LAPACK Working Note 73
Basic Linear Algebra Communication Subprograms:

Analysis and Implementation Across Multiple Parallel

Architectures. *

R. Clint Whaley T

June 10, 1994

Abstract

The BLACS (Basic Linear Algebra Communication Subprograms) project is an on-
going investigation whose purpose is to create a linear algebra oriented message passing
interface that is implemented efficiently and uniformly across a large range of distributed
memory platforms.

The length of time required to implement efficient distributed memory algorithms
malkes 1t impractical to rewrite programs for every new parallel machine. The BLACS
exist in order to make linear algebra applications both easier to program and more
portable.

It is for this reason that the BLACS are used as the communication layer for the
ScalLAPACK project, which involves implementing the LAPACK library on distributed
memory MIMD machines.

*This work was supported in part by DARPA and ARO under contract number DAAL03-91-C-0047,
and in part by the National Science Foundation Science and Technology Center Cooperative Agreement No.
CCR-8809615.

Dept. of Computer Sciences, Univ. of TN, Knoxville, TN 37996, rwhaley@cs.utk.edu

Contents

Introduction

Features of the BLACS

2.1 Array-based Communication oL
2.2 Process Grid and Scoped Operations Lo
2.3 ID-less Communication 0L e
2.4 Support Routines L

Point To Point Communication

3.1 Semanticsol e e e
3.2 Syntax . ..o e e e
3.3 Timings L e
Broadcasts
4.1 Semantics Lo e e e e e e
A 4 1
4.3 Topologies L
4.3.1 Broadcast Ring Topologies
4.3.2 Broadcast Tree Topologies
4.4 Timings o e e e e e e e e
4.4.1 Survey of Topologies oo
4.4.2 Accuracy of Theoretical Models
4.4.3 Validity of Timings L o
Combines
5.1 Semanticsol e e e e
B.2 Syntax e e e
5.3 Related Topics o e
5.3.1 Additional Buffering Demands
5.3.2 Communication and Its Effect on Fan-in
5.4 Topologies L e
5.4.1 General Tree Gather oo oL
5.4.2 Bidirectional Exchange 0oL,
5.5 Timings o L
5.5.1 Survey of Topologies oL
5.5.2 Accuracy of Theoretical Models
5.5.3 Validity of Timings L.
Implementation and Portability Issues
6.1 Message Identifiers Lo
6.1.1 Point To Point Message ID Generation
6.1.2 Scoped Message 1D Generation
6.2 Buffering L
6.2.1 Buffering On the Intel Machines

ii

Ot W W N

o D

10

18
18
19
20
21
25
29
29
32
37

41
41
41
43
43
44
45
45
47
48
49
49
55

6.2.2 Buffering for the CM-5 and SP1 Platforms

7 Future Directions

7.1 Possible Extensions to the BLACS
7.1.1 Arbitrary Scopes L e
7.1.2 Wildeard Receive L o
7.1.3 Additional Combine Operations
7.1.4 Built-in Debug and Timing Levels

7.2 Optimizations L e e e e
7.2.1 Intel BLACS s
722 CM-5 BLACS o e
7.2.3 SPIBLACS e
724 PVMBLACS o s

8 Conclusion

References

Appendices

A Example Code: Matrix Vector Multiply
B Obtaining the BLACS from Netlib

C Quick Reference To The BLACS
D

Timing Codes

D.1 T, Timing Code e
D.2 T, Timing Code e
D.3 Broadcast Timing Code L oL
D.4 Combine Timing Code

iii

61
61
61
62
62
62
63
63
64
64
64

65

66

69

70

75

77

List of Tables

O 0 ~1 S T = W N =

—_ =
— o

—
[N

13
14
15
16

17

Scopes provided by a 2D process grid oL
Values and meanings of the communication routines’ name positions
Names and abbreviations for timing platforms
System calls used for timings L o oL
,oe,00000. . .. L.
Least squares fit for 7T times (in microseconds), N =0,...,50000.
Least squares fit for 7, times (in microseconds), N =0,...,50000

Least squares fit for 7, times (in microseconds), N =

Least squares fit for point to point times (in microseconds), N =0,...,1000
Broadcast topology highlights L.
General tree topology entry pointso oo L.
Relative errors for predicted timeso
Least squares fit (in microseconds) and relative error of broadcast times for
N=0,...,50000 e
Values and meanings of combine routines’ name positions
Least squares fit of T}, (in microseconds) for various platforms
Relative errors for predicted combine timeso
Least squares fit (microseconds) and relative error of combine times for N =
0,...,50000 L e e
How to obtain various BLACS versions from netlib

iv

13
13
13
13
22
22
22
26
37

38
41
54
54

List of Figures

O 0 =1 S OB W N =

—_ =
— o

s ol s R W W W W W W W W WD NN NN DNDNNN A BR—R BRPR =2 e e
W NP O W W10 Utk WN HFE O WWO-=TO Ui WP OO 0TI O =W

8 processes mapped to a 2 x 4 process grid.
After first step of LU factorization
Pseudo-code that hangs for globally-blocking sends

T. for nearest neighbor communication on the Intel i860, reps=15.
Ts on the Intel i860, reps=15 L
T, for nearest neighbor communication on the Paragon, reps=1000
Ts on the Paragon, reps=1000 oL
T. for nearest neighbor communication on the CM-5, reps=30
Ts on the CM-5,reps=30
T. for nearest neighbor communication on the SP1, reps=30
Ts on the SP1, reps=30
Increasing ring broadcast L o o Lo
Decreasing ring broadcast Lo 0oL
Split ring broadcasto
Multiring broadcast with N, =3 0oL
Hypercube broadcast, nearest node first.
General tree broadcast with Np =1
General tree broadcast with N, =2
General tree broadcast with N, =3
Survey of 32 processor i860 broadcast topologies, reps=5

Survey of 32 processor Paragon broadcast topologies, reps=30
Survey of 32 processor CM-5 broadcast topologies, reps=15
Survey of 32 processor SP1 broadcast topologies, reps=15

Predicted vs.
Predicted vs.
Predicted vs.
Predicted vs.
Predicted vs.
Predicted vs.
Predicted vs.
Predicted vs.

measured time for 32 processor i860 BLACS 3-ring broadcast
measured time for 32 processor i860 BLACS hypercube broadcast
measured time for 32 processor Paragon BLACS 3-ring broadcast
measured time for 32 processor Paragon BLACS 1-tree broadcast
measured time for 32 processor CM-5 BLACS 3-ring broadcast
measured time for 32 processor CM-5 BLACS 1-tree broadcast
measured time for 32 processor SP1 BLACS 3-ring broadcast
measured time for 32 processor SP1 BLACS hypercube broadcast

Variance between runs on 32 processor i860 broadcasts
Variance between runs on 32 processor Paragon broadcasts
Variance between runs on 32 processor CM-5 broadcasts
Variance between runs on 32 processor SP1 broadcasts
Simple 5to 1l Fan-in L o
General tree gather with Ny =1 o o L L.
General tree gather with Ny =4 o oL
Bidirectional exchange 0 o L L
Survey of 32-processor i860 combines o oo Lo
Survey of 32-processor Paragon combines L.
Survey of 32-processor CM-5 combines

Survey of 32-processor SP1 combines o oo

44
45
46
47
48
49
50
51
52

Predicted vs.
Predicted vs.
Predicted vs.
Predicted vs.
Variance between 32-processor i860 combine runs
Variance between 32-processor Paragon combine runs
Variance between 32-processor CM-5 combine runs
Variance between 32-processor SP1 combine runs

Matrix-vector multiply on 2 x 2 processor grid.

measured maximum time for i860 BLACS combine (sum)
measured maximum time for Paragon BLACS combine (sum)
measured maximum time for CM-5 BLACS combine (sum)
measured maximum time for SP1 BLACS combine (sum)

vi

1 Introduction

The BLACS (Basic Linear Algebra Communication Subprograms) project arose as part of
a larger project called ScaLAPACK (Scalable Linear Algebra PACKage) [10]. The goal of
the ScalLAPACK project is to implement a core set of the linear algebra routines provided
in the sequential library LAPACK (Linear Algebra PACKage)[7] on distributed memory
platforms.

