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Abstract
The CGS and BiCGstab algorithms were derived by their authors from the bi-conjugate
gradient iteration. In this paper a derivation from the (unnormalized) Lanczos algorithm
is given. Experimental results are given, showing that these methods offer no immediate
advantage over their earlier counterparts.

1 Introduction

A number of recent conjugate gradient-type methods are based on the idea of polynomial
multiplication. Ordinary cg-like methods generate a sequence of polynomials fPig of
successively higher degree, and they compute residuals that satisfy ri = Pi(A)r1 where
r1 is the initial residual. Polynomial multiplicationmethods generate a second sequence
of polynomials, fQig, and they compute residuals satisfying ri = Qi(A)Pi(A)r1.

The first such method was CGS [3], conjugate gradients squared, which is based
onQi � Pi. This method’s motivationcomes from the bi-conjugategradient or Lanczos
algorithm, where two sequences si = Pi(A

t)r1 and ri = Pi(A)r1 are computed. Since
in the ideal case both sequences converge to zero, and

rt1P
2
i (A)ri =

�
Pi(A

t)r1
�2�

Pi(A)r1
�
= stiri;

it makes sense to try and compute the sequence r̂i = P 2
i (A)r1.

In practice, CGS inherits, and even amplifies, the irregularities in the conver-
gence of the bi-conjugate gradient method. Therefore in [4] a method was proposed
that smooths the convergence behaviour by letting r̂i = Qi(A)Pi(A)r1, where the
Pi polynomials are still derived from the biconjugate gradient method, but the Qis are
derived from a sequence of steepest descent steps.
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In the above, the rationale for computing polynomial multiplying sequences is
given. The rest of this paper is devoted to explaining why it is computationally feasible to
construct such sequences. In particular, a construction will be given that is not based on
the bi-conjugate gradient method (as was the case in [3] and [4]), but on the three-term
recurrences of the Lanczos method.

2 Standard presentation of conjugate gradient squaring methods

Denote in preconditioned bi-conjugate gradient-type methods left and right residuals
by si, ri and left and right search directions by qi, pi, and let M be the preconditioning
matrix.

For the derivationof a preconditionedconjugate gradients squared method we use
a slightly different version of the (bi)conjugate gradient method than is used ordinarily.
The residuals and search directions are computed as

ri+1 = ri � AMpi�
(r)

i ; pi+1 = ri+1 + pi�i;

and the left sequences of residuals and search directions are computed as

si+1 = si �AtM tqi�
`
i; qi+1 = si+1 + qi�i;

where �`
i and �(r)i maybe different for the left and right sequences. The coefficients for

the right sequence are computed in the traditional manner

�
(r)

i = stiri=q
t
iApi; �i = sti+1ri+1=s

t
iri:

There exist polynomials �i and �i of degree i� 1 such that

ri = �i(AM )r1; pi = �i(AM )r1:

We find relations for the polynomials

�i+1 = �i �AM�i(AM )�i; �i+1 = �i+1 + �i�i:

Similarly the left sequences satisfy

si = �̃i(A
tM t)s1; qi = �̃i(A

tM t)s1

for certain polynomials �̃i and �̃i.
In the following derivation of the cgs and bcgs methods, the polynomials �i

and �i will be taken to refer to the left sequences si and qi. For cgs they are identical
to the polynomials for the ri and pi sequences.

The conjugate gradient squared method aims at computing the sequences of
squared residuals �2

i (AM )r1 and squared search directions �2
i (MA)p1. The scalars of

the biconjugate gradient method can be computed as

stiMri = st1�i(MA)M�i(AM )r1 = st1M
�
�2
i (AM )r1

�
;

and

qtiApi = qt1�i(AM )A�i(MA)p1 = qt1A
�
�2
i (MA)p1

�
:
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First an auxiliary quantity:

1
i+1

D
= �iri+1 = �iri � �iAMpi�

(r)

i = �iri �AM�ipi�
(r)

i

=

(
3

i
�AM 4

i
�
(r)

i cgs

2
i
�AM 4

i
�
(r)

i bcgs

Next the squared residual:

2
i+1

D
= �i+1ri+1 = (�i �AM�i�

`
i)ri+1

=

8>><
>>:
�iri � �iAMpi�i �AM�iri+1�i

= 2
i
� AM ( 3

i
+ 1

i+1
)�i cgs

�iri+1 �AM�iri+1�
`
i

= 1
i+1

� AM 1
i+1

�`
i bcgs

The next quantity is not needed for bcgs, since it is equal to the previous:

