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Abstract

Level 3 algorithms for solving the generalized Sylvester equation (AR � LB;DR �
LE) = (C;F ) and a transposed analogue (ATU + DTV;�UBT � V ET ) = (C;F )
are presented. These blocked algorithms permit reuse of data in complex memory
hierarchies of current advanced computer architectures. The separation of two regular
matrix pairs (A;D) and (B;E), Dif[(A;D); (B;E)], is de�ned in terms of the generalized
Sylvester operator (AR� LB;DR� LE). Robust, e�cient and reliable Dif{estimators
are presented. The basic problem is to �nd a lower bound on Dif�1, which can be done
by solving generalized Sylvester equations in triangular form. Frobenius norm{based
and one{norm{based Dif{estimators are described and evaluated. These estimates lead
to computable error bounds for the generalized Sylvester equation. The one{norm{
based estimator makes the condition estimation uniform with LAPACK. Fortran 77
software that implements our algorithms for solving generalized Sylvester equations,
and for computing error bounds and Dif{estimators are presented. Computational
experiments that illustrate the accuracy, e�ciency and reliability of our software are
also described.
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1 Introduction

The generalized Sylvester equation

AR� LB = C;

DR� LE = F;
(1.1)

where L and R are unknown m � n matrices, (A;D); (B;E) and (C; F ) are given pairs
of m � m;n � n, and m � n matrices, respectively, with real (or complex) entries has
several applications relating to the problem of computing stable eigendecompositions of
matrix pencils [23, 6]. For example, it can be formulated in terms of a block-diagonalizing
equivalence transformation P�1(S � �T )Q, where

S � �T �
"
A �C
0 B

#
� �

"
D �F
0 E

#
; (1.2)

and

P�1 =

"
Im �L
0 In

#
; Q =

"
Im R

0 In

#
: (1.3)

We want to �nd (L;R) such that

P�1(S � �T )Q =

"
A 0
0 B

#
� �

"
D 0
0 E

#
: (1.4)

The �rst m columns of P�1 and Q, respectively, span a pair of eigenspaces (de
ating
subspaces) associated with �(A;D) [24]. By solving for (L;R) in (1.1) we also get a pair
of complementary eigenspaces (de
ating subspaces associated with �(B;E)) from the last
n columns of P�1 and Q, respectively. One can show that (1.1) has a unique solution if
and only if the regular pencils A � �D and B � �E have disjoint spectra [23]. If these
pencils have common spectra or are singular (i.e., det(A� �D) � 0 or det(B � �E) � 0 for
each �), the generalized Sylvester equation will not in general be consistent. An important
quantity that measures the sensitivity of these eigenspaces is the separation of the matrix

pairs (A;D) and (B;E) [23], [24],

Dif[(A;D); (B;E)] = inf
k(L;R)kF=1

k(AR� LB;DR� LE)kF : (1.5)

The relationship with the generalized Sylvester equation is that Dif[(A;D); (B;E)] > 0 (Dif
for short) if and only if (1.1) has a unique solution.

If we choose D and E to be the identity matrices and F as the zero matrix then (1.1)
reduces to the (standard) Sylvester equation AR� RB = C, and the discussion above will
then concern invariant subspaces of S, with P = Q [17, 2].

Using Kronecker products the matrix equation (1.1) can be written as a 2mn � 2mn
linear system of equations [6]

Zx = b; (1.6)

where

Z =

"
In 
A �BT 
 Im
In 
D �ET 
 Im

#
; x =

"
col(R)
col(L)

#
; b =

"
col(C)
col(F )

#
: (1.7)
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The column vector col(X) denotes an ordered stack of the columns of a matrix X from left
to right starting with the �rst column. Already for moderate m and n, the 2mn�2mn Z in
(1.7) is a quite large matrix. Accordingly, this equivalent formulation is mainly of interest
for theoretical purposes. For example, it can be shown that

Dif�1[(A;D); (B;E)] = kZ�1k2 = �min(Z)
�1; (1.8)

where �min(Z) is the smallest singular value of Z [6].
To compute �min(Z) is an O(m

3n3) operation, so there is a need for e�cient and reliable
Dif�1{estimators [20]. In this context, besides solving Zx = b we also need to be able to
solve a transposed system ZT y = b, where

ZT =

"
In 
AT In 
DT

�B 
 Im �E 
 Im

#
; y =

"
col(U)
col(V )

#
: (1.9)

To solve for y in ZT y = b is equivalent to solve for (U; V ) in the matrix equation

ATU +DTV = C;

�UBT � V ET = F:
(1.10)

Notice that by transposing the left hand sides of (1.1) we obtain a transposed generalized
Sylvester equation di�erent from (1.10).

Other applications of (1.1) include a new direct method for reordering eigenvalues in the
generalized real Schur form of a regular matrix pair [16], and an algorithm for computing
an additive decomposition of a generalized transfer matrix [19]. The latter comprises both
a reordering of eigenvalues and a block{diagonalization as described above. An alternative
form of a generalized Sylvester equation with applications in control theory is

AXBT + CXDT = E; (1.11)

where A and C are m�m, B and D are n�n, and E and the desired solution X are m�n

[9]. The matrix equation (1.11) has a unique solution if and only if (A;C) and (�D;B)
are regular matrix pairs with disjoint spectra [4]. By introducing R = XBT and L = CX ,
(1.11) can be recast in the form (1.1):

AR+ LDT = E;

CR� LBT = 0:

The solvability condition for (1.11) implies that at least one of B and C must be nonsin-
gular, so X can, at least in theory, be resolved from L or R. However, if both B and
C are ill-conditioned with respect to inversion (or one of them is singular and the other
ill-conditioned) it is recommended to solve (1.11) directly [9, 8].

The rest of the paper is outlined as follows. In Section 1.1 we collect our notation.
In Section 2 we present block algorithms for solving Zx = b and ZT y = b, respectively.
Section 3 describes Dif�1{estimators based on the Frobenius norm and the one{norm (or
in�nity{norm), respectively. In Section 4 we discuss LAPACK{style error bounds for the
generalized Sylvester equation. Section 5 presents our Fortran 77 software that implement
algorithms for solving generalized Sylvester equations, and for computing error bounds and
Dif{estimators. Some computational experiments that illustrate the accuracy, e�ciency
and reliability of our software are presented in Section 6. Finally, some conclusions are
summarized in Section 7.
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1.1 Notation

The following notation is used in the paper. In denotes an identity matrix of size n-by-n.
�(A;B) denotes the spectrum of a regular matrix pair (A;B) or pencil A � �B. kAk2
denotes the spectral norm (2-norm) of a matrix A induced by the Euclidean vector norm.
kAkF denotes the Frobenius (or Euclidean) matrix norm. kAkM = maxi;j jaij j, i.e. the
maximum of the absolute values of the matrix entires. �max(A) and �min(A) denote the
largest and smallest singular values of A, respectively. For a square matrix A we have that
kAk2 = �max(A) and kA�1k2 = �min(A)

�1. A 
 B denotes the Kronecker product of two
matrices A and B whose (i; j)-th block element is aijB. A

T denotes the transpose of A. AH

denotes the conjugate transpose of A. A denotes the conjugate of A. jAj and jxj denote the
matrix and the vector whose elements are jaij j and jxij, respectively. Inequalities such as
jAj � jBj; jxj � jyj are interpreted componentwise. D = diag(x) denotes a diagonal matrix
with dii = xi.

2 LAPACK{Style Algorithms for Solving Generalized Syl-

vester Equations

Algorithms used in LAPACK [1] are designed to be e�cient on a wide range of modern
high performance computers. To achieve high performance on these advanced architec-
tures several well-known elementwise algorithms have been restructured in terms of Level 2
(matrix{vector) and Level 3 (matrix{matrix) operations. These blocked algorithms permit
reuse of data in complex memory hierarchies. In the following, we derive similar block
algorithms for solving the generalized Sylvester equation (1.1) and the transposed variant
(1.10).

We start by recalling the algorithms in [20] for solving (1.1). These are generalizations of
the Schur method [3] and the Hessenberg{Schur method [10] for solving AR�RB = C. Both
methods are based on orthogonal equivalence transformations (unitary transformations if
the matrix entries are complex) and involve the following four steps:

1. Transform (A;D) and (B;E) to simpler form:

(A1; D1) := (PTAQ; PTDQ);
(B1; E1) := (UTBV; UTEV ):

2. Modify the right hand sides (C; F ):

C1 := PTCV; F1 := PTFV:

3. Solve the transformed system for (L1; R1):

A1R1 � L1B1 = C1;

D1R1 � L1E1 = F1:
(2.1)

4. Transform the solution back to the original system:

L := PL1U
T ; R := QR1V

T :
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We have chosen to recast the generalized Schur method [20] in a blocked analogue.
Using GEGS, the LAPACK implementation of the QZ{algorithm [21] in Step 1, (A;D)
and (B;E) are transformed to generalized real Schur form with A1 and B1 (upper) quasi
triangular and D1 and E1 (upper) triangular. A quasi triangular matrix is block triangular
with 1 � 1 and 2 � 2 diagonal blocks. The 2 � 2 blocks correspond to pairs of complex
conjugate eigenvalues of the associated matrix pencil and the ratios of the 1 � 1 diagonal
blocks (aii=bii) are the real eigenvalues. (In the generalized complex Schur form A1 and B1

will be (upper) triangular too, which simpli�es the discussion below.)

Step 2 and Step 4 are performed with calls to GEMM, the general matrix{multiply{and{
add operation of the Level 3 BLAS [7]. It only remains to deal with Step 3, i.e. to solve a
generalized Sylvester equation in quasi triangular form.