LAPACK contains approximately 1000 routines, which are made up of around 650,000
lines of Fortran77. Since distributed memory computing is much more complex (and there-
fore requires many more lines of code) than sequential or shared-memory computing, the
need for a standard, easy to use message passing interface was quickly identified.

ScaLAPACK is intended to run across a large range of parallel machines. Each platform
has its own message passing library, and the number of routines in the ScaL APACK library
make supporting a version for each machine impractical. Thus the first goal of the BLACS
is to present a standard interface that can be efficiently supported across a wide range of
parallel platforms.

LAPACK already isolates much of its computation within a small library of routines,
called the BLAS (Basic Linear Algebra Subprograms)[5, 4, 3]. An efficient port of the BLAS
on a machine performs most needed optimization for a given platform. It was decided to
extend this idea to communication. Then, an efficient BLAS implementation supplies the
compute engine, and an optimized BLACS code satisfies our communication needs. Thus,
the efficient porting of ScaLAPACK codes becomes largely a matter of porting these two,
much smaller libraries.

There are various packages designed to provide a message passing interface that remains
unchanged on several platforms, including PICL [14], and more recently, MPI [2]. These
packages are not available on all of the platforms that ScaLAPACK targets. More impor-
tantly, they are attempts at general libraries, and are thus somewhat harder to use than a
more restricted code.

The BLACS are written at a level where the manipulation of the matrices involved
in linear algebra computations is both natural and convenient. Since the audience of the
BLACS is known, the interface and methods of using the routines can be simpler than for
those of more general message passing layers.

Therefore, the goals of the BLACS project include:

e Fase of programming: wherever possible, the BLACS will simplify message passing in
order to reduce programming errors.

o Fuase of use The interface to the BLACS will be at such as level as to be easily usable
by linear algebra programmers.

e Portability The BLACS must supply an interface which can be supported across a
large range of parallel computers.

Jack Dongarra and Robert van de Geijn proposed a BLACS standard in [9]. A prototype
implementation was required to test the feasibility and programmability of the standard,
at which point the author became involved in the project. The initial prototype was imple-
mented on the Intel i860. After it was shown to be feasible, it was decided that the BLACS

should not require the user to supply message identifiers (see section 6.1 for details), and
the specifications were correspondingly changed.

Now that the standard had been shown to be both implementable and usable, the
BLACS had to be written for several of the more important platforms so that ScaLAPACK
would be portable. The Intel version of the BLACS allowed the ScalLAPACK authors
to begin their work, and the BLACS could be implemented across other platforms while
ScalLAPACK development was underway, so that portability was achieved as soon as a code
was developed.

There are presently three versions of the BLACS available via netlib or anonymous
ftp. The available versions are: PVM (Parallel Virtual Machine) [1], Thinking Machine’s
CM-5, and the Intel line of supercomputers. The Intel BLACS work on the following Intel
machines: iPSC2, iPSC/860, Touchstone Delta, and Paragon XP/S. In addition, an initial
IBM Scalable POWERparallel System 1 implementation has recently been finished, and
will be released after optimization and further testing have been done.

Each of these implementations represent code in excess of 10,000 lines. It is therefore
impractical to include them in this report, or indeed to cover in detail their development.
If the reader wishes to see the software, appendix B provides information for down-loading
the codes from netlib.

The first section of this report familiarizes the reader with some of the more important
concepts and features of the BLACS. Then, we discuss the BLACS’ three main categories
of communication in turn. The first category consists of point to point message passing.
Next, broadcasts, which take data from one process and send it to many processes, are
examined. Finally, combines are discussed. Combines take data distributed over processes,
and combine the data in some way to produce a result (at present, data can be combined
by doing maximization, minimization, or summation).

After the BLACS interface and features have been explored, some of the more inter-
esting implementation issues are discussed. We will then discuss future directions, possible
optimizations, and draw some conclusions.

2 Features of the BLACS

The following discussion of the features of the BLACS are designed to be brief. More
information can be obtained in the reports [9] [6]. An even better source of this type of
information is the BLACS User’s Guide, which is available on netlib (see appendix B for
details).

In general, this paper refers to the basic unit of execution as a process. A process is
a thread of execution which minimally includes a stack, registers, and memory. Multiple
processes may share a processor. The term processor refers to the actual hardware.

The BLACS do not distinguish between a process and a processor. Each process is
treated as if it were a processor: the process must exist for the lifetime of the BLACS run,
and its execution should only affect other processes’ execution through the use of message
passing calls. With this in mind, we use the term process in all sections of this paper except
those dealing with timings. When discussing timings, we specify processors as our unit of
execution, since speedup will be largely determined by actual hardware resources.

2.1 Array-based Communication

Many communication packages can be classified as having operations based on one dimen-
sional arrays, which are the machine representation for linear algebra’s wvector class. In
programming linear algebra problems, however, it is more natural to express all operations
in terms of matrices. Vectors and scalars are, of course, simply subclasses of matrices. On
computers, a linear algebra matrix is represented by a two dimensional array (2D array),
and therefore the BLACS operate on 2D arrays.

The BLACS recognize the two most common classes of matrices for dense linear algebra.
The first of these classes consist of general rectangular matrices, which in machine storage
are 2D arrays consisting of M rows and N columns, with a leading dimension, LDA, that
determines the distance between successive columns in memory.

The second class of matrices recognized by the BLACS are trapezoidal matrices. Trape-
zoidal arrays are defined by M, N, and LDA, as above, but they also have the parameters
UPLO, which indicates whether the matrix is upper or lower trapezoidal, and DIAG, which
determines if the diagonal of the matrix need be communicated. Triangular matrices are
a sub-class of trapezoidal, so these matrices are also handled by the BLACS. If the reader
wishes a more detailed knowledge of the shapes which can be generated by trapezoidal
matrices, the BLACS User’s Guide, [9], or [6] are good sources.

The packing of arrays (if required) so that they may be sent efficiently is hidden, allowing
the user to concentrate on the logical matrix, rather than how the data is organized in the
machine’s memory. A detailed discussion on when such buffering is necessary is given in
section 6.2.

