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Abstract

The CGS and BiCGstab algorithms were derived by their authors from the bi-conjugate
gradient iteration. In this paper a derivation from the (unnormalized) L anczos algorithm
is given. Experimental results are given, showing that these methods offer no immediate
advantageover their earlier counterparts.

1 Introduction

A number of recent conjugate gradi ent-type methods are based on theideaof polynomial
multiplication. Ordinary cg-like methods generate a sequence of polynomials { P; } of
successively higher degree, and they computeresiduasthat satisfy »; = P;(A)r1 where
r1 istheinitial residual . Polynomia multiplicationmethods generate asecond sequence
of polynomidls, {Q;}, and they compute residuals satisfying r; = @; (A) P;(A)r1.

Thefirst such method was CGS[3], conjugate gradients squared, which is based
on(@; = F;. Thismethod'smotivation comes from the bi-conjugategradient or Lanczos
agorithm, where two sequences s; = P;(A*)ry and r; = P;(A)r; are computed. Since
intheideal case both sequences converge to zero, and

PP A = (P(A)r)  (P(A)r) = sirs,
it makes sense to try and compute the sequence 7; = P?(A)ry.

In practice, CGS inherits, and even amplifies, the irregularities in the conver-
gence of the bi-conjugate gradient method. Therefore in [4] a method was proposed
that smooths the convergence behaviour by letting #; = Q;(A)P;(A)r1, where the
P; polynomialsare still derived from the biconjugate gradient method, but the @;s are
derived from a sequence of steepest descent steps.

*. Thiswork was supported by DARPA under contract number DAAL03-91-C-0047



In the above, the rationale for computing polynomia multiplying sequences is
given. Therest of thispaper isdevoted to explainingwhy itiscomputationally feasibleto
construct such sequences. In particular, aconstruction will be given that is not based on
the bi-conjugate gradient method (as wasthe case in[3] and [4]), but on the three-term
recurrences of the Lanczos method.

2  Standard presentation of conjugategradient squaring methods

Denote in preconditioned bi-conjugate gradient-type methods left and right residuals
by s;, r; and left and right search directionsby ¢;, p;, and let M bethe preconditioning
matrix.

For thederivation of apreconditioned conjugategradients squared method we use
adightly different version of the (bi)conjugate gradient method than is used ordinarily.
Theresidua s and search directions are computed as

(r)

rig1 =1 — AMpia; Pit1 = Tigy1+ i,
and the left sequences of residua s and search directions are computed as
siy1 = s; — A'M'q;af, Tit1 = Sit1+ 4,

where of and al(»’") maybe different for theleft and right sequences. The coefficientsfor
the right sequence are computed in the traditional manner

ol ) = strifqiAps,  Bi = styariga/si

There exist polynomials p; and ; of degree ¢ — 1 such that

ry = pi(AM)T]_, P = 7TZ'(AM)7°1.

We find relations for the polynomials

piv1 = pi — AMm; (AM)a;, Tit1 = piy1+ i
Similarly the left sequences satisfy

S5 Iﬁi(AtMt)Sl, q; = %i(AtMt)Sl
for certain polynomials g; and ;.

In the following derivation of the cgs and bcgs methods, the polynomials p;
and 7; will be taken to refer to the left sequences s; and ¢;. For cgs they are identical
to the polynomiasfor the r; and p; sequences.

The conjugate gradient squared method aims at computing the sequences of
squared residuals p?( A M )ry and squared search directions 72( M A)p1. The scalars of
the bi conjugate gradient method can be computed as

siMr; = s1pi(MA)YMp; (AM)ry = s{M [pf(AM)rq] ,
and

gt Api = ¢imi(AM) Ami (M A)py = ¢i A [72(M A)py] -



First an auxiliary quantity:
i+l 2 TiTigl = M7 — mAMpioz(r) = mr; — AM?TZ'])Z'O[(T)

_ i_AMO‘z('T) Ccgs
-~ [2) - am[4]al” begs

Next the squared residual:

z’+1 L piprrin = (pi — AMmal)rip
piri — piAMpiai — AM?TZ'TZ'+1OzZ'

