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Abstract

The classical perturbation theory for matrix eigenvalue and singular value prob-
lems provides bounds on the absolute differences between approximate eigenvalues
(singular values) and the true eigenvalues (singular values) of a matrix. These bounds
may be bad news for small eigenvalues (singular values), which thereby suffer worse
relative uncertainty than large ones. However, there are situations where even small
eigenvalues are determined to high relative accuracy by the data, much more accu-
rately than the classical perturbation theory would indicate. In this paper, we study
how eigenvalues of a matrix A change when it is perturbed to A = D AD, and how
singular values of a (nonsquare) matrix B change when it is perturbed to B= DiBD>,
where Dy and D are assumed to be close to unitary matrices of suitable dimensions.
It is proved that under these kinds of perturbations, small eigenvalues (singular values)
suffer relative changes no worse than large eigenvalues (singular values). We have been
able to extend many well-known perturbation theorems, including Hoffman-Wielandt
theorem and Weyl-Lidskii theorem. As applications, we obtained bounds for pertur-
bations of graded matrices in both singular value problems and nonnegative definite
Hermitian eigenvalue problems.
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1 Introduction

The classical perturbation theory for matrix eigenvalue problems provides bounds on the
absolute differences |\ — /\| between approximate eigenvalues X and the true eigenvalues
A of a symmetric matrix A. When X is computed using standard numerical software, the
bounds on |A — X| are typically only moderately bigger than €||A|| [14, 33, 42], where € is
the rounding error threshold characteristics of the computer’s arithmetic. These bounds
are bad news for small eigenvalues, which thereby suffer worse relative uncertainty than
large ones.

Generally, the classical error bounds are best possible if perturbations are arbitrary.
However, there are situations where perturbations have special structures and under these
special perturbations even small eigenvalues (singular values) are determined to high rel-
ative accuracy by the data, much more accurately than the classical perturbation theory
would indicate. The relative perturbation theory is then called for to exploit the situations
to provide bounds on the relative differences between X and \.

The development of such a theory went back to as early as Kahan [18, 1966] and is
becoming a very active research area in the last six years or so and ever since [1, 6, 7, 8,
9, 10, 11, 13, 15, 21, 29, 34]. In this paper, we develop a theory by a unifying treatment
that sharpens existing bounds and covers almost all previously studied cases.

1.1 What to be Covered?

This paper deals with perturbations of the following kinds:
e Eigenvalue problems:

1. Aand A = D*AD for Hermitian case, where D is nonsingular and close to the
identity matrix or more generally to a unitary matrix;

2. Aand A = D} ADy for general diagonalizable case, where DDy and Dg are
nonsingular and close to the identity matrix or more generally to some unitary
matrix;

3. A= S*HS and A = S*HS for the graded nonnegative Hermitian case, where
it is assumed that H and H are nonsingular and often that S is a highly graded
diagonal matrix (this assumption is not necessary to our theorems).

e Singular value problems:

1. Band B = DiBD,, where Dy and D, are nonsingular and close to identity
matrices or more generally to unitary matrices;

2. B =GS and B = GS for the graded case, where it is assumed that GG and
(G are nonsingular and often that S is a highly graded diagonal matrix (this
assumption is not necessary to our theorems).

These perturbations cover component-wise relative perturbations to entries of symmetric
tridiagonal matrices with zero diagonal [8, 18], entries of bidiagonal and biacyclic matrices
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[1, 7, 8], and perturbations in graded nonnegative Hermitian matrices [9, 29], in graded
matrices of singular value problems [9, 29] and more [10]. What distinguishes these pertur-
bations from the most general additive perturbations studied by the classical perturbation
theory is their multiplicative structures. For this reason, we call such perturbations multi-
plicative perturbations. (The above perturbations for graded matrices can be transformed
to take forms of multiplicative perturbations as will be seen from proofs of this paper.)

Additive perturbations are the most general in the sense that if A is perturbed to A,

only possible known information is on some norm of AA df T A. Such perturbations,

no matter how small, can not guarantee relative accuracy in eigenvalues (singular values)
of the matrix under considerations. For example, A is singular, then A can be made
nonsingular no matter how small a norm of A A is; thus some zero eigenvalues are perturbed
to nonzero ones and therefore lose their relative accuracy completely. (Retaining any
relative accuracy of zero at all ends up not changing it.)

1.2 Notation

We will adopt this convention: capital letters denote unperturbed matrices and capital
letters with tilde denote their perturbed ones. For example, X is perturbed to X.

Throughout the paper, capital letters are for matrices, lower case Latin letters for
column vectors or scalars, and lower case Greek letters for scalars. The following is a
detailed list of our special notation. Others will be introduced when it appears for the
first time.

Cm*n:  the set of m x n complex matrices;

Q- mel;
C: Cl;
R™*™:  the set of m x n real matrices;
R™: Rmxl.
* 1
R: R!;

U,: theset of n X n unitary matrices;
Om,n:  the m X n zero matrix (we may simply write 0 instead);
I,: the n x n identity matrix (we may simply write [ instead);
X*: the complex conjugate of a matrix X;
A(X): the set of the eigenvalues of X, counted according to their algebraic
multiplicities;
o(X): the set of the singular values of X, counted according to their algebraic
multiplicities;
Omin(X): the smallest singular value of X € C™*";
Omax(X): the largest singular value of X € C™*";
|| X|2: the spectral norm of X, i.e., opmax(X);
| X|lr: the Frobenius norm of X, i.e., /> |z;|?, where X = (y;);
0]
|| X||: the p-Hdlder operator norm of X to be defined later;
[IX]|: some unitary invariant norm of X to be defined later.
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1.3 Organization of the Paper

We first in §2 summarize what we have accomplished in this paper, together with the
corresponding well-known classical perturbation theorems that are being extended. In §3,
we define two kinds of relative distances g, (1 < p < 00) and y which will be heavily used
in the rest of this paper. Various properties that are relevant to our relative perturbation
theory are studied in the section and in Appendix A where it is proved g, is indeed a
metric on R. Some of the classical perturbation theorems that will be extended to our
relative perturbation theory are presented and briefly discussed in §4. We devote two
sections to present and discuss main theorems of this paper: §5 is for theorems concerning
nonnegative definite matrix eigenvalue variations and singular value variations; while §6 is
for theorems concerning non-definite matrix eigenvalue variations. Proofs are postponed to
later sections §§8—10. We discuss other developments in literature on relative perturbation
theories in §7. We will touch how our relative perturbation theorems can be applied to
generalized eigenvalue problems and generalized singular value problems in §11. Finally,
we present our conclusions.

2 Summary of Results

To help the reader to grasp quickly what we have accomplished in this paper, we give here a
table to summarize partially the simplified (sometimes weakened) versions of our theorems
in comparison with their corresponding well-known classical theorems in literature. Full
statement of these theorems and their stronger versions will be given in §5 and §6. A
theorem of Ostrowski in 1959 and more recent developments on the relative perturbation
theory will be discussed in §7.

In what follows, we stick to the notation:

1. A, A € C"™" with eigenvalues
AA) = {An, A and A(A) = {0 AT (2.1)
Whenever, all A;’s and Xj’s are real, we order them descendingly

M2 A2 h, M2 A2 A, (2:2)

2. B, B € C™*" with singular values

o(B)={o1,+-,0,} and o(B)= {51, 5.} (2.3)

ordered so that
01203220, 20, 6y>20,2>"2>07,2>0 (2.4)
In the table, 7 always stands for some permutations of {1,2,---,n}, and two relative

distances g, and y are defined for a, & € C by

(= 1220 << 4 ya,q) = 2=4
o, 0) = —F/——— or o0, an o, o) = —/———
e [l 1 Jal sps oo and xena) =T

with convention 0/0 = 0 for convenience. (For detailed studies of them, see §3.)
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Table 3.1. Perturbation Theorems for Eigenvalues

Classical Bounds

New Relative Bounds

A

PR YIRS T E RN TR I ST BYO S NERERI R TR
A
Definite (Theorems 4.1 and 4.3) (Theorem 5.1)
A i = M| < A= Al - XA A) < 1D = D7 e
nd A=D"AD
1 (Theorem 4.3) (Theorem 5.1)
Definite
A n ~ ~ n —~ 2
| JEW-XESIA- Al | T2 prap | (/5 [e0niew)]
an = i=1
A IE —p-1|2
H . (Theorems 4.1 and 4.3) < \/”] D”F =D ”F
ermitian
(Theorem 6.3)
A i =Xl < A = All2 < 00 (M, Xo) < |1 = D* Do,
A=D"AD ~
and ()\. )\.) < H=D"D]l2
1 (Theorem 4.3) XAA A omin(D)
Hermitian (see (7.3) and (7.4))
A ZH:D\ —)\ W12 A= D*AD Zn: {Q2(Ai,XT(,‘))r<min{
and =1 -1 2 =1 -
A <|A- A J 2 .
>~ F — _
4 1= Dl + 11— D3I
Theorem 4.1 _
( ) I = DT+ = D21l
(Theorem 6.2)
n ~ n ~ 2
A=XAXTH (L A=A P A=DiaD, |\ 2 {@2” ATU‘))}
A=XAX"! < k(X)X A= Allp < K(X)w(X) min {
A, A may be 1
o (Theorem 4.2) \/||1 — Dilz + |1 - D2,
I = DI+ 1 = Dall )
(Theorem 6.1)
)\,'—X,' -~ 0 A,‘,X,‘ SKXK)?HHH
R L T prap, | @O0 A0S min {
PO A I = DI+ 1= D; '
G tiee | SVROREIA- Al T +17- DT
< Y= DT l5 + 111 - D5}
A and A real | (Theorem 4.4)
nonnegative (Theorem 6.4)
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Table 3.1 (continued). Perturbation Theorems for Singular Values

| Classical Bounds || New Relative Bounds
B n . ~ . n -~ 2
and o lei—ailP <IIB=Blr || 3= prap, > [x(ei,7r@)] <
i =1 =1
B 1 ID; -0 Ip+IDs -7 R
(Theorem 4.7) 2 1L DD 21D =D 2

(Theorem 5.2)

n N - _ n 5
;|0i—0i|2§||B—B||F B = D!BD; \/;[Qp(%ai)]émx

B (Th 47) (D1 = DT lg + 11D = D3 IR)
eorem 4.

:

and

(Theorem 5.3)

B |ov = 5| <|IB - Bll> . X(o:,00) <
and B = Dl BD2
B (Theorem 4.7) 1, _IDi=D7 M a+ID5 =D s
2 1L pr—D YD -D 2
(Theorem 5.2)
B |ov = & < |IB - Bll2 . er(06,5:) < 57y
and B = Dl BD2

~ (Theorem 4.7) (”DT - D1_1||2 +1|D3 - D2_1||2)

(Theorem 5.3)

Table 3.1 (continued). A Bauer-Fike Type Theorem

Classical Bounds || New Relative Bounds
JU— VX € MA), 3 € A(A), such || Either VX € A(A), 3A € A(A), such that
- that A—AD |X N
=N <R(X)IA= A2 | o np S O = Dlls
A=DA.
(Theorem 4.6) (Theorem 6.6)

Finally, let’s consider the graded cases:

1. A= S*HS and A = S*HS are two n X n graded nonnegative definite Hermitian
def 77

matrices. H is nonsingular and ||[H7|]2||AH]|]2 < 1, where AH = H — H.
2. B=GS and B = GS are twom > n graded matrices whose singular values are of
interest. G is nonsingular and ||G71|]2]|AG||2 < 1, where AG La_a.

