this paper, together with the

corresponding well-known classical perturbation theorems that are being extended. In x3,
we de�ne two kinds of relative distances %p (1 � p � 1) and � which will be heavily used

in the rest of this paper. Various properties that are relevant to our relative perturbation

theory are studied in the section and in Appendix A where it is proved %p is indeed a

metric on R. Some of the classical perturbation theorems that will be extended to our

relative perturbation theory are presented and brie
y discussed in x4. We devote two

sections to present and discuss main theorems of this paper: x5 is for theorems concerning
nonnegative de�nite matrix eigenvalue variations and singular value variations; while x6 is
for theorems concerning non-de�nite matrix eigenvalue variations. Proofs are postponed to

later sections xx8|10. We discuss other developments in literature on relative perturbation

theories in x7. We will touch how our relative perturbation theorems can be applied to

generalized eigenvalue problems and generalized singular value problems in x11. Finally,
we present our conclusions.

2 Summary of Results

To help the reader to grasp quickly what we have accomplished in this paper, we give here a

table to summarize partially the simpli�ed (sometimes weakened) versions of our theorems

in comparison with their corresponding well-known classical theorems in literature. Full

statement of these theorems and their stronger versions will be given in x5 and x6. A

theorem of Ostrowski in 1959 and more recent developments on the relative perturbation

theory will be discussed in x7.
In what follows, we stick to the notation:

1. A; eA 2 Cn�n with eigenvalues

�(A) = f�1; � � � ; �ng and �( eA) = fe�1; � � � ; e�ng: (2.1)

Whenever, all �i's and e�j 's are real, we order them descendingly

�1 � �2 � � � � � �n; e�1 � e�2 � � � � � e�n: (2.2)

2. B; eB 2 Cm�n with singular values

�(B) = f�1; � � � ; �ng and �( eB) = fe�1; � � � ; e�ng (2.3)

ordered so that

�1 � �2 � � � � � �n � 0; e�1 � e�2 � � � � � e�n � 0; (2.4)

In the table, � always stands for some permutations of f1; 2; � � � ; ng, and two relative

distances %p and � are de�ned for �; e� 2 C by

%p(�; e�) = j�� e�j
p
pj�jp + je�jp for 1 � p � 1, and ��; e�) = j�� e�jpj�e�j ;

with convention 0=0 = 0 for convenience. (For detailed studies of them, see x3.)
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Table 3.1. Perturbation Theorems for Eigenvalues

Classical Bounds New Relative Bounds

A

andeA
De�nite

r
nP
i=1

j�i � e�ij2 � k eA�AkF

(Theorems 4.1 and 4.3)

eA = D
�
AD

r
nP
i=1

h
�(�i;e�i)i2 � kD��D�1kF

(Theorem 5.1)

A

andeA
De�nite

j�i � e�ij � k eA�Ak2

(Theorem 4.3)

eA = D
�
AD

�(�i;e�i) � kD� �D�1k2

(Theorem 5.1)

A

andeA
Hermitian

r
nP
i=1

j�i � e�ij2 � k eA�AkF

(Theorems 4.1 and 4.3)

eA = D�AD

r
nP
i=1

h
%2(�i;e��(i))i2

�
p
kI �Dk2

F
+ kI �D�1k2

F

(Theorem 6.3)

A

andeA
Hermitian

j�i � e�ij � k eA�Ak2

(Theorem 4.3)

eA = D
�
AD

%1(�i;e�i) � kI �D�Dk2,
�(�i;e�i) � kI�D�Dk2

�min(D)

(see (7.3) and (7.4))

A

andeA
normal

r
nP
i=1

j�i � e��(i)j2
� k eA�AkF

(Theorem 4.1)

eA = D
�
1AD2

r
nP
i=1

h
%2(�i;e��(i))i2 � min

�
q
kI �D1k2F + kI �D�1

2 k2
F
;q

kI �D�1
1 k2

F
+ kI �D2k2F

	
(Theorem 6.2)

A = X�X�1

eA = eXe� eX�1

�, e� may be

complex

r
nP
i=1

j�i � e��(i)j2
� �(X)�( eX)k eA�AkF

(Theorem 4.2)

eA = D
�
1AD2

r
nP
i=1

h
%2(�i;e��(i))i2

� �(X)�( eX)min
�

q
kI �D1k2F + kI �D�1

2 k2
F
,q

kI �D�1
1 k2

F
+ kI �D2k2F

	
(Theorem 6.1)

A = X�X�1

eA = eXe� eX�1

� and e� real

nonnegative

j�i � e�ij
�
q
�(X)�( eX)k eA�Ak2

(Theorem 4.4)

eA = D
�
1AD2

%p(�i;e�i) � �(X)�( eX)min
�

q
p
kI �D�

1k
q
2 + kI �D�1

2 kq2;
q
p
kI �D��

1 kq2 + kI �D2kq2
	

(Theorem 6.4)
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Table 3.1 (continued). Perturbation Theorems for Singular Values

Classical Bounds New Relative Bounds

B

andeB
r

nP
i=1

j�i � e�ij2 � k eB�BkF

(Theorem 4.7)

eB = D
�
1BD2

r
nP
i=1

�
�(�i;e��(i))�2 �

1
2
� kD�

1
�D�1

1
k
F
+kD�

2
�D�1

2
k
F

1� 1
32
kD�

1
�D�1

1
k2kD�2�D

�1

2
k2

(Theorem 5.2)

B

andeB
r

nP
i=1

j�i � e�ij2 � k eB�BkF

(Theorem 4.7)

eB = D
�
1BD2

r
nP
i=1

[%p(�i;e�i)]2 � 1

21+1=p
��

kD�
1 �D�1

1 kF + kD�
2 �D�1

2 kF
�

(Theorem 5.3)

B

andeB
j�i � e�ij � k eB �Bk2

(Theorem 4.7)

eB = D
�
1BD2

�(�i; e�i) �
1
2 �

kD�1�D
�1

1
k2+kD

�

2�D
�1

2
k2

1� 1
32
kD�

1
�D�1

1
k2kD

�

2
�D�1

2
k2

(Theorem 5.2)

B

andeB
j�i � e�ij � k eB �Bk2

(Theorem 4.7)

eB = D
�
1BD2

%p(�i; e�i) � 1

21+1=p
��

kD�
1 �D�1

1 k2 + kD�
2 �D�1

2 k2
�

(Theorem 5.3)

Table 3.1 (continued). A Bauer-Fike Type Theorem

Classical Bounds New Relative Bounds

A = X�X�1
8e� 2 �( eA), 9� 2 �(A), such

that

je�� �j � �(X)k eA�Ak2

(Theorem 4.6)

EithereA = AD

oreA = DA:

8e� 2 �( eA), 9� 2 �(A), such that

je�� �j
j�j � �(X)kI �Dk2

(Theorem 6.6)

Finally, let's consider the graded cases:

1. A = S�HS and eA = S� eHS are two n � n graded nonnegative de�nite Hermitian

matrices. H is nonsingular and kH�1k2k�Hk2 < 1, where �H
def
= eH �H .

2. B = GS and eB = eGS are two m � n graded matrices whose singular values are of

interest. G is nonsingular and kG�1k2k�Gk2 < 1, where �G
def
= eG� G.

In applications, S is scaling matrices and often are diagonal; but our results do not assume

this. The elements of S can vary wildly. The interesting case is when H (G) is much better

conditioned than A (B), and when �H (�G) is small even though A� eA (B � eB) is not.
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Table 3.1 (continued). Perturbation Theorems for Graded Matrices

Classical Bounds New Relative Bounds

A

andeA
De�nite

r
nP
i=1

j�i � e�ij2 � k eA�AkF

(Theorems 4.1 and 4.3)

A = S
�
HS

eA = S
� eHS

r
nP
i=1

h
�(�i;e�i)i2

� kH�1k2k�HkFp
1�kH�1k2k�Hk2

(Theorem 5.4)

A

andeA
De�nite

j�i � e�ij � k eA�Ak2

(Theorem 4.3)

A = S
�
HS

eA = S
� eHS

�(�i;e�i) � kH�1k2k�Hk2p
1�kH�1k2k�Hk2

(Theorem 5.4)

B

andeB
r

nP
i=1

j�i � e�ij2 � k eB�BkF

(Theorem 4.7)

B = GS

andeB = eGS
r

nP
i=1

[�(�i;e�i)]2 �
2�kG�1k2k�Gk2

2(1�kG�1k2k�Gk2)
kG�1k2k�GkF

(Theorem 5.5)

B

andeB
j�i � e�ij2 � k eB � Bk2

(Theorem 4.7)

B = GS

andeB = eGS
�(�i; e�i) �

2�kG�1k2k�Gk2
2(1�kG�1k2k�Gk2)

kG�1k2k�Gk2

(Theorem 5.5)

3 Relative Distances

This section is devoted to studying two di�erent kinds of relative distances measuring

relative errors between two (complex) numbers � and e� one of which is an approximation

of the other. Classically, the relative error in e� = �(1 + �) as an approximation to � is

measured by

� = relative error in e� =
e�� �

�
: (3.1)

When j�j � � we say that the relative perturbation to � is at most � (see, e.g., [8]). Such

an measurement lacks mathematical properties upon which a nice relative perturbation

theory can be bulit: for example, it lacks symmetry between � and e� and thus it can not

be a metric among spaces of numbers that are of interest to us. Nonetheless, it is good

enough for measuring correct digits of numerical approximations.

In what follows, new relative distances will be proposed and studied. These distances

have better mathematical properties that allow us to develop a nice perturbation theory

and yet they are topologically equivalent to the classical measurement j�j as de�ned in

(3.1).
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3.1 The p-Relative Distance

The p-relative distance between �; e� 2 C is de�ned as

%p(�; e�) def
=

j�� e�j
p
pj�jp + je�jp for 1 � p � 1. (3.2)

We de�ne, for convenience, 0=0
def
= 0. %1 was �rst used by Deift, Demmel, Li, and Tomei [6,

1991] to de�ne relative gaps.

Proposition 3.1 Let 1 � p � 1 and �; e� 2 C.

1. %p(�; e�) � 0; and %p(�; e�) = 0 if and only if � = e�.
2. %p(�; e�) = %p(e�; �).
3. %p(��; �e�) = %p(�; e�) for all 0 6= � 2 C.

4. %p(1=�; 1=e�) = %p(�; e�) for � 6= 0 and e� 6= 0.

5. %p(�; e�) � 21�1=p; and %p(�; e�) = 21�1=p if and only if � = �e� 6= 0 in the case

p > 1; %1(�; e�) = 1 if and only if �e� � 0 and at least one of � and e� is not zero.

6. %p(�; 0) � 1 if � 6= 0; and

%p(�; e�)
(

> 1; for p > 1 and �e� < 0,

< 1; for all p � 1 and �e� > 0.

7. %p(�; e�) increases as p does, and

%p(�; e�) � %2p(�; e�) � 21=(2p)%p(�; e�):
8. if �; �; e�; e� 2 R and � � � � e� � e�, then

%1(�; e�) � %1(�; e�);
if, in addition to the listed conditions, also � e� � 0, then

%p(�; e�) � %p(�; e�) for p > 1, (3.3)

and inequality (3.3) is strict if either � < � or e� < e� holds.

Proof: Properties 1{6 are easy to verify. Property 7 holds because p
pj�jp + je�jp is a

decreasing function of p for 1 � p � 1, and

(j�jp + je�jp)1=p � �p2qj�j2p + je�j2p�1=p = 21=(2p)
�
j�j2p + je�j2p�1=(2p) ;
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by the Cauchy-Schwarz inequality1 . To prove Property 8, we consider function f(�) de�ned

by

f(�)
def
=

1� �
p
p
1 + j�jp ; where �1 � � � 1.

When p = 1,

f(�) =

(
1; for �1 � � � 0,
2

1+� � 1; for 0 � � � 1;

so f(�) decreases monotonically and decreases strictly monotonically for 0 � � � 1. We

are about to prove that when p > 1 function f(�) so de�ned is strictly monotonically

decreasing. This is true if p = 1. When 1 < p < 1, set h(�)
def
= [f(�)]p and g(�)

def
=

[f(��)]p. Because for 0 < � < 1

h0(�) = �p(1� �)p�1(1 + �p�1)

(1 + �p)2
< 0 and g0(�) =

p(1 + �)p�1(1� �p�1)

(1 + �p)2
> 0;

for 0 < � < 1, h(�) is strictly monotonically decreasing, and g(�) is strictly monotonically

increasing. Thus function f(�) is strictly monotonically decreasing for p > 1.

There are several cases to deal with for con�rming Property 8. Assume at least one of

� � � and e� � e� is strict.

1. 0 � � � � � e� � e�, then 0 � �=e� < �=e� � 1; thus

%p(�; e�) = f(�=e�) > f(�=e�) = %p(�; e�):
2. � � 0 � � � e� � e� or � � � � e� � 0 � e�, then Property 6 implies

%p(�; e�) � 1 � %p(�; e�):
It is easy to verify that the equalities in the two \�'s" can not be satis�ed simuta-

neously.