2.2 Process Grid and Scoped Operations

The processes of a parallel machine with IV, processes are often presented to the user as
a linear array of process IDs, labeled 0,1,..., N, — 1. For reasons described below, it is
often more convenient to map this 1-D array of IV, processes into a logical two dimensional
process mesh, or grid. This grid will have P process rows and Q process columns, where
P+xQ = N, < N,. A process can now be referenced by its coordinates within the grid
(indicated by the notation {p, ¢}, where 0 < p < P, and 0 < ¢ < Q), rather than a single
number. An example of such a mapping is shown in figure 1.

Figure 1: 8 processes mapped to a 2 x 4 process grid.

An operation which involves more than just a sender and a receiver is called a scoped
operation. All processes that participate in a scoped operation are said to be within the

operation’s scope.
On a system using a linear array of processes, the only natural scope is all processes.
Using a 2D grid, we have 3 natural scopes, as shown in table 1

| SCOPE | MEANING |

Row All processes in a process row participate.

Column | All processes in a process column participate.

All All processes in the process grid participate.

Table 1: Scopes provided by a 2D process grid

These groupings of processes are of particular interest to the linear algebra programmer,
since distributed data decompositions of a 2D array (a linear algebra matrix) tend to follow
this process mapping. For instance, all of a distributed matrix row can be found on a
process row, etc.

Viewing the rows/columns of the process grid as essentially autonomous subsystems
provides the programmer with additional levels of parallelism. Of course, how independent
these rows and columns actually are will depend upon the underlying machine. For instance,
if the grid’s processors are connected via ethernet, we can see that the only gain will be in
ease of programming. Speed is unlikely to increase, since if one processor is communicating,
no others can. If this is the case, process rows or columns will not be able to perform
different distributed tasks at the same time. Fortunately, most modern supercomputer
interconnection networks are at least as rich as a 2D grid, so that these additional levels of
parallelism can be exploited.

The LU factorization (used to solve a systems of linear equations) can be used to illus-
trate the usefulness of the process grid. Figure 2 shows the basic steps of a right-looking LU
factorization as they affect the data matrix. The first action in the algorithm is to form the
panel of L as shown. A process column will cooperate to do this. This process column will
then broadcast its portion of L along process rows. A process row will use this information
and cooperate to form U. U is then broadcast within process columns, and all processes
will use the values of L and U to find A.

U

g

Figure 2: After first step of LU factorization

This is a very sketchy description of LU, and will likely confuse someone not familiar
with the algorithm. A more complete analysis, which includes an examination of scalability,
is given in [8].

A more detailed understanding of the process grid will be obtained as we discuss the
various BLACS routines later in the paper. Also, in section 7.1.1, the extension of the scope
idea to allow arbitrary groupings will be discussed.

2.3 ID-less Communication

One of the things that sets the BLACS apart from other message passing layers is that the
user does not need to specify message IDs, (abbreviated msgid). A msgid (also referred
to as a message type) is usually an integer which allows a receiving process to distinguish
between incoming messages. The generation of these IDs can become problematic. A
common mistake is to use a constant msgid within a loop, so that if one process takes
longer than others to finish the loop, it may wind up receiving data from the next iteration
as this iteration’s data. This is just the most obvious way such msgid problems can happen.
The same result can occur whenever non-unique IDs are used in any two sections of code
not separated by an explicit barrier. These kinds of programming mistakes can lead to
non-deterministic code which will finish correctly some of the time, give wrong results some
of the time, and at other times simply crash.

Many parallel projects are too large for one person/team to write. This means that
msgids must be coordinated between all routines and all writers of the package. If another
routine is added at a later date, care must be taken to ensure that the new routine’s IDs
do not conflict with any other routine’s.

Therefore, to add to the programmability of the BLACS, it was decided that the BLACS
would generate the required msgids. These generated 1Ds had to have certain properties.
First, it must never be the case that unrelated messages with the same destination would
get the same ID. Second, in order to maintain performance, the ID generating algorithm had
to use only local information: off-processor memory access could not be allowed. Further,
it is necessary to allow for BLACS packages to be used alongside other communication
platforms. An example that occurs regularly is linking a BLACS package with a machine
specific package.

Therefore, the BLACS must allow the user to specify what range of IDs the BLACS can
use. The user may do this by a call to the support routine SHIFT_RANGE (see the BLACS
User’s Guide for details).

By placing two restrictions on communication, these goals were achieved. First, a re-
ceiver must know the coordinates of the sending processor. Second, communication between
two processes is strictly ordered. This means that if {0, 0} sends two messages to {0, 1},
then {0, 1} must receive them in the same order that they were sent. Section 6.1 discusses
the BLACS msgid generating algorithms in detail.

2.4 Support Routines

The core BLACS routines are discussed later, in the specific section dealing with the various
types of communication. There are a number of routines which do not deal directly with
communication, however, that are required for programming in a parallel environment. The
BLACS label these routines as support routines.

These routines return a process’s grid coordinates, place barriers for rough synchroniza-
tion, etc. Most of these routines are uninteresting as far as our discussion is concerned, and

if the reader desires information about these routines, appendix C gives a quick reference
to the BLACS. More detailed information about support routines can be obtained in the
BLACS User’s Guide.

There are two support routines important enough that they require discussion. They
are the routines GRIDMAP and BLACSINIT, which are both used to create a process grid from
a linear array of process IDs.

BLACSINIT creates a process grid with the first NV, process IDs distributed in the grid
using a row-major natural ordering. Natural ordering implies that the order in which the IDs
are dealt out is by increasing value. Row-major means that a row is consigned consecutive
IDs. Column-major would similarly imply that a column is given IDs before going to the
next column. Therefore, a row-major natural mapping results in the type of process grid
shown in figure 1.

Most users will never need more flexibility than BLACSINIT provides. For users with
more advanced needs, however, the function GRIDMAP exists.

GRIDMAP is a more general grid creation routine. It allows for arbitrary mappings of
processes to the grid. This can be handy when row-major natural ordering does not supply
nearest neighbor communication. If a machine has a hypercube interconnection network,
for instance, a graycode mapping will be required to ensure grid neighbors correspond to
physical network neighbors.

GRIDMAP does more than free one from row-major natural ordering. It also allows any
of the available processes to be used for the grid, not just the first N, processes. This paves
the way for an important concept, referred to as multigridding.

Multigridding is the idea that within a program which has N, available processes, there
can be several grids performing separate tasks, at the completion of which the processes
may become idle, join with another grid to make a larger grid, etc. None of our users have
vet needed this feature, and it has not been tested. However, there are whole classes of
problems where this kind of behavior is natural, and GRIDMAP is designed to support it.

If further information regarding these routines is desired, the BLACS User’s Guide
should be consulted. In addition, Appendix C provides a quick reference of all BLACS
routines.

3 Point To Point Communication

3.1 Semantics

Point to point communication requires two complementary operations. The send operation
produces a message, which is then consumed by the receive operation. These operations
have various resources associated with them. The main such resource is the buffer which
holds the data to be sent or serves as the area where the incoming data is to be received.
The level of blocking indicates what correlation the return from a send/receive operation
has with the availability of these resources and with the status of message.