In applications, S is scaling matrices and often are diagonal; but our results do not assume
this. The elements of S can vary wildly. The interesting case is when H () is much better
conditioned than A (B), and when AH (AG) is small even though A — A (B — B) is not.
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Table 3.1 (continued). Perturbation Theorems for Graded Matrices

| Classical Bounds || New Relative Bounds
A L ~ ~ 7 ~ 2
d V2o = AP SNA=Allg | A=s* s > {X(Ai,)\i)}
an = £
4 A=s'Hs - _ElaElR
Definite (Theorems 4.1 and 4.3) N TN
(Theorem 5.4)
A A = Xi| <|JA = All2 O X) < Ao,
and A=S"HS 1-|[H- 2 )lAH]2

~ (Theorem 4.3)

A A=25*HS | (Theorem 5.4)

Definite

- 1/2@-542 <IB-Blp | B=CS ,/ié[x(au’&i)]? <

7 (Theorem 4.7) B=Gs sty 167 I AGE
(Theorem 5.5)

B o = Gif? < ||B - Bll» B=GS (o0, 5) <

e (Theorem 4.7) ;‘i - 2l Lallatls G-t | AG]

(Theorem 5.5)

3 Relative Distances

This section is devoted to studying two different kinds of relative distances measuring
relative errors between two (complex) numbers o and & one of which is an approximation
of the other. Classically, the relative error in @ = «(1 + ) as an approximation to « is

measured by
a— o

& = relative error in a =

(3.1)

[a%

When [§| < € we say that the relative perturbation to « is at most € (see, e.g., [8]). Such
an measurement lacks mathematical properties upon which a nice relative perturbation
theory can be bulit: for example, it lacks symmetry between « and @ and thus it can not
be a metric among spaces of numbers that are of interest to us. Nonetheless, it is good
enough for measuring correct digits of numerical approximations.

In what follows, new relative distances will be proposed and studied. These distances
have better mathematical properties that allow us to develop a nice perturbation theory
and yet they are topologically equivalent to the classical measurement |§| as defined in

(3.1).
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3.1 The p-Relative Distance

The p-relative distance between «, & € C is defined as

for 1 <p < ooc. (3.2)

We define, for convenience, 0/0 &y, 000 Was first used by Deift, Demmel, Li, and Tomei [6,
1991] to define relative gaps.

Proposition 3.1 Let 1 < p < oo and o, & € C.
1. op(a, @) > 0; and pp(a, &) = 0 if and only if o = &.
2. 0y000 @) = 0p(@ ).
0060 €8) = 0,(0,@) for all 0 # € € C.
op(1/a,1/&) = pp(ev, &) for a # 0 and & # 0.

op(a, @) < 21-1/p and op(a, @) = 211/ if and only if o« = —& # 0 in the case
p>1; o1(e,@) = 1 if and only if ac <0 and at least one of a and & is not zero.

9*4:\?@

6. 0p(a,0)=1if a« #0; and

(0, &) >1, forp>1and aa <0,
epl % <1, forallp>1 and ad > 0.

7. op(a, @) increases as p does, and

Qp(ava) < 9227(0‘75‘) < 21/(2p)9p(a7 5‘)'

8. if a, 3, 7ﬁ€Rando¢<ﬁ<ﬁ<o¢ then
o1(a, @) > o1(3, );
if, in addition to the listed conditions, also ﬁﬁ >0, then
0p(@, @) > 0,(8,5) Jorp>1, (3.3)
and inequality (3.3) is strict if either o < 3 or B < @ holds.

Proof: Properties 1-6 are easy to verify. Property 7 holds because {/|a|P + |a]P is a
decreasing function of p for 1 < p < oo, and

1/
(ol + 37 < (Vayfalr s ) =24 (jof 1 jaf)
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by the Cauchy-Schwarz inequality!. To prove Property 8, we consider function f(¢) defined

by
def 1 —¢
f(§) = ——=—, where -1 << 1.
O e
When p =1,

1 for -1 <£<0,
f(&)—{ﬁ_L for 0 <& < 1;

so f(£) decreases monotonically and decreases strictly monotonically for 0 < & < 1. We

are about to prove that when p > 1 function f(£) so defined is strictly monotonically

decreasing. This is true if p = co. When 1 < p < o0, set h(§) def [f(&)]F and ¢(&) dof

[f(=&)]P. Because for 0 < £ < 1

pl- i e
(1+ &)

p(A+ P11 =&
(iTeop

W(&) = <0 and ¢'(¢) =

> 0,

for 0 < & < 1, h(&) is strictly monotonically decreasing, and ¢(€) is strictly monotonically
increasing. Thus function f(§) is strictly monotonically decreasing for p > 1.

There are several cases to deal with for confirming Property 8. Assume at least one of
o < 8 and 5 < a is strict.

1.0<a<pB<B<a,then 0<a/a< /3 <1;thus

0p(0, @) = f(a/&) > f(B/B) = 0p(8, 5).

2. a <0 f<aora<fg<pg<0<a,then Property 6 implies

IN

8

IN

0, (c, @ > 1> 0,(8,7).

It is easy to verify that the equalities in the two “>’s” can not be satisfied simuta-
neously.

3. agﬁgogﬁg&. Only p = 1 shall be considered:
o1(a,@) =12 1= 01(5,5).
4. a<pB<B<a<0,then 0<d/a< /8 <1;thus

op(0r,@) = [(@/0) > [(5/5) = ey (B, D).
'H5lder inequality: For a,a,3,3 > 0, and 1 < p < oo,
aB+apB < {ar 4 ari/pe+ e

and the equality holds if and only if ongq = aPB9, where ¢ = p/(p — 1). When p = 2, this is the
Cauchy-Schwarz inequality. The Holder inequality will be used frequently later in our proofs.
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The proof of Property 8 is completed. |
Remark: In Property 8 of Proposition 3.1, assumption ﬁﬁ > 0 for the case p > 1 is
essential. A counterezample is: let € > ¢ > 0,andleta= (< f=—-C<B=(<a<E¢.
Then

op(a,d) = —&

The following proposition establishes the topological equivalence between the classical
measurement (see (3.1)) and our new relative distances p,,.

< 21_1/p = Qp(ﬁvg)'

Proposition 3.2 Let 0 < ¢ <1, and a, @ € R. We have the following:

a 1‘ <e= gp(a,d) < ‘ (3.4)
- - € 4, Q) < —————; .
« - O Y1+ (1—¢)p
and
(0,8) < € = {& 1, |2 1‘}<21/p6 (3.5)
a,@) < € = max< |— — - - . .
Opl &) = o "o T 1l-c¢
Asymptotically,
llm QZEV(Oé?Oé) — 21/])7
a—a % — 1‘
thus (3.4) and (3.5) are at least asymptotically sharp.
Proof: g — 1‘ < € implies |a/a| > 1 — ¢; so

oyl ) = |

a— 04‘ 1 < €
YI+la/al = Y1+ (1- o
This confirms (3.4). (3.5),=1 and (3.5),=« can be proved analogously to what we are going

todofor 1 < p<oo. Let £ =a/aor £ =a/a. Then ¢ < 1 = £ > 0 by Proposition 3.1.
op(a, &) < ¢ implies

[a%

o JE—1
def \l/fT_gp <e (3.6)

Now if € < 1, then |§ — 1| < e/T+&P < 2/7¢. Assume ¢ > 1 and write ( =& —1 > 0.
(3.6) yields ¢ = n¢/1+ (14 ¢)?; and thus

11+ Q)P =P +9" = 0.
Consider function f(z) = nP(1+4 z)? — 2P 4+ nP for 2 > 0. It is easy to see that
F(0) =0, f/(0) = pn® > 0, and f(+00) <0,
and f'(z) vanishes only once at = 7/(1 —n?), where ¢ = p/(p—1); So f(z) has a unique

positive zero which is (. Now if we can show f (2115777) <0, then ¢ < 2115777

must be true;
and then by <€
2L/ry  9l/ve
<
1—-n"1—-c¢

¢ <
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21/py
1-n

as was to be shown. We have to prove f ( ) < 0. This is equivalent to

(1+ @77 = 1)) +(1-mr-2<0,

Consider function g(z) = (1 + (2MP — 1)$)p +(1—z)P—2for 0 <z < 1. Itis easy to see
that
9(0) = 9(1) = 0,4'(0) = —p(2 = 2!/7) < 0,¢'(1) = p(2 - 2V/%) > 0,

and ¢'(x) vanishes only once for 2 > 0; so must g(2) <0 for 0 < < 1. n
Proposition 3.3 Let & = a(l+ 1) € C and 8= B(1+62) € C. If 6| <e< 1, then
Qp(avﬁ) + € 2 Qp(a7ﬁ) €

> > — .
1—c¢ 1_6_Qp(04,ﬁ)_ 1+¢ 1+¢€’ (3.7)
op(a,B) [ 2 o op(anB) 2

> > — .
Tt 2 e(@8) > 1 it (3.8)

where g =p/(p—1).

Proof: We will only provide a proof of (3.8) since the proof of (3.7) is analogous. Notice
that N
lal(1—¢) <fal <fal(14+¢) and [B|(1-¢) <|3] <|B](1+4¢),

SO
g @ - | = B3| — |ady — 355
0p(a,8) = — >
’ a5 VIelP+ 18P0+
o lo- Bl - P ¥ pryatea
- Ylalp +B1P(1 +¢)
_ opla, B) B 21/4¢
o 1+¢ 1+¢€’
~ | = B| + [ady — 3]
op(a@,5) <
8 lal? +[B8]P(1 —€)
o o= Bl+ Yol £ B[PV +
- Ylalp +BP(1 - ¢)
_ 2p(, B) 21/
- 1—¢ + 1—¢’
as were to be shown. [ |

Proposition 3.4 For o, a € C and 1 < p < oo, we have
217100 — gy (0, @) | 02p(ev, @) < 0p(a?,@%) < 2' 7 CPgy (@, @) < 20,(e @) (3.9)
Jor a, & € R and o > 0, we have

0p(, @) < 02p(cr, @) < pp(a?,@7). (3.10)
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Proof: No proof is necessary if &« = & = 0. Assume at least one of o and & is not zero.
Notice that

et a) = =@ le+d o~ a
o (o2 - G207 (22 o faf2e) O (af2e o a2 )
loe+ & -
= )ggp(a,a).

(o2 + [af2e) 0
and that |a 4 &@| < 21=1/(20) (|a|? + |5z|2p)1/(2p). Then
QP(O‘27 5‘2) < 21_1/(2]?)9229(0‘75‘) < 292?(0‘75‘)

by Property 7 of Proposition 3.1. To complete the proof of (3.9), we also notice that
(without loss of generality, assuming |a| > |&].)

o+al  _  a—(a—a) _ 20l Ja-a
(o2 - Jaf20) /O (a2 4 (@] (a2 (@2 0 (faf2 4 ) e
2 ~ _ ~
= g D) 227 )
where 0 < & = |a/a| < 1. To prove (3.10), we see under the condition ad& > 0 that
o +-a] = o] 4 [a] > (|af* + [a) /", "
Let {ay, a9, -, a,} and {@y,ay,- -+, &,} be two sequences of n real numbers ordered

ascendingly?, i.e.,
ap <ag < <ay, ap <ag < <. (3.11)
Now we address the following question: What are the best one-one pairings between the

a;’s and the a;’s under certain measures?. Such a question will become important later
in this paper when we try to pair the eigenvalues of one matrix to these of another.

PI'OpOSitiOIl 3.5
o~ : Y
1<i<n 1( “ 2) 7 1<i<n 1( “ T(Z))7

and for p > 1 if all o;’s and a;’s are nonnegative,

max o,(cy, @;) = min max gp(a;, @-(;))-

1<i<n 7T 1<i<n
Here the minimizations are taken over all permutations T of {1,2,---,n}.
Proof: For any permutation 7 of {1,2,---,n}, the idea of our proof is to construct n + 1

permutations 7; such that

To =7, T, = identity permutation

2The situation when they are ordered descendingly can be handled in exactly the same way.
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and for 7 =0,1,2,---.n—1

121?3)% Qp(aiv aTJ (2)) > 1121?3)% Qp(aiv aTJ+1(i))'

The construction of these 7;’s goes as follows: Set 7o = 7. Given 7, if 7;(j +1) = j + 1,
set 7;41 = 7;; otherwise define

7i(0), for r 0 (j+ 1) #i#j+1,
Ty (1) =4 j+1, fori=j+1,
(7 + 1), fori:rj_l(j—l—l).