3. � � � � 0 � e� � e�. Only p = 1 shall be considered:

%1(�; e�) = 1 � 1 = %1(�; e�):
4. � � � � e� � e� � 0, then 0 � e�=� < e�=� � 1; thus

%p(�; e�) = f(e�=�) > f(e�=�) = %p(�; e�):
1H�older inequality: For �; e�;�; e� � 0, and 1 � p �1,

��+ e�e� � p
p
�p + e�p q

q
�q + e�q

and the equality holds if and only if �pe�q = e�p�q, where q = p=(p � 1). When p = 2, this is the

Cauchy-Schwarz inequality. The H�older inequality will be used frequently later in our proofs.
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The proof of Property 8 is completed.

Remark: In Property 8 of Proposition 3.1, assumption � e� � 0 for the case p > 1 is

essential. A counterexample is: let � > � > 0, and let � = �� � � = �� < e� = � < e� < �.

Then

%p(�; e�) = � + �
p
p
�p + �p

< 21�1=p = %p(�; e�):
The following proposition establishes the topological equivalence between the classical

measurement (see (3.1)) and our new relative distances %p.

Proposition 3.2 Let 0 � � < 1, and �; e� 2 R. We have the following:���� e�� � 1

���� � �) %p(�; e�) � �
p
p
1 + (1� �)p

; (3.4)

and

%p(�; e�) � �) max

����� e�� � 1

���� ;
�����e� � 1

����
�
� 21=p �

1� �
: (3.5)

Asymptotically,

lime�!�

%p(�; e�)��� e�� � 1
��� = 21=p;

thus (3.4) and (3.5) are at least asymptotically sharp.

Proof:
��� e�� � 1

��� � � implies je�=�j � 1� �; so

%p(�; e�) =
���� e�� �

�

���� � 1
p
p
1 + je�=�jp �

�
p
p
1 + (1� �)p

:

This con�rms (3.4). (3.5)p=1 and (3.5)p=1 can be proved analogously to what we are going

to do for 1 < p < 1. Let � = e�=� or � = �=e�. Then � < 1 ) � > 0 by Proposition 3.1.

%p(�; e�) � � implies

�
def
=

j� � 1j
p
p
1 + �p

� �: (3.6)

Now if � < 1, then j� � 1j � � p
p
1 + �p � 21=p�. Assume � > 1 and write � = � � 1 > 0.

(3.6) yields � = � p
p
1 + (1 + �)p; and thus

�p(1 + �)p � �p + �p = 0:

Consider function f(x) = �p(1 + x)p � xp + �p for x � 0. It is easy to see that

f(0) = 0; f 0(0) = p�p > 0; and f(+1) < 0,

and f 0(x) vanishes only once at x = �q=(1��q), where q = p=(p�1); So f(x) has a unique

positive zero which is �. Now if we can show f
�
21=p�
1��

�
� 0, then � � 21=p�

1�� must be true;

and then by � � �

� � 21=p�

1� �
� 21=p�

1� �
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as was to be shown. We have to prove f
�
21=p�
1��

�
� 0. This is equivalent to

�
1 + (21=p� 1)�

�p
+ (1� �)p� 2 � 0:

Consider function g(x) =
�
1 + (21=p� 1)x

�p
+ (1� x)p� 2 for 0 � x � 1. It is easy to see

that

g(0) = g(1) = 0; g0(0) = �p(2� 21=p) < 0; g0(1) = p(2� 21=q) > 0;

and g0(x) vanishes only once for x � 0; so must g(x) � 0 for 0 � x � 1.

Proposition 3.3 Let e� = �(1 + �1) 2 C and e� = �(1 + �2) 2 C. If j�ij � � < 1, then

%p(�; �)

1� �
+

�

1� �
� %p(�; e�) � %p(�; �)

1 + �
� �

1 + �
; (3.7)

%p(�; �)

1� �
+

21=q�

1� �
� %p(e�; e�) � %p(�; �)

1 + �
� 21=q�

1 + �
; (3.8)

where q = p=(p� 1).

Proof: We will only provide a proof of (3.8) since the proof of (3.7) is analogous. Notice

that

j�j(1� �) � je�j � j�j(1 + �) and j�j(1� �) � je�j � j�j(1+ �);

so

%p(e�; e�) =
je�� e�j

p

q
je�jp + je�jp �

j�� �j � j��1 � ��2j
p
pj�jp + j�jp(1 + �)

� j�� �j � p
pj�jp + j�jp q

p
�q + �q

p
pj�jp + j�jp(1 + �)

=
%p(�; �)

1 + �
� 21=q�

1 + �
;

%p(e�; e�) � j�� �j+ j��1 � ��2j
p
pj�jp + j�jp(1� �)

� j�� �j+ p
pj�jp + j�jp q

p
�q + �q

p
pj�jp + j�jp(1� �)

=
%p(�; �)

1� �
+

21=q�

1� �
;

as were to be shown.

Proposition 3.4 For �; e� 2 C and 1 � p � 1, we haveh
21�1=(2p)� %2p(�; e�)i%2p(�; e�) � %p(�

2; e�2) � 21�1=(2p)%2p(�; e�) � 2%p(�; e�); (3.9)

for �; e� 2 R and �e� � 0, we have

%p(�; e�) � %2p(�; e�) � %p(�
2; e�2): (3.10)



Ren-Cang Li: Relative Perturbation Theory 12

Proof: No proof is necessary if � = e� = 0. Assume at least one of � and e� is not zero.

Notice that

%p(�
2; e�2) =

j�2 � e�2j
(j�j2p + je�j2p)1=p =

j�+ e�j
(j�j2p + je�j2p)1=(2p) �

j�� e�j
(j�j2p + je�j2p)1=(2p)

=
j�+ e�j

(j�j2p + je�j2p)1=(2p) %2p(�; e�):
and that j�+ e�j � 21�1=(2p)

�j�j2p + je�j2p�1=(2p). Then
%p(�

2; e�2) � 21�1=(2p)%2p(�; e�) � 2%p(�; e�)
by Property 7 of Proposition 3.1. To complete the proof of (3.9), we also notice that

(without loss of generality, assuming j�j � je�j.)
j�+ e�j

(j�j2p + je�j2p)1=(2p) =
j2�� (�� e�)j

(j�j2p + je�j2p)1=(2p) �
j2�j

(j�j2p + je�j2p)1=(2p) �
j�� e�j

(j�j2p + je�j2p)1=(2p)
=

2

(1 + �2p)1=(2p)
� %2p(�; e�) � 21�1=(2p)� %2p(�; e�);

where 0 � � = je�=�j � 1. To prove (3.10), we see under the condition �e� � 0 that

j�+ e�j = j�j+ je�j � �j�j2p + je�j2p�1=(2p).
Let f�1; �2; � � � ; �ng and fe�1; e�2; � � � ; e�ng be two sequences of n real numbers ordered

ascendingly2 , i.e.,

�1 � �2 � � � � � �n; e�1 � e�2 � � � � � e�n: (3.11)

Now we address the following question: What are the best one-one pairings between the

�i's and the e�j's under certain measures?. Such a question will become important later

in this paper when we try to pair the eigenvalues of one matrix to these of another.

Proposition 3.5

max
1�i�n

%1(�i; e�i) = min
�

max
1�i�n

%1(�i; e��(i));
and for p > 1 if all �i's and e�j's are nonnegative,

max
1�i�n

%p(�i; e�i) = min
�

max
1�i�n

%p(�i; e��(i)):
Here the minimizations are taken over all permutations � of f1; 2; � � � ; ng.

Proof: For any permutation � of f1; 2; � � � ; ng, the idea of our proof is to construct n + 1

permutations �j such that

�0 = �; �n = identity permutation

2The situation when they are ordered descendingly can be handled in exactly the same way.



Ren-Cang Li: Relative Perturbation Theory 13

and for j = 0; 1; 2; � � � ; n� 1

max
1�i�n

%p(�i; e��j(i)) � max
1�i�n

%p(�i; e��j+1(i)):
The construction of these �j 's goes as follows: Set �0 = � . Given �j , if �j(j + 1) = j + 1,

set �j+1 = �j ; otherwise de�ne

�j+1(i) =

8><
>:

�j(i); for ��1j (j + 1) 6= i 6= j + 1,

j + 1; for i = j + 1;

�j(j + 1); for i = ��1j (j + 1):

In this latter case, �j and �j+1 di�er only at two indexs as shown in the following picture

(notice that ��1j (j + 1) > j + 1 and �j(j + 1) > j + 1):

s

e�j+1
s

e��j(j+1)

s

�j+1
s

���1
j

(j+1)

A
A
AAU

�
�
���

XXXXXXXXXXXXXXXz

���������������9

�j+1 �j+1
�j

�j

With Property 8 in Proposition 3.1, it is easy to prove that

max

�
%p(�j+1; e��j(j+1)); %p(���1

j
(j+1); e�j+1)

�

� max

�
%p(�j+1; e�j+1); %p(���1j (j+1)

; e��j(j+1))
�
:

Thus �j 's so constructed have the desired properties.

Remark. Proposition 3.5 may fail if not all of the �i's and e�j 's are of the same sign in

the case p > 1. A counterexample is as follows: n = 2 and

�1 = �2 < �2 = 1 and e�1 = 2 < e�2 = 4:

Then (see Proposition 3.1)

max f%p(�1; e�1); %p(�2; e�2)g = %p(�1; e�1) = 21�1=p

>
6

p
p
2p + 4p

= %p(�1; e�2) = max f%p(�1; e�2); %p(�2; e�1)g :
Another point we want to make is that given two sequences of �i's and e�j 's ordered as in

(3.11), generally
nX
i=1

[%p(�i; e�i)]2 6= min
�

nX
i=1

h
%p(�i; e��(i))i2 ; (3.12)

even if all �i; e�j > 0. Here is a counterexample: n = 2

0 < �1 < e�1 < �2 = e�2=2 < e�2;
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where �1 is su�ciently close to 0, and e�1 is su�ciently close to �2 which is �xed. Since

as �1 ! 0+ and e�1 ! ��2

[%p(�1; e�2)]2 + [%p(�2; e�1)]2 ! 1;

[%p(�1; e�1)]2 + [%p(�2; e�2)]2 ! 1 +
1

p
p
2p + 1

;

(3.12) must fail for some 0 < �1 < e�1 < �2 = e�2=2 < e�2.
Proposition 3.6 Suppose

�1 � � � � � �k < 0 = �k+1 = � � �= �k+` = 0 < �k+`+1 � � � ��n; and

e�1 � � � � � e�k < 0 = e�k+1 = � � �= e�k+` = 0 < e�k+`+1 � � � � e�n:
Then given a permutation � of f1; 2; � � � ; ng, there exists another permutation � of f1; 2; � � � ; ng
such that

1 � �(j) � k for 1 � j � k, and �(j) = j for j = k + 1; � � � ; k+ `

and

%p(�i; e��(i)) � %p(�i; e��(i)) for i = 1; 2; � � � ; n.

Proof: With the help of Property 6 of Proposition 3.1, a two-step proof can be given as

follows.

1. Find a permutation �1 such that 1 � �1(j) � k + ` for 1 � j � k + `, and

%p(�i; e��(i)) � %p(�i; e��1(i)) for i = 1; 2; � � � ; n;

2. Find a permutation � such that 1 � �(j) � k for 1 � j � k, and �(j) = j for

j = k + 1; � � � ; k+ `, and

%p(�i; e��1(i)) � %p(�i; e��2(i)) for i = 1; 2; � � � ; n.

The detail is left to the reader.

3.2 Barlow-Demmel-Veseli�c Relative Distance

We introduce another relative distance between � and e�:
�(�; e�) def

=
j�� e�jpj�e�j : (3.13)

We treat 1=0 = 1 and again 0=0 � 0. It was �rst used by Barlow and Demmel [1,

1990] and Demmel and Veseli�c [9, 1992] to de�ne relative gaps between the spectra of two

matrices. We call it the Barlow-Demmel-Veseli�c Relative Distance between � and e�
Proposition 3.7 Let �; e� 2 C.
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1. �(�; e�) � 0; and �(�; e�) = 0 if and only if � = e�.
2. �(�; e�) = �(e�; �).
3. �(��; �e�) = �(�; e�) for all 0 6= � 2 C.

4. �(1=�; 1=e�) = �(�; e�) for � 6= 0 and e� 6= 0.

5. �(�; 0) =1 if � 6= 0.

6. if �; e� 2 R and �e� < 0, then �(�; e�) � 2.

7. if �; �; e�; e� 2 R and � � � � e� � e� and �e� � 0, then

�(�; e�) � �(�; e�): (3.14)

Proof: Properties 1{5 are easy to verify. Property 6 follows from when �e� < 0,

�(�; e�) = j�� e�jpj�e�j =
j�j+ je�jpj�e�j � 2

pj�j je�jpj�e�j = 2;

by the Cauchy-Schwarz inequality. To prove Property 7, we notice that function 1
x �x for

0 � x � 1 is monotonically decreasing and 0 � �=e� � �=e� � 1; thus

�(�; e�) = 1p
�=e� �

q
�=e� � 1q

�=e� �
q
�=e� = �(�; e�);

as was to be shown.