Non-blocking The return from the send or receive does not imply that the resources may
be reused, that the message has been sent/received or that the complementary operation
has been called. Return means only that the send/receive has been started, and will be

completed at some later date. Polling is required to determine when the operation has
finished.

In non-blocking message passing, the concept of communication/computation overlap
(abbreviated C/C overlap) is important. If a system possesses C/C overlap, independent
computation can occur at the same time as communication. l.e., a nonblocking operation
can be posted, and unrelated work can be done while the message is sent/received in parallel.
If C/C overlap is not present, after returning from the routine call, computation will be
interrupted at some later date when the message is actually sent or received.

Locally-blocking Return from the send or receive indicates that the resources may be
re-used. However, since this only depends on local information, it is unknown whether the
complementary operation has been called. There are no locally-blocking receives: the send
must be completed before the receive buffer is available for re-use.

If a receive has not been posted at the time a locally-blocking send is issued, buffering
will be required to avoid losing the message. Buffering can be done on the sending process,
the receiving process, or not done at all (message will be lost).

Globally-blocking Return from a globally-blocking procedure indicates that the oper-
ation’s resources may be reused, and that the operation’s complement has at least been
posted. Since the receive has been posted, there is no buffering required for globally-
blocking sends: the message is always sent directly into the user’s receive buffer.

Almost all machines support non-blocking communication, as well as some other level
of blocking sends. What level of blocking the send possesses varies between platforms.
For instance, the Intel machines support locally-blocking sends, with buffering done on the
receiving process. The CM-5 and SP1, however, possess globally-blocking sends.

This is a very important distinction, because codes written assuming locally-blocking
sends will hang on platforms with globally-blocking sends. Figure 3 shows a simple example
of how this can occur.

IAM = MY_PROCESS_ID()

IF (IAM .EQ. 0) THEN

SEND TO PROCESS 1

RECV FROM PROCESS 1
ELSE IF (IAM .EQ. 1) THEN

SEND TO PROCESS 0O

RECV FROM PROCESS 0
END IF

Figure 3: Pseudo-code that hangs for globally-blocking sends

If the send is globally-blocking, process 0 enters the send, and waits for process 1 to
start its receive before continuing. In the meantime, process 1 starts to send to 0, and

therefore waits for 0 to receive before continuing. Both processes are now waiting on each
other, and the program will therefore never continue.

The solution for this case is obvious. One of the processes simply reverses the order of
its communication calls and the hang is avoided. However, when the communication is not
just between two processes, but rather involves a hierarchy of processes, determining how
to avoid this kind of difficulty can become problematic.

For this reason, it was decided the BLACS would support locally-blocking sends. On sys-
tems natively supporting globally-blocking sends, non-blocking sends coupled with buffering
is used to simulate locally-blocking sends. Section 6.2 discusses this in detail. The BLACS
support globally-blocking receives.

In addition, the BLACS specify that point to point messages between two given processes
will be strictly ordered. Therefore, if process 0 sends three messages (label them A, B, and
(') to process 1, process 1 must receive A before it can receive B, and message C' can be
received only after both A and B. The main reason for this restriction is that it allows for
the computation of message identifiers, which is discussed in section 6.1.

It should be noted, however, that messages from different processes are not ordered.
Therefore, if processes 0,...,3 send messages A, ..., D to process 4, process 4 may receive
these messages in any order that is convenient.

3.2 Syntax

The names of the communication routines follow the template vXXYY2D, where the letter in
the v position indicates the data type being sent, XX is replaced to indicate the shape of the
matrix, and the YY positions are used to indicate the type of communication to perform.
This is shown in table 2.

The calling sequences for these routines are:

vGESD2D (M, N, A, LDA, RDEST, CDEST)

VGERV2D(M, N, A, LDA, RSRC, CSRC)

vIRSD2D(UPLO, DIAG, M, N, A, LDA, RDEST, CDEST)

vIRRV2D(UPLO, DIAG, M, N, A, LDA, RSRC, CSRC)

The function of the parameters depends largely on whether the routine sends data (vXXSD2D)
or receives (vXXRV2D) data. Output parameters are underlined. All other parameters are
input, and thus not modified by the call.

b

Parameters:

UPLO Specifies if matrix is stored as Lower or Upper trapezoidal matrix.
See section 2.1 for details on trapezoidal matrices.

DIAG Specifies if the matrix is unit diagonal. See section 2.1 for details on

trapezoidal matrices.

Row dimension of matrix.

Column dimension of matrix.

= = =

Two dimensional array of data to be sent/received into. vXXSD2D:
Array of data to be sent. vXXRV2D: Array where data is to be received.

vXXYY2D

| v | MEANING |
I Integer data is to be communicated.
S Single precision real data is to be communicated.
D Double precision real data is to be communicated.
C Single precision complex data is to be communicated.
Z Double precision complex data is to be communicated.

| XX | MEANING |
GE The data to be communicated is stored in a general

rectangular matrix.
TR The data to be communicated is stored in a
trapezoidal matrix.

| YY | MEANING |

SD | Send. One process sends to another.

RV | Receive. One process receives from another.
BS | Broadcast/send. A process begins the broadcast of
data within a scope.

BR | Broadcast/recv. A process receives and participates

in the broadcast of data within a scope.

Table 2: Values and meanings of the communication routines’ name positions

LDA Leading dimension of the array A.

RDEST vXXSD2D: Row index of destination process.
CDEST vXXSD2D: Column index of destination process.
RSRC vXXRV2D: Row index of source process.

CSRC vXXRV2D: Column index of source process.

As a simple example, the pseudo code given in figure 3 is rewritten in terms of the
BLACS. It is further specified that the data being exchanged is the double precision vector
X, which is 5 elements long.

CALL GRIDINFO(NPROW, NPCOL, MYPROW, MYPCOL)

IF (MYPROW.EQ.O .AND. MYPCOL.EQ.O) THEN
CALL DGESD2D(5, 1, X, 5, 1, 0)
CALL DGERV2D(5, 1, X, 5, 1, 0)
ELSE IF (MYPROW.EQ.1 .AND. MYPCOL.EQ.O) THEN
CALL DGESD2D(5, 1, X, 5, 0, 0)
CALL DGERV2D(5, 1, X, 5, 0, 0)
END IF

3.3 Timings

One of the main reasons we present times in this report is for comparison with the system
communication routines. In order to make these comparisons, we confine ourselves to
using only a subset of the BLACS. For instance, most platforms support communication of
contiguous data (vectors), so the timings are presented using general rectangular matrices
with only one column. Broadcast and global timings are also restricted, and this is covered
in their respective sections.

We present timings for four of the machines on which the BLACS run. Because the
correct names of these platforms are rather long, table 3 gives a list of the four platforms
and the abbreviations that refer to them. Table 4 gives a list of the system calls and
the message passing layers used in the timings of not only the point to point, but also
combines and broadcasts (abbreviated bcast in the table). Also listed is the routine used to
synchronize processors (abbreviated sync in the table). Finally, appendix D contains the
code used to obtain the times given throughout this report.

All of the tests given in this paper are repeated inside a timing loop in order to insure
that the time being measured is above clock resolution. The number of times a given test
was repeated (X)) is indicated in each figure by the notation reps=X.