Suppose the transformed matrix equation (2.1) is partitioned according to the diagonal
block structure ofA1 and B1. Let Aii of size a�a; a = 1; 2 and Bjj of size b�b; b = 1; 2 denote
the diagonal blocks of A1 and B1, respectively, and let p; q be the number of diagonal blocks
of A1 and B1. Then (2.1) is solved by the GS{algorithm that compactly can be written as

AiiRij � LijBjj = Cij �
�Pp

k=i+1AikRkj �
Pj�1

k=1 LikBkj

�
� Gij ;

DiiRij � LijEjj = Fij �
�Pp

k=i+1DikRkj �
Pj�1

k=1 LikEkj

�
� Hij ;

(2.2)

for j = 1; 2; : : : ; q and i = p; p� 1; : : : ; 1 [20]. In total we solve p � q small subsystems (2.2).
Each of them can be written as a linear system

"
Ib 
 Aii �BT

jj 
 Ia
Ib 
Dii �ET

jj 
 Ia

# "
col(Rij)
col(Lij)

#
=

"
col(Gij)
col(Hij)

#
; (2.3)

of size 2, 4 or 8. Note that even if Aii and Bjj are upper triangular, the subsystems
(2.3) cannot in general be transformed to upper triangular form only by permutations. For
example, in the complex case all subsystems (2.3) will be 2-by-2 and dense. This is in
contrast to the Schur method for AR�RB = C. The solution of the subsystems (2.3) will
be discussed later.

In the following two subsections we discuss block algorithms to solve (quasi) triangular
generalized Sylvester equations. Without loss of generality, we assume that (A;D) and
(B;E) are in generalized Schur form.

2.1 A Block Algorithm for Solving Zx = b

Indeed, the GS{algorithm described above is a block method with block sizes one and two
(only one in complex arithmetic). However, these block sizes are in general too small in
order to e�ciently utilize a complex memory hierarchy. Appropriate block sizes for this
purpose (i.e. the granularities of the data items we access) are dictated from machine{
dependent parameters such as di�erent cache sizes (e.g., on{chip and local or global cache
memories), vector register length, and memory bandwidth. LetM and N be the block sizes
of (A;D) and (B;E), respectively, chosen with respect to certain machine{parameters of a
target architecture. To simplify notation we assume that the problem sizes m and n are
multiples ofM and N , respectively. Moreover, let Aij of size M �M and Bij of size N �N

5



denote blocks (subarrays) of A and B, respectively, and nbA = n=N; nbB = m=M are the
number of diagonal blocks of A and B, respectively.

To minimize data tra�c and obtain as much data reuse as possible we also have to take
the access patterns of the blocks (subarrays) into account. We have chosen a block{column
Level 3 variant, which solves for blocks Lij and Rij of (L;R) starting at the south{west
corner working upwards (north) and then rightwards (east) block{column by block{column.
The Level 3 method is outlined in Algorithm (I).

for j = 1 : nbB
for i = nbA : �1 : 1

f Solve the (i; j){subsystem g
AiiRij � LijBjj = Cij
DiiRij � LijEjj = Fij
for k = 1 : i� 1

f Update block column j of C and F g
Ckj = Ckj � AikRij

Fkj = Fkj �DikRij

for k = j + 1 : nbB
f Update block row i of C and F g
Cik = Cik + LijBjk

Fik = Fik + LijEjk

(I)

Each (i; j){subsystem of size 2MN � 2MN can be solved using Algorithm (I) with M

and N equal to 1 or 2. The values of M and N are de�ned by the eigenvalues (1 for a real
eigenvalue and 2 for a complex conjugate pair). The subsystems of this Level 2 variant are
of type (2.3).

2.2 A Block Algorithm for Solving ZTy = b

With the same blocking as used for solving Zx = b it is possible to formulate a blocked
variant to solve ZT y = b, with similar arithmetic complexity as Algorithm (I). We solve for
blocks Uij and Vij of (U; V ) in a block{rowwise fashion, starting at the north{east corner
working west and then downwards (south) block{row by block{row. The Level 3 method is
outlined in Algorithm (II).

Also here each (i; j){subsystem of size 2MN �2MN can be solved using Algorithm (II)
with M and N equal to 1 or 2. A subsystem of the Level 2 algorithm looks like"

Ib 
AT
ii Ib 
DT

ii

�Bjj 
 Ia �Ejj 
 Ia

# "
col(Uij)
col(Vij)

#
=

"
col(Gij)
col(Hij)

#
; (2.4)

where a; b = 1; 2 and the right hand sides Gij and Hij are de�ned similarly as in (2.3). We
use the same method to solve subsytems of type (2.3) and (2.4).

Notice, in the complex case, we want to solve for y in ZHy = b, which corresponds to
replace all transposed matrices (or subarrays) in (1.10), (2.4) and Algorithm (II) with the
conjugate transposed analogues.
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for i = 1 : nbA
for j = nbB : �1 : 1

f Solve the (i; j){subsystem g
AT
iiUij +DT

iiVij = Cij
�UijBT

jj � VijE
T
jj = Fij

for k = 1 : j � 1
f Update block row i of F g
Fik = Fik + UijB

T
kj + VijE

T
kj

for k = i+ 1 : nbA
f Update block column j of C g
Ckj = Ckj � AT

ikUij �DT
ikVij

(II)

3 Estimating the Separation between Two Matrix Pairs

The basic problem is to �nd a lower bound on Dif�1[(A;D); (B;E)]� kZ�1k2, where Z is
the matrix representation (1.7) of the generalized Sylvester operator. It is possible to com-
pute lower bounds on Dif�1 by solving generalized Sylvester equations in triangular form.
Frobenius norm{based estimators are presented in [20]. Here we describe modi�cations
of two of these estimators and apply a one{norm{based estimator to estimate Dif�1. All
condition estimation in LAPACK for linear systems and the standard eigenvalue problem is
based on a one{norm{based estimator [13], which earlier has been applied to estimate the
separation between two matrices [17, 2]. Our contribution makes it possible to conform con-
dition estimation and error bounds for the generalized eigenvalue problem with LAPACK
[18].

By knowing a lower bound DIFINV on kZ�1k2 we also have an upper bound DIF =
1=DIFINV on the separation between two regular matrix pairs (1.5). Since we use our block
algorithms to solve the generalized Sylvester equations involved in computing DIFINV, our
estimators will mainly execute Level 3 operations.

3.1 Frobenius Norm-Based Estimators

From the Zx = b representation (1.6) of the generalized Sylvester equation we get a lower
bound on Dif�1:

k(L;R)kF =k(C; F )kF = kxk2=kbk2 � kZ�1k2: (3.1)

To get an improved estimate we want to choose right hand sides (C�; F �) such that the
associated solution (L�; R�) has as large norm as possible. Then the quantity

�F � k(L�; R�)kF =k(C�; F �)kF ; (3.2)

is our lower bound on kZ�1k2. The work to compute �F is comparable to solve a generalized
Sylvester equation, which costs O(m3 +m2n +mn2 + n3) 
ops (only 2m2n + 2mn2 if the
matrix pairs are in generalized Schur form) [20]. This is a very modest cost compared to
compute the exact value of �min(Z), which requires O(m3n3) 
ops.
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Conceptually, we use the GS{algorithm to compute �F , which means that we get a
contribution from each subsystem (2.3) to the �nal (L�; R�). To simplify notation, we write
a subsystem (2.3) as

Ziju = v(� h� f); (3.3)

where f denotes contributions from other subsystems and h is chosen to maximize kuk
while keeping kvk small. We have made modi�cations to the estimators �F (BSOLVE) and
�F (BSOLVD) in [20]. First, we replace partial pivoting with complete pivoting in the LU
factorization of Zij , i.e. V LUW = Zij (V;W permutation matrices). Secondly, we make
the look ahead strategy in �F (BSOLVE) more robust and the approximate nullvector of Zij
used in �F (BSOLVD) is now obtained by using the one{norm{based condition estimator of
LAPACK. In summary, we have

� BSOLVE: Solve for w in V Lw = h � f using a look ahead strategy similar to the
Linpack estimator [5], except that our right hand sides are loaded with contributions
from earlier computations (f in (3.3)). (The entries of h are chosen to +1 or �1 and
the sign of hi is determined by an algorithm dependent local look ahead strategy.)
Then, we solve for x+ and x� in UWx+ = w+ and UWx� = w�, where w+ and
w� are the solutions resulting from choosing hn as +1 and �1 in V Lw = h = y � f ,
respectively. Finally, x is chosen as the solution (x+ or x�) with the largest 2{norm.
For details see [20, 22].

� BSOLVD:Use GECON [1] to compute an approximate null{vector e of ZT
ij and normalize:

h = e=kek2. Finally, solve for x in Zijx = �h � f with the sign chosen to give the
greater value of kxk2.

The local choice of right hand sides gives the global (C�E; F
�

E) with entries �1 for �F (BSOLVE),
and for �F (BSOLVD) all p � q blocks in the corresponding right hand sides (C�D; F

�

D) (where
p and q are the number of diagonal blocks in the generalized Schur forms of (A;D) and
(B;E), respectively) will have Frobenius norm 1, yielding

�F (BSOLVE) = k(L�E; R�E)kF =
p
2mn; (3.4)

and
�F (BSOLVD) = k(L�D; R�D)kF =

p
pq: (3.5)

3.2 An One{Norm{Based Estimator

From the relationship

1p
2mn

kZ�1k1 � kZ�1k2 �
p
2mnkZ�1k1; (3.6)

we know that kZ�1k1 can never di�er more than a factor
p
2mn from kZ�1k2. So it makes

sense to compute an one{norm{based estimator of Dif�1.
The LAPACK routine LACON implements a method for estimating the one{norm of a

square matrix, using reverse communication for evaluating matrix{vector products [12, 13].
By applying this method to kZ�1k1 we have to provide the solution vectors x and y of
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Zx = z (1.6) and ZT y = z (1.9), where z is determined by LACON. In each step we
only solve one of these generalized Sylvester equations. For this purpose we use the block
algorithms described in Section 2, giving us a Level 3 method for computing a lower bound
of kZ�1k1. The cost for computing this bound is roughly equal to the number of steps in the
reverse communication times the cost for one generalized Sylvester solve. Notice, kZ�1k

1

also satisfy (3.6), i.e. can never di�er more than a factor
p
2mn from kZ�1k2. Moreover,

since kBk
1

= kBT k1 the same method can be used to compute an in�nity{norm{based
estimate of Dif�1.

4 Error Bounds for the Generalized Sylvester Equation

Recently, a perturbation analysis of the generalized Sylvester equation was presented [15],
that generalizes and extends results for the standard Sylvester equation [14]. By taking full
account to the structure of the generalized Sylvester equation, expressions for the backward
error of an approximate solution (L̂; R̂) and condition numbers that measure the sensitivity
of a solution to perturbations in the data are derived. In the following we review some of
the results in [15].