Remark: In Property 7 of Proposition 3.7, assumption �e� � 0 is essential, since in-

equality (3.14) is clearly violated if � < 0 < � < e� � e� and � is su�ciently close to

0.

The following proposition establishes the topological equivalence between the classical

measurement (see (3.1)) and our new relative distance �.

Proposition 3.8 Let �; e� 2 R. If 0 � � < 1, then���� e�� � 1

���� � �) �(�; e�) � �p
1� �

; (3.15)

if 0 � � < 2, then

�(�; e�) � �) max

����� e�� � 1

���� ;
�����e� � 1

����
�
�
0
@ �

2
+

s
1 +

�2

4

1
A �: (3.16)

Asymptotically,

lime�!�

�(�; e�)���e�� � 1
��� = 1;

thus (3.15) and (3.16) are at least asymptotically sharp.
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Proof:
��� e�� � 1

��� � � implies e� = �(1 + �) for some � 2 R with j�j � �. So

�(�; e�) = j��jp
�2(1 + �)

� �p
1� �

;

as required. To prove (3.16), we set either � = �=e� or � = e�=�. � < 2 ) � > 0 (see

Property 6 of Proposition 3.7). �(�; e�) def
= � � � gives

j� � 1jp
�

= � ) �2 � (2 + �2)� + 1 = 0;

solving which yields

� =
2 + �2 �p(2 + �2)2 � 4

2
= 1 +

0
@�
2
�
s
1 +

�2

4

1
A �:

Hence

j� � 1j �
0
@�

2
+

s
1 +

�2

4

1
A � �

0
@ �

2
+

s
1 +

�2

4

1
A �

as was to be shown.

Proposition 3.9 Let e� = �(1 + �). Assume that j�j � j�j and j�j � � < 1, then

�(�; �)p
1� �

+
�p
1� �

� �(�; e�) � �(�; �)p
1 + �

� �p
1 + �

: (3.17)

Proof: Since j�j(1� �) � je�j � j�j(1 + �) and j�=�j � 1,

�(�; e�) =
j�� e�jq
j�e�j �

j�� �j � j��jq
j�e�j � j�� �j � �j�jpj��j(1 + �)

� �(�; �)p
1 + �

� �p
1 + �

;

�(�; e�) � j�� �j+ j��jq
j�e�j � j�� �j+ �j�jpj��j(1� �)

� �(�; �)p
1� �

+
�p
1� �

;

as required.

Remark. Proposition 3.9, in contrast to Proposition 3.3, only provides bounds on how �

varies when its argument smaller in magnitude is perturbed a little. When both arguments

are perturbed, following the lines of the proof above, one obtains

�(�; �)

1� �
+

�

1� �

j�j+ j�jpj��j � �(e�; e�) � �(�; �)

1 + �
� �

1 + �

j�j+ j�jpj��j ;
where e� = �(1 + �1) and e� = �(1 + �2) with j�ij � �. The ratio

j�j+j�jp
j��j

which could be

arbitrarily large plays a crucial role here. It can shown that

2 � j�j+ j�jpj��j � 2 + �(�; �):
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Proposition 3.10 For �; e� 2 C, we have

[2� �(�; e�)]�(�; e�) � �(�2; e�2) � [2 + �(�; e�)]�(�; e�); (3.18)

if, moreover, �; e� � 0, then

2�(�; e�) � �(�2; e�2); (3.19)

and the equality holds if and only if � = e�.
Proof: No proof is necessary if � = e� = 0. Assume that at least one of � and e� is not

zero. Notice that

�(�2; e�2) = j�+ e�jpj�e�j
j�� e�jpj�e�j =

j�+ e�jpj�e�j �(�; e�):
To prove (3.18), without loss of any generality, we may assume that j�j � je�j; then

j�+ e�jpj�e�j =
j�� e�+ 2e�jpj�e�j � j�� e�jpj�e�j +

j2e�jpj�e�j � �(�; e�) + 2;

j�+ e�jpj�e�j =
j2�� (�� e�)jpj�e�j � j2�jpj�e�j �

j�� e�jpj�e�j � 2� �(�; e�):
These con�rm (3.18). Now if �; e� � 0, then

j�+ e�jpj�e�j =
� + e�p
�e� � 2

p
�e�p
�e� = 2;

as was to be shown.

Remark. There is no universal constant c > 0, independent of � and e�, such that for all

�; e� 2 C, �(�2; e�2) is bounded by c� �(�; e�), unlike (3.9) in Proposition 3.4.

Proposition 3.11 For �; e� 2 C,

%p(�; e�) � 2�1=p �(�; e�);
and the equality holds if and only if j�j = je�j. If %p(�; e�) < 2�1=p, then

�(�; e�) � 21=p%p(�; e�)q
1� 21=p%p(�; e�) :

Proof: By the Cauchy-Schwarz inequality, we have

j�jp + je�jp � 2
q
j�jpje�jp = 2

�q
j�e�j�p ) p

q
j�jp + je�jp � 21=p

q
j�e�j;

from which the �rst inequality follows. To prove the second one, we notice that

�(�; e�) = j�� e�j
p
pj�jp + je�jp �

p
pj�jp + je�jppj�e�j =

p
pj�jp + je�jppj�e�j %p(�; e�):
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Without loss of any generality, we may assume that j�j � je�j. Under the condition

%p(�; e�) < 2�1=p, we have

pj�e�j
p
pj�jp + je�jp =

s
j�j

p
pj�jp + je�jp �

je�j
p
pj�jp + je�jp =

s
j�� e�+ e�j
p
pj�jp + je�jp �

je�j
p
pj�jp + je�jp

�
vuut je�j

p
pj�jp + je�jp �

j�� e�j
p
pj�jp + je�jp

!
� je�j

p
pj�jp + je�jp

=

s�
1

p
p
1 + �p

� %p(�; e�)
�
� 1

p
p
1 + �p

(Here, � =
j�j

je�j � 1.)

�
q�

2�1=p � %p(�; e�)� 2�1=p = 2�1=p
q
1� 21=p%p(�; e�)

from which the second inequality now follows.

Proposition 3.11 is useful in that any bound with � yields a bound with %p, and any

bound with %p yields a bound with � with additional assumptions.

Now we consider again the question: what is the best way to pair two sequences of real

numbers ordered as in (3.11)? With the help of Property 7 in Proposition 3.7 we can

prove in the same way as proving Proposition 3.5 that

Proposition 3.12 If all �i's and e�j's are nonnegative and ordered as in (3.11), then

max
1�i�n

�(�i; e�i) = min
�

max
1�i�n

�(�i; e��(i));
where the minimization is taken over all permutations � of f1; 2; � � � ; ng.

Remark. Proposition 3.12 may fail if not all �i's and e�j 's are of the same sign. A

counterexample is as follows: n = 2 and

�1 = �1 < �2 = 1 and e�1 = 1

4
< e�2 = 2:

Then

max f�(�1; e�1); �(�2; e�2)g = max
n
5=2; 1=

p
2
o
= 5=2

> 3=
p
2 = max

n
3=
p
2; 3=2

o
= max f�(�1; e�2); �(�2; e�1)g :

Lemma 3.1 Let 0 < �1 � �2 and 0 < e�1 � e�2. Then
[�(�1; e�1)]2 + [�(�2; e�2)]2 � [�(�1; e�2)]2 + [�(�2; e�1)]2 ;

or in other words,

(e�1 � �1)
2

e�1�1 +
(e�2 � �2)

2

e�2�2 � (e�2 � �1)
2

e�2�1 +
(e�1 � �2)

2

e�1�2 ;

and the equality holds if and only if either �1 = �2 or e�1 = e�2.



Ren-Cang Li: Relative Perturbation Theory 19

Proof: It can be veri�ed that

(e�1 � �1)
2

e�1�1 +
(e�2 � �2)

2

e�2�2 � (e�2 � �1)
2

e�2�1 � (e�1 � �2)
2

e�1�2
= �(�2 � �1)(e�2 � e�1)(e�1e�2 + �1�2)e�1�1e�2�2 � 0;

and the equality holds if and only if either �1 = �2 or e�1 = e�2.
Armed with Lemma 3.1, by similar reasoning as in the proof of Proposition 3.5, one can

show that

Proposition 3.13 Let f�1; � � � ; �ng and fe�1; � � � ; e�ng be two sequences of n positive num-

bers ordered ascendingly as in (3.11). Then

nX
i=1

[�(�i; e�i)]2 = min
�

nX
i=1

h
�(�i; e��(i))i2 ;

where the minimization is taken over all permutations � of f1; 2; � � � ; ng.

Remark. Proposition 3.13 may fail if not all �i's and e�j 's are of the same sign. Here is
a counterexample: n = 2 and

�1 = �2 < �2 = 1 and e�1 = 1 < e�2 = 2:

Then

[�(�1; e�1)]2 + [�(�2; e�2)]2 = �
3=
p
2
�2

+
�
1=
p
2
�2

= 5

> 4 =
�
4=
p
4
�2

+ 02 = [�(�1; e�2)]2 + [�(�2; e�1)]2 :
3.3 Are %p and � Metrics?

Let X be a space. Recall that a function d : X�X 7! [0;1) is called a metric if it has

the following three properties: for �; �; 
 2 X

1. d(�; �) = 0 if and only if � = �;

2. d(�; �) = d(�; �);

3. d(�; 
)� d(�; �) + d(�; 
).

This de�nition excludes immediately the possibility that � is a metric on C, nor even

on R since �(�; 0) = 1 for � 6= 0. To get around this, we call d : X �X 7! [0;1] a

generalized metric if it possesses the above three properties.

From Propositions 3.1 and 3.7, we see that functions %p and � on C � C satisfy the

�rst two properties in the de�nition of a (generalized) metric. Naturally, we would like to
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ask: Is %p a metric on C? is � a generalized metric on C? In other words, we like to

know whether for �; �; 
 2 C

%p(�; 
) � %p(�; �) + %p(�; 
)? (3.20)

�(�; 
) � �(�; �) + �(�; 
)? (3.21)

A quick answer to (3.21) is No, even for �; �; 
 > 0, by the following proposition.

Proposition 3.14 For 0 � � � � � 
, we have

�(�; 
) � �(�; �) + �(�; 
) (3.22)

The equality holds if and only if either � = � or � = 
.

Proof: It can be veri�ed that

�(�; 
)� �(�; �)� �(�; 
) =
(
p

 �p�)(p
 �p�)(p� �p�)p

��

� 0:

It is zero if and only if � = � or � = 
. (� = 
 implies � = � and � = 
.)

Inequality (3.22) is exactly the opposite of (3.21) which, otherwise, would be true if � were

a metric on R.

However, it takes a few pages of work to answer (3.20) for �; �; 
 2 R. We leave the

detail to Appendix A, where it is proved:

Proposition 3.15 (3.20) holds for �; �; 
 2 R, and thus %p for 1 � p � 1 is a metric

on R.

Still the question whether %p is a metric on C is open.

4 Known Perturbation Theorems for Eigenvalue and Sin-

gular Value Variations

In this section, we will brie
y review several most celebrated theorems for eigenvalue and

singular value variations which will be extended later. Most of these theorems can be

found in Bhatia [3, 1987], Golub and Van Loan [14, 1989], Parlett [33, 1980] and Stewart

and Sun [35, 1990]. Notation introduced at the beginning of x2 will be followed strictly.

Ho�man and Wielandt [16, 1953] proved

Theorem 4.1 (Ho�man-Wielandt) If A and eA are normal, then there is a permuta-

tion � of f1; 2; � � � ; ng such that

vuut nX
i=1

j�i � e��(i)j2 � k eA�AkF:
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For a nonsingular matrix Y 2 Cn�n, the (spectral) condition number �(Y ) is de�ned as

�(Y )
def
= kY k2kY �1k2:

Theorem 4.1 was generalized by Sun [38, 1984] and Zhang [43, 1986] to two diagonalizable

matrices.

Theorem 4.2 (Sun-Zhang) Assume that both A and eA are diagonalizable and admit

the following decompositions

A = X�X�1 and eA = eX e� eX�1; (4.1)

where X and eX are nonsingular and

� = diag(�1; �2; � � � ; �n) and e� = diag(e�1; e�2; � � � ; e�n): (4.2)

Then there is a permutation � of f1; 2; � � � ; ng such thatvuut nX
i=1

j�i � e��(i)j2 � �(X)�( eX)k eA�AkF:

Such matrices A and eA as described in Theorem 4.2 are called normalizable. Sun [38,

1984] proved this theorem when A is normal and eA normalizable; later Zhang [43, 1986]

found that a slight modi�cation of Sun's proof serves the case when both A and eA are

normalizable.

We will consider unitarily invariant norms jjj � jjj of matrices. In this we follow Mirsky [31,

1960] and Stewart and Sun [35, 1990]. That a norm jjj � jjj is unitarily invariant on Cm�n

means that it satis�es, besides the usual properties of any norm, also

1. jjjUY V jjj = jjjY jjj, for any U 2 Um, and V 2 Un;

2. jjjY jjj = kY k2, for any Y 2 Cm�n with rank(Y ) = 1.