There are two times associated with point to point communication. These times are
T. (time for a complete communication) and 7T (time to post a send). A third quantity,
T, the time to perform a malloc and memory-to-memory copy, will be of interest on those
platforms where buffering is done in order to perform locally-blocking sends.

We define T, as the time lapse between a sender process initiating a send, and the
waiting receiver returning from the blocking receive. To find this value, an “echo” test is

10

performed. In this test, one processor is the sender. All other processors will only echo
back what is sent. The sender sends a wake-up message to a waiting echo processor. This
tells the echo processor to start its receive. The sending processor now starts its timer, and
loops over a send followed by a receive. The echo processor loops over a receive followed
by a send. When they have done this the required number of times, the sender stops his
timer, and divides the time by the number of repititions to get the time for one T.. This
test was originally proposed in [13], and that paper provides further details.

It should be noted that this measurement favors platforms with globally-blocking sends.
The strength of globally-blocking sends is that no buffering is required. Its weakness is that
if the receiver posts the receive after the corresponding send is posted, the sending processor
must wait. In the echo test, the receive will always be posted at about the same time as the
send. This means that the delays inherent in using globally-blocking sends will not show
up in this test. Locally-blocking sends will still have to pay the cost for their buffering, but
the ability for the sender to return before the receive is posted is not utilized.

Therefore, on systems where the native send is globally-blocking, the BLACS times
(which use the BLACS locally-blocking sends) will appear to be much worse than the
system’s times. On such systems, the BLACS use buffering to create locally-blocking sends.
This requires the BLACS to allocate a buffer (if the BLACS don’t have one of the correct
size available), and copy the entire message on each send (see section 6.2.2 for details).
Therefore, on the CM-5 and SP1 (the systems with globally-blocking sends), we measure
T, as well.

The final time of interest is the time it takes post a send, T, i.e., the time from when
the send routine is called, until it returns. This value may be less than T,, especially if
non-blocking or locally-blocking sends are used. If T, < T,, this is of obvious interest to
optimizing codes. Ts becomes even more important when we discuss the times in broadcasts
and combine operations.

The times presented throughout this paper were taken while no other users were present
on the machines. When this is not the case, communication times can vary, with the degree
of variance determined by the platform, and what the other users’ processes are doing.

On each platform our sample range is from 0 .. .50, 000 double precision elements (0 ...400, 000
bytes), with a data point taken every 1000 double precision elements. This is our primary
range of interest, a range which we believe most communication falls within. For this pri-
mary range, we check the reproducibility of our codes by re-running every fifth data point
ten additional times. The distribution of these repeated data points gives us an idea of how
accurate/reproducible our timings are. A least squares fit is then done on all of these data
points to arrive at o and j.

We now have repeated data points at 11 different values of N within our range. If we
label the i*h (i < 11) set of repeated data points as D, (i), then the relative error is given by

maX(DT(i))_min(,Dr(i))) % 100.0. After all of the timings had been taken, it

RE = maxj<i<ii(average]gpr(z))
was discovered that we had failed to set the value of reps high enough to measure the N =0
data point on many systems. Therefore the RE calculations do not include the N = 0 data

point.

We will perform a least squares fit on all of these times, so that we express each as
a linear model. Therefore, each time will be written as T = a + SN, where N is the
number of double precision elements being communicated. If these models were completely

11

accurate across the entire range, o would be latency, or startup cost, and 3 would be the
cost/element of the operation. However, the cost/element does not remain constant across
the range. This is especially true of data copying, where pipelining occurs. Indeed, we find
that doing a least squares fit on the copy times yields a negative «, due to this pipelining.
This results in those locally-blocking sends which use the memory copy also having negative
«’s on this range.

Therefore, we find a second range of interest. Thus the range N = 0,...,1000 is also
timed, but since it is not our primary range, the relative error calculations are not done for
it.

When modelling 7., we find that « is constant between two given processors, but may
vary depending on the distance between the processors. The T, timings shown here are all
for nearest neighbor communication. Detailed study of each individual machine is beyond
the scope of this paper, and so non-nearest neighbor times are not investigated.

For all platforms T, and Ts are given for the machine’s communication primitives and
for the machine’s BLACS.

Figures 4, 5, 6, 7, 8, 9, 10, and 11, show the timings for T, and T for each platform.
Viewing these graphs should give the user an intuitive handle on the relevance of the quan-
tities RE, a and 3, which we will also specify. In the interest of conserving space, only the
numbers are given for T,,.

Tables 5, 6, and 7 show the alpha and beta for the least squares fit of the T, T and T,
data on our primary range of N = 0,...,50,000. These tables also give the relative error
of the data (not of the least squares fit).

Table 6 summarizes the T timings. We see that little is lost on the i860, Paragon, or
SP1 platforms. The CM-5 loses some performance.

On the CM-5, both T, for locally-blocking sends and 7, show a negative o. This is
because packing displays pipelining: the operation is much more efficient for long vectors
than for short. Therefore, we see that our approximation is inaccurate at the beginning of
our curve. For our purposes in this paper, the linear model of the large range is what we
want: we wish to see values over this whole range, and are not as concerned about the first
few data points. However, since the reader may be interested the smaller range, we also
present some numbers obtained in timings over the range 0, ..., 1000. Since this is not our
target range, we did not re-run the measurements to get a relative error.

The most important quantity, 7., is summarized in table 5. On the i860, only the latency
is affected, which is as expected. On those machines natively possessing locally-blocking
sends, the BLACS just add a few routine calls, a message ID computation, etc., to the cost
of the send /receive. Since none of these things depend on N, only « should be affected on
those platforms. Notice that on the Paragon, 3 also seems to be changed. It is unsure if
this is true, or if this is just a timing artifact, as timings on the Paragon tend to be chaotic.
Notice that the number of repetitions is set to 1000 for this platform. Even with such a high
number of repetitions, anomalous behavior is sometimes observed. At fewer repetitions, the
BLACS routinely seemed faster than the system (a patent impossibility). At any rate, the
curves indicate that the times are quite comparable.

On the SP1 and CM-5, we see that the effective bandwidth changes, as does the latency.
This is due to the data copying mentioned previously. We see that the CM-5 shows the
effect far more than the SP1. The CM-5 has weak processors (spark-2’s), and a fairly decent

12

| SYSTEM | Abbr. |
Intel iPSC/860 i860
Intel Paragon XP/S Paragon
Thinking Machine’s CM-5 CM-5
IBM Scalable POWERparallel System 1 | SP1