=[2] - am(3] —|—+1)Oéi cgs
Tirip1 — AMm;ri g0

= +1 - AMi+1af begs

The next quantity is not needed for begs, sinceitis equa to the previous:

D
i-I—l = Tit1Tit1

= Mi41Pi+1T1 = Pi+1Ti4171 = Pi+1Ti+1 + Pz’+1pzﬂi

= pit1Tit1 + mirip1B = i+l + +1ﬁi cgs only

For the squared search directionswe find

D
Z»+1 = Tit1Pi+1
Pi+1Pi+1 + Tipi+15i
= pip1Pit1 + (miripr + mipi 5i) Bs
- +1 + 6 (i+l +[4]8,) cgs
Pi+1Pi+1 = Pit+1Ti+1 + Bipitapi
= pit1rit1+ Bilpipi — af AMm;p;)
=[2],,+5(4] - afam[4])  begs
The amount of work per iteration for both methods consists of two matrix-vector
products and preconditioner solves; additionally, for cgs there are 6 vector additions
or vector-plus-scalar-times-vector operations, for bcgs there are 4 such operations.
Updating the iterate takes one extra vector operation (anal ogous to updating ) for

cgs and two (corresponding to update Z. and Z.) for begs.

3 Polynomial squaring methodswithout search directions

Polynomial squaring methods, such as conjugate gradients squared (cgs) or bi-conjugate
gradients stabilized (bcgs) can be formulated without search directions. For this, con-
sider a generalized Lanczos method with two series of vectors R = (...,r;,...)
andS = (...,s;,...) and upper Hessenberg matrices H/ and K such that

AR=RH and A'S = SK.



Itiseasy to seethat for these sequences there are corresponding sequences of polynomi-
as{p;} and {o;} sothat r; = p;(A)ry and s; = o;(A")s1, where the i-th polynomials
have degreei — 1. Therdaions AR = RH, A'S = SK, or

Arj = Z Tihij, AtSj = Z Sikija (1)

i<+l i<+l
trand ate into corresponding rel ations
tpi(t) = Y pi(Dhij,  toi(t)= Y ait)ki )
i<+l i<+l

for the polynomials.

The Lanczos method uses the same polynomials for both sequences, so we will
introducea reference sequence R satisfying A R = RH and 71 = s1. Equivaently, the
elements of this sequences are generated as

772' = pi (At)?]_

Since the degrees of corresponding polynomiase; and p; are the same, the sequences
Rand S arerelated by
S5 = Z&vlj, 77]' = Zsiuij
i<j i<j
for certain sets of coefficientsu;;, v;;. Thisfact will be needed later in the bcgs method.

Polynomials squaring methods now compute vectors rl(] ) = oi(A)p; (A)ry, in
particular the sequence {rl(l)} = {oy(A)pi(A)r1}. Therdations (1), (2) then trandate
into

P I D hipas + 7P by 4+ 0Py = Arl) ©)
and
Tg‘i_)lk’wli ki + ek = AP 4

In al polynomial squaring methods, H isthe Hessenberg matrix of the Lanczos
method, that is, its elements can be computed from the inner products st Ar;, sir;
directly or indirectly. For the computation of these inner productsthe sequence S isnot
explicitly needed except for itsfirst element. For instance, sir; = s1p:(A)p;(A)r1 =
str).

Thecgsmethod correspondsto thechoices; = p; for thepolynomias. Thus K =
H, and the elements of the Hmberg meatrix can be computed directly from inner
prOdUCtSStAT] = slAr( Dy RETES slr( 7 . Because of thecommuitativity of polynomials

inA Wehaverl( )= r] ) fordl i and .

For the bcgs method the Hessenberg matrix K is reduced to alower bidiagonal
meatrix; the coefficients k;11;, ki; are chosen in a stegpest descent fashion in order to
minimize||r 5|,

Us ng the above recurrences in ¢ and j direction through the two- parameter

family of r; () vectors, we can now construct the single-parameter sequence {r } in
an efficient way.