Two unitarily invariant norms used frequently are the spectral norm k�k2 and the Frobenius
norm k � kF. Let jjj � jjj be a unitarily invariant norm on some matrix space. The following

inequalities [35, p.80] will be employed frequently in the rest of this paper:

jjjWY jjj � kWk2 jjjY jjj and jjjY Zjjj � jjjY jjj kZk2:
Theorem 4.3 Suppose that A and eA are both Hermitian, and that their eigenvalues are

ordered descendingly as in (2.2). Then for any unitarily invariant norm jjj � jjj���������diag(�1 � e�1; �2� e�2; � � � ; �n � e�n)��������� � ���������A� eA��������� : (4.3)

Theorem 4.3 was proved by Weyl [40, 1912] for the spectral norm and by Loewner [27,

1934] for the Frobenius norm. Also, for the Frobenius norm it is a corollary of Theorem 4.1

by Ho�man and Wielandt [16, 1953]. For all unitarily invariant norms, (4.3) was proved

by Mirsky [31, 1960]. He derived it from a theorem of Lidskii [26, 1950] and Wielandt [41,

1955].

Extensions to Theorem 4.3 have been made in the literature. The following theorem

is due to Li [25, 1996] and Lu [28, 1994].
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Theorem 4.4 To the hypotheses of Theorem 4.2 adds this: all �i's and e�j's are real and

are ordered descendingly as in (2.2). Then for any unitarily invariant norm jjj � jjj���������diag(�1 � e�1; �2� e�2; � � � ; �n � e�n)��������� �
q
�(X)�( eX)

���������A� eA��������� : (4.4)

Such matrices A and eA as described in Theorem 4.4 are called symmetrizable. Inequality

(4.4) for jjj � jjj = k � k2 was proved by Lu [28, 1994]; for all unitarily invariant norms it is

due to Li [25, 1996]. This inequality improves substantially���������diag(�1 � e�1; �2 � e�2; � � � ; �n � e�n)��������� � �(X)�( eX)
���������A� eA��������� (4.5)

due to Bhatia, Davis and Kittaneh [4, 1991]. A brief history behind inequality (4.5) is as

follows: It was proved by Kahan [20, 1975] for the spectral norm, and for the Frobenius

norm it can be deduced without much di�culty from a theorem in Kahan [19, 1967]; also

for Frobenius norm it is a corollary of Theorem 4.2 by Sun [38, 1984] and Zhang [43, 1986].

For all unitarily invariant norms, it is due to Bhatia, Davis and Kittaneh [4, 1991]. For

other improvements of inequality (4.5), the reader is referred to Li [25, 1996].

Inequality (4.3) for the spectral norm was generalized also to `p operator norm. The

p-H�older norm of a vector y = (
i) 2 Cn is de�ned by

kykp def
= p

vuut nX
i=1

j
ijp:

The `p-operator norm of a matrix Y 2 Cm�n is de�ned by

kY kp def
= max

kykp=1
kY ykp:

If Y is square and nonsingular, its `p condition number is de�ned by

�p(Y )
def
= kY kpkY �1kp:

Clearly, �2( � ) = �( � ), the (spectral) condition number. The following theorem is due to

Li [23, p.225, 1993].

Theorem 4.5 (Li) Under the conditions of Theorem 4.4. Then

max
1�i�n

j�i � e�ij � �p(X)�p( eX)kA� eAkp; (4.6)

where 1 � p � 1.

Remark. It would be interesting to know whether �p(X)�p( eX) in inequality (4.6) could

be improved to
q
�p(X)�p( eX) as a similar thing happened between (4.4) and (4.5).

Generally, if one of A and eA is diagonalizable and the other is arbitrary, we have the

following result due to Bauer and Fike3 [2, 1960].

3One can prove a slightly more stronger inequality than (4.7)

je�� �j � kX�1( eA�A)Xk2:
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Theorem 4.6 (Bauer-Fike) Assume A is diagonalizable, i.e.,

A = X�X�1; where � = diag(�1; � � � ; �n):
Then for any e� 2 �( eA), there exists a � 2 �(A) such that

je�� �j � �(X)k eA�Ak2: (4.7)

Regarding singular value perturbations, the following theorem was established in

Mirsky [31, 1960], based on results from Lidskii [26, 1950] and Wielandt [41, 1955].

Theorem 4.7 For any unitarily invariant norm jjj � jjj, we have

jjjdiag(�1 � e�1; �2 � e�2; � � � ; �n � e�n)jjj � ���������B � eB��������� : (4.8)

5 Relative Perturbation Theorems for Nonnegative De�-

nite Matrix Eigenvalues and for Singular Values

This section is devoted to the relative perturbation theory for eigenvalues of nonnegative

de�nite matrices and for singular values. The following problems will be considered.

� Eigenvalue problems:

1. A and eA = D�AD, where A is nonnegative de�nite, and D is close to some

unitary matrix.

2. A = S�HS and eA = S� eHS, whereH is positive de�nite and kH�1k2k eH�Hk2 <
1, and S is some square matrix.

� Singular value problems:

1. B and eB = D�
1BD2, where D1 and D2 are close to some unitary matrices of

suitable dimensions.

2. B = GS and eB = eGS, where G is nonsingular and kG�1k2k eG�Gk2 < 1, and

S is some square matrix.

Theorems presented here are often sharper than these in the next section when applying

to nonnegative de�nite matrices. We will make this more concrete in the coming section.

5.1 Eigenvalue Variations for A and eA = D�AD

Theorem 5.1 Let A and eA = D�AD be two n � n Hermitian matrices with eigenval-

ues (2.1) ordered descendingly as in (2.2), where D is nonsingular. Assume that A is

nonnegative de�nite4. Then

max
1�i�n

�(�i; e�i) � kD� �D�1k2; (5.1)vuut nX
i=1

h
�(�i; e�i)i2 � kD� �D�1kF: (5.2)

4Then eA must be nonnegative de�nite as well.
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It is easy to relate the right-hand sides of the inequalities (5.1) and (5.2) to the singular

values of D. In fact, let the singular value decomposition (SVD) of D be

D = Ud�dV
�
d ; (5.3)

where Ud and Vd are unitary, and �d is a diagonal matrix whose diagonal entries are the

singular values of D. One has for any unitarily invariant norm jjj � jjj���������D� �D�1
��������� = ���������Vd(�d � ��1d )U�

d

��������� = ����������d � ��1d

��������� :
5.2 Singular Value Variations for B and eB = D�

1BD2

Theorem 5.2 Let B and eB = D�
1BD2 be two m� n matrices with singular values (2.3)

ordered descendingly as in (2.4), where D1 and D2 are square and nonsingular. If kD�
1 �

D�1
1 k2kD�

2 �D�1
2 k2 < 32, then

max
1�i�n

�(�i; e�i) � 1

2
� kD�

1 �D�1
1 k2 + kD�

2 �D�1
2 k2

1� 1
32
kD�

1 �D�1
1 k2kD�

2 �D�1
2 k2

; (5.4)

vuut nX
i=1

[�(�i; e�i)]2 � 1

2
� kD�

1 �D�1
1 kF + kD�

2 �D�1
2 kF

1� 1
32
kD�

1 �D�1
1 k2kD�

2 �D�1
2 k2

: (5.5)

Now, Let's mention a possible application of Theorem 5.2. It has something to do with

de
ation in computing the singular value decomposition of a bidiagonal matrix. For more

details, the reader is referred to [6, 8, 10, 30]. We formulate the application into a corollary.

Corollary 5.1 Assume in Theorem 5.2, one of D1 and D2 is the identity matrix and the

other takes the form

D =

 
I X

I

!
;

where X is a matrix of suitable dimensions. With the notation of Theorem 5.2, we have

max
1�i�n

�(�i; e�i) � 1

2
kXk2; (5.6)vuut nX

i=1

[�(�i; e�i)]2 � 1p
2
kXkF: (5.7)

Proof: Notice that

D� �D�1 =

 
I

X� I

!
�
 

I �X
I

!
=

 
X

X�

!
;

and thus kD� �D�1k2 = kXk2 and kD� �D�1kF =
p
2kXkF.
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It was proved by Eisenstat and Ipsen [10, 1993] that

je�i � �ij � kXk2�i; or equivalently

���� e�i�i � 1

���� � kXk2: (5.8)

Our inequality (5.6) is sharper by roughly a factor 1=2, as long as kXk2 is small. As a

matter of fact, it follows from (5.6) and Proposition 3.8 that if kXk2 < 4 then

���� e�i�i � 1

���� �
0
@kXk2

4
+

s
1 +

kXk22
16

1
A kXk2

2
=
kXk2
2

+ O

 �kXk2
4

�2!
:

Our inequality (5.7) is the �rst of its kind.

Theorem 5.3 Let B and eB = D�
1BD2 be two m� n matrices with singular values (2.3)

ordered descendingly as in (2.4), where D1 and D2 are square and nonsingular. Then

max
1�i�n

%p(�i; e�i) � 1

21+1=p

�
kD�

1 �D�1
1 k2 + kD�

2 �D�1
2 k2

�
; (5.9)vuut nX

i=1

[%p(�i; e�i)]2 � 1

21+1=p

�
kD�

1 �D�1
1 kF + kD�

2 �D�1
2 kF

�
: (5.10)

A straightforward combination of Proposition 3.11 and Theorem 5.2 will lead to bounds

that are weaker than these in Theorem 5.3 by a factor
�
1� 1

32
kD�

1 �D�1
1 k2kD�

2 �D�1
2 k2

��1
which may play an insubstantial role because kD�

1�D�1
1 k2kD�

2�D�1
2 k2 is of second order.

5.3 Graded Matrices

Theorem 5.4 Let A = S�HS and eA = S� eHS be two n�n nonnegative de�nite Hermitian

matrices with eigenvalues (2.1) ordered descendingly as in (2.2), and let �H = eH �H.

If kH�1k2k�Hk2 < 1, then

max
1�i�n

�(�i; e�i) �




�I +H�1=2(�H)H�1=2

�1=2 � �I +H�1=2(�H)H�1=2
��1=2





2

� kH�1k2k�Hk2p
1� kH�1k2k�Hk2

; (5.11)

vuut nX
i=1

h
�(�i; e�i)i2 �





�I +H�1=2(�H)H�1=2
�1=2 � �I +H�1=2(�H)H�1=2

��1=2




F

� kH�1k2k�HkFp
1� kH�1k2k�Hk2

: (5.12)

The last inequality in (5.11) is derivable from a bound due to Demmel and Veseli�c [9,

1992] (see (7.10) below).
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Theorem 5.5 Let B = GS and eB = eGS be two n�n matrices with singular values (2.3)

ordered descendingly as in (2.4), where G and eG are nonsingular, and let �G = eG � G.

If k�Gk2kG�1k2 < 1, then

max
1�i�n

�(�i; e�i) � 1

2





�I + (�G)G�1
�� � �I + (�G)G�1

��1




2

�
 
k(�G)G�1 +G��(�G)�k2

k(�G)G�1k2
+

k(�G)G�1k2
1� k(�G)G�1k2

!
k(�G)G�1k2

2

�
�
1 +

1

1� kG�1k2k�Gk2

� kG�1k2k�Gk2
2

; (5.13)

vuut nX
i=1

[�(�i; e�i)]2 � 1

2





�I + (�G)G�1
�� � �I + (�G)G�1

��1




F

�
 
k(�G)G�1 +G��(�G)�kF

k(�G)G�1kF
+

k(�G)G�1k2
1� k(�G)G�1k2

!
k(�G)G�1kF

2

�
�
1 +

1

1� kG�1k2k�Gk2

� kG�1k2k�GkF
2

: (5.14)

The last inequality in (5.13) is derivable from a bound due to Mathias [29, 1994] (see

(7.12) below).

Remark. It is interesting to notice that if (�G)G�1 is very skew, then �(�i; e�i) =

o
�k(�G)G�1k2

�
, especially

k(�G)G�1+ G��(�G)�k2 = O
�
k(�G)G�1k22

�
) �(�i; e�i) = O

�
k(�G)G�1k22

�
:

6 Relative Perturbation Theorems for Non-De�nite Ma-

trix Eigenvalues

This section is devoted to the perturbation theory with %p for the following matrix eigen-

value problems.

1. A and eA = D�AD for the Hermitian case, where D is nonsingular and close to I or

more generally to a unitary matrix.

2. A and eA = D�
1AD2 for a general diagonalizable case, where D1 and D2 are nonsin-

gular and close to I or more generally to some unitary matrix.

Comparisons among theorems in this section and these in the previous section will be

conducted. The following theorem is a generalization of Theorems 4.1 and 4.2.

Theorem 6.1 Assume that n � n matrix A is perturbed to eA = D�
1AD2 and both D1

and D2 are nonsingular. Assume also that both A and eA are diagonalizable and admit
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the decompositions as described in (4.1) and (4.2). Then there is a permutation � of

f1; 2; � � � ; ng such thatvuut nX
i=1

h
%2(�i; e��(i))i2 � min

�
k eX�1k2kXk2

q
kX�1(I �D2) eXk2F + kX�1(D��

1 � I) eXk2F;
kX�1k2k eXk2qk eX�1(I �D�

1)Xk2F + k eX�1(D�1
2 � I)Xk2F

�
(6.1)

� �(X)�( eX)min

�q
kI �D1k2F + kI �D�1

2 k2F;
q
kI �D�1

1 k2F + kI �D2k2F
�
:

For any given U 2 Un, U eAU� = (D1U
�)�AD2U

� has the same eigenvalues as eA does, and

moreover from (4.1) U eAU� = ( eXU�)�1e� eXU�. Applying Theorem 6.1 to matrices A and

U eAU� leads to the following theorem which we will refer as Theorem 6.1s, where \s" is

for indicating that it is stronger.