3
i+1

D
= �i+1ri+1

= �i+1�i+1r1 = �i+1�i+1r1 = �i+1ri+1 + �i+1pi�i

= �i+1ri+1 + �iri+1�i = 2
i+1

+ 1
i+1

�i cgs only

For the squared search directions we find

4
i+1

D
= �i+1pi+1

=

8>>>>>><
>>>>>>:

�i+1pi+1 + �ipi+1�i
= �i+1pi+1 + (�iri+1 + �ipi�i)�i

= 3
i+1

+ �i( 1
i+1 + 4

i
�i) cgs

�i+1pi+1 = �i+1ri+1 + �i�i+1pi
= �i+1ri+1 + �i(�ipi � �`

iAM�ipi)

= 2
i+1 + �i( 4

i
� �`

iAM 4
i
) bcgs

The amount of work per iteration for both methods consists of two matrix-vector
products and preconditioner solves; additionally, for cgs there are 6 vector additions
or vector-plus-scalar-times-vector operations, for bcgs there are 4 such operations.
Updating the iterate takes one extra vector operation (analogous to updating 2

i
) for

cgs and two (corresponding to update 1
i

and 2
i
) for bcgs.

3 Polynomial squaring methods without search directions

Polynomial squaring methods, such as conjugate gradients squared (cgs) or bi-conjugate
gradients stabilized (bcgs) can be formulated without search directions. For this, con-
sider a generalized Lanczos method with two series of vectors R = (: : : ; ri; : : :)

and S = (: : : ; si; : : :) and upper Hessenberg matrices H and K such that

AR = RH and AtS = SK:
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It is easy to see that for these sequences there are corresponding sequences of polynomi-
als f�ig and f�ig so that ri = �i(A)r1 and si = �i(A

t)s1, where the i-th polynomials
have degree i � 1. The relations AR = RH, AtS = SK, or

Arj =
X

i�j+1

rihij; Atsj =
X
i�j+1

sikij; (1)

translate into corresponding relations

t�j(t) =
X

i�j+1

�i(t)hij ; t�j(t) =
X

i�j+1

�i(t)kij (2)

for the polynomials.
The Lanczos method uses the same polynomials for both sequences, so we will

introduce a reference sequence R̃ satisfyingAtR̃ = R̃H and r̃1 = s1. Equivalently, the
elements of this sequences are generated as

r̃i = �i(A
t)r̃1:

Since the degrees of corresponding polynomials �i and �i are the same, the sequences
R̃ and S are related by

sj =
X
i�j

r̃ivij ; r̃j =
X
i�j

siuij

for certain sets of coefficients uij, vij . This fact will be needed later in the bcgs method.

Polynomials squaring methods now compute vectors r(j)i = �i(A)�j (A)r1, in

particular the sequence fr(i)i g � f�i(A)�i(A)r1g. The relations (1), (2) then translate
into

r
(j+1)
i hi+1i + r

(j)

i hii + r
(j�1)
i hi�1i = Ar

(j)

i (3)

and

r
(j)

i+1ki+1i + r
(j)

i kii + r
(j)

i�1ki�1i = Ar
(j)

i : (4)

In all polynomial squaring methods, H is the Hessenberg matrix of the Lanczos
method, that is, its elements can be computed from the inner products stiArj, s

t
irj

directly or indirectly. For the computation of these inner products the sequence S is not
explicitly needed except for its first element. For instance, stirj = s1�i(A)�j(A)r1 =

st1r
(j)

i .
The cgs method corresponds to the choice�i � �i for the polynomials. ThusK =

H, and the elements of the Hessenberg matrix can be computed directly from inner
products stiArj = s1Ar

(j)

i , r̃tirj = s1r
(j)

i . Because of the commutativity of polynomials

in A we have r(j)i = r
(i)

j for all i and j.
For the bcgs method the Hessenberg matrix K is reduced to a lower bidiagonal

matrix; the coefficients ki+1i, kii are chosen in a steepest descent fashion in order to
minimize kr(i+1)

i+1 k.
Using the above recurrences in i and j direction through the two-parameter

family of r(j)i vectors, we can now construct the single-parameter sequence fr(i)i g in
an efficient way.
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Suppose that r(i�1)
i�1 , Ar(i�1)

i�1 , r(i)i�1, Ar(i)i�1, r(i)i , and Ar
(i)

i have already been
computed. Now perform the following steps:

� Compute r(i�1)
i . For cgs this is equal to r(i)i�1; for bcgs compute

r
(i�1)
i kii�1 + r

(i�1)
i�1 ki�1i�1 = Ar

(i�1)
i�1 :