One important result shows that small values of the residuals

R1 � C � (AR̂� L̂B);

R2 � F � (DR̂� L̂E);
(4.1)

do not necessarily yield a small backward error, unlike for a standard linear system. Let
(L̂; R̂) denote an approximate solution of the generalized Sylvester equation (1.1). The
normwise backward error of (L̂; R̂) is de�ned by

�(L̂; R̂) � minf� : (A+ �A)R̂� L̂(B + �B) = C + �C;

(D +�D)R̂� L̂(E +�E) = F + �F;
k(�A;�D)kF � ��; k(�B;�E)kF � ��; k(�C;�F )kF � �
g:

(4.2)

We see that �(L̂; R̂) is a measure of the distance to the closest perturbed generalized
Sylvester equation that has (L̂; R̂) as the exact solution. By choosing � = k(A;D)kF ; � =
k(B;E)kF ; 
 = k(C; F )kF , �(L̂; R̂) corresponds to the normwise relative backward error
with respect to the Frobenius norm.

Moreover, we can bound �(L̂; R̂) from below as

k(R1; R2)kF
(�+ �)k(L̂; R̂)kF + 


� k(R1; R2)kF
�kR̂kF + �kL̂kF + 


� �(L̂; R̂); (4.3)

and from above as

�(L̂; R̂) � �(L̂; R̂)
k(R1; R2)kF

(�+ �)k(L̂; R̂)kF + 

; (4.4)

where

�(L̂; R̂) =
(�+ �)k(L̂; R̂)kF + 


(�2�n(R̂)2 + �2�m(L̂)2 + 
2)
1

2

� 1; (4.5)
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is a growth factor that measures by how much the backward error �(L̂; R̂), at most, can be
greater than the relative residual as de�ned in (4.4).

In the following, we discuss forward error bounds expressed in terms of the residuals
(4.1). The �rst is a normwise error bound for a computed solution [15]:

k(L;R)� (L̂; R̂)kF
k(L;R)kF

� kZ�1k2
k(R1; R2)kF
k(L;R)kF

: (4.6)

The normwise error bound (4.6) holds in general but can be weaker than one based on
componentwise errors [15]. The rounding errors in the computed residuals can be expressed
as

R̂1 = 
(C � (AR̂� L̂B)) = R1 +�R1;

R̂2 = 
(F � (DR̂� L̂E)) = R2 +�R2;

where
j�R1j � u

�
3jCj+ (m+ 3)jAjjR̂j+ (n+ 3)jL̂jjBj

�
� R1

u;

j�R2j � u
�
3jF j+ (m+ 3)jDjjR̂j+ (n+ 3)jL̂jjEj

�
� R2

u;

and u is the unit roundo�. Introducing

g = jcol(
h
R̂1 R̂2

i
)j+ col(

h
R1

u R2
u
i
);

and G = diag(g), we get the bound

k(L;R)� (L̂; R̂)kM
k(L̂; R̂)kM

� k jZ�1jgkM
k(L̂; R̂)kM

=
kZ�1GkM
k(L̂; R̂)kM

: (4.7)

From (4.7) we see that large elements in the kth column of jZ�1j can be o�set by a small
kth element of g. This situation can never be re
ected in the bound (4.6) which in these
cases is a weaker bound. Accordingly, (4.7) has better scaling properties than (4.6) but none
of the bounds are invariant under diagonal scalings of the (generalized) Sylvester equation
[14, 15]. The factor kZ�1GkM in (4.7) can be estimated by using the techniques of the
one{norm{based estimator for kZ�1k2.

5 LAPACK{Style Software

Following the LAPACK conventions and standards [1], most computations described in
sections 2, 3 and 4 have been implemented in Fortran 77 routines. In the following, we
describe the top{level computational routines in some detail, while the auxiliary routines
are just mentioned brie
y. We also discuss some implementation details concerning the
robustness of our computational kernels.

5.1 Subroutine Organization

The subroutine hierarchy of our software is described in Figure 5.1. LAPACK routines are
used by other routines to compute machine dependent thresholds, generalized Schur forms
of matrix pairs, matrix norms, and to copy matrices, perform column{ and row{swapping
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and so on. BLAS routines are used to perform basic linear algebra operations such as
matrix{matrix (Level 3), matrix{vector (Level 2) and vector (Level 1) operations.

GGSYX is a driver routine that solves a generalized Sylvester equation

AR� LB = sC;

DR� LE = sF;
(5.1)

where (A;D); (B;E) and (C; F ) are given general pairs of m�m;n�n, andm�n matrices,
respectively, and 0 � s � 1 is an output scale factor (named SCALE in the parameter
list). SCALE is set to avoid over
ow in (L;R) during the computations. Optionally, GGSYX

computes an estimate of Dif[(A;D); (B;E)]. On output DIF holds the value of the reciprocal
of the one{norm{based lower bound on kZ�1k2. Similarly, the componentwise forward error
bound (4.7) is computed optionally (named FERR in the parameter list). By knowing an
estimate on Dif[(A;D); (B;E)] it is also possible for the user to evaluate the conventional
normwise error bound (4.6), which is not explicitly done by our software. Moreover, if
at least one of DIF and FERR is asked for, then GGSYX also delivers the relative residual
k(R1; R2)kF =((� + �)k(L̂; R̂)kF + 
) in RELRES, which is a lower bound on the normwise
relative backward error with respect to the Frobenius norm (see (4.3)). The choice between
di�erent options is speci�ed by the input parameter SENSE. Notice that FERR and RELRES

are computed with respect to the scaling factor SCALE. The calling sequence and the leading
comment lines of DGGSYX are listed in Appendix A.

TGSYL is a driver routine that solves standard generalized Sylvester equations (5.1) or
transposed systems (conjugate transposed systems in the complex case)

ATU +DTV = sC;

�UBT � VET = sF;
(5.2)

where the matrix pairs (A;D) and (B;E) are in generalized Schur form. To solve these
(quasi) triangular generalized Sylvester equations, TGSYL uses the Level 3 algorithms pre-
sented in Section 2. Also here, SCALE is set to avoid over
ow during the computations of
(L;R) or (U; V ). The choice between solving a \triangular" system (5.1) or (5.2) is speci�ed
by the input parameter TRANS. TGSYL optionally computes a Frobenius norm{based esti-
mate of Dif[(A;D); (B;E)]. The choice of estimator and the functionality to be performed
is speci�ed by the input parameter IJOB (DIF = 1 / �F (BSOLVD) or 1 / �F (BSOLVE)). The
calling sequence and the leading comment lines of DTGSYL are listed in Appendix B.

GGSYX calls TGSYL, but both can be used as driver routines. TGSYL is a level 3 routine
that calls TGSY2, which solves for subsystems in Algorithm (I) and Algorithm (II) using
Level 2 and Level 1 operations. Optionally, TGSY2 contributes to the computation of
a Frobenius norm-based upper bound on the separation of two matrix pairs. GELUF is
used to LU{factorize subsystems (2.3) or (2.4) at the inner{most level. This is done with
complete pivoting (i.e. Zij = V LUW ) and singularity of Zij is checked for and dealt with
(see Section 5.2). GELUS performs the forward and backward substitutions to solve for x
in Zijx = b. Here is where the scaling is done if over
ow in x is likely to appear. TDIFE

computes a Frobenius norm{based Dif{estimator as 1=�F (BSOLVE) (3.4). TDIFD computes
a Frobenius norm{based Dif{estimator as 1=�F (BSOLVD) (3.5).

Following the LAPACK conventions for naming, in YYZZZ stands for S(ingle), D(ouble),
C(omplex) or Z (Double complex). All four variants of the routines are available. The calling
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sequences for the real and complex routines are almost the same, except that an extra array
RWORK is needed in the expert driver CGGSYX. Scalar arguments are always real. For one of
the auxiliary routines, CTGSY2, the calling sequence also di�ers somewhat, but this does not
a�ect the user of CGGSYX or CTGSYL.

5.2 Solving Subsystems and Dealing with Singularity

At the inner{most level of Algorithm (I) and Algorithm (II) subsystems (2.3) and (2.4),
respectively, of size 2, 4 or 8 are solved. Here, we denote one subsystem of either type by
Zijx = b. Gaussian elimination with complete pivoting and tests for over
ow are used to
solve these subsystems. This will hopefully prohibit a large growth factor (in the residual
bounds [15]), despite the fact that examples have been found with growth factors greater
than the problem size [11].

If a diagonal entry ukk of U in the LU factorization of the coe�cient matrix Zij is less
than some SMIN, this entry is set to SMIN and we solve a slightly perturbed system. Notice
that the input matrices A;B;D and E, whose entries are involved in di�erent subsystems,
are not changed. SMIN is computed as the the maximum of SMLNUM and EPS � kZkM , where
EPS is the relative machine precision and SMLNUM is the safe minimum of the machine (i.e.
its reciprocal does not over
ow) divided by EPS. If this happens INFO is set to k in TGSYL

telling us that \the matrix pairs (A;D) and (B;E) have common or very close eigenvalues".
This fact is also signaled by a small value of DIF (of size O(EPS � kZkM )).

Having the LU factorization V LUW = Zij computed by GELUF, GELUS solves for x in
Zijx = sb, where s is a local scaling factor determined during the solution of the subsystem.
Initially, the global SCALE and the local s are set to 1:0. Then we use the following approach
[1]. Solve for y in V Ly = b, followed by the test: if � � SMLNUM � kyk1 > junnj, s is set to
1=(�kyk1) and y and SCALE are scaled with s. Finally, the solution x in UWx = y is
computed by back{substitution. We use the value 2:0 for the parameter � .

6 Computational Experiments

As shown in the introduction the generalized Sylvester equation can be formulated in terms
of a block{diagonalizing equivalence transformation of S � �T (1.2). In our computational
experiments we keep m+ n, the size of the square S and T constant, while varying m and
n. This corresponds to vary the size of the eigenspaces associated with the (1; 1){block of
S � �T .

Our computational experiments include timing and performance results of the Level 3
and Level 1-2 generalized Sylvester solvers, a comparison between di�erent Dif{estimators
including accuracy, performance and reliability results. Finally, we summarize some quali-
tative results from our test software.