Theorem 6.1s Let all conditions of Theorem 6.1 hold. Then there is a permutation � of

f1; 2; � � � ; ng such thatvuut nX
i=1

h
%2(�i; e��(i))i2 � �(X)�( eX)� (6.2)

min
U2Un

min

�q
kU �D1k2F + kU� �D�1

2 k2F;
q
kU� �D�1

1 k2F + kU �D2k2F
�
:

Suppose now A 2 C
n is an normal matrix, i.e., A�A = AA�, and perturb A toeA = D�

1AD2. The question is: When is eA also normal? This is a rather interesting

question, and an instant answer is that eA is normal provided

D�
2A

�D1D
�
1AD2 = D�

1AD2D
�
2A

�D1:

However, this condition is, perhaps, too general to be useful. I do not know how to

approach this problem yet and therefore this question will not be addressed further in

what follows. On the other hand, if we happen to know that eA is also normal, the

following theorem, as a corollary of Theorem 6.1s, indicates that the eigenvalues of A andeA agree to high relative accuracy.

Theorem 6.2 Let A and eA = D�
1AD2 be two n � n normal matrices with eigenvalues

(2.1) , where D1 and D2 are nonsingular. Then there is a permutation � of f1; 2; � � � ; ng
such thatvuut nX

i=1

h
%2(�i; e��(i))i2 (6.3)

� min
U2Un

min

�q
kU �D1k2F + kU� �D�1

2 k2F;
q
kU� �D�1

1 k2F + kU �D2k2F
�
:
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Generally we do not know how to relate the upper bound in (6.3) to the singular values

of D1 and D2, unless further information on D1 and D2 is available. In the case of

D1 = D2 = D, there is a simple solution. In fact, we can solve easily the following

minimization problem: �nd a U0 2 Un such that for any unitarily invariant norm jjj � jjj

min
U2Un

jjjU �Djjj = jjjU0 �Djjj and min
U2Un

���������U� �D�1
��������� = ���������U�

0 �D�1
��������� (6.4)

in terms of SVD of D. As a matter of fact, let SVD of D be given by (5.3). It follows

from Theorem 4.7 that

jjjU �Djjj � jjjI � �djjj and
���������U� �D�1

��������� � ���������I � ��1d

��������� : (6.5)

On the other hand, there is one U0
def
= UdV

�
d which realizes the two equality. Now applying

Theorem 6.2 to Hermitian matrices leads to

Theorem 6.3 Let A and eA = D�AD be two n � n Hermitian matrices with eigenvalues

(2.1), where D is nonsingular. Then there is a permutation � of f1; 2; � � � ; ng such thatvuut nX
i=1

h
%2(�i; e��(i))i2 � min

U2Un

q
kU �Dk2F + kU� �D�1k2F =

q
kI � �dk2F + kI � ��1d k2F:

(6.6)

It is worth mentioning that the permutation � in Theorem 6.3 may not be the identity

permutation, assuming eigenvalues are ordered descendingly as in (2.2). However, one can

always choose a � such that eigenvalues of the same sign are paired to each other and zero

eigenvalues to zero eigenvalues. (See Proposition 3.6.) A comparison of this theorem and

the inequality (5.2) in Theorem 5.1 leads to the following conclusions:

1. Theorem 6.3 covers both the de�nite case and the inde�nite case, while the inequality

(5.2) in Theorem 5.1 is for the de�nite case only.

2. When applying to the de�nite case, (5.2) is sharper than (6.6). As a matter of fact,

(6.6) is a corollary of (5.2) in this case. In fact, if A is nonnegative de�nitevuut nX
i=1

h
%2(�i; e�i)i2 � 1p

2

vuut nX
i=1

h
�(�i; e�i)i2 (by Proposition 3.11)

� 1p
2
k�d � ��1d kF (by (5.2))

�
q
kI � �dk2F + kI � ��1d k2F: (by Lemma 6.1 below)

Lemma 6.1
1p
2
k�d � ��1d kF �

q
kI � �dk2F + kI � ��1d k2F;

and the equality holds if and only if �d = I, i.e., D is unitary.
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Proof: Notice that for � 2 R
����� � 1

�

���� �
����� � 1 + 1� 1

�

���� � j� � 1j+
����1� 1

�

���� � p
2

s
j� � 1j2 +

����1� 1

�

����2

and the equality sign holds if and only if � = 1.

The theorem below is a generalization of Theorems 4.3 and 4.4 for the spectral norm and

that of Theorem 4.5.

Theorem 6.4 To the hypotheses of Theorem 6.1 add this: all �i's and e�j's are nonnega-
tive and are arranged descendingly as described in (2.2). Then we have

max
1�i�n

%p(�i; e�i) � �r(X)�r( eX)� (6.7)

min

�
q

q
kI �D�

1kqr + kI �D�1
2 kqr ; q

q
kI �D��

1 kqr + kI �D2kqr
�
;

where 1 � r � 1 and q = p=(p� 1).

Similarly to Theorem 6.1, there is a stronger version of this theorem for r = 2 as follows.

Theorem 6.4s Let all conditions of Theorem 6.4 hold. Then

max
1�i�n

%p(�i; e�i) � �(X)�( eX)� (6.8)

min
U2Un

min

�
q

q
kU �D1kq2 + kU� �D�1

2 kq2; q

q
kU� �D�1

1 kq2 + kU �D2kq2
�
;

where q = p=(p� 1).

As a consequence of this theorem and our solution to the optimization problem (6.4), we

deduce that

Theorem 6.5 Under the conditions of Theorem 6.3, if A is nonnegative de�nite and the

eigenvalues of A and eA are ordered descendingly as in (2.2), then

max
1�i�n

%p(�i; e�i) = q

q
kI � �dkq2 + kI � ��1d kq2; (6.9)

where �d is de�ned in (5.3) and q = p=(p� 1).

However, Theorem 6.5 is superseded by Theorem 5.1. To see this, we notice that

1. Both Theorem 5.1 and Theorem 6.5 work for the nonnegative de�nite case.

2. (6.9) can be deduced from (5.1).

In fact, (5.1) and Proposition 3.11 imply that

max
1�i�n

%p(�i; e�i) � 2�1=p�(�i; e�i) � 2�1=pk�d � ��1d k2 � q

q
kI � �dkq2 + kI � ��1d kq2;

by Lemma 6.2 below. But still (6.9) looks nice and clean.
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Lemma 6.2

k�d � ��1d k2 � 21=p
q

q
kI � �dkq2 + kI � ��1d kq2; (6.10)

and the equality holds if and only if �d = I, i.e., D is unitary.

Proof: Let � 2 �(D) be the one such that k�d � ��1d k2 =
���� � 1

�

��� : Then
k�d � ��1d k2 =

����� � 1

�

���� � j� � 1j+
����1� 1

�

����
� 21=p q

s
j� � 1jq +

����1� 1

�

����q

� 21=p
q

q
kI � �dkq2 + kI � ��1d kq2;

as required.

So far we have considered the case when both A and eA are diagonalizable. In what

follows, we weaken this assumption by requiring only A to be diagonalizable and derive a

relative eigenvalue perturbation bound of Bauer-Fike Type [2].

Theorem 6.6 Assume that A 2 Cn�n is diagonalizable and admits the following decom-

position

A = X�X�1 where � = diag(�1; � � � ; �n): (6.11)

Assume5 also either eA = DA or eA = AD. Then for any e� 2 �( eA) there exists a � 2 �(A)

such that

min
�2�(A)

je�� �j
j�j � kX�1(D� I)Xkp � �p(X)kI �Dkp: (6.12)

7 A Theorem of Ostrowski and Other Developments

In this section, we brie
y review the current state of research on the problems listed in

x1.1 and present our remarks.

Let A be an n�n Hermitian matrix. Perturbing A to D�AD, where D is nonsingular,

is actually performing a congruence transformation to A by D. The following theorem is

due to Ostrowski [32, 1959] (see also [17, pp.224{225]).

Theorem 7.1 (Ostrowski) Let A and eA = D�AD be two n�n Hermitian matrices with

eigenvalues (2.1) ordered descendingly as in (2.2), where D is nonsingular. Then there

exist �j 's so that

�min(D)2 � �j � �max(D)2 and e�j = �j�j for 1 � j � n.

5Unlike in our previous theorems, here we do not have to assume that D is nonsingular. Of course,

if D is far away from I, the bound (6.12) does not tell us much; if D is close enough to I, it has to be

nonsingular.
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Ostrowski's theorem implies immediately a relative perturbation bound on Hermitian

eigenvalues.

Theorem 7.2 Let the conditions of Theorem 7.1 hold. Then

je�j � �j j
j�jj

� kI �D�Dk2 for 1 � j � n,

or in other words,

e�j = �j(1 + �j) with j�j j � kI �D�Dk2 for 1 � j � n.

Inequality (5.1) of Theorem 5.1 and Theorem 7.2 are independent in the sense that one

can not be inferred from the other; but Theorem 7.2 covers more while Theorem 5.1 covers

nonnegative de�nite matrices only.

Ostrowski's theorem also applies to singular value variations for matrices B and eB =

D�
1BD by working with Hermitian matrices

 
B�

B

!
and

 eB�

eB
!
=

 
D2

D1

!� 
B�

B

! 
D2

D1

!
: (7.1)

Given the singular values (2.3) of B and eB, it is known that besides m�n (if m > n) zero

eigenvalues, the eigenvalues of the two matrices in (7.1) are ��i, and �e�i, respectively.
Corollary 7.1 Let B and eB = D�

1BD2 be two m� n matrices with singular values (2.3)

ordered descendingly as in (2.4), where D1 and D2 are nonsingular. Then

minf�min(D1)
2; �min(D2)

2g � e�j
�j

� maxf�max(D1)
2; �max(D2)

2g for 1 � j � n

which gives

je�j � �j j
�j

� maxfkI �D�
1D1k2; kI �D�

2D2k2g for 1 � j � n;

or in other words,

e�j = �j(1 + 
j) with j
jj � maxfkI �D�
1D1k2; kI �D�

2D2k2g for 1 � j � n:

This corollary, though, an immediate consequence of the above Ostrowski's theorem and

the equation (7.1), has appeared no where. It turns out that Corollary 7.1 provides a less

sharp bound than the following theorem due to Eisenstat and Ipsen [10, 1993]. It can also

be derived from Ostrowski's theorem.

Theorem 7.3 (Eisenstat-Ipsen) Under the conditions of Corollary 7.1, we have

�min(D1)�min(D2) �
e�j
�j

� �max(D1)�max(D2) for 1 � j � n
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which yields

je�j � �j j
�j

� maxfj1� �min(D1)�min(D2)j; j1� �max(D1)�max(D2)jg for 1 � j � n;

or in other words, e�j = �j(1 + 
j) with

j
j j � maxfj1� �min(D1)�min(D2)j; j1� �max(D1)�max(D2)jg;

for 1 � j � n.

Theorem 7.3 always provides a sharper bound than Corollary 7.1 does, as the following

lemma indicates.

Lemma 7.1 For �; � � 0,

maxfj1� �2j; j1� �2jg � j1� ��j; (7.2)

and the equality holds if and only if � = �.

Proof: The inequality is obvious if either maxf�; �g � 1 or minf�; �g � 1. It is also clearly

true if either � = 1 or � = 1. Now it su�ces for us to consider the case when 0 � � < 1 < �.

There are two subcases: �2 � 1 � 1� �2 or �2 � 1 > 1� �2.

1. �2 � 1 � 1 � �2 ) �2 + �2 � 2 ) 2�� < �2 + �2 � 2 (by the Cauchy-Schwarz

inequality and since � 6= �) ) �� < 1. Now notice that

�2 < �� ) 1� �2 > 1� �� = j1� ��j:

2. �2 � 1 > 1� �2 ) �2 + �2 > 2 ) �� + �2 � �2 + �2 > 2 ) �2 � 1 > 1� ��; on the

other hand, �2 > �� ) �2 � 1 > �� � 1. So

�2 � 1 > maxf1� ��; �� � 1g = j1� ��j:

From the above proof, it is clear that maxfj1 � �2j; j1 � �2jg = j1 � ��j cannot happen
when 0 � � < 1 < �; it is not hard to see when maxf�; �g � 1 or minf�; �g � 1, the

equality cannot happen, either, unless � = �.

Regarding to graded matrices, the following two theorems are due to Demmel and

Veseli�c [9, 1992] and Mathias [29, 1994].