Suppose that r}i‘ll), Ar}i‘ll), 72@1: Aﬁ@ly ry), and Ary) have aready been
computed. Now perform thefollowing steps:
o Compute rl(l_l). For cgsthisisequa to rfl_) ,; for bcgs compute

kg S kg = AT

o Computer( Y

b+ e b T by = A,
o Computer 't
it ki ek P kg =AY,
where for begs the coefficient k;_1; is zero. This requires having computed
Arl(“’l), and for cgs additionally rl(lfll) needs to be computed from
i b+ D hi by = Arl.
The total cost, as in the previous derivation with search directions, is seen to comprise
6 vector operationsfor cgs and 4 for bcgs. However, unlikein the case of the methods
using search directions, for the computation of theiteratethereisnow an updaterelation
corresponding to each update for the residual. Thus computing the iterate doubles the
number of vector operations.

from

4  Computation of coefficientsin CGS

In the conjugate gradient squared method, the choices p; = g, and H = K are made,
where thetridiagonal matrix H ischosen as the one generated by the Lanczos method.
Denotingtheleft and right residua s of the Lanczos method by s;, r;, we need thevalues
of

siri = (ps(A")r1)" (pi(A)r1) = rip(A)ry = 1 ©)
and
siAri = (pi(AY)r1) A(pi(A)ra) = riApE(A)ry = riar(?. (6)
The coefficients of H then follow from
i Arg iy
hi; = St—r, hioyi = — hii—1, hiyy = —hy — hi_1. (M

5; T4 8?_ 17i—1
(For a survey of such identities, see [1].)

5 Computation of coefficientsin BiCGstab

The BiCGstab algorithm is based on taking a different recurrence in ¢ direction from
the one in j direction. While the latter one is still based on the matrix H from the
Lanczos method, the former recurrence takes steepest descent steps. Thus, we perform
the steepest descent update



rgj_tl) = rZ(H_l) + wiAr(Hl)

7

with
o rZ(i+1)’ArZ(i+1)
Wi = (Ar(i-l_l))t(A?“(iﬂ))'
In order to write this as a three-term recurrence

Tz(j_tl)kwu + TZ(H_I) ks + rl(il)ki—u = Ar

we choose k;_1; = 0, and

kiyii = —ki; = L/w;.

Computingthee ements of H hasbecome slightly moredifficult, however. While
we are interested in having for instance the Lanczos coefficient

(i+1)

7

Fir: = (pi(AN)s1)' (pi(A)re) = s5p3(A)r, (8
the only thing we can reasonably computeis
stlrl(i) = stlai(A)pi (A)yry = (Ui(At)sl)t(pi (A)rl) = slr;. (9

The key to retrieving the Lanczos coefficient is in comparing the left sequence s; =
o;(A")s1 tothe reference Lanczos left sequence 7; = p; (A?)s;.

Sinceboth are polynomial sequences, thereareupper triangular matrices U and
such that

g g
772' = Z Uji(At)isl, 5; = Z vji(At)isl.

We find that the sequences are related by S = RU~1V. This relation can be carried
over to thecoefficients. Below aretwo ways of using the computed quantitiesto retrieve
the origina Lanczos coefficients.

Defining the upper triangular matrix W = V=17, we find that

RIR=W!S'R  and  R'AR=W'S'AR,
inwhich S R islower triangular and S* AR isof lower Hessenberg form. Thisimplies
that we can retrieve the inner productsin equations (5) and (6) as

772»7“2' = wiisfri
and

?EATZ = wZ’Z’SEA?“Z' + wi_lisf_lAri.
The only remaining problem is computing the numbers w;; and w;_1;. Note that the
origina implementation of BiCGstab needs only w;;, since it is based on computing
search directions; the inner product s,_1Ar; aso has no counterpart in the original
algorithm.

The necessary elements of 1/ follow from the equation VW = U

Wii = Ui [ Vi and wi—1; = (Uim1 — Vim1iWis) [Vic1i—1 (10)



where we compute the elements of U from H by the recurrences
Uittit1hip1i = Wi
Wiiprhivr = wim1i — wiihi
and similar formulasfor computing 1 from K.