Table 3: Names and abbreviations for timing platforms

| | 1860 | PGON | CM-5 SP1 |
Mssg. Pass- NX 3.3.2 | OSF/1 | CMMD 3.1 MPL (AIX 3.2.4 PE
ing Layer v 1.20 software 1.1/PTF 1)
send csend csend CMMD _send _block mpc_bsend
CMMD send _noblock
receive crecy crecy CMMD _receive_block mpc_brecv
beast /send csend csend | CMMD _bc_to_nodes mpc_bcast
beast/recv crecy crecy CMMD _receive_bc_from node | mpc_bcast
combine gdsum gdsum | CMMD scan_v mpc_combine
H sync ‘ gsync ‘ gsync ‘ CMMD sync_with_nodes mpc_sync H
send(BLACS) | csend csend | CMMD send_async mpc_send
recv(BLACS) | crecv crecv | CMMD _receive_block mpc_brecv
Table 4: System calls used for timings
SYSTEM | BLOCK SYSTEM TIMES BLACS TIMES
o | 08 | Rel Err o | 08 | Rel Err

i860 Local 200 | 2.8576 | 0.06% | 211 | 2.8576 5.93%

Paragon | Local 212 | 0.2049 | 10.76% | 209 | 0.2098 | 6.76 (32.26)%

CM-5 Global 169 | 0.9118 | 1.90% | N/A N/A N/A

CM-5 Local -159 | 1.4787 | 3.09% | -72 | 1.6246 280%

SP1 Global 772 | 1.1400 | 12.35% | 712 | 1.2463 | 6.62(40.45)%

Table 5: Least squares fit for 7, times (in microseconds), N =0,...,50000

SYSTEM | BLOCK SYSTEM TIMES BLACS TIMES

a| ﬁ|RelErr a| J¥ |Rel Err
i860 Local 48 | 2.8573 | 6.73% 47 | 2.8573 | 5.29%
Paragon | Local 109 | 0.1957 | 4.88% | 129 | 0.2001 1.50%
CM-5 Global 150 | 0.9164 | 7.01% | N/A N/A N/A
CM-5 Local 173 | 1.4787 | 17.37% | 337 | 1.5997 | 4.48%
SP1 Global 524 | 1.1165 | 23.56% 42 | 1.2316 | 10.99%

Table 6: Least squares fit for 7 times (in microseconds), N =0,...,50000

13

System vs. BLACS Tc times

T T T T T
0.14r 0 : System point to point o
+: BLACS point to point
0.12f solid line : Least squares fit of system data Z R
dashed line : Least squares fit of BLACS data

0.1f R
[)]
ko)
c
3

©0.08F |
[]
£
£

= 0,061 8

0.04f J

0.02 b

"h I I I I I I I I I
0 0.5 1 15 2 25 3 35 4 45 5
Number of double precision elements sent % 10"

Figure 4: T, for nearest neighbor communication on the Intel i860, reps=15

System vs. BLACS Ts times

0.14r 0 : System point to point 5
+: BLACS point to point
0.12f solid line : Least squares fit of system data R

dashed line : Least squares fit of BLACS data

o
[N
T
I

o
o
oo
T
L

Time in seconds

o
o
(=2
T
L

0.041 b

0.02 b

1 1 1
0 05 1 15 2 25 3 35 4 4.5 5

Number of double precision elements sent % 10"

Figure 5: T on the Intel i860, reps=15

14

System vs. BLACS Tc times

0.012 T T T T T
0 : System point to point
+: BLACS point to point 5
0.011 solid line : Least squares fit of system data b

dashed line : Least squares fit of BLACS data

0.008

0.006

Time in seconds

0.004

0.002

1 1 1
0.5 1 15 2 25 3 35 4 4.5 5
Number of double precision elements sent x 10"

o

Figure 6: T, for nearest neighbor communication on the Paragon, reps=1000

System vs. BLACS Tc times

0.012 T T T T T
0 : System point to point
+: BLACS point to paint 5
0.011 solid line : Least squares fit of system data b

dashed line : Least squares fit of BLACS data

0.008

0.006

Time in seconds

0.004

0.002

1 1 1
0.5 1 15 2 25 3 35 4 4.5 5
Number of double precision elements sent x 10"

o

Figure 7: T, on the Paragon, reps=1000

15

System vs. BLACS Tc times

0.09 T T T T T T T
0 : Locally-blocking system point to point
0.08r X : Globally-blocking system point to point /Jjjf
+: BLACS point to point S\
0.07+ solid line : Least squares fit of system data
dashed line : Least squares fit of BLACS data
0.06
[)]
ko)
c
80.05(
b A
£
© 0.041
E
'_
0.03 R
0.02 1
0.01 R
1 1 1 1

R vad 1 1 1
0 0.5 1 15 2 25 3 35 4 45 5
Number of double precision elements sent % 10"

Figure 8: T, for nearest neighbor communication on the CM-5, reps=30

System vs. BLACS Ts times

0.09 T T T T T T T
0 : Locally-blocking system point to point
0.08F x : Globally-blocking system point to point A
*
+: BLACS point to point)ﬁ*
0.07+ solid line : Least squares fit of system data o
dashed line : Least squares fit of BLACS data o)
0.06
[)]
ko)
c
80.05(
0 A X
£ C
0 0.041
E
'_
0.03 b
0.02 |
0.01 R
1 1 1 1

ca I I I
0 0.5 1 15 2 25 3 35 4 45 5
Number of double precision elements sent % 10"

Figure 9: T on the CM-5, reps=30

16

System vs. BLACS Tc times

0.07 T T T T T
0 : System point to point
+: BLACS point to point tq
0.06r solid line : Least squares fit of system data /f
dashed line : Least squares fit of BLACS data +/+’$
0.05r R
]
2
5 0.04f R
o
Q
2]
£
g0.03t]
=
0.02r R
0.01r R
(ﬁ g 1 1 1 1 1 1 1 1 1
0 05 1 15 2 25 3 35 4 45 5
Number of double precision elements sent % 10"

Figure 10: 7. for nearest neighbor communication on the SP1, reps=30

System vs. BLACS Ts times

0.07 T T T T T
0 : System point to point
+: BLACS point to point B
0.06r solid line : Least squares fit of system data «
dashed line : Least squares fit of BLACS data /ﬁ“
+/+/+
0.05r ¥ R
W
g 0.04 *ﬁ
3 *
£ A
+
Q L ¥ |
'E 0.03 +6
#10
o
0.02} 5 .
*
0
0
0.01r R
1 1 1 1 1 1 1 1 1
0 05 1 15 2 25 3 35 4 45 5
Number of double precision elements sent % 10"

Figure 11: T on the SP1, reps=30

17

network. This means that the data copy costs us much more than on the SP1. The SP1
possesses RS6000’s as its processors, and has a very high latency communication network.
This means we lose less by doing the data copy. It should be noted that the CM-5, unlike
the SP1, does offer a locally-blocking send. When the BLACS were first implemented on
the platform our timings seemed to indicate that the locally-blocking system send was less
efficient than the BLACS’ locally-blocking send. Since that time, the BLACS have changed
versions, and so has the CM-5’s message passing library. We see that the CM-5’s locally
blocking send is now superior to that used in the BLACS, and so the next version of the
BLACS will probably use the system’s locally-blocking send.

These numbers are worst case for the BLACS. First, as previously mentioned, the nature
of the T, test favors globally-blocking sends. Secondly, if the user is sending a non-contiguous
2D array or a trapezoidal array, this extra buffering has to be done even for a globally
blocking send, and the times are then unaffected.

A final note is in order here. We will later use these linear models to predict the speed
of the various scoped operations presented later. We have seen that, especially on the CM-
5, point to point messages have become slower due to the buffering required to support
locally-blocking sends. However, we do not use these point to point times when we predict
the speed of the BLACS scoped operations. The data copy is only done once, so we will
use one 1), and then use the system’s T, and T to predict scoped times. This corresponds
to what is done in the code: the starting process does the buffering, and all other processes
send /receive/operate on the already packed data.