Theorem 7.4 (Demmel-Veseli�c) Under the conditions of Theorem 5.4, we have

je�j � �j j
j�j j

� kH�1k2k�Hk2 for 1 � j � n;

or in other words,

e�j = �j(1 + �j) with j�j j � kH�1k2k�Hk2 for 1 � j � n:
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Theorem 7.5 (Mathias) Under the conditions of Theorem 5.5, we have

je�j � �j j
�j

� kG�1k2k�Gk2 for 1 � j � n;

or in other words,

e�j = �j(1 + 
j) with j
jj � kG�1k2k�Gk2 for 1 � j � n:

Finally, let us see what we can get from Theorems 7.2, 7.4, 7.5 and 7.3 and Corol-

lary 7.1, in terms of the two kinds of relative distances de�ned in x3.
1. From Theorem 7.2, we have for 1 � j � n

%p(�j ; e�j) � %1(�j; e�j) � kI �D�Dk2; (7.3)

�(�j ; e�j) � kI �D�Dk2
�min(D)

: (7.4)

The inequality (7.3) holds because

%1(�j ; e�j) = je�j � �j j
maxfj�jj; je�jjg �

je�j � �j j
j�jj

� kI �D�Dk2;

and the inequality (7.4) holds because

�(�j; e�j) = je�j � �j jq
j�j j je�jj =

je�j � �j j
j�jj

s
j�j j
je�j j �

kI �D�Dk2
�min(D)

:

2. From Corollary 7.1 and by similar reasonings above, we have for 1 � j � n

%1(�j ; e�j) � maxfkI �D�
1D1k2; kI �D�

2D2k2g; (7.5)

�(�j ; e�j) � maxfkI �D�
1D1k2; kI �D�

2D2k2g
minf�min(D1); �min(D2)g

: (7.6)

3. From Theorem 7.3, we have for 1 � j � n

%1(�j ; e�j) � maxfj1� �min(D1)�min(D2)j; j1� �max(D1)�max(D2)jg; (7.7)

�(�j ; e�j) � maxfj1� �min(D1)�min(D2)j; j1� �max(D1)�max(D2)jgp
�min(D1)�min(D2)

: (7.8)

Inequalities (7.7) and (7.8) are sharper than (7.5) and (7.6), respectively.

4. From Theorem 7.4, we have for 1 � j � n

%1(�j ; e�j) � kH�1k2k�Hk2; (7.9)

�(�j ; e�j) � kH�1k2k�Hk2p
1� kH�1k2k�Hk2

: (7.10)

Inequality (7.10) has been derived in Theorem 5.4.



Ren-Cang Li: Relative Perturbation Theory 34

5. From Theorem 7.5, it follows for 1 � j � n

%1(�j ; e�j) � kG�1k2k�Gk2; (7.11)

�(�j ; e�j) � kG�1k2k�Gk2p
1� kG�1k2k�Gk2

: (7.12)

Inequality (7.12) turns out to be sharper than the last \�" in (5.13) of Theorem 5.5,

but not the �rst two.

8 Proofs of Theorems 6.1 and 6.4

To prove the theorems, we need a little preparation. A matrix Y = (yij) 2 Rn�n is doubly

stochastic if all yij � 0 and

nX
k=1

yik =
nX

k=1

ykj = 1 for i; j = 1; 2; � � � ; n.

A matrix P 2 R
n�n is called a permutation matrix if exactly one entry in each row and

each column equals to 1 and all others are zero. Let ei be the ith column vector of In.

Each permutation matrix P corresponds to a unique permutation � of f1; 2; � � � ; ng in such

a way:

P = (e�(1); e�(2); � � � ; e�(n));
and vice versa. Thus there are n! permutation matrices. The following wonderful result

is due to Birkho� [5, 1946] (see also [17, pp.527{528]).

Lemma 8.1 (Birkho�) An n� n matrix is doubly stochastic if and only if it lies in the

convex hull of permutation matrices.

Lemma 8.2 Let Y = (yij) be an n � n doubly stochastic matrix, and let M = (mij) 2
C

n�n. Then there exists a permutation � of f1; 2; � � � ; ng such that

nX
i; j=1

jmij j2yij �
nX
i=1

jmi�(i)j2:

Proof: Denote all n�n permutation matrices as Pk , and their corresponding permutations

of f1; 2; � � � ; ng as �k, where k = 1; 2; � � � ; n!. It follows from Lemma 8.1 that Y can be

written as Y =
n!P
k=1

�kPk, where �k � 0 and
n!P
k=1

�k = 1. Hence

nX
i; j=1

jmijj2yij =
n!X
k=1

�k

nX
i=1

jmi�k(i)j2 � min
1�k�n!

nX
i=1

jmi�k(i)j2;

as was to be shown.
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The technique in the above proof is quite standard. It was �rst used by Ho�man

and Wielandt [16, 1953] to prove Theorem 4.1, and later by Sun [36, 1982] to prove a

Ho�man-Wielandt type theorem for a special class of matrix pencils (and by maybe many

others).

The following lemma is due to Elsner and Friedland [12, 1995].

Lemma 8.3 (Elsner-Friedland) Let Y = (yij) 2 C
n�n. Then there exist two n � n

doubly stochastic matrices Y1; Y2 such that entrywisely

�min(Y )
2 Y1 � (jyij j2) � �max(Y )

2 Y2:

Proof of Theorem 6.1: Let us �rst derive our perturbation equations.

A� eA = A�D�
1AD2 = A� AD2 + AD2 �D�

1AD2 = A(I �D2) + (D��
1 � I) eA:

Pre- and post-multiply the equations by X�1 and eX, respectively, to get

�X�1 eX �X�1 eX e� = �X�1(I �D2) eX +X�1(D��
1 � I) eX e�: (8.1)

Set

Y
def
= X�1 eX = (yij); E

def
= X�1(I �D2) eX = (eij); eE def

= X�1(D��
1 � I) eX = (eeij):

Then equation (8.1) reads �Y � Y e� = �E + eEe�, or componentwise �iyij � yije�j =

�ieij + eeije�j , so
(j�ij2 + je�jj2)(jeij j2 + jeeij j2) � j�ieij + eeije�j j = j(�i � e�j)yij j2;

which yields jeij j2 + jeeij j2 � h%2(�i; e�j)i2 jyij j2. Hence
kX�1(I �D2) eXk2F + kX�1(D��

1 � I) eXk2F �
nX

i; j=1

h
%2(�i; e�j)i2 jyij j2: (8.2)

Inequality (8.2), Lemmas 8.2 and 8.3 imply that

kX�1(I �D2) eXk2F + kX�1(D��
1 � I) eXk2F � �min(Y )

2
nX
i=1

h
%2(�i; e��(i))i2

for some permutation � of f1; 2; � � � ; ng. Since

�min(Y ) = kY �1k�12 = k eX�1Xk�12 � k eX�1k�12 kXk�12 ;

we have

k eX�1k2kXk2
q
kX�1(I �D2) eXk2F + kX�1(D��

1 � I) eXk2F
� k eX�1k2kXk2�min(Y )

vuut nX
i=1

h
%2(�i; e��(i))i2 �

vuut nX
i=1

h
%2(�i; e��(i))i2: (8.3)
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On the other hand, we have

A � eA = A�D�
1AD2 = A�D�

1A+D�
1A�D�

1AD2 = (I �D�
1)A+ eA(D�1

2 � I):

Pre- and post-multiply the equations by eX�1 and X , respectively, to get

eX�1X�� e� eX�1X = eX�1(I �D�
1)X�+ e� eX�1(D�1

2 � I)X: (8.4)

Set eY def
= eX�1X = (eyij). Similarly, we have

k eX�1(I �D�
1)Xk2F + k eX�1(D�1

2 � I)Xk2F �
nX

i; j=1

h
%2(�i; e�j)i2 jeyjij2: (8.5)

Inequality (8.5), Lemmas 8.2 and 8.3 imply that

k eX�1(I �D�
1)Xk2F + k eX�1(D�1

2 � I)Xk2F � �min( eY )2 nX
i=1

h
%2(�i; e��(i))i2 :

Notice now �min( eY ) = k eY �1k�12 = kX�1 eXk�12 � kX�1k�12 k eXk�12 . Along the lines for

proving (8.3), we obtain

kX�1k2k eXk2qk eX�1(I �D�
1)Xk2F+ k eX�1(D�1

2 � I)Xk2F �
vuut nX

i=1

h
%2(�i; e��(i))i2: (8.6)

Inequality (6.1) is now a consequence of (8.3) and (8.6).

The proof of Theorem 6.4 below needs the following result due to Li [23, pp.207{208,

1993]. For X 2 C
m�n, we introduce the following notation for a k � ` submatrix of

X = (xij):

X

 
i1 � � � ik
j1 � � � j`

!
def
=

0
BBBB@

xi1j1 xi1j2 � � � xi1j`
xi2j1 xi2j2 � � � xi2j`
...

...
. . .

...

xikj1 xikj2 � � � xikj`

1
CCCCA ; (8.7)

where 1 � i1 < � � � < ik � n and 1 � j1 < � � � < j` � n.

Lemma 8.4 (Li) Suppose that X 2 Cn�n is nonsingular, and 1 � i1 < � � � < ik � n and

1 � j1 < � � � < j` � n, and k + ` > n. Then






X
 

i1 � � � ik
j1 � � �j`

!





p

� kX�1k�1p . Moreover, if

X is unitary, then






X
 

i1 � � � ik
j1 � � �j`

!





2

= 1.

Proof of Theorem 6.4: Let k be the index such that

�p
def
= max

1�i�n
%p(�i; e�i) = %p(�k; e�k):
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If �p = 0, inequality (6.7) clearly holds. Assume �p > 0. Also assume, without loss of any

generality, that

�k > e�k � 0:

Partition X; X�1; eX and eX�1 conformally as follows:

X = (X1; X2); X
�1 =

 
W �

1

W �
2

!
; eX = ( eX1; eX2); eX�1 =

 fW �
1fW �
2

!
;

where X1; W1 2 C
n�k and eX1; fW1 2 C

n�(k�1); and write � = diag(�1;�2) and e� =

diag(e�1; e�2), where �1 2 R
k�k and e�1 2 R

(k�1)�(k�1). It follows from equations (8.1)

and (8.4) that

�1W
�
1
eX2 �W �

1
eX2
e�2 = �1W

�
1 (I �D2) eX2 +W �

1 (D
��
1 � I) eX2

e�2;fW �
2X1�1 � e�2

fW �
2X1 = fW �

2 (I �D�
1)X1�1 + e�2

fW �
2 (D

�1
2 � I)X1

which give

W �
1
eX2 � ��11 W �

1
eX2
e�2 = W �

1 (I �D2) eX2 +��11 W �
1 (D

��
1 � I) eX2

e�2; (8.8)fW �
2X1 � e�2

fW �
2X1�

�1
1 = fW �

2 (I �D�
1)X1 + e�2

fW �
2 (D

�1
2 � I)X1�

�1
1 : (8.9)

Lemma 8.4 implies for 1 � r � 1


W �
1
eX2





r
�




(X�1 eX)�1



�1
r
�



 eX�1X




�1
r
� k eX�1k�1r kXk�1r ; (8.10)


fW �

2X1





r
�




( eX�1X)�1



�1
r
�



X�1 eX


�1

r
� kX�1k�1r k eXk�1r ; (8.11)

since W �
1
eX2 is a k � (n � k + 1) submatrix of X�1 eX, and fW �

2X1 is a (n � k + 1) � k

submatrix of eX�1X and k+(n�k+1) = n+1 > n. Bearing in mind that k��11 kr = 1=�k

and



e�2





r
= e�k, we have 

1�
e�k
�k

!
k eX�1k�1r kXk�1r �

 
1�

e�k
�k

!


W �

1
eX2





r

(by (8.10))

=



W �

1
eX2





r
� k��1

1
kr




W �

1
eX2





r




e�2





r

�



W �

1
eX2





r
�



��11

W �

1
eX2
e�2





r

�



W �

1
eX2 � ��1

1
W �

1
eX2
e�2





r

=



W �

1
(I �D2) eX2 + ��1

1
W �

1
(D��

1
� I) eX2

e�2





r

(by (8.8))

�



W �

1
(I �D2) eX2





r
+
e�k
�k




W �

1
(D��

1
� I) eX2





r

� kW �

1
krk eX2kr

 
kI �D2kr +

e�k
�k
kD��

1
� Ikr

!

� kX�1krk eXkr p

s
1 +

e�pk
�
p
k

q

q
kI �D2k

q
r + kI �D��

1
kqr:



Ren-Cang Li: Relative Perturbation Theory 38

Similarly, from (8.9) we obtain

 
1�

e�k
�k

!
kX�1k�1r k eXk�1r � k eX�1krkXkr p

vuut1 +
e�pk
�
p
k

q

q
kI �D�1

2 kqr + kI �D�
1kqr:

Inequality (6.7) is now a consequence of above inequalities.