In this latter case, 7; and 7;4; differ only at two indexs as shown in the following picture
(notice that Tj_l(j +1)>j+land 7(j+1)>j+1):

Gt o G+)

Q51 aTJ(j+1)

With Property 8 in Proposition 3.1, it is easy to prove that

max {Qp(o‘j-l—l Oy (1)) Qp(arj_l(j+1)7 54]‘+1)}

> max {Qp(%+1754j+1)7 2p(0 1511y, 0@(;‘+1))} :

Thus 7;’s so constructed have the desired properties. |

Remark. Proposition 3.5 may fail if not all of the o;’s and a;’s are of the same sign in
the case p > 1. A counterexample is as follows: n = 2 and

o =—-2<ay=1 and a1 =2 < ay =4.
Then (see Proposition 3.1)

max {g,(a, 1), op(eg, @2)} = 0y, ) = 2!=1/p
6 ~ - ~
> \’/ﬁ = op(o, Gz) = max{op(an, dz), op(az, ar)}.
Another point we want to make is that given two sequences of «;’s and &;’s ordered as in
(3.11), generally
e _ . e _ 2
[op (e, &))" # min Y [op(ei,@rn)] (3.12)

=1

even if all o, a; > 0. Here is a counterezample: n = 2

0<a; <a) <ay=ady/2< ds,



Ren-Cang Li: Relative Perturbation Theory 14

where o is sufficiently close to 0, and &y is sufficiently close to ay which is fixed. Since
as a; — 0T and &y — gy

— 1,
1
—

1 [
—I_W?

[op (1, @2)]” + [2p (02, @1))?
[op (a1, @1)]* + [op(az, @2)]°

(3.12) must fail for some 0 < a1 < &1 < az = a3/2 < ds.

Proposition 3.6 Suppose

ap <L < O=opqp1 == =0 < appep1 <-oray,  and

ap << < O=apqr = =0 =0 < Qpgppr <0 - .
Then given a permutation © of {1,2, -+, n}, there exists another permutation T of {1,2,---,n}
such that

1§T(]) SkaTl S]Sk; andT(]):]fOT]:k—l_ka—l_K
and
Qp(ah&w(i)) > Qp(aiv&T(i)) fOT 1= 1727 RN

Proof: With the help of Property 6 of Proposition 3.1, a two-step proof can be given as
follows.

1. Find a permutation 71 such that 1 < 7y (j) < k4 {for 1 <j<k+{( and
Qp(ah&w(i)) > Qp(aiv&ﬁ(i)) for i = 1727"'771;

2. Find a permutation 7 such that 1 < 7(j) < k for 1 < j < k, and 7(j) = j for
j=k+1,--- k4, and

Qp(aiv&ﬁ(i)) > Qp(ai7&72(i)) for i = 1727"'771.
The detail is left to the reader. [ |

3.2 Barlow-Demmel-Veselié Relative Distance
We introduce another relative distance between o and a:

ya, &) el =4l (3.13)
|adt]
We treat 1/0 = oo and again 0/0 = 0. It was first used by Barlow and Demmel [1,
1990] and Demmel and Veseli¢ [9, 1992] to define relative gaps between the spectra of two
matrices. We call it the Barlow-Demmel-Veseli¢ Relative Distance between « and o

Proposition 3.7 Let o, @ € C.
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N

- x(e, &) > 0; and x(ov, &) = 0 if and only if o = @.

x(a, @) = x(&, a).

Y(€a, €3) = x(a, @) for all 0 £ € € C.

X(1/a,1/&) = y(a, &) for a # 0 and & # 0.
X(a,0) = 00 if e # 0.

if o, @ € R and ad < 0, then y(a,@) > 2.

“W“Q@M

=~

if o, 3, 7ﬁERandoa<ﬁ<ﬂ<oaand0404>0 then
X(@, @) > x(, ). (3.14)

Proof: Properties 1-5 are easy to verify. Property 6 follows from when aa < 0,

o~ lazal _Joltlal | 2vallal
T VRd T Vieal T Vleal

by the Cauchy-Schwarz inequality. To prove Property 7, we notice that function % —x for
0 < 2 <1 is monotonically decreasing and 0 < /& < /3 < 1; thus

x(o, &) = \/04/—04 \/04/704>\/% \/ﬁ% X(ﬁﬂ)

as was to be shown. [ |

Remark: In Property 7 of Proposition 3.7, assumption aa > 0 is essential, since in-
equality (3.14) is clearly violated if &« < 0 < § < # < & and 3 is sufficiently close to
0.

The following proposition establishes the topological equivalence between the classical
measurement (see (3.1)) and our new relative distance x.

Proposition 3.8 Let o, a € R. If0 < ¢ < 1, then

——1|<e=x(o,a) <
o

; (3.15)

« ‘ - €

if 0 <e< 2, then

(0,8) < € = {‘& 1, |2 1‘}< Y P (3.16)
X(@, @) < €= max || 1z < {3 7€ .
Asymptotically,

lim X~(04,04) 1,

a—a |2 — 1‘

thus (3.15) and (3.16) are at least asymptotically sharp.
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2 — 1‘ < ¢ implies & = (1 + §) for some § € R with |§] < e. So

- |0c| €

X @) = VAZ(1+6) — V1—¢

as required. To prove (3.16), we set either £ = a/a or £ = a/a. € <2 = & > 0 (see

Property 6 of Proposition 3.7). x(«, &) def 1 < € gives

E-1
L s -eaterizo,
solving which yields
2 :l:\/ 2
€= Rl _1+( + 1+77Z 7.
Hence
7 n? € €2
1< | X ax < |z il
€ 1I_(2+ 1+4)77_(2+ 1+4)e
as was to be shown. [ |

Proposition 3.9 Let 3 = (1 +8). Assume that |3| < |a| and |§] < € < 1, then

x(@ f) ¢ = o X, B) €
\/1_€+\/1_62X(O‘7ﬁ)2\/1_|_6_\/1_|_6' (317)
Proof: Since |5](1—¢) < [5] < |8](1+¢) and |3/a| < 1,
V@ §) = o = 3] N ] s |5ﬁ| o — Bl = €lf] | x(«.f) €
' |045| - / \/oeﬁ|1—|—e \/1—|—e \/1—|—e7
(@.F) < o = B+ 18] Ia—ﬁ|+6|ﬁ| x(a, ) €
A - F \/W V1—¢ \/m’
as required. |

Remark. Proposition 3.9, in contrast to Proposition 3.3, only provides bounds on how y
varies when its argument smaller in magnitude is perturbed a little. When both arguments
are perturbed, following the lines of the proof above, one obtains

x(a,8) e |o+15| ~om oo X ) e Jof+|f]
T — o 2X(@0) 2 = - T, R

where & = a(1+ &) and 3 = B(1 + 6,) with |&] < e. The ratio L\/iﬁ' which could be

|
arbitrarily large plays a crucial role here. It can shown that

ol + 151

2 <
o3|

<24+ x(a, B).
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Proposition 3.10 for o, a € C, we have

[2 = x(e, @)] x(a, @) < x(a?, &%) < [24 x(a, )] x (e, @); (3.18)
if, moreover, o, & > 0, then
2 (@) < x(0?,@), (3.19)
and the equality holds if and only if « = &.
Proof: No proof is necessary if &« = & = 0. Assume that at least one of o and & is not
zero. Notice that

B loo + @ |a — @ B lov + @)

= Viaal Visal  Viaal W

y(a?, &%)

To prove (3.18), without loss of any generality, we may assume that |a| > |&|; then

lov + @) oo — @ + 24| |04—&|_|_ |2 < \(0,@) 12
— = — >~ = = > Xla,« y
|| V]| V]ad| V]|
atdl  Ra—(a-@| . Pl Jo-a )
— = _ > — — — > 2 — x(a,@&).
|| V]ad| V]| V]|

These confirm (3.18). Now if o, @ > 0, then

loe + @) _a+ta S PAVE T
Vied  Vea T Vea

as was to be shown. [ |

2,

Remark. There is no universal constant ¢ > 0, independent of o and &, such that for all
a, @ € C, y(a?,a?%) is bounded by ¢ x x(a, @), unlike (3.9) in Proposition 3.4.

Proposition 3.11 for «, & € C,
op(er, &) < 2717 x(a, &),
and the equality holds if and only if || = |&|. If o,(c, &) < 217 then

X(O& &) < 21/pgp(04754) .

a \/1 — 2170, (v, @)

Proof: By the Cauchy-Schwarz inequality, we have

P
o+l 2 2¢/laplal = 2 (ladl) = {flap +1al > 217 /ad],

from which the first inequality follows. To prove the second one, we notice that

x(a, @) = lo—al  YdaPtlalr _ el +laf” 0p(, @)
7 ValP +[af? Vl]aal [a@] T
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Without loss of any generality, we may assume that |a| < |@|. Under the condition
op(a,&) < 2717 we have

al ol [la—a+al _ [al
[l +[ap VPt 1aP YaP+1aF a1 1aP  Ylal +1ap

N @ Je—al \ _al
= \\VP+ar  VlaF t1aP) Yl +1ar

1 - 1 a
= ¢<\’VT—§7D - Qp(ava)) iro (Here, & = ﬁ <1)
> 27— gyland)] 27t = 2717\ [l -2, (0,d)

from which the second inequality now follows. |

Proposition 3.11 is useful in that any bound with x yields a bound with g,, and any
bound with g, yields a bound with x with additional assumptions.

Now we consider again the question: what is the best way to pair two sequences of real
numbers ordered as in (3.11)7 With the help of Property 7 in Proposition 3.7 we can
prove in the same way as proving Proposition 3.5 that

Proposition 3.12 If all o;’s and &;’s are nonnegative and ordered as in (3.11), then

max Y(o;, a;) = min max y(o;, &,
1§i§nx( 2 2) ! 1§i§nX( 2 T(Z))?

where the minimization is taken over all permutations 7 of {1,2,---,n}.

Remark. Proposition 3.12 may fail if not all a;’s and «&;’s are of the same sign. A
counterexample is as follows: n = 2 and

2
Il
N

< Q9

I

oy =—-1<ay=1 and a5 =
Then
max {x (a1, a1), x(ag,q2)} = max{5/27 1/\/5} =5/2
> 3/V2 = 1r1r1ax{3/\/§7 3/2} = max {x(o1, d@z2), y(az,a1)}.
Lemma 3.1 Let 0 < a1 < a9 and 0 < oy < ay. Then

[x(ar,a@)) + [x(az, @) < [x(ar, @) + [x(az, @))%,

or in other words,

(@ — a)? n (G — ag)? < (G2~ ap)’ n (@1 — ag)?

apog Qp0p - a0 a0

and the equality holds if and only if either oy = g or &y = @s.
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Proof: It can be verified that

(@ —ar)? n (G2 —g)®  (Fa—a)? (31— )’

ajoy Q0 Qa0 Qo
_ (g — o) (@ — @) (@ ag + aran) <0
Q1o Qo -
and the equality holds if and only if either ay = ay or @y = as. |

Armed with Lemma 3.1, by similar reasoning as in the proof of Proposition 3.5, one can
show that

Proposition 3.13 Let {ay, -+, o, } and {ay,---,a,} be two sequences of n positive num-
bers ordered ascendingly as in (3.11). Then

2

(o @) = min 3 [vlas )]

n
1=

1

where the minimization is taken over all permutations 7 of {1,2,---,n}.