6.1 Timing and Performance Results

All results presented in sections 6.1 and 6.2 are computed on an IBM RS6000/530 in double
precision real arithmetic with unit roundo� � 2.2D�16.
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In Table 6.1 we display timing results (in secs) for the Level 1{2 (DTGSY2) and Level
3 (DTGSYL) block algorithms. The problems are generated as follows. First, (A;D) and
(B;E) in upper triangular generalized Schur form are chosen as

aij = j; dij = i; i = 1; : : : ; m; j = i; : : : ; m;

bij = eij = �i� j; i = 1; : : : ; n; j = i; : : : ; n:

Then, A and B are made quasi upper triangular with A having m=2 2-by-2 diagonal blocks
and every 16{th diagonal block of B is chosen 2-by-2. This is done by setting ak+1;k+1 = akk
and ak+1;k = �ak;k+1 � rand for appropriate values of k, where rand is a random number
chosen uniformly distributed in (0; 1), and similarly for selected entries in B. The entries
of L and R are chosen as random numbers with uniform distribution in (0; 1), de�ning the
right hand sides C and F in (1.1).

The results shown are for some sample m and n, where m + n = 256; 512 and 1024.
DTGSY2 and DTGSYL perform the same number of 
ops and computed the same solutions
within working accuracy. Here M = 2 and N = 1 (in Table 6.1) correspond to the Level
1{2 algorithm. Several combinations of block sizes M and N have given the same timing
results. We have chosen to display the smallest M � 2 and N � 2 that give the best timing
results. The speedup factor (Level 1� 2=Level 3 in Table 6.1) for this particular choice of
block sizes is also shown. We notice a signi�cant improvement in performance for the Level
3 algorithm (up to a factor nine for m+ n = 1024).

m n M N secs
Level1�2

Level3
m n M N secs

Level1�2

Level3

2 254 2 1 .22D+0 1.00 16 240 2 1 .11D+1 1.00
2 254 2 32 .70D�1 3.14 16 240 8 16 .50D+0 2.20
8 248 2 1 .57D+0 1.00 128 128 2 1 .34D+1 1.00
8 248 8 16 .26D+0 2.19 128 128 8 8 .22D+1 1.55

2 510 2 1 .86D+0 1.00 16 496 2 1 .68D+1 1.00
2 510 2 32 .17D+0 5.05 16 496 4 16 .13D+1 5.23
8 504 2 1 .33D+1 1.00 128 384 2 1 .35D+2 1.00
8 504 8 8 .67D+0 4.92 128 384 16 16 .80D+1 4.38

2 1022 2 1 .37D+1 1.00 16 1008 2 1 .29D+2 1.00
2 1022 2 32 .46D+0 8.04 16 1008 16 16 .31D+2 9.35
8 1016 2 1 .14D+2 1.00 128 896 2 1 .19D+3 1.00
8 1016 8 16 .16D+1 8.75 128 896 16 16 .22D+2 8.64

Table 6.1: Timing and performance results for Level 1{2 and Level 3 solvers

In Table 6.2 we display similar results (as in Table 6.1) for each of the three Dif{
estimators discussed in Section 3. We keep m + n = 512 and vary m and n and the block
sizes M and N . The �rst four rows show results for DTDIFE, the next four rows for DTDIFD,
and the last four rows show results for the one{norm{based Dif{estimator in DGGSYX. As
before, we display the smallest block sizes M � 2 and N � 2 that give the best timing
results. DTDIFE shows the best improvement in performance for the Level 3 algorithm (up
to a factor �ve faster than the Level 1-2 algorithm). In DTDIFE we solve one generalized
Sylvester equation, where we also choose the right hand sides during the computations, and
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the performance behaviour is quite similar to the Level 3 solver itself. The corresponding
improvements for the other two estimators are up to a factor two and three times faster,
respectively.

m n M N secs
Level1�2

Level3
m n M N secs

Level1�2

Level3

2 510 2 1 .91D+0 1.00 16 496 2 1 .77D+1 1.00
2 510 2 32 .20D+0 4.50 16 496 8 8 .15D+1 5.13
8 504 2 1 .40D+1 1.00 128 384 2 1 .40D+2 1.00
8 504 4 32 .75D+0 5.33 128 384 8 16 .90D+1 4.44

2 510 2 1 .15D+1 1.00 16 496 2 1 .12D+2 1.00
2 510 2 64 .79D+0 1.90 16 496 4 16 .61D+1 1.97
8 504 2 1 .62D+1 1.00 128 384 2 1 .68D+2 1.00
8 504 8 8 .29D+1 2.14 128 384 8 16 .38D+2 1.79

2 510 2 1 .29D+1 1.00 16 496 2 1 .36D+2 1.00
2 510 2 16 .16D+1 1.24 16 496 8 16 .15D+2 2.40
8 504 2 1 .11D+2 1.00 128 384 2 1 .17D+3 1.00
8 504 8 16 .49D+1 1.92 128 384 8 16 .60D+2 2.83

Table 6.2: Timing and performance results for Level 1{2 and Level 3 Dif{estimators

In Table 6.3 we present the relative performance of the three Dif{estimators. We dis-
play the ratios DTDIFD=DTDIFE and DGGSYX=DTDIFE of the timings in Table 6.2 for each m

and n. As expected, the Frobenius norm{based estimator in DTDIFE is the least expensive
Dif{estimator (roughly the same cost as solving one quasi triangular generalized Sylvester
equation). The Frobenius norm{based estimator in DTDIFD and the one{norm{based esti-
mator in DGGSYX both solve several quasi triangular generalized Sylvester equations using
reverse communication.

m n DTDIFD
DTDIFE

DGGSYX
DTDIFE

m n DTDIFD
DTDIFE

DGGSYX
DTDIFE

2 510 1.65 3.19 16 496 1.56 4.68
2 510 3.95 8.00 16 496 4.07 10.0
8 504 1.55 2.75 128 384 1.70 4.25
8 504 3.87 6.53 128 384 4.22 6.67

Table 6.3: Relative performance results for Level 1{2 and Level 3 Dif{estimators

6.2 Accuracy and Reliability Results

We have developed two test programs CHK1 and CHK2 for testing and veri�cation of the
routines GGSYX and TGSYL, respectively. Their leading comment lines are listed in ap-
pendices C and D, respectively. The output from test runs on two di�erent machines is
also included. These programs typically verify that the relative residuals for a computed
solution are small, that scaling and singularity are appropriately handled, and that Dif{
estimates and forward error{estimates are within some (user{de�ned) tolerances. Moreover,
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the functionality of the target subroutine is veri�ed. The test problems are chosen from �ve
di�erent types, which are generated as follows.

The size of a problem is chosen such that m + n � 10 (i.e. m = 1; 2; : : : ; 9, n =
1; : : : ; 10�m), where the unknowns L and R are m-by-n. The scheme is to initialize the
matrix pairs (A;D); (B;E) and the solution (L;R), and thereby de�ning the right hand
sides C and F in (1.1). Note that Type 1 corresponds to a standard eigenvalue problem
and types 2{5 correspond to generalized eigenvalue problems S � �T .

Type 1: Upper triangular problem adapted from [25]: A = Jm(1;�1); D = Im and
B = Jn(1��; 1); E = In, where Jn(d; s) denotes a Jordan block of dimension n with d and
s as diagonal and superdiagonal elements, respectively. In our tests we use � = 0:5;

p
EPS,

and 1=
p
EPS. For 0 < � < 1, the size of Dif is O(�m+n�1). The entries in L = R are chosen

as rij = 20(0:5� sin(i=j)); where i = 1; : : : ; m and j = 1; : : : ; n.

Type 2: Upper triangular problem with

aij = 2(0:5� sin(i)); dij = 2(0:5� sin(i � j)); i = 1; : : : ; m j = i; : : : ; m:

bij = 2(0:5� sin(i+ j)); eij = 2(0:5� sin(j)); i = 1; : : : ; n j = i; : : : ; n:

lij = 20(0:5� sin(i+ j)); rij = 20(0:5� sin(i � j)); i = 1; : : : ; m j = 1; : : : ; n:

Type 3: Quasi upper triangular problem, where the entries in (A;D), (B;E) and (L;R)
at �rst are chosen as for Type 2. Then each second diagonal block in A and each third
diagonal block in B are made 2-by-2 by setting ak+1;k+1 = akk and ak+1;k = � sin(ak;k+1),
and similarly for the entries in B. In the corresponding diagonal blocks of D and E, the
superdiagonal element is set to zero, giving a standardized, generalized real Schur form as
de�ned in LAPACK. For the complex case Type 3 is similar to Type 2 except that a11 is
multiplied by a factor twenty.

Type 4: Dense problem with

aij = 20(0:5� sin(i)); dij = 2(0:5� sin(j)); i; j = 1; : : : ; m:

bij = 20(0:5� sin(i+ j)); eij = 2(0:5� sin(i � j)); where i; j = 1; � � � ; n:

lij = 20(0:5� sin(i � j)); rij = 2(0:5� sin(i=j)); i = 1; : : : ; m j = 1; � � � ; n:

Type 5: The matrix pairs (A;D) and (B;E) potentially have close or common eigenval-
ues, and large or very large{normed solutions: A is chosen as them-by-m leading submatrix
of

S =

0
BBBBBBBBBBBBBB@

1 �

�� 1
1 + � �

�� 1 + �

� 1
�1 �

�� 1
�1 ��

1

1
CCCCCCCCCCCCCCA

;
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and B is chosen as the n-by-n leading submatrix of

T =

0
BBBBBBBBBBBBBB@

�1 �

�� �1
1� � �

�� 1� �

� 1 + �

�1 � � �

�� 1 + �

�1� � ��
1� �

1
CCCCCCCCCCCCCCA

:

Furthermore, we choose D = Im and E = In. All integer values m;n � 0 such that
m+n � 10 are chosen. Values of � = 20=� and � = �1:5=� are used for three di�erent � (=
0:5; 1=

p
EPS and 10=SMLNUM). The entries in L andR are chosen as lij = �(0:5�sin(i+j))=20

and rij = �(0:5� sin(i � j))=20; where i = 1; � � � ; m and j = 1; � � � ; n.
In tables 6.4{6.5 we display results for 18 examples from the �ve problem types, ranging

from well{conditioned to very ill{conditioned problems. The column \Tag" in Table 6.4 is
used to identify a particular problem. Problems 1{6 are of Type 1, 7{8 of Type 2, 9{10 of
Type 3, 11{12 of Type 4, and �nally, problems 13{18 are of Type 5. Most of the results
displayed refer to quantities computed by DGGSYX and DTGSYL, respectively.