9 Proofs of Theorems 5.1, 5.2, 5.3, 5.4, and 5.5

Proof of Theorem 5.1: Since A is nonnegative de�nite, there is a matrix B 2 Cn�n such

that A = B�B. With this B, eA = D�AD = D�B�BD = eB� eB, where eB = BD. Let SVDs

of B and eB be

B = U�1=2V � and eB = eU e�1=2 eV �;

where �1=2 = diag(
p
�1;

p
�2; � � � ;

p
�n) and e�1=2 = diag

�qe�1;
qe�2; � � � ;

qe�n
�
. In what

follows, we actually work with BB� and eB eB�, instead of A = B�B and eA = eB� eB. We

have eB eB� �BB� = eBD�B� � eBD�1B� = eB(D� �D�1)B�:

Pre- and post-multiply the above equations by eU� and U , respectively, to get

e� eU�U � eU�U� = e�1=2 eV �(D� �D�1)V�1=2: (9.1)

Write Q
def
= eU�U = (qij). Equation (9.1) implies

k eV �(D� �D�1)V k2F = kD� �D�1k2F =
nX

i; j=1

je�i � �j jqe�i�j jqij j2:

Since (jqij j2) is a doubly stochastic matrix, applying Lemma 8.2 and Proposition 3.13

concludes the proof of inequality (5.2). To con�rm (5.1), let k be the index such that

�p
def
= max

1�i�n
�(�i; e�i) = �(�k; e�k):

If �p = 0, no proof is necessary. Assume �p > 0. Also assume, without loss of any

generality, that

�k > e�k � 0:

Partition U; V; eU; eV as follows

U = (U1; U2); V = (V1; V2); eU = ( eU1; eU2) and eV = ( eV1; eV2);
where U1; V1 2 C

n�k and eU1; eV1 2 C
n�(k�1), and write � = diag(�1;�2) and e� =

diag(e�1; e�2), where �1 2 Rk�k and e�1 2 R(k�1)�(k�1). It follows from equation (9.1) that

e�2
eU�
2U1 � eU�

2U1�1 = e�1=2
2
eV �
2 (D

� �D�1)V1�
1=2
1 :
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Post-multiply this equation by ��11 to get

e�2
eU�
2U1�

�1
1 � eU�

2U1 = e�1=2
2
eV �
2 (D

� �D�1)V1�
�1=2
1 : (9.2)

Lemma 8.4 implies that



 eU�

2U1





2
= 1 since eU�

2U1 is a (n � k + 1)� k submatrix of eU�U

and k + (n � k + 1) = n + 1 > n. Bearing in mind that ke�2k2 = e�k =
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2
2
and
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(by (9.2))

� ke�1=2
2 k2




 eV �
2 (D

� �D�1)V1





2
k��1=21 k2

=
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�k




 eV �
2 (D

� �D�1)V1





2

�
se�k
�k
kD� �D�1k2;

an immediate consequence of which is inequality (5.1).

Lemma 9.1 For �; �; 
 > 0, we have

�(�; 
) � �(�; �) + �(�; 
) +
1

8
�(�; �)�(�; 
)�(�; 
): (9.3)

Thus if �(�; �)�(�; 
) < 8, then

�(�; 
) � �(�; �) + �(�; 
)

1� 1
8
�(�; �)�(�; 
)

:

Proof: Without loss of any generality, we may assume � � 
. Now if � � � or 
 � �, by

Property 7 of Proposition 3.7

�(�; 
) �
(

�(�; 
) � �(�; �) + �(�; 
); if � � �;

�(�; �) � �(�; �) + �(�; 
); if 
 � �:

So inequality (9.3) has to be true. Consider the case � � � � 
. From the proof of

Proposition 3.14, we have

�(�; 
) = �(�; �) + �(�; 
) + �(
p
�;
p
�)�(

p
�;
p

)�(

p
�;
p

):
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By inequality (3.19) of Proposition 3.10, we get immediately inequality (9.3).

Proof of Theorems 5.2 and 5.3: Set bB = BD2 and denote its singular values by b�1 � b�2 �
� � � � b�n. Applying Theorem 5.1 to B�B and bB� bB = D�

2B
�BD2 leads to

max
1�i�n

�(�2i ; b�2i ) � kD�
2 �D�1

2 k2 and

vuut nX
i=1

�
�(�2i ; b�2i )�2 � kD�

2 �D�1
2 kF:

Now apply inequality (3.19) of Proposition 3.10 to obtain

max
1�i�n

�(�i; b�i) � 1

2
kD�

2 �D�1
2 k2 and

vuut nX
i=1

[�(�i; b�i)]2 � 1

2
kD�

2 �D�1
2 kF: (9.4)

Similarly for bB = BD2 and eB = D�
1BD2 = D�

1
bB, we have

max
1�i�n

�(b�i; e�i) � 1

2
kD�

1 �D�1
1 k2 and

vuut nX
i=1

[�(b�i; e�i)]2 � 1

2
kD�

1 �D�1
1 kF: (9.5)

Under the assumptions of Theorem 5.2, by Lemma 9.1, we have

�(�i; b�i)�(b�i; e�i) � 1

4
kD�

1 �D�1
1 k2kD�

2 �D�1
2 k2 < 1

4
� 32 = 8;

so we have

�(�i; e�i) � �(�i; b�i) + �(b�i; e�i)
1� 1

8
�(�i; b�i)�(b�i; e�i)

� 1

2
� kD�

1 �D�1
1 k2 + kD�

2 �D�1
2 k2

1� 1
32
kD�

1 �D�1
1 k2kD�

2 �D�1
2 k2

;

vuut nX
i=1

[�(�i; e�i)]2 �
vuut nX

i=1

"
�(�i; b�i) + �(b�i; e�i)
1� 1

8
�(�i; b�i)�(b�i; e�i)

#2

�

s
nP
i=1

[�(�i; b�i)]2 +
s

nP
i=1

[�(b�i; e�i)]2
1� 1

8
max
1�i�n

�(�i; b�i)�(b�i; e�i)
� 1

2
� kD�

1 �D�1
1 kF + kD�

2 �D�1
2 kF

1� 1
32
kD�

1 �D�1
1 k2kD�

2 �D�1
2 k2

;

as expected. This completes the proof of Theorem 5.2. To prove Theorem 5.3, we notice

that

%p(�i; e�i) � %p(�i; b�i) + %p(b�i; e�i) (%p is a metric on R)

� 2�1=p�(�i; b�i) + 2�1=p�(b�i; e�i) (by Proposition 3.11)

� 2�1�1=p
�
kD�

2 �D�1
2 k2 + kD�

1 �D�1
1 k2

�
; (by (9.4) and (9.5))
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andvuut nX
i=1

[%p(�i; e�i)]2 �
vuut nX

i=1

[%p(�i; b�i) + %p(b�i; e�i)]2 (%p is a metric on R)

�
vuut nX

i=1

[%p(�i; b�i)]2 +
vuut nX

i=1

[%p(b�i; e�i)]2

� 2�1=p

vuut nX
i=1

[�(�i; b�i)]2 + 2�1=p

vuut nX
i=1

[�(b�i; e�i)]2
(by Proposition 3.11)

� 2�1�1=p
�
kD�

2 �D�1
2 kF + kD�

1 �D�1
1 kF

�
: (by (9.4) and (9.5))

These inequalities complete the proof of Theorem 5.3.

Proof of Theorem 5.4: Rewrite A and eA as

A = S�HS = (H1=2S)�H1=2S;eA = S�H1=2(I +H�1=2(�H)H�1=2)H1=2S

=
�
(I +H�1=2(�H)H�1=2)

1=2
H1=2S

��
(I +H�1=2(�H)H�1=2)

1=2
H1=2S:

Set B
def
= H1=2S and eB def

= (I+H�1=2(�H)H�1=2)
1=2

H1=2S, then A = B�B and eA = eB� eB.
SetD = (I+H�1=2(�H)H�1=2)

1=2
, then eB = DB. Notice that �(A) = �(B�B) = �(BB�)

and �( eA) = �( eB� eB) = �( eB eB�) and eB eB� = DBB�D�. Applying Theorem 5.1 to BB�

and eB eB� yields the �rst \�" in both (5.11) and (5.12).

Proof of Theorem 5.5: Write

eB = (G+�G)S = (I + (�G)G�1)GS = DB;

where D = I + (�G)G�1. Now applying Theorem 5.2 to B and eB = DB yields the �rst

inequalities in both (5.13) and (5.14). To get the second inequalities, we notice

(I +E)� � (I + E)�1 = I + E� �
1X
i=0

(�1)iEi = E� + E + E
1X
i=2

(�1)iEi�1;

where E = (�G)G�1 and kEk2 � kG�1k2k�Gk2 < 1; therefore for any unitarily invariant

norm jjj � jjj
���������(I +E)� � (I +E)�1

��������� � jjjE + E�jjj+ jjjEjjj
1X
i=1

kEki2

=

� jjjE +E�jjj
jjjEjjj +

kEk2
1� kEk2

�
jjjEjjj :

The rest is just applications of this inequality for jjj � jjj = k � k2 and for jjj � jjj = k � kF.
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10 Proof of Theorem 6.6

No proof is necessary if e� 2 �(A). Assume that e� 62 �(A). Here we consider the case wheneA = DA only, since the situation for the case when eA = AD is very similar.

eA� e�I = A� e�I + eA� A

= X(�� e�I)X�1 + (D� I)X�X�1

= X
h
I +X�1(D� I)X�(�� e�I)�1i (�� e�I)X�1:

Since eA� e�I is singular, we have for any 1 � p � 1, kX�1(D � I)X�(�� e�I)�1kp � 1

which gives

1 � kX�1(D � I)Xkpk�(�� e�I)�1kp = kX�1(D� I)Xkp max
�2�(A)

j�j
je�� �j

as was to be shown.

11 Generalized Eigenvalue Problems and Generalized Sin-

gular Value Problems

In this section, we are going to say a few words for the following perturbations for Scaled

Generalized Eigenvalue Problems and Scaled Generalized Singular Value Problems. As we

shall see, the results in previous sections, as well as those in Li [24, 1994], can be applied

to derive relative perturbation bounds for them.

� Generalized eigenvalue problem:

A1��A2 � S�1H1S1��S�2H2S2 and eA1�� eA2 � S�1
eH1S1��S�2

eH2S2, where H1 and

H2 are positive de�nite and kH�1
i k2k eHi �Hik2 < 1 for i = 1; 2, and S1 and S2 are

some square matrices and one of them is nonsingular.

� Generalized singular problem:

fB1; B2g � fG1S1; G2S2g and f eB1; eB2g � f eG1S1; eG2S2g, where G1 and G2 are

nonsingular and kG�1
i k2k eGi �Gik2 < 1 for i = 1; 2, and S1 and S2 are some square

matrices and one of them is nonsingular.

For the scaled generalized eigenvalue problem just mentioned, without loss of any general-

ity, we consider the case when S2 is nonsingular. Then the generalized eigenvalue problem

for A1 � �A2 � S�1H1S1 � �S�2H2S2 is equivalent to the standard eigenvalue problem for

A
def
= H

�1=2
2 S�12 S�1H1S1S

�1
2 H

�1=2
2 ;

and the generalized eigenvalue problem for eA1 � � eA2 � S�1
eH1S1 � �S�2

eH2S2 is equivalent

to the standard eigenvalue problem for

eA def
= D�

2H
�1=2
2 S�12 S�1

eH1S1S
�1
2 H

�1=2
2 D2;
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where

D2 = D�
2
def
=
�
I +H

�1=2
2 (�H2)H

�1=2
2

��1=2
and �H2

def
= eH2 �H2:

So bounding relative distances between the eigenvalues of A1��A2 and these of eA1�� eA2

is transformed to bounding relative distances between the eigenvalues of the matrix A and

these of the matrix eA. The latter can be accomplished in two steps:

1. Bounding relative distances between the eigenvalues of the matrix A and these of

bA def
= D�

2H
�1=2
2 S�12 S�1H1S1S

�1
2 H

�1=2
2 D2:

2. Bounding relative distances between the eigenvalues of the matrix bA and these of

the matrix eA.
Denote and order the eigenvalues of A, bA and eA as

�1 � � � � � �n and b�1 � � � � � b�n and e�1 � � � � � e�n:
Set

D1 = D�
1
def
=
�
I +H

�1=2
1 (�H1)H

�1=2
1

��1=2
and �H1

def
= eH1 �H1:

By Theorems 5.1 and 5.4, we have for 1 � j � n

�(�i; b�i) � kD2 �D�1
2 k2 and �(b�i; e�i) � kD1 �D�1

1 k2 (11.1)

andvuut nX
i=1

h
�(�i; b�i)i2 � kD2 �D�1

2 kF and

vuut nX
i=1

h
�(b�i; e�i)i2 � kD1 �D�1

1 kF: (11.2)

By Lemma 9.1, we have for 1 � j � n if kD1 �D�1
1 k2kD2 �D�1

2 k2 < 8,

�(�i; e�i) � �(�i; b�i) + �(b�i; e�i)
1� 1

8
�(�i; b�i)�(b�i; e�i) �

kD2 �D�1
2 k2 + kD1 �D�1

1 k2
1� 1

8
kD1 �D�1

1 k2kD2 �D�1
2 k2

and vuut nX
i=1

h
�(�i; e�i)i2 �

vuut nX
i=1

"
�(�i; b�i) + �(b�i; e�i)

1� 1
8
�(�i; b�i)�(b�i; e�i)

#2

�

s
nP
i=1

h
�(�i; b�i)i2 +

s
nP
i=1

h
�(b�i; e�i)i2

1� 1
8
max
1�i�n

�(�i; b�i)�(b�i; e�i)
� kD2 �D�1

2 kF + kD1 �D�1
1 kF

1� 1
8
kD1 �D�1

1 k2kD2 �D�1
2 k2

:
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Notice also that for i = 1; 2 and for any unitarily invariant norm jjj � jjj
���������Di �D�1

i

��������� � kH�1
i k2 jjj�Hijjjq

1� kH�1
i k2k�Hik2

:

So we have proved

Theorem 11.1 Let A1��A2 � S�1H1S1��S�2H2S2 and eA1�� eA2 � S�1
eH1S1��S�2 eH2S2,

where H1 and H2 are n�n and positive de�nite and kH�1
i k2k eHi�Hik2 < 1 for i = 1; 2, and

S1 and S2 are some square matrices and one of them is nonsingular. Let the generalized

eigenvalues of A1 � �A2 and eA1 � � eA2 be

�1 � � � � � �n and e�1 � � � � � e�n:
If kD1 �D�1

1 k2kD2 �D�1
2 k2 < 8, then

max
1�i�n

�(�i; e�i) � �1k�H1k2 + �2k�H2k2
1� 1

8
�1�2k�H1k2k�H2k2

;

vuut nX
i=1

h
�(�i; e�i)i2 � �1k�H1kF + �2k�H2kF

1� 1
8
�1�2k�H1k2k�H2k2

;

where �i
def
= kH�1

i k2
�q

1� kH�1
i k2k�Hik2 for i = 1; 2.

