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Abstract

Let B be an m � n (m � n) complex matrix. It is known that there is a unique
polar decomposition B = QH, where Q�Q = I, the n � n identity matrix, and H is
positive de�nite, provided B has full column rank. Existing perturbation bounds for
complex matrices suggest that in the worst case, the change in Q be proportional to
the reciprocal of the smallest singular value of B. However, there are situations where
this unitary polar factor is much more accurately determined by the data than the
existing perturbation bounds would indicate. In this paper the following question is
addressed: how much may Q change if B is perturbed to eB = D�

1
BD2? Here D1 and

D2 are nonsingular and close to the identity matrices of suitable dimensions. It will be
proved that for such kinds of perturbations, the change in Q is bounded only by the
distances from D1 and D2 to identity matrices, and thus independent of the singular
values of B.
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Let B be an m � n (m � n) complex matrix. It is known that there are Q with

orthonormal column vectors, i.e., Q�Q = I , and a unique positive semide�nite H such

that

B = QH: (1)

Hereafter I denotes an identity matrix with appropriate dimensions which should be clear

from the context or speci�ed. The decomposition (1) is called the polar decomposition of

B. If, in addition, B has full column rank, then Q is uniquely determined also. In fact,

H = (B�B)1=2; Q = B(B�B)�1=2; (2)

where superscript \�" denotes conjugate transpose. The decomposition (1) can also be

computed from the singular value decomposition (SVD) B = U�V � by

H = V �1V
�; Q = U1V

�; (3)

where U = (U1; U2) and V are unitary, U1 ism�n, � =

 
�1

0

!
and �1 = diag (�1; : : : ; �n)

is nonnegative.

There are several published bounds stating how much the two factor matrices Q and H

may change if entries of B are perturbed in arbitrary manner [2, 3, 6, 8, 9, 11, 12, 13, 14].

In these papers, no assumption was made on how B was perturbed to eB except possibly

an assumption on the smallness of k eB�Bk for some matrix norm k �k. Roughly speaking,
bounds in these published papers suggest that in the worst case, the change in Q be

proportional to the reciprocal of the smallest singular value of B.

In this paper, on the other hand, we study the change in Q, assuming B is complex

and perturbed to eB = D�
1BD2, where D1 and D2 are nonsingular and close to the identity

matrices of suitable dimensions. Such perturbations covers, for example, component-wise

relative perturbations to entries of symmetric tridiagonal matrices with zero diagonal [5, 7],

entries of bidiagonal and biacyclic matrices [1, 4, 5]. Our results indicate that under such

perturbations, the change in Q is independent of the smallest singular value of B.

Assume that B has full column rank and so does eB = D�
1BD2. Let

B = QH; eB = eQ eH (4)

be the polar decompositions of B and eB respectively, and let

B = U�V �; eB = eU e� eV � (5)

be the SVDs of B and eB, respectively, where eU = ( eU1; eU2), eU1 is m�n, and e� =

 e�1

0

!

and e�1 = diag (e�1; : : : ; e�n). Assume as usual that
�1 � � � � � �n > 0; and e�1 � � � � � e�n > 0: (6)

It follows from (2) and (5) that Q = U1V
� and eQ = eU1

eV �.
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In what follows, kXkF denotes the Frobenius norm which is the square root of the

trace of X�X . Notice that

eU�( eB �B)V = e�eV �V � eU�U�;eU�( eB �B)V = eU�(D�
1BD2 �D�

1B +D�
1B �B)V

= eU�
h eB(I �D�1

2 ) + (D�
1 � I)B

i
V

= e�eV �(I �D�1
2 )V + eU�(D�

1 � I)U�;

and

U�( eB � B) eV = U� eU e�� �V � eV ;
U�( eB � B) eV = U�(D�

1BD2 � BD2 + BD2 �B) eV
= U�

h
(I �D��

1 ) eB + B(D2 � I)
i eV

= U�(I �D��
1 ) eU e�+ �V �(D2 � I) eV :

to obtain two perturbation equations:

e� eV �V � eU�U� = e� eV �(I �D�1
2 )V + eU�(D�

1 � I)U�; (7)

U� eU e�� �V � eV = U�(I �D��
1 ) eU e�+�V �(D2 � I) eV : (8)

The �rst n rows of equation (7) yields

e�1
eV �V � eU�

1U1�1 = e�1
eV �(I �D�1

2 )V + eU�
1 (D

�
1 � I)U1�1: (9)

The �rst n rows of equation (8) yields

U�
1
eU1
e�1 � �1V

� eV = U�
1 (I �D��

1 ) eU1
e�1 +�1V

�(D2 � I) eV ;
on taking conjugate transpose of which, one has

e�1
eU�
1U1 � eV �V �1 = e�1

eU�
1 (I �D�1

1 )U1 + eV �(D�
2 � I)V�1: (10)

Now subtracting (10) from (9) leads to

e�1( eU�
1U1 � eV �V ) + ( eU�

1U1 � eV �V )�1 (11)

= e�1

h eU�
1 (I �D�1

1 )U1 � eV �(I �D�1
2 )V

i
+
h eV �(D�

2 � I)V � eU�
1 (D

�
1 � I)U1

i
�1:

To continue, we need a lemma from Li [10].