The columns Dif and k(L;R)kF in Table 6.4 display the \true" value of Dif (computed
as �min(Z) by DGESVD in LAPACK) and the norm of the exact solution (L;R), respectively.
We see that problems 3, 4, 12, 17 and 18 all have Dif at unit roundo� level, which means that
the corresponding systems (1.6) are almost singular. For problems 3 and 4 any perturbation
at roundo� level in the (m; 1) and (n; 1) elements of the Jordan blocks A and B, respectively,
will make (A;D) and (B;E) to have eigenvalues that almost coalesce. Problems 5, 6, 15{18
have coe�cient matrices of di�erent size and illustrate problems with badly scaled data
(especially, problems 17 and 18).

FERR=Ferr in Table 6.5 shows the ratio between the computed estimate of the relative
forward error and the \true" computed forward error k(L;R)� (~L; ~R)kF =k(L;R)kF , where
(L;R) and (~L; ~R) are the exact and computed solutions, respectively. Furthermore, r1 =
Dif=DGGSYX shows the ratio between the \true" value of Dif and the one{norm{based Dif{
estimator computed in DGGSYX. Similarly, rFE = Dif=DTDIFE and rFD = Dif=DTDIFD in
Table 6.6 show the ratios between the \true" value of Dif and the two Frobenius norm{
based estimators. The column DGECON in Table 6.6 displays an one{normed{based estimate
of Dif = �min(Z) computed by the LAPACK general condition estimator DGECON. We called
DGECON with the LU-decomposition computed by our routine DGELUF in order to make fair
comparisons. Notice, �min(Z) and the estimate from DGECON can only be computed for
rather small problems (both require O(m3n3) 
ops). In order to be able to compare the
ratios r1, rFE and rFD we have to multiply r1 by a factor 1=

p
2mn (the one{norm{based

estimate times
p
2mn is an upper bound on Dif (3.6)). Now, the reliability of the estimators

is proved if 0 < rx � 1 for x = 1;FE;FD and their accuracy is determined by how close the
products are to one (rx = 1 means that we have equality in one of the upper bounds for Dif
= �min(Z)). Overall, all three estimators show reliable and accurate results. For problems
3 and 4, which are singular to roundo� level, all estimators underestimate the true value of
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Tag m n � k(A;D)kF k(B;E)kF k(C;F )kF Dif k(L;R)kF
1 2 3 .50D+00 .22D+01 .24D+01 .28D+02 .99D�02 .30D+02
2 5 4 .50D+00 .37D+01 .28D+01 .70D+02 .56D�04 .74D+02
3 2 3 .15D�07 .22D+01 .28D+01 .28D+02 .83D�17 .30D+02
4 5 4 .15D�07 .37D+01 .33D+01 .74D+02 .13D�17 .74D+02
5 2 3 .67D+08 .22D+01 .12D+09 .14D+10 .10D+01 .30D+02
6 5 4 .67D+08 .37D+01 .13D+09 .35D+10 .10D+01 .74D+02

7 2 3 .30D+01 .53D+01 .21D+03 .49D�01 .58D+02
8 5 4 .82D+01 .81D+01 .55D+03 .22D�03 .11D+03

9 2 3 .30D+01 .48D+01 .18D+03 .12D+00 .58D+02
10 5 4 .81D+01 .78D+01 .53D+03 .27D�02 .11D+03

11 2 3 .15D+02 .63D+02 .15D+04 .14D�02 .33D+02
12 5 4 .91D+02 .80D+02 .31D+04 .17D�17 .73D+02

13 2 3 .50D+00 .47D+01 .39D+02 .19D+01 .43D+00 .73D�01
14 5 4 .50D+00 .71D+02 .56D+02 .40D+01 .43D+00 .14D+00
15 2 3 .67D+08 .20D+01 .24D+01 .11D+08 .15D�06 .98D+07
16 5 4 .67D+08 .30D+01 .28D+01 .23D+08 .15D�06 .18D+08
17 2 3 .10+292 .20D+01 .24D+01 .16+291 .34D�16 .15+291
18 5 4 .10+292 .30D+01 .28D+01 .33+291 .66D�17 .27+291

Table 6.4: Some characteristics of 18 sample problems

Dif with quite a large factor, but signal the severe ill{conditioning correctly. Consequently,
this fact is also re
ected in the estimated forward error, which (naturally) is large for all
problems that are singular to roundo� level. However, we can see that our software always
compute a small relative residual even if the forward error is large.

DTGSYL returns an INFO greater than zero whenever one subsystem (2.3) or (2.4) is
singular (problems 12, 17 and 18 in Table 6.6, see Section 5.2 for the value of INFO). Notice
that problems 3 and 4 do not ful�ll our condition to signal singularity. For that to happen
(i.e. INFO is set greater than zero), � must be < EPS. Similarly, DGGSYX returns INFO = 1
if DTGSYL returns an INFO greater than zero when solving (1.1). Notice that scaling is
performed for problems 17 and 18.

Problems of Type 4 can be very ill{conditioned or even singular, because the matrices A
and B may have almost multiple rows and D will have almost multiple columns. This will
introduce close to zero elements on the diagonals in the generalized Schur forms of (A;D)
and (B;E) when DGEGS (that implements the QZ algorithm in LAPACK) is applied to the
matrix pairs. For example, the computed spectrum of problem 12 includes zero (i.e. 0=Tii),
in�nite (i.e. Sjj=0), and unde�ned (i.e. 0=0) eigenvalues. An unde�ned eigenvalue shows
that the pencil is singular. Anyhow, our software behaves robustly. All three Dif{estimators
produce accurate results.

We also substituted the sin-function in all our problems and � and � in problems of
Type 5 with a uniformly random number 2 (0; 1). We run thousands of tests and the
Dif-estimators, DTDIFE, DTDIFD and DGGSYX di�ered from the true value of Dif with more
than a factor 100 only in 7 %, 1 % and 7 % of the cases, respectively. Our accuracy and
reliability tests on small problems show that all three estimators behave well.
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Tag INFO SCALE RELRES FERR FERR
Ferr

DGGSYX r1

1 0 .10D+01 .00D+00 .16D�12 .27D+04 .67D�02 .15D+01
2 0 .10D+01 .93D�17 .38D�10 .42D+04 .37D�04 .15D+01
3 0 .10D+01 .19D�24 .26D+10 .26D+10 .82D�32 .10D+16
4 0 .10D+01 .11D�16 .31D+11 .31D+11 .35D�64 .37D+47
5 0 .10D+01 .11D�16 .22D�14 .27D+02 .10D+00 .10D+01
6 0 .10D+01 .12D�16 .28D�14 .44D+02 .10D+00 .10D+01

7 0 .10D+01 .19D�16 .13D�13 .30D+02 .57D�01 .85D+00
8 0 .10D+01 .22D�16 .13D�10 .62D+02 .14D�03 .16D+01

9 0 .10D+01 .61D�16 .14D�13 .30D+02 .91D�01 .13D+01
10 0 .10D+01 .35D�16 .19D�11 .13D+03 .13D�02 .20D+01

11 0 .10D+01 .15D�15 .35D�11 .73D+01 .14D�02 .10D+01
12 1 .10D+01 .15D�16 .12D+05 .12D+05 .31D�17 .56D+00

13 0 .10D+01 .50D�17 .24D�14 .10D+02 .38D+00 .11D+01
14 0 .10D+01 .21D�16 .31D�14 .16D+02 .38D+00 .11D+01
15 0 .10D+01 .19D�16 .73D�08 .29D+02 .14D�06 .11D+01
16 0 .10D+01 .25D�16 .12D�07 .53D+02 .13D�06 .11D+01
17 1 .15�289 .12D�16 .64D+01 .12D+02 .11D�15 .30D+00
18 1 .84�290 .11D�16 .88D+01 .13D+02 .11D�15 .60D�01

Table 6.5: Some computed quantities for the veri�cation of DGGSYX

Tag INFO SCALE DTDIFE rFE DTDIFD rFD DGECON

1 0 .10D+01 .15D�01 .64D+00 .15D�01 .64D+00 .61D�02
2 0 .10D+01 .18D�03 .36D+00 .18D�03 .36D+00 .32D�04
3 0 .10D+01 .20D�31 .41D+15 .20D�31 .41D+15 .67D�16
4 0 .10D+01 .16D�63 .83D+46 .16D�63 .83D+46 .17D�16
5 0 .10D+01 .14D+01 .71D+00 .10D+01 .10D+01 .10D+01
6 0 .10D+01 .14D+01 .71D+00 .10D+01 .10D+01 .10D+01

7 0 .10D+01 .11D+00 .43D+00 .10D+00 .46D+00 .29D�01
8 0 .10D+01 .10D�02 .22D+00 .95D�03 .23D+00 .11D�03
9 0 .10D+01 .27D+00 .44D+00 .15D+00 .79D+00 .66D�01
10 0 .10D+01 .92D�02 .27D+00 .10D�01 .26D+00 .15D�02
11 0 .10D+01 .32D�02 .45D+00 .26D�02 .55D+00 .11D�02
12 2 .10D+01 .80D�17 .21D+00 .39D�17 .53D+00 .31D�15
13 0 .10D+01 .92D+00 .46D+00 .58D+00 .74D+00 .25D+00
14 0 .10D+01 .13D+01 .34D+00 .82D+00 .52D+00 .25D+00
15 0 .10D+01 .26D�06 .58D+00 .21D�06 .71D+00 .14D�06
16 0 .10D+01 .30D�06 .50D+00 .33D�06 .45D+00 .13D�06
17 4 .11�289 .19D�15 .17D+00 .16D�15 .21D+00 .11D�15
18 8 .78�290 .18D�15 .38D�01 .19D�15 .34D�01 .11D�15

Table 6.6: Some computed quantities for the veri�cation of DTGSYL
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m n DTDIFE
Dif

DTDIFD
Dif

DGGSYX
Dif

Dif �min(Y ) RELRES FERR

2 30 0.21 0.19 1.92 .12D�01 .12D�01 .22D�16 .78D�11
4 28 0.11 0.19 2.63 .15D�01 .17D�01 .37D�16 .16D�09
16 16 0.11 0.13 2.38 .40D�03 .42D�03 .52D�16 .29D�09
2 62 0.37 0.37 3.12 .10D+00 .15D+00 .22D�16 .25D�09
4 60 0.29 0.34 3.22 .38D�01 .65D�01 .36D�16 .12D�08
8 56 0.16 0.13 1.37 .24D�02 .35D�02 .38D�16 .18D�07
16 48 0.08 0.05 4.00 .17D�04 .18D�03 .50D�16 .31D�06
2 98 0.13 0.12 1.32 .34D�01 .36D�01 .20D�16 .12D�08
4 96 0.18 0.17 1.39 .69D�01 .80D�01 .25D�16 .15D�08
8 92 0.10 0.08 3.57 .14D�02 .41D�02 .36D�16 .11D�06
m n DTDIFE DTDIFD DGGSYX Dif �min(Y ) RELRES FERR

2 510 .64D�01 .57D�01 .53D�02 � .27D+00 .25D�16 .16D�05
8 504 .28D�01 .26D�01 .25D�03 � .80D�01 .38D�16 .75D�05
16 496 .39D�03 .30D�03 .52D�05 � .20D�02 .53D�16 .53D�03
128 384 .53D�48 .47D�48 .11D�50 � .84D�15 .23D�19 .59D+03

Table 6.7: Comparing Dif{estimators for large problems.