On the other hand, from (11.1) and (11.2) and Proposition 3.11, we get

%p(�i; b�i) � 2�1=pkD2 �D�1
2 k2 and %p(b�i; e�i) � 2�1=pkD1 �D�1

1 k2
andvuut nX

i=1

h
%p(�i; b�i)i2 � 2�1=pkD2 �D�1

2 kF and

vuut nX
i=1

h
%p(b�i; e�i)i2 � 2�1=pkD1 �D�1

1 kF:

Since %p is a metric on R, we have for 1 � j � n

%p(�i; e�i) � %p(�i; b�i) + %p(b�i; e�i) � 2�1=p
�
kD2 �D�1

2 k2 + kD1 �D�1
1 k2

�
and vuut nX

i=1

h
%p(�i; e�i)i2 �

vuut nX
i=1

h
%p(�i; b�i) + %p(b�i; e�i)i2

�
vuut nX

i=1

h
%p(�i; b�i)i2 +

vuut nX
i=1

h
%p(b�i; e�i)i2

� 2�1=p
�
kD2 �D�1

2 kF + kD1 �D�1
1 kF

�
:
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Theorem 11.2 Let all conditions of Theorem 11.1, except kD1�D�1
1 k2kD2�D�1

2 k2 < 8,

hold. Then

max
1�i�n

%p(�i; e�i) � 2�1=p(�1k�H1k2 + �2k�H2k2);vuut nX
i=1

h
%p(�i; e�i)i2 � 2�1=p(�1k�H1kF + �2k�H2kF):

As to the scaled generalized singular problem mentioned above, we shall consider its

corresponding generalized eigenvalue problem [22, 37, 39] for

S�1G
�
1G1S1 � �S�2G

�
2G2S2 and S�1

eG�
1
eG1S1 � �S�2

eG�
2
eG2S2; (11.3)

instead.

Theorem 11.3 Let fB1; B2g � fG1S1; G2S2g and f eB1; eB2g � f eG1S1; eG2S2g, where G1

and G2 are n � n and nonsingular and kG�1
i k2k eGi � Gik2 < 1 for i = 1; 2, and S1 and

S2 are some square matrices and one of them is nonsingular. Let the generalized singular

values of fB1; B2g and f eB1; eB2g be

�1 � � � � � �n and e�1 � � � � � e�n:
If �12�22 < 32, where

�it =





�I + (�Gi)G
�1
i

�� � �I + (�Gi)G
�1
i

��1




t

for i = 1; 2 and t = 2; F;

then

max
1�i�n

�(�i; e�i) � 1

2
� �12 + �22

1� 1
32
�12�22

;

vuut nX
i=1

[�(�i; e�i)]2 � 1

2
� �1F + �2F

1� 1
32
�12�22

:

It can be proved that for i = 1; 2 and t = 2; F

�it �
 
k(�Gi)G

�1
i + G��

i (�Gi)
�kt

k(�Gi)G
�1
i kt

+
k(�Gi)G

�1
i k2

1� k(�Gi)G
�1
i k2

!
k(�Gi)G

�1
i kt

�
 
1 +

1

1� kG�1
i k2k�Gik2

!
kG�1

i k2k�Gikt:

Proof: Consider the case when S2 is nonsingular. (The case when S1 is nonsingular can be

handled analogously.) By (11.3), we know that the singular values of B
def
= G1S1S

�1
2 G�1

2

and eB def
= eG1S1S

�1
2
eG�1
2 are �1 � � � � � �n and e�1 � � � � � e�n. Set

D1 = I + (�G1)G
�1
1 ; �G1 = eG1�G1; and D2 = I + (�G2)G

�1
2 ; �G2 = eG2�G2;
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then eB = D1BD
�1
2 . By Theorem 5.2, we have

max
1�i�n

�(�i; e�i) � 1

2

kD�
1 �D�1

1 k2 + kD��
2 �D2k2

1� 1
32
kD�

1 �D�1
1 k2kD��

2 �D2k2
;

vuut nX
i=1

[�(�i; e�i)]2 � 1

2

kD�
1 �D�1

1 kF + kD��
2 �D2kF

1� 1
32
kD�

1 �D�1
1 k2kD��

2 �D2k2
;

as were to be shown.

Theorem 11.4 Let all conditions of Theorem 11.1, except �12�22 < 32, hold. Then

max
1�i�n

%p(�i; e�i) � 1

21+1=p
(�12 + �22);vuut nX

i=1

[%p(�i; e�i)]2 � 1

21+1=p
(�1F + �2F):

Proof: (by the �rst half of the proof of Theorem 11.3 and by Theorem 5.3)

12 Conclusions

We have developed a relative perturbation theory for eigenvalue and singular value vari-

ations under multiplicative perturbations. In the theory, extensions of the celebrated

Ho�man-Wielandt theorem and Weyl-Lidskii theorem from the classical perturbation the-

ory are made. For this, we introduced two kinds of relative distances %p and �. Topolog-

ically, our new relative distances are equivalent to the classical measurement for relative

accuracy, but the new distances have better mathematical properties. It is proved that

%p is indeed a metric on R; while � is not. Often it is the case that perturbation bounds

using � are sharper than bounds using %p.

Our unifying treatment in this paper covers almost all previously studied cases and

yields sharper bounds than existing ones. Our results are applicable immediately to the

computations of sharp error bounds in the Demmel-Kahan QR [8, 1990] algorithm and

Fernando-Parlett's implementation of the Rutishauser QD algorithm [13, 1994]. Such

applications will be published elsewhere.

Appendix.

A %p is a Metric on R

In this appendix, we will prove (3.20)

%p(�; 
) � %p(�; �) + %p(�; 
) for �; �; 
 2 R. (3.20)

As a result, we have
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Theorem A.1 %p is a metric on R.

We strongly conjecture that %p is a metric on C. Unfortunately, we are unable to prove it

at this point.

Lemma A.1 The following statements are equivalent:

1. %p(�; 
) � %p(�; �) + %p(�; 
);

2. %p(��; �
) � %p(��; ��) + %p(��; �
) for some 0 6= � 2 C;

3. %p(��; �
) � %p(��; ��) + %p(��; �
) for all 0 6= � 2 C.

This lemma follows from Property 3 of Proposition 3.1.

In what follows, we will be working with real numbers. Since %p is symmetric with

respect to its two arguments (Property 2 of Proposition 3.1), we may assume, without loss

of any generality, that from now on

� � 
: (A.1)

There are three possible positions for �:

� � � or � < � � 
 or 
 < �: (A.2)

Lemma A.2 (3.20) holds for � � � � 
, and the equality holds if and only if � = � or

� = 
.

A proof of this lemma will be given in xA.3. Two di�erent cases shall be considered, in

order to con�rm (3.20).

1. �
 � 0.

2. �
 < 0.

A.1 The Case �
 � 0.

Lemma A.2 shows that (3.20) is true if � � � � 
. If either � < � or 
 < �, by Property

8 of Proposition 3.1, we have

%p(�; 
)�
(

%p(�; �) � %p(�; �) + %p(�; 
); if 
 � �;

%p(�; 
)� %p(�; �) + %p(�; 
); if � � �:

A.2 The Case �
 < 0.

We may assume � < 0 and 
 > 0 (see assumption (A.1)). Consider the three possible

positions (A.2) for �.

1. � � � < 0. In this subcase, 1=� � 1=� < 0 < 1=
. By Lemma A.2 and Property 4

of Proposition 3.1, we have

%p(�; 
) = %p(1=�; 1=
)� %p(1=�; 1=�) + %p(1=�; 1=
) = %p(�; �) + %p(�; 
):

2. � � � � 
. This subcase has been taken care of by Lemma A.2.

3. 0 < 
 � �. In this subcase, 1=� < 0 < 1=� � 1=
. The rest is the same as in

subcase 1 above.
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A.3 Proof of Lemma A.2

By Lemma A.1 and by that swapping � and 
 does not loss any generality, we may even

assume, besides (A.1), that

� � j�j � 
: (A.3)

Inequality (3.20) clearly holds if one of �; �; 
 is zero or � = � or � = 
 or � = 
. So

from now on, we assume

� < � < 
; and � 6= 0; � 6= 0; 
 6= 0:

For 1 � p <1

%p(�; 
) =

 � �

p
p

p + j�jp =


 � � + � � �
p
p

p + j�jp =


 � �
p
p

p + j�jp +

� � �
p
p

p + j�jp

=

 � �

p
p

p + j�jp +

� � �
p
pj�jp + j�jp

+(
 � �)

 
1

p
p

p + j�jp �

1
p
p

p + j�jp

!

+(� � �)

 
1

p
p

p + j�jp �

1
p
pj�jp + j�jp

!

= %p(�; �) + %p(�; 
)

+
(
 � �)(j�jp � j�jp)
p
p

p + j�jp p

p

p + j�jp �

p
p

p + j�jp � p

p

p + j�jp

j�jp � j�jp

+
(� � �)(j�jp � 
p)

p
p

p + j�jp p

pj�jp + j�jp �
p
pj�jp + j�jp � p

p

p + j�jp

j�jp � 
p
:

Now if � < � � j�j � 
, then j�jp � j�jp � 0 and j�jp � 
p < 0, and thus

(
 � �)(j�jp� j�jp)
p
p

p + j�jp p

p

p + j�jp �

p
p

p + j�jp � p

p

p + j�jp

j�jp � j�jp

+
(� � �)(j�jp � 
p)

p
p

p + j�jp p

pj�jp + j�jp �
p
pj�jp + j�jp � p

p

p + j�jp

j�jp � 
p
< 0:

Hence %p(�; 
)< %p(�; �) + %p(�; 
). Consider now j�j < � < 
. Then

(
 � �)(j�jp � j�jp)
p
p

p + j�jp p

p

p + j�jp �

p
p

p + j�jp � p

p

p + j�jp

j�jp � j�jp

+
(� � �)(j�jp � 
p)

p
p

p + j�jp p

pj�jp + j�jp �
p
pj�jp + j�jp � p

p

p + j�jp

j�jp � 
p

� (
 � �)(� � j�j)
p
p

p + j�jp

 
1

p
p

p + �p

� �
p � j�jp
� � j�j �

p
p

p + �p � p

p

p + j�jp

�p � j�jp

� 1
p
pj�jp + �p

� 

p � �p


 � �
�

p
pj�jp + �p � p

p

p + j�jp

�p � 
p

!

< 0:
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The last \<" is true because p
p

p + �p > p

pj�jp + �p ) 1
p
p


p+�p
< 1

p
p
j�jp+�p

and

0 <
�p � j�jp
� � j�j � 
p � �p


 � �
;

0 <
p
p

p + �p � p

p

p + j�jp

�p � j�jp �
p
pj�jp + �p � p

p

p + j�jp

�p � 
p
:

These inequalities are consequences of Lemma A.3 below since for 1 < p <1, f(x) = xp

is convex and g(x) = p
p
x is concave. So we also have %p(�; 
) < %p(�; �) + %p(�; 
) for

j�j < � < 
. The proof for the case p <1 is completed.

When p =1,

%1(�; 
) =

 � �



=


 � �



+
� � �




=

 � �



+

� � �

maxfj�j; j�jg + (� � �)

�
1



� 1

maxfj�j; j�jg
�

< %1(�; �) + %1(�; 
);

as was to be shown.

Lemma A.3 Suppose functions f(x) and g(x) are de�ned on the interval [a; b], and sup-

pose f(x) is convex and g(x) concave. Let � � � � 
. Then

f(�)� f(�)

� � �
� f(
)� f(�)


 � �
and

g(�)� g(�)

� � �
� g(
)� g(�)


 � �
:

A proof of this lemma can be found in mostMathematical Analysis books. Intuitively, the

two inequalities in Lemma A.3 are well explained by Figure 1.
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