Using these formulas directly gives to a method that has a danger of leading
quickly to floating point underflow. Therefore we note that we only need the ratios

?zt'+1ri+l _ 5§+1ri+l ) kit1i (11)
Ftry T sty hita
IR P i+1:
and
772t»+1A7°Z'+1 _ 8§+1A7°Z'+1 Wii41 SEATH_]_
4 = + C— (12)
Tip1Tidl Sip1Ti+1 Wit1i+1l  S;4qTi41
in order to compute the Hessenberg matrix of the bi-conjugate gradient al gorithm; see
equation (7).

Similar formulas are arrived at by taking for I the inverse of the above choice.
Define then the upper triangular matrix W = V1. Thisleads to

SSR=W'R'R  and S'AR=W'R'AR.

Now we find for theinner productsin equations (5) and (6) that
wiFir; = shr;

which leads again to formula (11), and
wi T Ary = st Ary — wi_ 7l Arp.

which gives, analogousto by dightly differing from (12)
77?+1A7”i+1 B 5§+1Am’+1 n Wiyl FfArH_l

(13)

Floalisd  ShyaTigl  Wigdigl TegqTign
However, computing according to equations (12) and (13) gives methods that first of
all take an extra inner product, and secondly, turn out to be extremely numerically
unstable!. Therefore we substitute for the first method

wipr 1 ( Uiitl Vil )

Wigli+1  Kigli \Uitlitl  Vitlitl
and interchanging the roles of « and v for the second choice of w
wipr 1 ( Viigl Uiyl )
Wi41i+1 B hi+li Vi4+1i+1 Ui +1i+1 .
Using some elementary relation about the Hessenberg matrices H and K, for instance

~t ~t
r ATyl = P ripahiga
we then find for both choices of W/
~t t
FigAripn SZ»+1A7°2'+1+ Uii4l  Viigl

(14)

~t t :
TipaTi+1 SipaTi+1 Ui+ 141 Vi41i41

1. Infact, we don't report tests on such variants, since even on small, well-conditioned problemsthey stall
or diverge within afew iterations.
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Figure 1. Updated (solid line) and true (dashed line) residual for Classical CGS on
model problem (16)

Thenormalized polynomial coefficimtSuer/quHl, v”+1/vi+1i+1 can becal culated
recursively. For instance,
R (15)
Ui4+154+1 Us;
but in practice we see no difference in numerical stability between using equation (14)
directly, and modifyingit with (15).

6  Stability

Since the variants with and without search directions of any given method perform
different computations, their resultswill differ numerically. For recursive methods such
as discussed in this paper this means that at some points variants may give completely
different results. This phenomenon can be seen by comparing figures 1 and 3 for the
classical methodsto figures 2 and 4 for the three-term ones.

It can be observed that at some point theresidual sizes of computational variants
become unrelated, even though in both cases they still converge.

There is another, more interesting, phenomenon related to numerical accuracy
in these methods. For this, we consider the difference between the recursively updated
residual and the true residual found by computing Az — b. In [2] an argument was
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Figure 2: Updated (solid line) and true (dashed lin€) residua for CGS without search
directions on model problem (16)

given why the norm of the true residual cannot get smaller than the maximal residual
norm during the iteration times a constant consisting mostly of the machine precision.
This means that any increase in the residual size during the iteration will reduce the
amount to which the true residual can be reduced.

For the three-term methods presented here (and in fact for ordinary methods
based on three-term recurrences) basically the same argument holds. From numerical
tests we see that although the qualitative behaviour is the same as for methods using
search directions, in a quantitative sense less accuracy is attainable.

7  Experimental results

We solved the following test problem:

—Du + O0(ug + uy) = f (16)
on the unit square, discretized with central differences and h = 1/31. The graphs
present both the updated residua (solid line) and the true residual (dotted line). One

seesthat al methods converge, althoughthethree-term recurrencestake dightly longer,
and have alessregul ar convergence history. The norm of thetrueresidual isseentolevel
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Figure 3: Updated (solid line) and true (dashed line) residual for Classical BiCGstab
on model problem (16)

off at some point. We observe that this point lies appreciably higher for the three-term
methods than for the classical methods.

8 Conclusion

Polynomial squaring methods based on the three-term recurrences of the Lanczos
method can be derived. However, they involve dightly more work than the classical
variants of such methods, and they are seen to be numerically less stable.
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