Finally, we try to compare our Dif{estimators for a larger problem (the same problem
as used in Section 6.1). In Table 6.7, we display the true value of Dif and how it relates to
the di�erent estimates for some problems with m+n � 100 and m+n = 512. We also show
�min(Y ), where Y is the Kronecker matrix constructed from the pencils (A;D) and (B1; E1),
where B1 and E1 are the leading 2-by-2 blocks of B and E, respectively. It is obvious that
�min(Y ) � �min(Z) = Dif. For the large problems, we only display the computed estimates
and �min(Y ). Note that for the very last problem we try to estimate �min(Z), where Z
is a matrix of size 98304� 98304. For m + n � 100, DTDIFE and DTDIFD produce similar
results, overestimating Dif by a factor roughly between 3 and 10. The estimator in DGGSYX

underestimates Dif by a similar factor for the same problems. The upper bound �min(Y )
seems to get weaker as m grows. Likely, these trends hold even for larger problems, giving
some support for our estimators when m+ n = 512.

6.3 A Summary of Results from the Test Programs

Below, we summarize the test results from DCHK1 and DCHK2, which tests DGGSYX and
DTGSYL, respectively. The results for the single complex test runs were similar. We run
both programs on two di�erent target machines, both supporting IEEE standards. A Sun
Sparc station using only non-optimized BLAS, and an IBM RS6000/530, where we used the
ESSL library for BLAS calls. All programs were compiled with the -O option. The relative
machine precision EPS is � 2.22D�16 and SMLNUM is � 1.0D�292 for both machines. In
the following, we always start to list a number for Sun Sparc followed by the corresponding
number (in parentheses) for IBM RS6000/530.

A total number of 900 test con�gurations (including di�erent functionality tests for
some problems) are generated in DCHK1. In the test programs only � = 0:5 is used
for problems of Type 1. The maximum and minimum values of SCALE were 1.0 (1.0)
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and 0.840D�290 (0.840D�290), respectively. The maximum relative residual RELRES was
0.258D�15 (0.149D�15). The maximum value of the true relative forward error was 1.55
(1.55) and 10.0 (10.0) for the corresponding estimate FERR. The minimum value of the true
relative forward error was 0.00 (0.00) and 0.344D�14 (0.344D�14) for FERR. The maximum
value of the true value of Dif was 1.41 (1.41) and 1.0 (1.0) for the corresponding estimate
DIF. The minimum value of the true value of Dif was 0.00 (0.520D�48) and 0.111D�15
(0.111D�15) for DIF, but not for the same problem on di�erent machines. The estimated
forward error di�ered more than a factor 1000 from the true value in 28 (50) cases out of
450 (i.e. 6 % and 11 %, respectively). The (one{norm{based) Dif estimate di�ered more
than a factor 100 in 7 (16) cases out of 450 (i.e. 2 % and 4 %, respectively). The relative
residual RELRES was never larger than 10EPS. Singularity was reported by DTGSYL in 190
(190) cases.

A total number of 2250 test con�gurations (including di�erent functionality tests for
some problems) are generated in DCHK2. The maximum and minimum values of SCALE
were 1.0 (1.0) and 0.395D�290 (0.395D�290), respectively. The maximum relative residual
RELRES was 0.808D�16 (0.797D�16). The maximum of the true value of Dif was 1.41 (1.41)
and the corresponding estimate was 1.41 (1.41) for both estimators DTDIFE and DTDIFD. The
minimum of the true value of Dif was 0.00 (0.157D�18) and the corresponding estimates
were 0.192D�15 (0.655D�16) and 0.192D�15 (0.277D�16) for DTDIFE and DTDIFD, respec-
tively, but not for the same problems on di�erent machines. The Dif estimate di�ered more
than a factor 100 in 23 (16) cases out of 450 for DTDIFE (i.e. 5 % and 4 %, respectively).
The Dif estimate di�ered more than a factor 100 in 23 (16) cases out of 450 for DTDIFD
(i.e. 5 % and 4 %, respectively). The relative residual RELRES was never larger than 10EPS.
Singularity was reported by DTGSYL in 502 (502) cases.

7 Some Conclusions

The computational experiments presented in Section 6 give us support to state the following
conclusions about our algorithms and software.

� Accuracy and performance results comparing the Level 3 and Level 1-2 generalized
Sylvester solvers show the advantage of the Level 3 algorithm on hierarchical memory
architectures (e.g., RISC{based workstations).

� The qualitative comparison, including accuracy, performance and reliability results,
between the di�erent Dif{estimators (the Frobenius norm{based DTDIFE, DTDIFD in
DTGSYL, and the one{norm{based estimator in DGGSYX) can be summarized as follows.
All three estimators give very accurate results, typically, within a factor 2{10 and
seldom worse than a factor 100 of the true value of Dif[(A;D); (B;E)], for the problems
we have studied. DTDIFD and the estimator in DGGSYX are both based on DLACON in
LAPACK and are, typically, a factor 3{10 times as expensive as DTDIFE. To include the
one{norm{based estimator in DGGSYX makes the condition estimation uniform with
LAPACK. To choose DTDIFE in DTGSYL gives the user an equally reliable, low{cost
Dif{estimator.
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� Qualitative results from our test software on both well{conditioned and ill{conditioned
problems, including estimates of the forward error (FERR) and backward error (RELRES),
and the accuracy of the Dif{estimators, show the reliability and robustness of the al-
gorithms and software presented.

The application of this work into algorithms and software for computing eigenspaces
with speci�ed eigenvalues of a regular matrix pair (A;B) and condition estimation for the
generalized eigenvalue problem is well on the way [18].
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A Calling sequence GGSYX

Here we display the parameter list and the leading comment lines of the double precision
routine DGGSYX.

SUBROUTINE DGGSYX( SENSE, M, N, A, LDA, B, LDB, C, LDC,

$ D, LDD, E, LDE, F, LDF, FERR, RELRES, DIF,

$ SCALE, WORK, LWORK, IWORK, INFO )

IMPLICIT NONE

*

* --- (preliminary version) ---

* Bo Kagstrom and Peter Poromaa, Institute of Information Processing,

* Univ. of Umea, S-901 87 Sweden.

* Nov 1993

*

* .. Scalar Arguments ..

DOUBLE PRECISION FERR, RELRES, SCALE, DIF

INTEGER INFO, LDA, LDB, LDC, LDD, LDE, LDF, LWORK, M, N

CHARACTER SENSE

* ..

* .. Array Arguments ..

DOUBLE PRECISION A(LDA, *), B(LDB, *), C(LDC, *),

$ D(LDD, *), E(LDE, *), F(LDF, *), WORK( * )

INTEGER IWORK( * )

* ..

*

* Purpose

* =======

* DGGSYX solves the generalized Sylvester equation:

*

* A * R - L * B = scale * C

* D * R - L * E = scale * F

*

* where R and L are unknown m-by-n matrices, (A, D), (B, E) and

* (C, F) are given matrix pairs of size m-by-m, n-by-n and m-by-n, respectively,

* with real entries.

* The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an output scaling

* factor chosen to avoid overflow.

*

* References

* ==========

* [1] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software for

* Solving the Generalized Sylvester Equation and Estimating the Separation

* between Regular Matrix Pairs, Report UMINF - 93.23, Inst. of Information

* Processing, University of Umea, S-901 87 Umea, Sweden, November 1993.

* (also published as LAPACK Working Note xx)

*

* [2] B. Kagstrom, A Perturbation Analysis of the Generalized Sylvester Equation

* (AR - LB, DR - LE ) = (C, F), Report UMINF - 92.17, Inst. of Information

* Processing, University of Umea, S-901 87 Umea, Sweden, November 1992,

* (accepted for publication in SIAM J. Matrix Anal. Appl.)
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*

* [3] N.J. Higham, Perturbation theory and backward error for AX - XB = C,

* Numerical Analysis Report No. 211, University of Manchester, England,

* April 1992; (published in BIT 33 (1) 124-136, 1993).

*

* Arguments

* =========

*

* SENSE (input) CHARACTER*1

* Determines which of Dif([A,B], [D,E]) and the forward error bound is

* computed.

* = 'N': Neither is computed.

* = 'F': Forward error bound is computed.

* = 'D': Dif[(A,D), (B,E)] is computed.

* = 'B': Both are computed.

* If SENSE = 'F', 'D' or 'B', RELRES is computed.

*

* M (input) INTEGER

* The number of rows and columns of the input matrices A and D. M >= 0.

*

* N (input) INTEGER

* The number of rows and columns of the input matrices B and E. N >= 0.

*

* A, D (input/output) DOUBLE PRECISION arrays, dimension (LDx,M).

* On input, A and D are dense m-by-m coefficient matrices.

* On output, (A, D) has been overwritten by its generalized Schur form.