Remark. Proposition 3.13 may fail if not all o;’s and &;’s are of the same sign. Here is
a counterexample: n = 2 and

o =—-2<ay=1 and a1 =1<ay=2.
Then
(s, @)1 + (e, @) = (3/v3) + (1/v3)" =5

> 4= (1/v3)" 402 = [ylan, )] + [x(an, ).

3.3 Are g, and x Metrics?

Let X be a space. Recall that a function d : X x X — [0, 00) is called a metric if it has
the following three properties: for a, 3, v € X

1. d(a, 5) = 0 if and only if a = 3;
2. d(e, f) = d(3, a);
3. d(a,y) < d(a, §) +d(5,7).

This definition excludes immediately the possibility that y is a metric on C, nor even
on R since x(a,0) = oo for v # 0. To get around this, we call d : X x X — [0,00] a
generalized metric if it possesses the above three properties.

From Propositions 3.1 and 3.7, we see that functions g, and y on C x C satisfy the
first two properties in the definition of a (generalized) metric. Naturally, we would like to
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ask: Is g, a metric on C? is x a generalized metric on C? In other words, we like to
know whether for o, g, v € C

op(av, B) + 0(8,7)7 (3.20)
x(a, 8) + x(8,7)? (3.21)

op(v, )
x(a,7)

IAN A

A quick answer to (3.21) is No, even for «, 3,y > 0, by the following proposition.
Proposition 3.14 For 0 < o < g <~, we have

x(e,7) 2 x(a, 5) + x(8,7) (3.22)
The equality holds if and only if either « = 3 or § = ~.
Proof: It can be verified that

o) — via. B — ~ WA=V - VBB - V)
X(e,7) = x(e, 8) = x(8,7) = i > 0.

It is zero if and only if &« = S or f=7. (o = v implies a = § and § = ~.) |

Inequality (3.22) is exactly the opposite of (3.21) which, otherwise, would be true if y were
a metric on R.

However, it takes a few pages of work to answer (3.20) for «, 5,7 € R. We leave the
detail to Appendix A, where it is proved:

Proposition 3.15 (3.20) holds for «, 3, v € R, and thus g, for 1 < p < co is a metric
on R.

Still the question whether p, is a metric on C is open.

4 Known Perturbation Theorems for Eigenvalue and Sin-
gular Value Variations

In this section, we will briefly review several most celebrated theorems for eigenvalue and

singular value variations which will be extended later. Most of these theorems can be

found in Bhatia [3, 1987], Golub and Van Loan [14, 1989], Parlett [33, 1980] and Stewart

and Sun [35, 1990]. Notation introduced at the beginning of §2 will be followed strictly.
Hoffman and Wielandt [16, 1953] proved

Theorem 4.1 (Hoffman-Wielandt) If A and A are normal, then there is a permuta-
tion T of {1,2,---,n} such that

\l SN = A2 < JA - Allg.
=1
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For a nonsingular matrix Y € C"*", the (spectral) condition number x(Y') is defined as
def —
RY)Z Y [lY 2.

Theorem 4.1 was generalized by Sun [38, 1984] and Zhang [43, 1986] to two diagonalizable
matrices.

Theorem 4.2 (Sun-Zhang) Assume that both A and A are diagonalizable and admit
the following decompositions

A=XAX"' and A=XAX"! (4.1)
where X and X are nonsingular and
A =diag(A;, Az, -+, An)  and A = diag(Ag, Ag, -, Ay). (4.2)

Then there is a permutation T of {1,2,---,n} such that

JZ A= Aol < KOOREDIIA - Allr.
=1

Such matrices A and A as described in Theorem 4.2 are called normalizable. Sun [38,
1984] proved this theorem when A is normal and A normalizable; later Zhang [43, 1986]
found that a slight modification of Sun’s proof serves the case when both A and A are
normalizable.

We will consider unitarily invariant norms ||| - || of matrices. In this we follow Mirsky [31,
1960] and Stewart and Sun [35, 1990]. That a norm || - || is wnitarily invariant on C™*"
means that it satisfies, besides the usual properties of any norm, also

LNIUY V|| = IYIl, for any U € Uy, and V € Uy;
2. IYII= 1Yz, for any ¥ € C™*" with rank(Y) = 1.

Two unitarily invariant norms used frequently are the spectral norm ||-||z and the Frobenius
norm || - ||g. Let || - || be a unitarily invariant norm on some matrix space. The following
inequalities [35, p.80] will be employed frequently in the rest of this paper:

WYl < Wl VI and IV Z]F < Y122

Theorem 4.3 Suppose that A and A are both Hermitian, and that their eigenvalues are
ordered descendingly as in (2.2). Then for any unitarily invariant norm || - ||

‘Hdiag(/\l — 7\17 Ay — X% c A — j\n)

< [4-4]. =

Theorem 4.3 was proved by Weyl [40, 1912] for the spectral norm and by Loewner [27,
1934] for the Frobenius norm. Also, for the Frobenius norm it is a corollary of Theorem 4.1
by Hoffman and Wielandt [16, 1953]. For all unitarily invariant norms, (4.3) was proved
by Mirsky [31, 1960]. He derived it from a theorem of Lidskii [26, 1950] and Wielandt [41,
1955].

Extensions to Theorem 4.3 have been made in the literature. The following theorem
is due to Li [25, 1996] and Lu [28, 1994].



Ren-Cang Li: Relative Perturbation Theory 22

Theorem 4.4 To the hypotheses of Theorem 4.2 adds this: all A\;’s and Xj ’s are real and
are ordered descendingly as in (2.2). Then for any unitarily invariant norm || - ||

| < V/ROR(X) ||a- 4. (4.4)

Such matrices A and A as described in Theorem 4.4 are called symmetrizable. Inequality
(4.4) for || -l = || - [|]2 was proved by Lu [28, 1994]; for all unitarily invariant norms it is
due to Li [25, 1996]. This inequality improves substantially

.

T A

| < r(OR(X) [Ja- A4 (4.5)

due to Bhatia, Davis and Kittaneh [4, 1991]. A brief history behind inequality (4.5) is as
follows: It was proved by Kahan [20, 1975] for the spectral norm, and for the Frobenius
norm it can be deduced without much difficulty from a theorem in Kahan [19, 1967]; also
for Frobenius norm it is a corollary of Theorem 4.2 by Sun [38, 1984] and Zhang [43, 1986].
For all unitarily invariant norms, it is due to Bhatia, Davis and Kittaneh [4, 1991]. For
other improvements of inequality (4.5), the reader is referred to Li [25, 1996].

Inequality (4.3) for the spectral norm was generalized also to ¢, operator norm. The
p-Holder norm of a vector y = (v;) € C™ is defined by

n
def
ylls = 71D hil?.
=1

The {,-operator norm of a matrix ¥ € C™*" is defined by
def
Y, = max [[Yyll,.
llyllp=1

If Y is square and nonsingular, its £, condition number is defined by
def -
Rp (V) Z Y 1Y~
Clearly, r2(-) = (), the (spectral) condition number. The following theorem is due to
Li [23, p.225, 1993].
Theorem 4.5 (Li) Under the conditions of Theorem 4.4. Then

max [ - X < w5y (X (X)]A - Al (4.6)
where 1 < p < oo.

Remark. It would be interesting to know whether ,(X)#,(X) in inequality (4.6) could

be improved to y/k,(X)k,(X) as a similar thing happened between (4.4) and (4.5).

Generally, if one of A and Ais diagonalizable and the other is arbitrary, we have the
following result due to Bauer and Fike® [2, 1960].

#Omne can prove a slightly more stronger inequality than (4.7)

X = Al <X THA = A)X]J2.
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Theorem 4.6 (Bauer-Fike) Assume A is diagonalizable, i.e.,
A= XAX"Y where A = diag(Aq, -+, \,).
Then for any A € A(A), there exists a A € A\(A) such that
A=A < K(X)]|A = Al (4.7)

Regarding singular value perturbations, the following theorem was established in
Mirsky [31, 1960], based on results from Lidskii [26, 1950] and Wielandt [41, 1955].

Theorem 4.7 For any unitarily invariant norm || - ||, we have

Idiag(or 1,02 — 52, 00— 3l < || B - B (4.8)

5 Relative Perturbation Theorems for Nonnegative Defi-
nite Matrix Eigenvalues and for Singular Values

This section is devoted to the relative perturbation theory for eigenvalues of nonnegative
definite matrices and for singular values. The following problems will be considered.

e Eigenvalue problems:

1. Aand A = D*AD, where A is nonnegative definite, and D is close to some
unitary matrix.

2. A=S*HSand A = S*HS, where H is positive definite and || H~!||y|H—H||; <
1, and S is some square matrix.

e Singular value problems:

1. Band B = DiBD,, where Dy and D; are close to some unitary matrices of
suitable dimensions.

2. B=GS and B = GS, where (G is nonsingular and ||G~!(|2]|G' = G|z < 1, and

S is some square matrix.

Theorems presented here are often sharper than these in the next section when applying
to nonnegative definite matrices. We will make this more concrete in the coming section.

5.1 Eigenvalue Variations for A and A= D*AD

Theorem 5.1 Let A and A = D*AD be two n x n Hermitian matrices with etgenval-
ues (2.1) ordered descendingly as in (2.2), where D is nonsingular. Assume that A is
nonnegative definite*. Then

max v\, &) < |07 = D72, (5.1)

|D* — D™ 1|g. (5.2)

-
ﬂmﬁ |
=
>
<
—

A

“Then A must be nonnegative definite as well.
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It is easy to relate the right-hand sides of the inequalities (5.1) and (5.2) to the singular
values of D. In fact, let the singular value decomposition (SVD) of D be
D = US4V, (5.3)

where Uy and Vy are unitary, and 34 is a diagonal matrix whose diagonal entries are the
singular values of D. One has for any unitarily invariant norm || - [|

=

5.2 Singular Value Variations for B and B = D:BD,

[l = 07| = [Ivatsa = s3e;

Theorem 5.2 Let B and B = D{BDy be two m x n matrices with singular values (2.3)
ordered descendingly as in (2.4), where Dy and Dy are square and nonsingular. If ||Dy —
Dit|al|D3 — D32 < 32, then

—_

D* —1 DX — D—l
max X(O'“O'Z) < o H *1 HQ_—II H 2 - 2 _H12 ) (54)
L<isn 32HD 1 H2HD2 - D2 H2

[\

" _ 1 Di — Dy F+ D5 — D7 Y|p
=1 32H 1 H2H 2 — 2 H2

Now, Let’s mention a possible application of Theorem 5.2. It has something to do with
deflation in computing the singular value decomposition of a bidiagonal matrix. For more
details, the reader is referred to [6, 8, 10, 30]. We formulate the application into a corollary.

Corollary 5.1 Assume in Theorem 5.2, one of Dy and D5 is the identily matriz and the

other takes the form
I X

where X is a matriz of suitable dimensions. With the notation of Theorem 5.2, we have

1
< - .
lrg%lx(%m) < SlIXH, (5.6)
Zn:[x(%&i)]? < LHXHF- (5.7)
=1 \/5

Proof: Notice that

ror= ()0 ) ()

and thus ||[D* — D=}y = | X[}z and | D* — D'||p = vZ|| X |5 "
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It was proved by Eisenstat and Ipsen [10, 1993] that

g
— — 1 < || X]|2. 5.8
71 <X, 5:5)

K3

|o; — 05| < || X||204, or equivalently

Our inequality (5.6) is sharper by roughly a factor 1/2, as long as || .X||z is small. As a
matter of fact, it follows from (5.6) and Proposition 3.8 that if || .X||; < 4 then

Ti X |2 XT3 Y X2 (1) (HXHz)2
T < (220 = 22 ),
o ‘— ( 1 VT 2 ; 19 4

Our inequality (5.7) is the first of its kind.