� Compute r(i+1)
i from

r
(i+1)
i hi+1i + r

(i)

i hii + r
(i�1)
i hi�1i = Ar

(i)

i :

� Compute r(i+1)
i+1

r
(i+1)
i+1 ki+1i + r

(i+1)
i kii + r

(i+1)
i�1 ki�1i = Ar

(i+1)
i ;

where for bcgs the coefficient ki�1i is zero. This requires having computed
Ar

(i+1)
i , and for cgs additionally r(i+1)

i�1 needs to be computed from

r
(i+1)
i hi+1i + r

(i)

i hii + r
(i�1)
i hi�1i = Ar

(i)

i :

The total cost, as in the previous derivation with search directions, is seen to comprise
6 vector operations for cgs and 4 for bcgs. However, unlike in the case of the methods
using search directions, for the computation of the iterate there is now an update relation
corresponding to each update for the residual. Thus computing the iterate doubles the
number of vector operations.

4 Computation of coefficients in CGS

In the conjugate gradient squared method, the choices �i � �̃i and H = K are made,
where the tridiagonal matrix H is chosen as the one generated by the Lanczos method.
Denoting the left and right residuals of the Lanczos method by si, ri, we need the values
of

stiri =
�
�i(A

t)r1
�t�

�i(A)r1
�
= rt1�

2
i (A)r1 = rt1r

(i)

i ; (5)

and

stiAri =
�
�i(A

t)r1
�t
A
�
�i(A)r1

�
= rt1A�

2
i (A)r1 = rt1Ar

(i)

i : (6)

The coefficients of H then follow from

hii =
siAri

stiri
; hi�1i =

siri

sti�1ri�1
hii�1; hi+1i = �hii � hi�1i: (7)

(For a survey of such identities, see [1].)

5 Computation of coefficients in BiCGstab

The BiCGstab algorithm is based on taking a different recurrence in i direction from
the one in j direction. While the latter one is still based on the matrix H from the
Lanczos method, the former recurrence takes steepest descent steps. Thus, we perform
the steepest descent update
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r
(i+1)
i+1 = r

(i+1)
i + !iAr

(i+1)
i

with

!i = �
r
(i+1)t

i Ar
(i+1)
i

(Ar
(i+1)
i )t(Ar

(i+1)
i )

:

In order to write this as a three-term recurrence

r
(i+1)
i+1 ki+1i + r

(i+1)
i kii + r

(i+1)
i�1 ki�1i = Ar

(i+1)
i

we choose ki�1i = 0, and

ki+1i = �kii = 1=!i:

Computing the elements ofH has become slightlymore difficult, however. While
we are interested in having for instance the Lanczos coefficient

r̃tiri =
�
�i(A

t)s1
�t�

�i(A)r1
�
= st1�

2
i (A)r1; (8)

the only thing we can reasonably compute is

st1r
(i)

i = st1�i(A)�i(A)r1 =
�
�i(A

t)s1
�t�

�i(A)r1
�
= stiri: (9)

The key to retrieving the Lanczos coefficient is in comparing the left sequence si =
�i(A

t)s1 to the reference Lanczos left sequence r̃i = �i(A
t)s1.

Since both are polynomial sequences, there are upper triangularmatricesU andV
such that

r̃i =

iX
j=i

uji(A
t)is1; si =

iX
j=i

vji(A
t)is1:

We find that the sequences are related by S = R̃U�1V . This relation can be carried
over to the coefficients. Below are two ways of using the computed quantities to retrieve
the original Lanczos coefficients.

Defining the upper triangular matrix W = V �1U , we find that

R̃tR = W tStR and R̃tAR = W tStAR;

in which StR is lower triangular and StAR is of lower Hessenberg form. This implies
that we can retrieve the inner products in equations (5) and (6) as

r̃tiri = wiis
t
iri

and

r̃tiAri = wiis
t
iAri + wi�1is

t
i�1Ari:

The only remaining problem is computing the numbers wii and wi�1i. Note that the
original implementation of BiCGstab needs only wii, since it is based on computing
search directions; the inner product si�1Ari also has no counterpart in the original
algorithm.