Lemma 1 Let 
 2 Cs�s and � 2 Ct�t be two Hermitian matrices, and let E; F 2
Cs�t. If �(
)

T
�(�) = ;, where �( � ) is the spectrum of a matrix, then matrix equation


X �X� = 
E + F� has a unique solution, and moreover kXkF �
q
kEk2F + kFk2F

.
�,

where �
def
= min

!2�(
); 
2�(�)

j!�
jp
j!j2+j
j2

.
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Apply this lemma to equation (11) with 
 = e�1, � = ��1, and

X = eU�
1U1 � eV �V = eV �( eV eU�

1U1V
� � I)V = eV �( eQ�Q� I)V;

E = eU�
1 (I �D�1

1 )U1 � eV �(I �D�1
2 )V;eE = eV �(D�

2 � I)V � eU�
1 (D

�
1 � I)U1

to get kXkF = k eQ�Q� IkF �
q
kEk2F + k eEk2F=�, where � = min

1�i; j�n

e�i+�jqe�2
i
+�2

j

� 1.

Theorem 1 Let B and eB = D�
1BD2 be two m� n (m � n) complex matrices having full

column rank and with polar decompositions (4). Then

kQ� eQkF �

r�
kI �D�1

1 kF + kI �D�1
2 kF

�2
+ (kD2 � IkF + kD1 � IkF)

2; (12)

�
p
2
q
kI �D�1

1 k2F + kI �D�1
2 k2F + kD2 � Ik2F + kD1 � Ik2F: (13)

Proof: Inequality (13) follows from (12) by the fact that (�+�)2 � 2(�2+�2) for �; � � 0.

Now we prove (12). When m = n, both Q and eQ are unitary. Thus k eQ�Q � IkF =

k eQ�(Q� eQ)kF = kQ� eQkF. Inequality (12) is a consequence of

kEkF � kI �D�1
1 kF + kI �D�1

2 kF and k eEkF � kD�
2 � IkF + kD�

1 � IkF: (14)

For the case m > n, the last m� n rows of equation (8) produce that

U�
2
eU1
e� = U�

2 (I �D��
1 ) eU1

e�1:

Since eB has full column rank, e�1 is nonsingular. We have U�
2
eU1 = U�

2 (I �D��
1 ) eU1: Thus

kU�
2
eU1kF � kU�

2 (I �D��
1 )kF = k(I �D�1

1 )U2kF: (15)

Notice that (U1V
�; U2) = (Q;U2) is unitary. Hence U

�
2Q = 0, and

kQ� eQkF = k(Q;U2)
�(Q� eQ)kF =







 
I �Q� eQ
�U�

2
eQ

!





F

=

q
kI � Q� eQk2F + k � U�

2
eU1
eV �k2F �

q
kEk2F + k eEk2F + kU�

2
eU1k2F: (16)

By (15), we get

kEk2F + kU�
2
eU1k

2
F �

�
k(I �D�1

1 )U1kF + kI �D�1
2 kF

�2
+ k(I �D�1

1 )U2k
2
F

= k(I �D�1
1 )U1k

2
F + 2k(I �D�1

1 )U1kFkI �D�1
2 kF + kI �D�1

2 k2F

+k(I �D�1
1 )U2k

2
F

� k(I �D�1
1 )U1k

2
F + k(I �D�1

1 )U2k
2
F

+2kI �D�1
1 kFkI �D�1

2 kF + kI �D�1
2 k2F

= kI �D�1
1 k2F + 2kI �D�1

1 kFkI �D�1
2 kF + kI �D�1

2 k2F

=
�
kI �D�1

1 kF + kI �D�1
2 kF

�2
:
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Inequality (12) is a consequence of (16), (14), and the above inequalities.

Now we are in the position to apply Theorem 1 to perturbations for one-side scaling.

Here we consider two n � n nonsingular matrices B = S�G and eB = S� eG, where S is a

scaling matrix and usually diagonal. (But this is not necessary to the theorem below.)

The elements of S can vary wildly. G is nonsingular and usually better conditioned than

B itself. Set

�G
def
= eG�G:

eG is guaranteed nonsingular if k�Gk2kG
�1k2 < 1 which will be assumed henceforth.

Notice that

eB = S� eG = S�(G+�G) = S�G(I +G�1(�G)) = B(I + G�1(�G)):

So applying Theorem 1 with D1 = 0 and D2 = I + G�1(�G) leads to

Theorem 2 Let B = S�G and eB = S� eG be two n�n nonsingular matrices with the polar

decompositions (4). If k�Gk2kG
�1k2 < 1 then

kQ� eQkF �

r
kG�1(�G)k2F +




I � (I + G�1(�G))
�1



2
F
;

�

s
1 +

1

(1� kG�1k2k�Gk2)
2
kG�1k2k�GkF:

One can deal with one-side scaling from the right in the same way.
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