Theorem 5.3 Let B and B = D{BD, be two m x n matrices with singular values (2.3)
ordered descendingly as in (2.4), where Dy and Dy are square and nonsingular. Then

- 1 . _ . _
ax 2p(0,3:) < g (107 = Dyl + 105 = D3 l) (5.9)
o5 < = (105 - DV + 105 - D3 le) (5.10)
t p\Uey Uy = 21-|—1/p 1 1 2 2 . .

A straightforward combination of Proposition 3.11 and Theorem 5.2 will lead to bounds
—1
that are weaker than these in Theorem 5.3 by a factor (1 — LDy = D2l D5 — D2_1H2)

which may play an insubstantial role because || Di — DT Y|2|| D5 — D3 |2 is of second order.

5.3 Graded Matrices

Theorem 5.4 Let A= S*HS and A = S*HS be two nxn nonnegative definite Hermitian
matrices with eigenvalues (2.1) ordered descendingly as in (2.2), and let AH = H — H.
IRl 2 < 1, then

max x(A\i, ) < H (]-|- H—l/?(AH)H—l/Z)l/2 _ (I-I- H_I/Z(AH)H—U?)_I/Q
1<i<n ,
H7LY | |AH
< sz l2__ 5.11)
VI H- AT,
J [X(A“Xi)r : H (I+H_1/2(AH)H_1/2)1/2 - (I+H_1/2(AH)H_1/2)_1/2
=1 F
H7LY | |AH
< A LllAA]e 5.1

VI=THRAH]:

The last inequality in (5.11) is derivable from a bound due to Demmel and Veseli¢ [9,
1992] (see (7.10) below).
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Theorem 5.5 Let B =GS and B = GS be two n x n matrices with singular values (2.3)
ordered descendingly as in (2.4), where G' and G are nonsingular, and let AG = G-G.
If |AG|]2)|G7 |2 < 1, then

1 1\ 1 -1
BT < 2H ) -+ o) T,
o (MAGGE 4G (AG s | IBGG ) [AGG
< e T [AGOT T, 2
Il A,
, 5.13
< (14 T » HAGHz) 2 (5-13)
S (o4, 5] < 1H (1+ (ac)Gc) —(I—|—(AG)G‘1)_1
=1 F
[AGIG 4 G (AGY s | (BGG ) [AGG s
< e T [AGG T, 2
| Gl AG] s
< 1+ ) . 5.14
( TG LIACT, 2 (5-14)

The last inequality in (5.13) is derivable from a bound due to Mathias [29, 1994] (see
(7.12) below).

Remark. It is interesting to notice that if (AG)G~! is very skew, then x(o;,d;) =
o ([[(AG)G™H2), especially

IAG)G™ + G(AG) [l = O (IAGGTE) = x(oi,5:) = O (|(AG)GT3) -

6 Relative Perturbation Theorems for Non-Definite Ma-
trix Eigenvalues

This section is devoted to the perturbation theory with g, for the following matrix eigen-
value problems.

1. A and A = D*AD for the Hermitian case, where D is nonsingular and close to I or
more generally to a unitary matrix.

2. Aand A = D7 ADg for a general diagonalizable case, where Dy and D3 are nonsin-
gular and close to I or more generally to some unitary matrix.

Comparisons among theorems in this section and these in the previous section will be
conducted. The following theorem is a generalization of Theorems 4.1 and 4.2.

Theorem 6.1 Assume that n x n matriz A is perturbet{ to A = DYAD;y and both D,
and Dy are nonsingular. Assume also that both A and A are diagonalizable and admit
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the decompositions as described in (4.1) and (4.2). Then there is a permutation T of
{1,2,---,n} such that

n . 2 . ~ — . —
J [ Ko < min (L E X /X1 = Do) KR + 1X (07 = DR,

K3

Xl K117 = DX IR+ 1X-1(D5 " - DX
(6.1)

< (X)n( ) min {11 = Dall+ 17 = DI, VI = DT + 11 = Dall

For any given U € U, ELZIU* :~(D1U*)~*111D2U* has the same eigenvalues as A does, and
moreover from (4.1) UAU* = (XU*)"'AXU*. Applying Theorem 6.1 to matrices A and
UAU* leads to the following theorem which we will refer as Theorem 6.1s, where “s” is

for indicating that it is stronger.

Theorem 6.1s Let all conditions of Theorem 6.1 hold. Then there is a permutation T of
{1,2,---,n} such that

\l j {Qz(/\i7XT(i))r < K(X)R(X)x (6.2)

K3

mig min { |0 = il + 107 = D5, ViU = D + 10 = Dali}

Suppose now A € C” is an normal matrix, i.e., A*A4 = AA* and perturb A to
A = DYAD;. The question is: When is A also normal? This is a rather interesting
question, and an instant answer is that A is normal provided

DiA*DyDAD; = D AD, DA Dy

However, this condition is, perhaps, too general to be useful. 1 do not know how to
approach this problem yet and therefore this question will not be addressed further in
what follows. On the other hand, if we happen to know that A is also normal, the
following theorem, as a corollary of Theorem 6.1s, indicates that the eigenvalues of A and
A agree to high relative accuracy.

Theorem 6.2 Let A and A = D¥AD, be two n x n normal matrices with eigenvalues
(2.1) , where Dy and Dy are nonsingular. Then there is a permutation T of {1,2,---,n}
such that

J

{92(/\2'7 /\T(i))} i (6.3)

M=

1

< iy min {\/JU = DR+ 107 = Dy JU- = DR + U - Dall

.
Il
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Generally we do not know how to relate the upper bound in (6.3) to the singular values
of Dy and Dy, unless further information on D and D5 is available. In the case of
Dy = Dy = D, there is a simple solution. In fact, we can solve easily the following
minimization problem: find a Uy € U,, such that for any unitarily invariant norm || - ||

min U= D=0 =Dl and  min [[07— 07 = |Jog - 07| (6.4

in terms of SVD of D. As a matter of fact, let SVD of D be given by (5.3). It follows
from Theorem 4.7 that

U= DI > 7= Sall and [Jo= = D71 > [lr =<3 (6.5)
On the other hand, there is one Uy def UaV] which realizes the two equality. Now applying
Theorem 6.2 to Hermitian matrices leads to

Theorem 6.3 Let A and A = D*AD be two n X n Hermitian matrices with etgenvalues
(2.1), where D is nonsingular. Then there is a permutation T of {1,2,---,n} such that

=1

" g 2 . p—
JZ o200 A)]” < min U = DIR+ U7 = D71 = /I = Sallp+ 1 - S5
(6.6)

It is worth mentioning that the permutation 7 in Theorem 6.3 may not be the identity
permutation, assuming eigenvalues are ordered descendingly as in (2.2). However, one can
always choose a 7 such that eigenvalues of the same sign are paired to each other and zero
eigenvalues to zero eigenvalues. (See Proposition 3.6.) A comparison of this theorem and
the inequality (5.2) in Theorem 5.1 leads to the following conclusions:

1. Theorem 6.3 covers both the definite case and the indefinite case, while the inequality
(5.2) in Theorem 5.1 is for the definite case only.

2. When applying to the definite case, (5.2) is sharper than (6.6). As a matter of fact,
(6.6) is a corollary of (5.2) in this case. In fact, if A is nonnegative definite

n N 5 1 n N 5
{gg(/\i, /\2)} < — Z {X(An /\2)} (by Proposition 3.11)
=1 \/5 =1
1
< —=1Eg - 27t by (5.2
< ﬂHd a |l (by (5.2))
< VI =SallE+1T-S3"%  (by Lemma 6.1 below)

Lemma 6.1

1 _ Z
511 = 53 < I = Sallp 417 - 53

and the equality holds if and only if Xq = 1, i.e., D is unitary.
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Proof: Notice that for € € R

k- sk fhte- s fvmfee

and the equality sign holds if and only if € = 1. |

The theorem below is a generalization of Theorems 4.3 and 4.4 for the spectral norm and
that of Theorem 4.5.

Theorem 6.4 To the hypotheses of Theorem 6.1 add this: all A;’s and :\j ’s are nonnega-
tive and are arranged descendingly as described in (2.2). Then we have

[nax 0o (Ais Ni) < Ky (X)) (X) % (6.7)

win { /17 = i+ 17 = DT {11 = D+ 17 = Dt}

where 1 <r < oo andg=p/(p—1).

Similarly to Theorem 6.1, there is a stronger version of this theorem for r» = 2 as follows.

Theorem 6.4s Let all conditions of Theorem 6.4 hold. Then

nax 0p(Ais Ai) < K(X)R(X) X (6.8)

min min { {0 = Dillg + 10+ = D5 |, )0 = DI+ 10 - Dallt}

where g =p/(p—1).

As a consequence of this theorem and our solution to the optimization problem (6.4), we
deduce that

Theorem 6.5 Under the conditions of Theorem 6.3, if A is nonnegative definite and the
eigenvalues of A and A are ordered descendingly as in (2.2), then

max op(\i, A) = I - Sallg + 117 - S5 (6.9)

where g is defined in (5.3) and ¢ = p/(p—1).

However, Theorem 6.5 is superseded by Theorem 5.1. To see this, we notice that
1. Both Theorem 5.1 and Theorem 6.5 work for the nonnegative definite case.
2. (6.9) can be deduced from (5.1).

In fact, (5.1) and Proposition 3.11 imply that

max ap( %) < 27 N < 2T YISg = St < 91T - Sal o+ 1T - 3

by Lemma 6.2 below. But still (6.9) looks nice and clean.
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Lemma 6.2

124 = =312 < 2911 - Sally + 111 — =313, (6.10)
and the equality holds if and only if Xq = 1, i.e., D is unitary.

Proof: Let & € a(D) be the one such that ||Sq — X7 |2 = ‘E — % . Then

a-=3e = Je- g <le-1l+]i-g]
< 21/pq|5_1|q_|_‘1_1‘q
§
< 2P = Zallg T - =31
as required. |

So far we have considered the case when both A and A are diagonalizable. In what
follows, we weaken this assumption by requiring only A to be diagonalizable and derive a
relative eigenvalue perturbation bound of Bauer-Fike Type [2].

Theorem 6.6 Assume that A € C"*" is diagonalizable and admits the following decom-
position

A= XAX"' where A=diag(As, -, \,). (6.11)

Assumé® also either A = DA or A = AD. Then for any X € A(A) there exists a A € M\(A)
such that

A=A
min
AEN4) A

< IXTHD = DXl < 5y (X = Dl (6.12)

7 A Theorem of Ostrowski and Other Developments

In this section, we briefly review the current state of research on the problems listed in
§1.1 and present our remarks.

Let A be an n x n Hermitian matrix. Perturbing A to D*AD, where D is nonsingular,
is actually performing a congruence transformation to A by D. The following theorem is
due to Ostrowski [32, 1959] (see also [17, pp.224-225]).

Theorem 7.1 (Ostrowski) Let A and A = D*AD be two nxn Hermitian matrices with
eigenvalues (2.1) ordered descendingly as in (2.2), where D is nonsingular. Then there
exist 0; s so that

Tmin(D)? < g; < Omax(D)?  and 7\]' =0;\; forl<j<n.

5Unlike in our previous theorems, here we do not have to assume that D) is nonsingular. Of course,
if D is far away from I, the bound (6.12) does not tell us much; if D is close enough to I, it has to be
nonsingular.
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Ostrowski’s theorem implies immediately a relative perturbation bound on Hermitian
eigenvalues.

Theorem 7.2 Let the conditions of Theorem 7.1 hold. Then

[Aj = Al

J

or in other words,
X =MN(148;) with |8;| <||[I—D*Dl|jy for1<j<n.