*

* LDA (input) INTEGER

* The leading dimension of the array A. LDA >= max(1,M).

*

* LDD (input) INTEGER

* The leading dimension of the array D. LDD >= max(1,M).

*

* B, E (input/output) DOUBLE PRECISION arrays, dimension (LDx,N).

* On input, B and E are the n-by-n coefficient matrices.

* On output, (B, E) has been overwritten by its generalized Schur form.

*

* LDB (input) INTEGER

* The leading dimension of the array B. LDB >= max(1,N).

*

* LDE (input) INTEGER

* The leading dimension of the array E. LDE >= max(1,N).

*

* C, F (input/output) DOUBLE PRECISION arrays, dimension (LDx,N).

* On input, C and F are the m-by-n right-hand side coefficient matrices.

* On output, C has been overwritten by the solution matrix R, and F has

* been overwritten by the solution matrix L.

*

* LDC (input) INTEGER

* The leading dimension of the array C. LDC >= max(1,M).

*
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* LDF (input) INTEGER

* The leading dimension of the array F. LDF >= max(1,M).

*

* WORK (workspace) DOUBLE PRECISION array, dimension (LWORK).

*

* LWORK (input) INTEGER

* The dimension of the array WORK.

* LWORK >= 4*(M*M + N*N) + 6*M*N + 4*max(M,N).

* For good performance, LWORK must generally be larger.

*

* IWORK (workspace) INTEGER array, dimension (2*M*N).

*

* FERR (output) DOUBLE PRECISION

* On exit, if SENSE = 'F' or 'B',

* an estimated forward error bound for the solution (L, R).

* If (LTRUE, RTRUE) is the true solution, FERR bounds the magnitude

* of the largest entry in ((L, R) - (LTRUE, RTRUE)) divided by

* the magnitude of the largest entry in (L, R).

*

* RELRES (output) DOUBLE PRECISION

* On exit, if SENSE = 'F', 'D' or 'B',

* the relative residual for the computed solution, measured

* in the Frobenius norm,

*

* norm(AR-LB-scale*C, DR-LE-scale*F)

* -------------------------------------------------------

* ((norm(A, D) + norm(B, E))*norm(L, R) + scale*norm(C, F) .

*

* Note: This is a lower bound for the normwise relative backward error.

*

* DIF (output) DOUBLE PRECISION

* On exit, if SENSE = 'D' or 'B',

* this is an one-norm-based estimate of Dif[(A,D), (B,E)], the

* separation between to regular matrix pairs.

* The estimate is computed with a condition estimator.

* Dif[(A,D), (B,E)] >= 0 is the standard measure of how ill-conditioned

* the generalized Sylvester equation is: the smaller Dif, the greater the

* ill-conditioning. Dif = 0 (or small) corresponds to that the matrix

* pairs (A,D) and (B,E) have common (or close) eigenvalues.

* See [1, 2] for a full explanation.

*

* SCALE (output) DOUBLE PRECISION

* The scale factor, is set 0 <= SCALE <= 1 to avoid overflow in (L, R).

*

* INFO (output) INTEGER

* 0: successful exit.

* 1: (A, D) and (B, E) have common or very close eigenvalues

* (INFO > 0 from DTGSYL).

* 2: Problems when computing generalized Schur forms of (A, D) or (B, E)

* in DGEGS, which is called by this routine.

* 3: Both the above problems.
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* < 0: if INFO = -k, the k-th argument had an illegal value.

*

* ===============================================================================

B Calling sequence TGSYL

Here we display the parameter list and the leading comment lines of the double precision
routine DTGSYL.

SUBROUTINE DTGSYL(TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC,

$ D, LDD, E, LDE, F, LDF, SCALE, DIF, WORK, LWORK,

$ IWORK, INFO)

IMPLICIT NONE

* -- (preliminary version) --

* Bo Kagstrom and Peter Poromaa, Institute of Information Processing,

* Univ. of Umea, S-901 87 Sweden.

* Nov 1993

* .. Scalar Arguments ..

CHARACTER TRANS

INTEGER IJOB, M, N, LDA, LDB, LDC, LDD, LDE, LDF,

$ LWORK, INFO

DOUBLE PRECISION SCALE, DIF

* .. Array Arguments ..

INTEGER IWORK(*)

DOUBLE PRECISION A(LDA, *), B(LDB, *), C(LDC, *), D(LDD, *),

$ E(LDE, *), F(LDF, *), WORK(*)

*

* Purpose

* =======

*

* DTGSYL solves the generalized Sylvester equation:

*

* A * R - L * B = scale * C (1)

* D * R - L * E = scale * F

*

* where R and L are unknown m-by-n matrices, (A, D), (B, E) and

* (C, F) are given matrix pairs of size m-by-m, n-by-n and m-by-n,

* respectively, with real entries. (A, D) and (B, E) must be in

* generalized (real) Schur canonical form, i.e. A, B are upper quasi

* triangular and D, E are upper triangular.

* The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an output

* scaling factor chosen to avoid overflow.

* In matrix notation (1) is equivalent to solve

* Zx = scale b, where Z is defined as

*

* Z = [ kron(In, A) -kron(B', Im) ] (2)
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* [ kron(In, D) -kron(E', Im) ].

*

* Here Ix is the identity matrix of size x and X' is the

* transpose of X. kron(X, Y) is the Kronecker product between

* the matrices X and Y. Dim(Ix) = m or n.

*

* If TRANS = 'T', y in the transposed system Z'y = scale * b is solved for,

* which is equivalent to solve for R and L in

*

* A' * R + D' * L = scale * C (3)

* R * B' + L * E' = scale * -F

*

* This case (TRANS = 'T') is used to compute an one-norm-based estimate

* of Dif[(A,D), (B,E)], the separation between the matrix pairs (A,D) and

* (B,E), using DLACON. See DGGSYX. See [1-2] for more information.

*

* If IJOB >= 1, DTGSYL computes a Frobenius norm-based estimate

* of Dif[(A,D),(B,E)]. That is, the reciprocal of a lower bound on the

* reciprocal of the smallest singular value of Z. See [1-2] for more

* information.

*

* Level 3 and Level 1-2 algorithms for solving (1) are described in [1,3].

*

* References

* ==========

* [1] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software for

* Solving the Generalized Sylvester Equation and Estimating the Separation

* between Regular Matrix Pairs, Report UMINF - 93.23, Inst. of Information

* Processing, University of Umea, S-901 87 Umea, Sweden, November 1993.

* (also published as LAPACK Working Note xx)

*

* [2] B. Kagstrom, A Perturbation Analysis of the Generalized Sylvester Equation

* (AR - LB, DR - LE ) = (C, F), Report UMINF - 92.17, Inst. of Information

* Processing, University of Umea, S-901 87 Umea, Sweden, November 1992,

* (accepted for publication in SIAM J. Matrix Anal. Appl.)

*

* [3] B. Kagstrom and L. Westin, Generalized Schur Methods with Condition

* Estimators for Solving the Generalized Sylvester Equation, IEEE

* Transactions on Automatic Control, Vol. 34, No. 7, July 1989, pp 745-751.

*

* Arguments

* =========

* TRANS 'N': The generalized Sylvester equation (1) is solved.

* Other functionality is depending on the value of IJOB.

* 'T': The ''transposed'' system (3) is solved.

* The value of IJOB is ignored.

*

* IJOB (input) INTEGER

* Specifies what kind of functionality to be performed.

* 0 : Only (1) is solved. Scaling is used when solving sub-systems.

* DGELUF (complete pivoting) and DGELUS (scaling) is used.
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* 0. <= SCALE <= 1.0D0 will be returned.

* 1 : The functionality of 0 and 3.

* 2 : The functionality of 0 and 4.

* 3 : Only an estimate of Dif[(A,D), (B,E)] is computed.

* DTDIFE (look ahead strategy) is used.

* 4 : Only an estimate of Dif[(A,D), (B,E)] is computed.

* DTDIFD (DLACON on sub-systems) is used.

* For more details on the Frobenius norm-based estimators see [1].

*

* M (input) INTEGER

* On entry, M specifies the order of A and D, and the row

* dimension of C, F, R and L.

*

* N (input) INTEGER

* On entry, N specifies the order of B and E, and the column

* dimension of C, F, R and L.

*

* A (input) DOUBLE PRECISION array, dimension (LDA, M)

* On entry, A contains an upper quasi triangular matrix.

*

* LDA (input) INTEGER

* The leading dimension of the matrix A. LDA >= max(1, M).

*

* B (input) DOUBLE PRECISION array, dimension (LDB, N)

* On entry, B contains an upper quasi triangular matrix.

*

* LDB (input) INTEGER

* The leading dimension of the matrix B. LDB >= max(1, N).

*

* C (input/ output) DOUBLE PRECISION array, dimension (LDC, N)

* On entry, C contains the right-hand-side of the first matrix

* equation in (1) or (3).

* On exit, if IJOB = 0, 1 or 2, C has been overwritten by

* the solution R. If IJOB = 3 or 4 and TRANS = 'N', C holds

* R, the solution achieved during the computation of the Dif-estimate.

*

* LDC (input) INTEGER

* The leading dimension of the matrix C. LDC >= max(1, M).

*

* D (input) DOUBLE PRECISION array, dimension (LDD, M)

* On entry, D contains an upper triangular matrix.

*

* LDD (input) INTEGER

* The leading dimension of the matrix D. LDD >= max(1, M).

*

* E (input) DOUBLE PRECISION array, dimension (LDE, N)

* On entry, E contains an upper triangular matrix.

*

* LDE (input) INTEGER

* The leading dimension of the matrix E. LDE >= max(1, N).

*

30



* F (input/ output) DOUBLE PRECISION array, dimension (LDF, N)

* On entry, F contains the right-hand-side of the first matrix

* equation in (1) or (3).

* On exit, if IJOB = 0, 1 or 2, F has been overwritten by

* the solution L. If IJOB = 3 or 4 and TRANS = 'N', F holds

* L, the solution achieved during the computation of the Dif-estimate.

*

* LDF (input) INTEGER

* The leading dimension of the matrix F. LDF >= max(1, M).

*

* DIF (output) DOUBLE PRECISION

* On exit DIF is the reciprocal of a lower bound of the reciprocal

* of the Dif-function, i.e. DIF is an upper bound of

* Dif[(A,D), (B,E)] = sigma-min(Z), where Z as in (2).