Table 8 shows T, and T for the N = 0,...,1000 range. Note that the SP1 and Paragon
times should not be considered reliable. If the graph of these two machines on this range is
viewed, it is apparent that the least squares fit is not very accurate.

All of these tables and graphs boil down to the result that the BLACS are extremely
competitive on all platforms except where they must support locally-blocking sends. The
SP1 does not see too large a slowdown, leaving the CM-5 as the only platform where true
losses occur. We believe the added programmability of locally-blocking sends makes the
loss worthwhile. Also, it appears we can do quite a bit better by simply using the CM-5’s
native locally-blocking send, so the next version of the BLACS should be more competitive.

4 Broadcasts

4.1 Semantics

A broadcast sends data possessed by one process to all processes within a scope. Broadcast,
much like point to point communication, has two complementary operations. The process
that owns the data to be broadcast issues a broadcast/send. All processes within the same
scope must then issue the complementary broadcast/receive.

The BLACS define that both broadcast/send and broadcast/receive are globally-blocking.
Broadcasts/receives cannot be locally-blocking since they must post a receive (remem-
ber that receives cannot be locally-blocking). When a given process can leave a broad-
cast/receive operation is topology dependent, so, in order to avoid a hang as topology is
varied, the broadcast/receive must be treated as if no process can leave until all processes
have called the operation.

18

Broadcast /sends could be defined to be locally-blocking. Since no information is being
received, as long as we use locally-blocking point to point sends, the broadcast/send will be
locally blocking. However, defining one process within a scope to be locally-blocking while
all other processes are globally-blocking adds little to the programmability of the code. On
the other hand, leaving the option open to have globally-blocking broadcast/sends may
allow for optimization on some platforms.

The fact that broadcasts are defined as globally-blocking has several important implica-
tions. The first is that scoped operations (broadcasts or combines) must be strictly ordered,
i.e., all processes within a scope must agree on the order of calls to separate scoped opera-
tions. This constraint falls in line with that already in place for the computation of message
IDs, and is present in point to point communication as well.

A less obvious result is that scoped operations with SCOPE = ‘ALL’ must be ordered
with respect to any other scoped operation. This means that if there are two broadcasts to
be done, one along a column, and one involving the entire process grid, all processes within
the process column issuing the column broadcast must agree on which broadcast will be
performed first.

4.2 Syntax

The calling sequence for these routines is:

vGEBS2D(SCOPE, TOP, M, N, A, LDA)
vGEBR2D(SCOPE, TOP, M, N, A, LDA, RSRC, CSRC)
vTRBS2D(SCOPE, TOP, UPLO, DIAG, M, N, A, LDA)
vTRBR2D(SCOPE, TOP, UPLO, DIAG, M, N, A, LDA, RSRC, CSRC)

The function of the parameters depends largely on whether the routine sends data
(vKXBS2D) or receives (vXXBR2D) data. Output parameters are underlined. All other pa-
rameters are input, and thus not changed inside the routines.

Parameters:

SCOPE Scope of processes to participate in operation. Limited to ROW’,
>COLUMN’, or *ALL’. See section 2.2 for additional details.

TOP Network topology to be emulated during communication. Topologies
presently supported are discussed in section 4.3

UPLO Specifies if matrix is stored as Lower or Upper trapezoidal matrix.
See section 2.1 for details on trapezoidal matrices.

DIAG Specifies if the matrix is unit diagonal. See section 2.1 for details on

trapezoidal matrices.

Row dimension of matrix.

Column dimension of matrix.

= = =

Two dimensional array of data to be sent/received into. vXXBS2D:
Array of data to be sent. vXXBR2D: Array where data is to be received.
LDA Leading dimension of the array A.

19

RDEST vXXBS2D: Row index of destination process.
CDEST vXXBS2D: Column index of destination process.
RSRC vXXBR2D: Row index of source process.

CSRC vXXBR2D: Column index of source process.

As described above, the parameters M, N, and LDA dictate the shape of the array being
communicated. All processes participating in a given send operation or its receive comple-
ment must have the same amount of array space available (i.e. M * N must be the same).
However, it is not necessary that they all receive the data in the same way (this holds true
for point to point communication, as well). An example should help illustrate this principle:

Process {0,2} has a double precision matrix B, with a total size of 500 x 200. All the
other processes in its process column require five rows and seven columns of this matrix
starting at the matrix position (9,4). Process {0,2} would make the following call to the
BLACS:

DGEBS2D(’COLUMN’, *HYPERCUBE’, 5, 7, B(9,4), 500)

Since process {0,2} has initiated a broadcast, the processes {i,2},i=1,2,...,P—1 must
call DGEBR2D. However, their receive calls need not be exactly the same. For instance,
process {1,2} might want to receive the information into a work vector, WORK. It would make
the following call:

DGEBR2D(’COLUMN, °*HYPERCUBE’, 5, 7, WORK, 5, 0, 2)

The other processes in the process column could receive the message into their copy of
B with the following command:

DGEBR2D(’COLUMN’, ’HYPERCUBE’, 5, 7, B(9,4), 500, 0, 2)

NOTE: all versions of the BLACS except PVM allow the user to vary M and N, as long
as M * N is the same across all processes. However, in PVM the data must be unpacked in
the same manner that it is packed. Therefore, the shape of the matrix being communicated
should be changed only by varying LDA.

4.3 Topologies

The topology parameter determines how the messages involved in a distributed operation
are sent. The use of the topology idea allows the user to exploit the following fact: even if
the time to perform a distributed operation cannot be reduced, which processors bear the
brunt of the cost of the operation can be varied.

Many factors go into deciding which topology is optimal. First, the user must decide if
any processor is more important than others. For instance, if the source processor’s time
is more important than other processors’, a ring topology is often optimal. On the other
hand, if everyone needs the information quickly, some type of tree is often best.

Some topologies tie up the sending processor for large amounts of time, and different pro-
cessors get the information at different times depending on topology. Also, some topologies
are “noisy”, i.e. many communications are issued simultaneously, while others are “quiet”.
Noisy algorithms will cause problems on systems where network conflicts are problematic.
Quiet algorithms are likely to force some processors to wait much longer than they would
if a “noisy” topology had been used, since less communication is going on in parallel.

20

Some topologies are ”pipelining”, i.e., the first such operation synchronizes the proces-
sors so that subsequent operations will be cheap.

In the discussion of the presently supported topologies is given below, we use the fol-
lowing symbols: N,, the number of processors involved in the operation, 7%, the time to
send a message, and T, the time for a complete communication (send and receive).

All figures displaying communication patterns are shown with N, = 8, because this size
is adequate to show off the features of the topologies, and is still small enough to fit into a
reasonable amount of space. Further, the processors are numbered from 0, ..., (N,—1). We
do not specify grid coordinates because these broadcasts can operate on rows or columns,
or the entire grid. If we instantiate such a picture as a row broadcast, for instance, these
values are column indexes. For ease of reference, we will still refer to a given index as
“processor I”, but this should be taken to mean the processor at the I'th position in a row,
a column, or in the grid. Please note as well that the term processor has now replaced
process. We present timing analysis in this section, and they will not be accurate if more
than one process is spawned to a given processor.