Inequality (5.1) of Theorem 5.1 and Theorem 7.2 are independent in the sense that one
can not be inferred from the other; but Theorem 7.2 covers more while Theorem 5.1 covers
nonnegative definite matrices only.

Ostrowski’s theorem also applies to singular value variations for matrices B and B =
DiBD by working with Hermitian matrices

(B B*)and(g E*):(D2 Dl)*(B B*)(D2 Dl)‘ -

Given the singular values (2.3) of B and B, it is known that besides m —n (if m > n) zero
eigenvalues, the eigenvalues of the two matrices in (7.1) are +o;, and £5;, respectively.

Corollary 7.1 Let B and B = D;BD, be two m X n matrices with singular values (2.3)
ordered descendingly as in (2.4), where Dy and Dy are nonsingular. Then
min{Umin(D1)27 O-min(DQ)z} S & S max{gmaX(Dl)zv UmaX(DQ)z} fOT 1 S ] S n

j
which gives

o;— 0 y » .
=l < w11 = DDl 11 = D3D} for 1< <,
J

or in other words,
o;=0i(l+7;) with |y;| < max{||l = DiDylla, [1 = D3Dsll2} for 1< j < n.

This corollary, though, an immediate consequence of the above Ostrowski’s theorem and
the equation (7.1), has appeared no where. It turns out that Corollary 7.1 provides a less
sharp bound than the following theorem due to Eisenstat and Ipsen [10, 1993]. It can also
be derived from Ostrowski’s theorem.

Theorem 7.3 (Eisenstat-Ipsen) Under the conditions of Corollary 7.1, we have

Umin(Dl)Umin(DQ) S % S UmaX(Dl)UmaX(DQ) fOT 1 S ] S n
J
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which yields

|]0'74]| S max{|1 - Umin(Dl)Umin(D2)|7 |1 - UmaX(Dl)Umax(D2)|} fOT 1 S J S n,
J

or in other words, o; = o;(1+4 ;) with
|7j| S max{|1 - Umin(Dl)Umin(D2)|7 |1 - Umax(Dl)Umax(D2)|}7
for 1 <j <n.

Theorem 7.3 always provides a sharper bound than Corollary 7.1 does, as the following
lemma indicates.

Lemma 7.1 For &, ¢ > 0,

max{|1 — €|, |1 - ¥} > |1 - &l (7.2)
and the equality holds if and only if £ = (.

Proof: The inequality is obvious if either max{¢,(} < 1 or min{&, {} > 1. It is also clearly
true if either £ = 1 or ( = 1. Now it suffices for us to consider the case when 0 < £ < 1 < (.
There are two subcases: (2 —1<1—-&or(?-1>1-¢%

L?-1<1-8 =4 <2= 2 <&+ <2 (by the Cauchy-Schwarz
inequality and since £ # () = £¢ < 1. Now notice that

E<il=1-E>1-¢=1-¢|

2. -1>1-=284+0>2=3+C>8 4+ >2=C—1>1-£C on the
other hand, (? > &= (?-1>& —1. So

¢ = 1> max{l - £(,&C — 1} = [1 — &l

From the above proof, it is clear that max{|1 — &3|,|1 — (%]} = |1 — &(| cannot happen
when 0 < & < 1 < (; it is not hard to see when max{¢,(} < 1 or min{{,(} > 1, the
equality cannot happen, either, unless £ = (. |

Regarding to graded matrices, the following two theorems are due to Demmel and
Veseli¢ [9, 1992] and Mathias [29, 1994].

Theorem 7.4 (Demmel-Veseli¢) Under the conditions of Theorem 5.4, we have

[Aj = Al

s S A for 1< <
J

or in other words,

X =N(1+6) with |5 < [[H Y| AH|y for1 < j<n.
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Theorem 7.5 (Mathias) Under the conditions of Theorem 5.5, we have
F— o ~ .
M < |G IHQHAGHQ for 1 < j <nmn,
J

or in other words,
;= 0i(L+7;) with |y <[IGTHLl|AG)2 for 1 <j < n.

Finally, let us see what we can get from Theorems 7.2, 7.4, 7.5 and 7.3 and Corol-
lary 7.1, in terms of the two kinds of relative distances defined in §3.

1. From Theorem 7.2, we have for 1 < 7 <n

0p(Ajs Aj) < 0o (Ajs Aj) < ([T = D7Dy, (7-3)
3 |1 = D" Dll2
Ajy ) < Y/ ——=. A4
X( 7 ]) —= Umin(D) (7 )
The inequality (7.3) holds because
~ N — N\ N — A
Qoo(/\ijj): | J J|~ < | ]/\ ]| SHI_D*DH27
mact LI )

and the inequality (7.4) holds because

gy = Pzl A=Al M= DDl
Jr 37 — - ~ >~ .
I D VI amin(D)

2. From Corollary 7.1 and by similar reasonings above, we have for 1 < j < n

200(07,0;) < max{|[l = DiDyla, [[I = D3 Dal|2}, (7.5)

max{|[l — D7 D1l|a, |[I — D3Dal|2}
min{o-min(Dl)v Umin(DZ)}

x(oj,0;) < (7.6)

3. From Theorem 7.3, we have for 1 < j <n

000(05,0;) < max{[l = omin(D1)Omin(D2)], |1 = Omax(D1)omax(D2)[}, (7.7)
max{[l — Omin(D1)omin(D2) |, |1 = Omax(D1) Omax (D2) [}

x(0;,65) < o By (D) . (7.8)
Inequalities (7.7) and (7.8) are sharper than (7.5) and (7.6), respectively.
4. From Theorem 7.4, we have for 1 < j <n
00o(Aj A < Y| AH 2, (7.9)
YA,y < 12 el A (7.10)

VI=THRAH],

Inequality (7.10) has been derived in Theorem 5.4.
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5. From Theorem 7.5, it follows for 1 < 7 <n

000(07,5;) < [IGTHRIIAG], (7.11)
G =AG]
VI = IGAC:

IN

x(0j,0;) (7.12)

Inequality (7.12) turns out to be sharper than the last “<” in (5.13) of Theorem 5.5,
but not the first two.

8 Proofs of Theorems 6.1 and 6.4

To prove the theorems, we need a little preparation. A matrix Y = (y;;) € R"*" is doubly
stochastic if all y;; > 0 and

n n
Zyik:Zykal fori,j=1,2,---,n

A matrix P € R™*™ is called a permutation matriz if exactly one entry in each row and
each column equals to 1 and all others are zero. Let ¢; be the ¢th column vector of I,,.
Each permutation matrix P corresponds to a unique permutation 7 of {1,2,---,n} in such
a way:

P = (67(1)7 €r(2) 67’(71))7
and vice versa. Thus there are n! permutation matrices. The following wonderful result
is due to Birkhoff [5, 1946] (see also [17, pp.527-528]).

Lemma 8.1 (Birkhoff) An n x n matriz is doubly stochastic if and only if it lies in the
convex hull of permutation matrices.

Lemma 8.2 Let Y = (y;;) be an n x n doubly stochastic matriz, and let M = (my;) €
C"*" Then there exists a permutation T of {1,2,---,n} such that

Z |m2]| yl] > Z |m27' 2

1,5=1

Proof: Denote all n x n permutation matrices as Py, and their corresponding permutations
of {1,2,---,n} as Tk, Where k = 1,2,--- nl It follows from Lemma 8.1 that Y can be

written as Y = E o Py, where ap > 0 and E o = 1. Hence
k=1 k=1

n n! n
D milyi =D e Y Imin o) > lggl,ZImnk :

i, =1 k=1 =1

as was to be shown. [ |
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The technique in the above proof is quite standard. It was first used by Hoffman
and Wielandt [16, 1953] to prove Theorem 4.1, and later by Sun [36, 1982] to prove a
Hoffman-Wielandt type theorem for a special class of matrix pencils (and by maybe many
others).

The following lemma is due to Elsner and Friedland [12, 1995].

Lemma 8.3 (Elsner-Friedland) Let Y = (y;;) € C"*". Then there exist two n x n
doubly stochastic matrices Y1, Yo such that entrywisely

Tmin(Y)? V1 < (1955]%) < Omax(Y)? Y.
Proof of Theorem 6.1: Let us first derive our perturbation equations.
A—A=A-DiADy= A — ADy+ ADy — DiADy = A(I — Dy) + (D™ — 1) A.
Pre- and post-multiply the equations by X! and )~(, respectively, to get
AXT'X = X'XA=AX"YI - D)X + X Y(D7* — I)XA. (8.1)
Set
Y XX = (), EX X1 = D)X = (e5), EE XY(Dy* = NX = (8).

Then equation (8.1) reads AY — YA = AE + ETX, or componentwise A;iy;; — yinj =
/\2'62']‘ + fevi]‘/\]‘, fe}

(A + ISP ei P+ 18517) = [Nies + hs] = [\ = X)wig
2
which yields [e;;|* + |€;;]* > {92(/\“/\ )} lyij|*. Hence
1X =1 = Do) X || + 1X (D7 - 2 203 Il (82)
Inequality (8.2), Lemmas 8.2 and 8.3 imply that
~ ~ ~ 2
X = D)X+ X DT = DX 2 omin(¥)* Y |20 A o)

for some permutation 7 of {1,2,--- n}. Since
omin(Y) = [Y7HI7T = XX > XTI HIX

we have

Xl X /11X =1 = Do) K|+ 1X 1 (D7 = DX

> H)?_IHQHXHQUmiH(Y)\I Zn: [Q2(/\i7:\7(¢))}2 > \Izn: {92(/\2'77\7(2'))}2- (8.3)

=1
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On the other hand, we have
A—A=A-DiADy=A— DiA+ DiA—DiADy = (I — DY) A+ A(D;' - I).
Pre- and post-multiply the equations by X! and X, respectively, to get
X7IXA-AX'X = X YT - D)XA+AX"YD;' - DX. (8.4)

Set V & X-1x = (¥:;). Similarly, we have
XM = D)X+ 1 X107 = DX > 2 20 X)) 3P (85)
Inequality (8.5), Lemmas 8.2 and 8.3 imply that

~ ~ ~ ~ 2
IX=H1 = D)X+ X 7HD5 " = DXE > omin(V)? Y [2200 )]

=1
Notice now omin(Y) = Y7171 = [ X1X|I31 > | X Y3HIX|I;E Along the lines for
proving (8.3), we obtain
XX /1 X 1T = D) X2+ | X -1(D;! " (o0 o)
Xl il I = D X2+ [X-1(D; > IS [ R 59
1=1
Inequality (6.1) is now a consequence of (8.3) and (8.6). n

The proof of Theorem 6.4 below needs the following result due to Li [23, pp.207-208,
1993]. For X € C™*" we introduce the following notation for a k& X ¢ submatrix of
X = (z5):

Livji Tige " Tiyg,
IR def 271 272 i27¢
JicJe : : .. :

Tiggr Tige "7 Tigge

where 1 <oy <<z <nand 1 <j < ---<js<n.
Lemma 8.4 (Li) Suppose that X € C"*" is nonsingular, and 1 < i; < --- < i < n and
1<ji<---<je<n,andk+4>n. Then

J1--Je
J1--Je

Proof of Theorem 6.4: Let k be the index such that

> [| XY 5t Moreover, if
P

=1.
2

X is unitary, then

def oy
Mp = 1@52% Qp(sz /\ ) - Qp(/\k7 /\k)
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If 5, = 0, inequality (6.7) clearly holds. Assume 7, > 0. Also assume, without loss of any
generality, that N
AL > AL > 0.