The necessary elements of W follow from the equation VW = U :

wii = uii=vii and wi�1i = (ui�1i � vi�1iwii)=vi�1i�1 (10)
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where we compute the elements of U from H by the recurrences

ui+1i+1hi+1i = uii

uii+1hi+1i = ui�1i � uiihii

and similar formulas for computing V from K.
Using these formulas directly gives to a method that has a danger of leading

quickly to floating point underflow. Therefore we note that we only need the ratios

r̃ti+1ri+1

r̃tiri
=

sti+1ri+1

stiri
�
ki+1i

hi+1i
(11)

and
r̃ti+1Ari+1

r̃ti+1ri+1
=

sti+1Ari+1

sti+1ri+1
+

wii+1

wi+1i+1
�
stiAri+1

sti+1ri+1
(12)

in order to compute the Hessenberg matrix of the bi-conjugate gradient algorithm; see
equation (7).

Similar formulas are arrived at by taking for W the inverse of the above choice.
Define then the upper triangular matrix W = V �1U . This leads to

StR = W tR̃tR and StAR = W tR̃tAR:

Now we find for the inner products in equations (5) and (6) that

wiir̃
t
iri = stiri

which leads again to formula (11), and

wiir̃
t
iAri = stiAri � wi�1ir̃

t
i�1Ari:

which gives, analogous to by slightly differing from (12)
r̃ti+1Ari+1

r̃ti+1ri+1
=

sti+1Ari+1

sti+1ri+1
+

wii+1

wi+1i+1
�
r̃tiAri+1

r̃ti+1ri+1
: (13)

However, computing according to equations (12) and (13) gives methods that first of
all take an extra inner product, and secondly, turn out to be extremely numerically
unstable1. Therefore we substitute for the first method

wii+1

wi+1i+1
=

1
ki+1i

�
uii+1

ui+1i+1
�

vii+1

vi+1i+1

�
and interchanging the roles of u and v for the second choice of w

wii+1

wi+1i+1
=

1
hi+1i

�
vii+1

vi+1i+1
�

uii+1

ui+1i+1

�
:

Using some elementary relation about the Hessenberg matrices H and K, for instance

r̃tiAri+1 = r̃ti+1ri+1hi+1i

we then find for both choices of W
r̃ti+1Ari+1

r̃ti+1ri+1
=

sti+1Ari+1

sti+1ri+1
+

uii+1

ui+1i+1
�

vii+1

vi+1i+1
: (14)

1. In fact, we don’t report tests on such variants, since even on small, well-conditioned problems they stall
or diverge within a few iterations.
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Figure 1: Updated (solid line) and true (dashed line) residual for Classical CGS on
model problem (16)

The normalized polynomial coefficientsuii+1=ui+1i+1, vii+1=vi+1i+1 can be calculated
recursively. For instance,

uii+1

ui+1i+1
=

ui�1i

uii
� hii: (15)

but in practice we see no difference in numerical stability between using equation (14)
directly, and modifying it with (15).

6 Stability

Since the variants with and without search directions of any given method perform
different computations, their results will differ numerically. For recursive methods such
as discussed in this paper this means that at some points variants may give completely
different results. This phenomenon can be seen by comparing figures 1 and 3 for the
classical methods to figures 2 and 4 for the three-term ones.

It can be observed that at some point the residual sizes of computational variants
become unrelated, even though in both cases they still converge.

There is another, more interesting, phenomenon related to numerical accuracy
in these methods. For this, we consider the difference between the recursively updated
residual and the true residual found by computing Axk � b. In [2] an argument was
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Figure 2: Updated (solid line) and true (dashed line) residual for CGS without search
directions on model problem (16)

given why the norm of the true residual cannot get smaller than the maximal residual
norm during the iteration times a constant consisting mostly of the machine precision.
This means that any increase in the residual size during the iteration will reduce the
amount to which the true residual can be reduced.

For the three-term methods presented here (and in fact for ordinary methods
based on three-term recurrences) basically the same argument holds. From numerical
tests we see that although the qualitative behaviour is the same as for methods using
search directions, in a quantitative sense less accuracy is attainable.

7 Experimental results

We solved the following test problem:

�∆u+ 90(ux + uy) = f (16)

on the unit square, discretized with central differences and h = 1=31. The graphs
present both the updated residual (solid line) and the true residual (dotted line). One
sees that all methods converge, although the three-term recurrences take slightly longer,
and have a less regular convergence history. The norm of the true residual is seen to level
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Figure 3: Updated (solid line) and true (dashed line) residual for Classical BiCGstab
on model problem (16)

off at some point. We observe that this point lies appreciably higher for the three-term
methods than for the classical methods.

8 Conclusion

Polynomial squaring methods based on the three-term recurrences of the Lanczos
method can be derived. However, they involve slightly more work than the classical
variants of such methods, and they are seen to be numerically less stable.
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