* IF IJOB = 0 or TRANS = 'T', DIF is not touched.

* For more information see [1].

*

* SCALE (output) DOUBLE PRECISION

* On exit SCALE is the scaling factor in (1) or (3). If 0 < SCALE < 1,

* C and F hold the solutions R and L, respectively, to a slightly

* perturbed system but the input matrices A, B, D and E have not

* been changed. If SCALE = 0, C and F hold the solutions R and L,

* respectively, to the homogeneous system with C = F = 0.

* Normally, SCALE = 1.

*

* WORK (workspace) DOUBLE PRECISION array, dimension (LWORK)

*

* LWORK (input) INTEGER

* The dimension of the array WORK. LWORK > = 1.

* If IJOB = 1 or 2 and TRANS = 'N', LWORK >= 2*M*N.

*

* IWORK (workspace) INTEGER array, dimension (M + N + 6)

*

* INFO (output) INTEGER

* On exit, if INFO is set to

* 0 : Normal return

* -k : Input argument number k is illegal.

* >0 : (A, D) and (B, E) have common or very close eigenvalues.

*

* ================================================================================

C Test program DCHK1

Here we display the leading comment lines of the double precision routine DCHK1 for testing
DGGSYX. The output from test runs on a Sun Sparc and an IBM RS6000/530 is also included.

PROGRAM DCHK1

IMPLICIT NONE

* Peter Poromaa,Institute of Information Processing

* Univ. of Umea, S 901 87 Umea,Sweden
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* November 1993

*

*

* Purpose

* =======

*

* DCHK1 is a test code for the expert driver DGGSYX that

* solves the real generalized Sylvester equation:

* A * R - L * B = SCALE* C

* D * R - L * E = SCALE* F

*

* The test code verifies that:

*

* (1) 0 <= SCALE <= 1.

*

* (2) the relative residual RELRES is small (of order one), i.e.

* norm(A*R-L*B-scale*C, D*R+L*E-scale*F)

* ----------------------------------------------------------- < TOL1

* EPS*(((norm(A, D) + norm(B, E))*norm(L, R) + scale*norm(C, F))

*

* (3) the estimated forward error FERR does not differ from the true forward

* error more than a factor TOL2. If the true value equals zero, FERR

* must not differ from EPS more than a factor TOL2.

*

* (4) the estimate DIF of Dif[(A, D),(B, E)] does not differ from the true value

* of Dif[.] more than a factor TOL3. If the true value equals zero DIF must

* not differ from EPS more than a factor TOL3.

*

* (5) INFO >= 0 is returned by DGGSYX.

*

* (6) INFO = 0 is returned by DGESVD.

*

* (7) If INFO = 1 or 3 is returned by DGGSYX, the system is regarded as

* numerically singular and we count those events.

*

* (8) If INFO = 2 or 3 is returned by DGGSYX, the routine DGEGS

* had problems to compute the generalized real Schur forms and

* we count those events.

*

* DGESVD is used for computing the true value of Dif.

* In the above, EPS is the relative machine precision. The variable FAIL(i)

* will report the number of fails for test (i). If test (i) never fails

* this will not be reported.

*

* The parameters TOLi and NOUT may be changed by the user.

* No other changes to the code should be done.

* NOUT is the unit on which the test results are reported.

*

* Ouput from this program on Sun Sparc and IBM RS6000/530:

* Sun 4 SPARC :

******************* Start of test ******************
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* Test expert driver DGGSYX: 900 no. of problems.

* Max and min values of SCALE: 0.100D+01 0.840-290

* Max value of relative residual RELRES 0.258D-15 for example no 550

* Max value of true forward error and corresponding estimate FERR

* 0.155D+01 0.100D+02 for example no. 736

* Min value of true forward error and corresponding estimate FERR

* 0.000D+00 0.344D-14 for example no. 2

* Max value of true Dif and corresponding estimate DIF:

* 0.141D+01 0.100D+01 for example no. 723

* Min value of true Dif and corresponding estimate DIF:

* 0.000D+00 0.111D-15 for example no. 732

* Estimated forward error differs more than a factor 0.100D+04

* from true value in 28 cases out of 450

* Estimated Dif differs more than a factor 0.100D+03

* from true value in 7 cases out of 450

* 190 no of problems were regarded as "numerically singular".

******************* End of test *******************

* IBM RS6000/530:

******************* Start of test ******************

* Test expert driver DGGSYX: 900 no. of problems.

* Max and min values of SCALE: .100D+01 .840-290

* Max value of relative residual RELRES .149D-15 for example no 550

* Max value of true forward error and corresponding estimate FERR

* .155D+01 .100D+02 for example no. 736

* Min value of true forward error and corresponding estimate FERR

* .000D+00 .344D-14 for example no. 2

* Max value of true Dif and corresponding estimate DIF:

* .141D+01 .100D+01 for example no. 723

* Min value of true Dif and corresponding estimate DIF:

* .520D-48 .111D-15 for example no. 772

* Estimated forward error differs more than a factor .100D+04

* from true value in 50 cases out of 450

* Estimated Dif differs more than a factor .100D+03

* from true value in 16 cases out of 450

* 190 no. of problems was regarded as "numerically singular".

******************* End of test *******************

D Test program DCHK2

Here we display the leading comment lines of the double precision routine DCHK2 for testing
DTGSYL. The output from test runs on a Sun Sparc and an IBM RS6000/530 is also included.

PROGRAM DCHK2

IMPLICIT NONE

*

* Peter Poromaa, Institute of Information Processing

* Univ. of Umea, S-901 87 Umea, Sweden

* November 1993

*

* Purpose
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* =======

*

* DCHK2 is a test code for the expert driver DTGSYL that

* solves the real quasi triangular generalized Sylvester equation

*

* A * R - L * B = SCALE * C

* D * R - L * E = SCALE * F

*

* and the "transposed" generalized system

*

* A' * R + D' * L = SCALE * C

* R * B' + L * E' = SCALE * -F

*

* The test code verifies that:

*

* (1) 0 <= SCALE <= 1.

*

* (2) the relative residual RELRES is small (of order one), i.e.

* norm(A*R-L*B-SCALE*C, D*R-L*E-SCALE*F)

* ------------------------------------------------------------ < TOL1

* EPS*((norm(A, D) + norm(B, E))*norm(L, R) + SCALE*norm(C, F))

*

* (3) or in the "transposed" case the relative residual is small

* norm(A'*R+D'*L-SCALE*C, R*B'+L*E'+SCALE*F)

* ------------------------------------------------------------ < TOL1

* EPS*((norm(A, D) + norm(B, E))*norm(L, R) + SCALE*norm(C, F))

*

* (4) when the auxiliary routine DTDIFE is called, the estimate of Dif does

* not differ from the true value of Dif more than a factor TOL2.

* If the true value of Dif equals zero the estimate must not differ from

* EPS more than a factor TOL2. Not actual for the "transposed" case.

*

* (5) when the auxulary routine DTDIFD is called the estimate of Dif does not

* differ from the true value of Dif more than a factor TOL2.

* If the true value of Dif equals zero the estimate must not differ from

* EPS more than a factor TOL2. Not actual for the "transposed" case.

*

* (6) INFO >= 0 is returned by DTGSYL.

*

* (7) If INFO > 0 is returned by DTGSYL the system is regarded as

* numerically singular and we check if the true value of

* Dif < (EPS*(norm(A, D) + norm(B, E))*norm(L, R) + SCALE*norm(C, F)).

*

* (8) INFO = 0 is returned by DGESVD.

*

* (9) INFO = 0 is returned by DGEGS .

*

* DGEGS is used to compute generalized real Schur forms of matrix pairs.

* DGESVD is used for computing the true value of Dif.

* In the above, EPS is the relative machine precision. The variable FAIL(i)

* will report the number of fails for test (i). If test (i) never fails
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* this will not be reported.

* The parameters TOLi and NOUT may be changed by the user.

* No other changes to the code should be done.

* NOUT is the unit on which the test results are reported.

*

* Ouput from this program on Sun Sparc and IBM RS6000/530:

* Sun SPARC 4

******************* Start of test ******************

* Test expert driver DTGSYL: 2250 no. of problems.

* Max and min value of SCALE: 0.100D+01 0.395-290

* Max value of relative residual RELRES 0.808D-16 for example no 1891

* Max value of true Dif and corresponding estimate for DTDIFE:

* 0.141D+01 0.141D+01 for example no. 902

* Min value of true Dif and corresponding estimate for DTDIFE:

* 0.000D+00 0.192D-15 for example no. 914

* Max value of true Dif and corresponding estimate for DTDIFD:

* 0.141D+01 0.141D+01 for example no. 903

* Min value of true Dif and corresponding estimate for DTDIFD:

* 0.000D+00 0.192D-15 for example no. 915

* Estimated Dif differs more than a factor 0.100D+03

* from true value in 23 cases out of 450 when DTDIFE is called

* Estimated Dif differs more than a factor 0.100D+03

* from true value in 23 cases out of 450 when DTDIFD is called

* Singularity reported correctly in 502

* cases and mabye not correctly reported in 0 cases (i.e. test 7 failed).

******************* End of test *******************

* IBM RS6000/530

******************* Start of test ******************

*Test expert driver DTGSYL: 2250 no. of problems.

* Max and min value of SCALE: .100D+01 .395-290

* Max value of relative residual RELRES .797D-16 for example no 1891

* Max value of true Dif and corresponding estimate for DTDIFE:

* .141D+01 .141D+01 for example no. 902

* Min value of true Dif and corresponding estimate for DTDIFE:

* .157D-18 .655D-16 for example no. 832

* Max value of true Dif and corresponding estimate for DTDIFD:

* .141D+01 .141D+01 for example no. 903

* Min value of true Dif and corresponding estimate for DTDIFD:

* .157D-18 .277D-16 for example no. 833

* Estimated Dif differs more than a factor .100D+03

* from true value in 16 cases out of 450 when DTDIFE is called

* Estimated Dif differs more than a factor .100D+03

* from true value in 16 cases out of 450 when DTDIFD is called

* Singularity reported correctly in 502

* cases and mabye not correctly reported in 0 cases (i.e. test 7 failed).

******************* End of test *******************
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