Partition X, X!, X and X! conformally as follows:

X:(X17X2)7X 1:(W3)7X:(X17X2)7X 1:(W} )7
where X, W) € C"*F and )~(1, W, € Ccnx(k=1). and write A = diag(A1,Az) and A=
diag(A1, Ag), where A; € RF*F and A; € RE-DX(=1_ Tt follows from equations (8.1)
and (8.4) that

MWiXy —WiXohy = AW(I— D)Xy + Wi (D7* — 1) X5A,,
WX A — A WX, = Wi(I— D)X A+ A W5 (D7 — DX,

which give
WiXy— ATYWiXoAy = Wi(I = Do) Xy + AT W/ (DT™ — 1) XaA,, (8.8)
WiXy — AW XGATY = Wil — D)Xy + A W5(Dy ! — DX ATE (8.9)
Lemma 8.4 implies for 1 < r < oo
~ ~ -1 ~ -1 ~
|wike| > 7 s | XN (s0)
— ~ —1 ~ =1 ~
|wsxa| > &0 s x| s, s

since WXy is a k x (n — k + 1) submatrix of X™'X, and Wy Xy is a (n — k4 1) x k
submatrix of X 71X and k4 (n—k+1) = n+1 > n. Bearing in mind that ||A7Y]|, = 1/
and H/~X2H = :\k, we have

W) el SN
(1—%) I < (1—%) liEee (by (8.10))
k k r
= [ | - iart [wi %) |3
< |lwrx, —HA;1W{‘)~(ZK2
< |wrx, - Alefizsz
= ||[Wi(I = D)X + AT'W (DT — DXoAs||  (by (8.8))
* - Xk * —* 94
< Wit -pa%| + 5 |wior - nx,
* - Xk —*
< WSl (1= Delle + DT = 1]
e By
< XIS {14+ 55 = DallE + (17— D
k
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Similarly, from (8.9) we obtain

Ak »
(1— —) XTI < XM X L+ » \/HI Dy [F+ (1 = Dyl
Inequality (6.7) is now a consequence of above inequalities. |

9 Proofs of Theorems 5.1, 5.2, 5.3, 5.4, and 5.5

Proof of Theorem 5.1: Since A is nonnegative definite, there is a matrix B € C™*" guch
that A = B*B. With this B, A=D*AD = D*B*BD = B*B , where B = BD. Let SVDs
of B and B be o

B=UA*V* and B=UA/?V",
where A2 = diag(v/ A1, VAz, - -,V A,) and AY? = diag (\/Xl, Vg, Xn) In what

follows, we actually work with BB* and Eg*, instead of A = B*B and A = B*B. We
have s N N N
BB* — BB* = BD*B* — BD™'B* = B(D* — DY) B*.

Pre- and post-multiply the above equations by U* and U, respectively, to get

AU = UUA = AV2V(D* — DYV A2, (9.1)

Write Q & (U = (¢i;). Equation (9.1) implies

| 2]|2‘

{7* * — * — |A A |
V(D" = DTYVI[E = |1D* - D7 lE = Z

Jlm

Since (]g;j|*) is a doubly stochastic matrix, applying Lemma 8.2 and Proposition 3.13
concludes the proof of inequality (5.2). To confirm (5.1), let k be the index such that

def

My = max x(his M) = X (ks M.
If 7, = 0, no proof is necessary. Assume 7, > 0. Also assume, without loss of any

generality, that N
AL > AL > 0.

Partition U, V, (7, V as follows
U:(U17U2)7V:(V17V2)7(7:((717(72) and ‘7:(‘71,‘72),

where Uy, V1 € C™** and (71, Vi € Cc<(k=1) " and write A = diag(A1, Ag) and A=
diag(A1, Ag), where Ay € R¥*F and A; € RE-Dx(E=1) Tt follows from equation (9.1) that

AT3Uy — U3U A = A2V (D" — DY VAL,
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Post-multiply this equation by Al_l to get
AT UATY = T30, = RV (D" = DY Y2, (9.2)

Lemma 8.4 implies that Hﬁz*Ule = 1 since UzU, is a (n — k + 1) x k submatrix of U*U

~ ~ ~ 172112
and k+ (n —k+1) = n+1 > n. Bearing in mind that [|Aslls = Ap = HA%/2H2 and

AT ]2 = 1/2, = HA;I/2 z, we have
1= = |G, - WA |5 1A
o [rsul, - [tz
< oz, - /~X2(~]2*U1A1_1H2
= |8V (o = v (by (9.2))
< AL || Vs (7 = DA AT
- el oo,
< i—ZHD* — D7z,
an immediate consequence of which is inequality (5.1). |

Lemma 9.1 For o, 3, v > 0, we have

xe,7) < X B) 4 X(8,7) + (e, H)x(37)x(@). 93)

Thus if x(a, B)x(8,7) <8, then

x(e, ) 4+ x(3,7)
1= gx(a, H)x(B,7)

Proof: Without loss of any generality, we may assume o < v. Now if 3 < v or v < 3, by
Property 7 of Proposition 3.7

X(a,7) <

X(B,7) < xla, B) +x(B,7), i B<a,
X(OW)S{X( B) < x(a, B) +x(B,y), iy <P

So inequality (9.3) has to be true. Consider the case « < § < 7. From the proof of
Proposition 3.14, we have

x(e,7) = x(a, 8) + x(8,7) + x(Va, VBX(VB, v X (Ve /7).
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By inequality (3.19) of Proposition 3.10, we get immediately inequality (9.3). |

Proof of Theorems 5.2 and 5.3: Set B = BD, and denote its singular values by o1 > &9 >
- > 0,. Applying Theorem 5.1 to B*B and B*B = D3B*BD; leads to

n

E%;x( 62) < ||D; — Dy'|]; and JZ[WUH < 105 = D7 -
=1

Now apply inequality (3.19) of Proposition 3.10 to obtain

1 _ - 1 _
max x(01,8:) < G105 = Dy'[l2 - and ; (00,00]" < SID5 = D3 [le- (94)
Similarly for B = BD, and B = DIBDy = DTE, we have
1 * -1 - ~ o~ 1 * —1
[2ax x(0:,0:) < S|Py = Dyla - and > D@5l < S0y = D Yle. (9.5)
=1

Under the assumptions of Theorem 5.2, by Lemma 9.1, we have
P~ o~ 1 * -1 * -1 1
V{01, 60x(60,9) < 11D = DT el D5 — D'l < { x 32 =8,

S0 we have

x(04,0;) + x(6:, )

X(Uh&i) S
1- 8X(UZ7UZ) (0'2'70'2')
1 ID7 = Dtz + 1105 = D3z
T 21— 55|10 = DU lIDs = D3 e
” - >+< ) ]
~ 0-270-2 X0-270-Z
Do d)” < (3| ]
i=1 i=1 SX UMUZ 02702)
Z 02702 Z 0-270-2
S i:l

1- %11%&2( X(Uzvgz X(Uzvgz)

1 _IDi = Dy e + 1D5 — D3l

T 21— gllDF - Dy YRlDs - Dl

as expected. This completes the proof of Theorem 5.2. To prove Theorem 5.3, we notice
that

0p(0:,0;) < 0p(04,6;) + 0,(6:,0;) (op is a metric on R)
< 27YP\(0;,5,) + 2717\ (54, 5)) (by Proposition 3.11)
< 2V (D5 - D a4 D7 - D) . (by (9.4) and (9.5))
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and
\IZ [gp(ai,ﬁi)]Q < [0p(04,04) + 0,(T3, O'Z)]Q (op is a metric on R)
=1 =1
< Z Qp 0-270-2 \IZ Qp 0-270-2
=1 =1
< 27V 1SN (o 80P+ 270 S (84 69))°
(by Proposition 3.11)

< 277V (IIDs = DI le + 17 = DTYE) - (by (9.4) and (9.5))

These inequalities complete the proof of Theorem 5.3. |

Proof of Theorem 5.4: Rewrite A and A as

A = S*HS = (H'S)"H'’S,
A = S*HY*(I+HY*(AH)H Y% H'/%S

_ ((I_I_H—1/2(AH)H—1/2)1/2H1/2S)* (]_|_H_I/Q(AH)H_I/Q)UQHI/ZS.
Set B ' HY2S and B € (1+ H-V2(AH)H~Y2)Y2H/2S then A= B*Band A = B*B
Set D = (I+H~2(AH)H~Y/%'/? then B = DB. Notice that A(A) = A(B*B) = A(BB")
and /\(A) = A(B*B) = A(BB*) and BB* = DBB*D*. Applying Theorem 5.1 to BB*
and BB* yields the first “<” in both (5.11) and (5.12). n

Proof of Theorem 5.5: Write
= (G+AG)S = (I + (AG)G™HGS = DB,

where D = I + (AG)G™!. Now applying Theorem 5.2 to B and B = DB yields the first
inequalities in both (5.13) and (5.14). To get the second inequalities, we notice

I+E)y-~(I+E)'=I+E - (-1)'E' = E*—|—E—|—EZ ) R
=0 =2

where F = (AG)G™ " and ||E||2 < [|GTY]2]]AG]|2 < 1; therefore for any unitarily invariant
norm || - |

|+ 7= arm < nE+ 21+ IEI 1E

=1

e+ £ (T )
+ I
( I L= [lE]]2

The rest is just applications of this inequality for ||- || = | - ||z and for || - || = - ||g. W
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10 Proof of Theorem 6.6

No proof is necessary if X € A(A). Assume that A ¢ A(A). Here we consider the case when
A = DA only, since the situation for the case when A = AD is very similar.
A-X = A-M+A-4A
= XA-AD)X '+ (D-1)XAX™!
= X[+ XD -DXAA-I)T(A-ADX

Since A — Al is singular, we have for any 1 < p < oo, || XD — ) XA(A = X)7Y|, > 1
which gives

~ ,\|
1< IX YD = DX|,IIANA =AXD7Y, = |1XYD-DNX|, m ~|
> H ( ) Hp” ( ) Hp H ( ) Hp/\eﬁﬁ) |/\ _ /\|

as was to be shown. [ |

11 Generalized Eigenvalue Problems and Generalized Sin-
gular Value Problems

In this section, we are going to say a few words for the following perturbations for Scaled
Generalized Figenvalue Problems and Scaled Generalized Singular Value Problems. As we
shall see, the results in previous sections, as well as those in Li [24, 1994], can be applied
to derive relative perturbation bounds for them.

e Generalized eigenvalue problem:
Ay —AAy = STH S — AS;HS; and Ay — AAy = STH, Sy — AS; H, Sy, where Hy and
Hy are positive definite and ||HY||o||H; — Hilly < 1 for i = 1,2, and S; and Sy are
some square matrices and one of them is nonsingular.

e Generalized singular problem:
{By, Bs} = {G151,G252} and {Ehgz} = {615176252}7 where (¢; and G5 are
nonsingular and ||G71|2||G: — Gilla < 1 for i = 1,2, and S; and S, are some square
matrices and one of them is nonsingular.

For the scaled generalized eigenvalue problem just mentioned, without loss of any general-

ity, we consider the case when Sy is nonsingular. Then the generalized eigenvalue problem

for Ay — AAy = STH51 — AS5H,.9; is equivalent to the standard eigenvalue problem for
AY gV e s 8 M,

and the generalized eigenvalue problem for fL — Agz = Sl*ﬁlsl — AS;ﬁQSQ is equivalent

to the standard eigenvalue problem for

A prH;Y255 S 1S ST H, YA D,,
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where

1/2

Dy =Dy € (14 Hy P (AH) H; ) and AHy €T, - Hy,.

So bounding relative distances between the eigenvalues of A; — AA; and these of fL — Agz
is transformed to bounding relative distances between the eigenvalues of the matrix A and
these of the matrix A. The latter can be accomplished in two steps:

1. Bounding relative distances between the eigenvalues of the matrix A and these of
AY prH Y287 S H S 57 H 2D,

2. Bounding relative distances between the eigenvalues of the matrix A and these of
the matrix A.

Denote and order the eigenvalues of A, A and A as

~ ~ ~

M>-->), and Ay >---> A, and A > o> A,

Set
2
Dy = Dy € (14 1y P (aH)HT?) Y and AHCM o,

By Theorems 5.1 and 5.4, we have for 1 < j <n
X A) <Dy = D7l and x(Ai, X)) < [|D1 = DTl (11.1)

and

Jz[ (A A)] < 1Dy = D'l and Jz[x@m)]kHDI—D#HF. (11.2)
= =1

1

By Lemma 9.1, we have for 1 < j < n if ||D; — DT Y]2||D2 — D32 < 8,

A) 1Dz~ D72 +1|D1 = DYl

Ao A) ~ 1= YDy = DY) D2 — D32

O3 < X(Ais Ai) + x (i
B _%X(AMA) (

and

_
M=
>
—
IA
_
M=

=1 =1
< ! _
1—3 1rgl.a<>§lx(&w xX(Ai, A
D2 = D3 'le + 1D1 = Dy e

= 1-=§IDy = DYl D2 = D32
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Notice also that for ¢ = 1,2 and for any unitarily invariant norm || - ||
[H 2 IAH)

D; — D7 < '
H‘ H‘ \/1 — [[H Yo || A H;

So we have proved

Theorem 11.1 Let A; —AAy = S;H1S1— AS5HS; and Ay — AAy = S;H1S1 — AS5HaS:,
where Hy and Hy are nxn and positive definite and |H;||o|| Hi— H||2 < 1 fori = 1,2, and
S1 and Sy are some square matrices and one of them is nonsingular. Let the generalized

eigenvalues of Ay — XAy and fL — Agz be
M > > A, and Ay > > A,
If(|D1 = DY Ylal|D2 = D32 < 8, then

~ L I|AH G| AH
max (O, k) < 1H1 1|z + 62| A, ]] 7
1<i<n — §0102HAH1H2HAH2H2

) Wl 61| AH e + 6o | AH
Z{X(/\n/\')} < 1H1 1l + 02| AHz||r 7
— §0102(| Ay [|2f| A

=1

where 6; d:efHH;lHQ/\ﬂ — | H )| AH ||y fori=1,2.

On the other hand, from (11.1) and (11.2) and Proposition 3.11, we get
op(Ai X)) < 27VPIDy = Dy M2 and gp(Ai, Ag) < 277Dy = DY

and

JZ[WMTsz-l/puDz—D;luF and JZ[ (x| < 277Dy - Dy

=1 =1

Since p, is a metric on R, we havefor 1 <j <n
0p (A Ai) < 0p(Nis M) + 05N, M) < 277 (|[D3 = DT+ [|D1 = D7)

and

00 3) + 2, (3 2]

{Qp(/\nj\i)r + \I

e (||Dy = DF e+ 1D = DTle) -

=

i

=1 =1

[0 (3 X))

INgE

=1 1

7

IN
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Theorem 11.2 Let all conditions of Theorem 11.1, except ||Dy— Dy Y||a||Da— D3 ]2 < 8,
hold. Then

1@?2%979(/\2'7&) < 27MP(01 || AH |z + 62| ATa|)),
n ~ 12
J (N 2] < 27RO AH e + 62| AH: ).
=1

As to the scaled generalized singular problem mentioned above, we shall consider its
corresponding generalized eigenvalue problem [22, 37, 39] for

STGrGLST — ANS3G3GS,  and  STGEGHST — ASEGGHS,, (11.3)
instead.

Theorem 11.3 Let {By, By} = {G151, G5} and {Ehéz} = {615176252}, where (1
and Gy are n x n and nonsingular and ||G5'2||Gi — Gill2 < 1 fori = 1,2, and S; and
So are some square matrices and one of them is nonsingular. Let the generalized singular

values of {By, By} and {By, By} be
op 220, and oy 22> 0y
If 612699 < 32, where

*

8it = H (1+@acHert) - (1+ (AGZ»)G;I)_1 fori=1,2 and t = 2,F,

t

then
1 o 1
max y(01,5;) < = - #
1<i<n 21— @512522
- ~ \12 1 &ip + doF
05,0 < s T
— [X( )] 2 1 _ %512522
It can be proved that for i = 1,2 andt = 2,F
AGHGTY + G (AG)* AGHGTH _
o s (MAGIGHGHGN ,_WSGIGL) i
[(AGHGT ¢ L= [[(AGHGT |2
1
< 1+ - ) 1GTH 2l AG .-
( L= [|GT |2[1AGH 2

Proof: Consider the case when Sy is nonsingular. (The case when S; is nonsingular can be
handled analogously.) By (11.3), we know that the singular values of B et G1518;1Go !
and B d:efélslsglégl are oy > -+ > 0, and o1 > - > 7,. Set

Dy =T+ (AG)GTY, AGI =G -Gy, and Dy =T+ (AG)G;Y, AGy =Gy —Gy;
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then B = DlBDz_l. By Theorem 5.2, we have

- L ||Df = DyYl2 + |1D3™ = Dal2
s a(oz) € L DL DI HIDE ~Dils
L<isn 1= 55107 = Dy |2l D37 = Dall

- 1 ||D; — Di'Yle + 1D — Dsllp
[X(Uszi)]z S - H 1 *1 H — H 2 — H 7
DT = Dy |l2[|D37 = Da||2

21—

n
1=

7
1 32

as were to be shown. [ |

Theorem 11.4 Let all conditions of Theorem 11.1, except 812829 < 32, hold. Then

_ 1
lr%;g; 0p(0:,0;) < m(&z + d22),

A

n - 1
\I' [Qp(UnUi)]z < 21_|_—1/p(51F+52F)-

=1

Proof: (by the first half of the proof of Theorem 11.3 and by Theorem 5.3) |

12 Conclusions

We have developed a relative perturbation theory for eigenvalue and singular value vari-
ations under multiplicative perturbations. In the theory, extensions of the celebrated
Hoffman-Wielandt theorem and Weyl-Lidskii theorem from the classical perturbation the-
ory are made. For this, we introduced two kinds of relative distances p, and x. Topolog-
ically, our new relative distances are equivalent to the classical measurement for relative
accuracy, but the new distances have better mathematical properties. It is proved that
0p is indeed a metric on R; while y is not. Often it is the case that perturbation bounds
using x are sharper than bounds using o,.

Our unifying treatment in this paper covers almost all previously studied cases and
yields sharper bounds than existing ones. Our results are applicable immediately to the
computations of sharp error bounds in the Demmel-Kahan QR [8, 1990] algorithm and
Fernando-Parlett’s implementation of the Rutishauser QD algorithm [13, 1994]. Such
applications will be published elsewhere.

Appendix.

A p, is a Metric on R

In this appendix, we will prove (3.20)
op(a,7) < opev, ) + 0,(8,7) for o, B, v € R. (3.20)

As a result, we have
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Theorem A.1 p, is a metric on R.

We strongly conjecture that g, is a metric on C. Unfortunately, we are unable to prove it
at this point.

Lemma A.1 The following statements are equivalent:

1' Qp(a77) S Qp(a7ﬁ) —I_ Qp(ﬁ77),'
2. 0p(&a, &) < 0p(E, £8) + 0,(£8, &) for some 0 # € € C;
3. 0p(Ea, &) < 0,(E, E8) + 0,(£8,&7) for all 0 # ¢ € C.

This lemma follows from Property 3 of Proposition 3.1.

In what follows, we will be working with real numbers. Since p, is symmetric with
respect to its two arguments (Property 2 of Proposition 3.1), we may assume, without loss
of any generality, that from now on

a <. (A.1)

There are three possible positions for 5:
B<a or a< <y or y<g. (A.2)
Lemma A.2 (3.20) holds for o < § < v, and the equality holds if and only if 3 = « or

B=r.
A proof of this lemma will be given in §A.3. Two different cases shall be considered, in
order to confirm (3.20).

1. ay > 0.

2. ay < 0.

A.1 The Case ay > 0.

Lemma A.2 shows that (3.20) is true if @ < 5 <. If either § < a or v < 3, by Property
8 of Proposition 3.1, we have

Qp(avﬁ)ggp(a7ﬁ)+gp(ﬁ77)7 lf7§ﬁ7
2l 7) < { 0p(5,7) < oy, B) + 0,(8,7), B <a.

A.2 The Case ay < 0.

We may assume o < 0 and v > 0 (see assumption (A.1)). Consider the three possible
positions (A.2) for j.
1. p < a < 0. In this subcase, 1/a < 1/ < 0 < 1/y. By Lemma A.2 and Property 4
of Proposition 3.1, we have

Qp(av 7) = Qp(l/av 1/7) < Qp(l/av 1/ﬁ) + Qp(l/ﬁ7 1/7) = Qp(av ﬁ) + Qp(ﬁv 7)'

2. o < 8 <. This subcase has been taken care of by Lemma A.2.

3.0 < v < B. In this subcase, 1/ao < 0 < 1/8 < 1/v. The rest is the same as in
subcase 1 above.
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A.3 Proof of Lemma A.2

By Lemma A.1 and by that swapping « and ~ does not loss any generality, we may even
assume, besides (A.1), that
a<al <. (A.3)

Inequality (3.20) clearly holds if one of o, 3, v is zero or § = a or f =y or a = 7. So
from now on, we assume

a<f<y, and a#0,8#0,v#0.
For1 <p< x>

Q(O&’)/) _ Yoo :7_ﬁ+ﬁ_a: P)/—ﬁ + ﬁ—O&
V-8 f-a

e | B Elar

1 1
T =8 (W+ o VT Iﬂlp)

1 1
o) (W+ o by Iﬂlp)
= op(e, B) + 0,(8,7)
(v =B)UBP —|a?) P+ BIP = /P + o

Y+ [alPg/yP 4157 18P — |al?
(B—a)(BP =" P+ 18P — /77 + [af?
VP A+ lalp/lalp + [3]P 8P — P '

Now if v < 8 < |a| < 7, then |B]P — |a|? < 0 and |F|P — 4P < 0, and thus
(=B UBI —al”) P+ 18P = 4P £ ol

VAP + PP+ 16IP |B]P — Jalp
B8P =" Yl +18FF = P +]alP _
YP + lalP &/ ]alP + 15]7 |B|P — yP

Hence o, (a,v) < 0p(e, B) 4+ 0,(5, ). Consider now |a| < 8 < . Then
(v =B)UBIF = laf?) 2+ 1B = /% + |of?

Yr + |alp /4P + Bl 1BlP — |a|?
L B8P ") el FIBF = /47 + o
P+ lafp/[alP +5[P B[P — y#
(v—ﬂ)(ﬁ—lal)( 1 B —afP AP+ 5P = 4P+ [af?
TP+ |afp P+ B e B — |al?
1 VP =67 Yol + 57 — {47+ [al?
AR B —p )
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The last “<” is true because &/7? + P > &/|a|P + P = L nd

1
<
rasr  {flalrpr

F=lalp 97 = 5

0 < 7
B—la = y-p8
0 < VAP 07— P+l YlaPP + 52 = 47+ ol
B — |afp - B — P '

These inequalities are consequences of Lemma A.3 below since for 1 < p < oo, f(z) = z?
is convex and g(z) = ¥/ is concave. So we also have p,(c,y) < g,(e, 8) + 0,(3,7) for
|a| < 3 < . The proof for the case p < oo is completed.

When p = oo,
pfany) = 1012 F Poe
Y Y Y
_ 1=h p-a (o
= St gt -9 5 mern)
< 0ol B) + 000 (85 7)),
as was to be shown. |

Lemma A.3 Suppose functions f(x) and g(z) are defined on the interval [a,b], and sup-
pose f(z) is convex and g(x) concave. Let o < 3 <. Then

JB) =) J) =B 9B) —g(a)  9(y) —9(B)
B-a — 4-p foa T y=p

A proof of this lemma can be found in most Mathematical Analysis books. Intuitively, the
two inequalities in Lemma A.3 are well explained by Figure 1.
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