To be consistent, processor 0 is always shown as the source/dest of the broadcast/combine.
Finally, a label S = T to the left of a figure indicates that the algorithm is in the I'th step.
For the time analysis discussed in the text, it is assumed the BLACS are operating in an
environment where an arbitrary number of processors may be communicating simultane-
ously. This assumption will affect the accuracy of our prediction if the number of actual
links is less than those assumed by the algorithm.

At the present time there are two classes of broadcast topology. The first class involves
topologies based on rings. The second classification consists of topologies based on trees.
Within these classes, there are several different algorithms, which differ slightly from each
other. For ring topologies, the main differences involve which direction within the ring
messages flow (increasing/decreasing), and the number of rings the scope is separated into
(N,). For tree topologies, the main variables involve the number of branches (N;) at each
node of the tree, and which branch is sent to first.

These classes are explained in detail below, and table 9 provides a quick summation of
some of the more important properties. This table specifies the number of steps until the
algorithm completes (STEPS), the number of messages sent during step 7 (SENDS, S = 1),
the number of processors who are finished with the routine after step 7 is complete (PROCS
DONE, S = 1), the time the source processor spends in the algorithm (SRC TIME), and
finally the maximum time spent by any processor in the operation (MAX TIME). The
analyses shown in table 9 have been simplified by assuming that NV, is an even multiple of
N,, and Ny = 1, with NV, an integer multiple of 2. The specific topology section should be
examined for full details.

4.3.1 Broadcast Ring Topologies

The various ring topologies are discussed below. All of these topologies can experience
pipelining of various degrees. Our timing models assume that processors are roughly syn-
chronized when entering the broadcast. However, when a ring broadcast is performed, it
forces an obvious ordering onto the processors; i.e, the first processor in the ring will leave
the operation before the processor which follows it in the ring. This means that once the

21

SYSTEM T

o ‘ J¥ ‘ Rel Err
CM-5 -152 1 0.7248 | 1.54%
SP1 -58 1 0.1072 | 0.40%

Table 7: Least squares fit for 7}, times (in microseconds), N =0,...,50000

TC TS
LIBRARY BLOCK Jé; | o J¥ | o |
Gamma System | Loc 2.92 1162 | 2.845| 81
Gamma BLACS | Loc 2.92 | 173 | 2.844 | 82
Paragon System | Loc 0.22 | 121 0.27] 49
Paragon BLACS | Loc 0.22 | 140 0.28 | 52
CM-5 System Glob 0.92 | 75 0.91 | 62
CM-5 System Loc 1.32 | 87 1.32 | 123
CM-5 BLACS Loc 1.49 | 150 1.45 | 183
SP1 System Glob 1.26 | 448 0.97 | 449
SP1 BLACS Loc 1.36 | 494 | 71.127 | 484

Table 8: Least squares fit for point to point times (in microseconds), N =0, ..., 1000

| | N,-RING | I-TREE |
Steps N,/N, log,(N,)
SENDS, S =1 N, 2)°
PROCS DONE, S =i | 14+ N, *i 0
SRC TIME N, + T, 2logy (N,) * Ty
MAX TIME (N,—1)/N,) * T+ (N, — 1) x Ty | logy(N,) * Tt
PIPELINING? YES NO

Table 9: Broadcast topology highlights

22

cost of the first broadcast is payed, the processors are optimally ordered to perform another
ring broadcast. The time each processor pays for the second broadcast will be roughly 7.
(T. + T, if the BLACS are supporting locally-blocking sends via buffering), rather than
that given in the text. Therefore, whenever a given processor is to issue several consecutive
broadcasts, use of a ring topology should be considered. It will result in minimization of
the sender’s time as usual, but since the ordering cost is payed only once, it may result in
faster overall transfer rates as well.

Pipelines can be maintained if the algorithm flows across processors in an orderly way.
Le., if the sender of row broadcasts starts out as the first process column, and then is the
second, etc, an increasing ring pipeline will be maintained. If the flow is in the opposite
direction, it may be possible to set up a decreasing ring pipeline. The affects of pipelining
on broadcast times will be discussed in greater detail after all ring-based topologies have
been explained.

Unidirectional Ring Unidirectional ring topologies require the source processor to issue
one broadcast, and each processor then receives and forwards the message. The two unidi-
rectional ring topologies are increasing ring (TOP = *I’), and decreasing ring, (TOP = °D’).
These algorithms have the advantage that the originating processor must spend only T’ time
in the broadcast. However, the last processor in the ring will spend (N, — 1) « T, time in
algorithm. Figures 12 and 13 respectively show increasing and decreasing ring broadcast.
Unidirectional rings are the “quietest” algorithms possible: only one processor is sending
at a time.

Figure 12: Increasing ring broadcast

D O~ OO0

Figure 13: Decreasing ring broadcast

Split Ring The split ring attempts to alleviate the long waiting time inherent in unidi-
rectional rings, without tying up the originating node. Examining figure 14 should convince
the reader that the longest time spent in the algorithm is roughly | P/2| * T, and that the
source spends (2 # Ts) time in broadcast. The split ring topology is called by TOP = *S’.
Although it is unlikely to be important in all but the most critical of optimizations, the user
should know that the split ring sends in the increasing direction first. This is a relatively
“quiet” algorithm as only two processors will be sending at any one time.

23

Figure 14: Split ring broadcast

Multiring The multiring algorithm (also referred to as multipath) provides a scalable
ring algorithm. By definition, the graphs created by a multiring topology is not a ring at
all, but is instead a special kind of tree. We call it a ring topology despite this, because
it behaves like the true ring topologies: pipelining may occur, and maximum time in the
algorithm scales linearly with the number of processors involved.

In this algorithm, the user provides the number of rings (NV,) the broadcast is to pro-
ceed on. The processors participating in the broadcast are then split up into N, separate
increasing rings. Figure 15 shows a multiring with N, = 3. Note that the source sends to
the closest ring first, and the farthest ring last. This may seem counter-productive, in the
sense that if we would like to minimize link contention, sending the to far ring first makes
more sense. However, ring topologies are most useful in pipelined codes, where, since the
flow of the algorithm proceeds in one direction across the processors, the time spent by the
nearer processors is more important than that of the far processors.

-

O—-O—0—0 OO O—O

Figure 15: Multiring broadcast with N, =3

This algorithm requires [N,/N,] steps, and at each step N, sends will be initiated.
The source processor is finished after the first step, and N, processors finish each step
thereafter. The source processor must send to all rings, and so its time in the algorithm
should be N, xT. If N, does not evenly divide N, some rings must be longer than others.
This topology specifies that if N, = (N,—1) mod N,, then the first N, (number of long
rings) rings will get an extra processor. With this in mind, it is easily seen that the processor
who must wait the longest for this algorithm is either the ending processor in the last long
ring, or, if all rings are of the same length, the last processor in the last ring. Therefore, if
all rings are of equal length, the longest wait time will be ((N,—1)/N,) T, + (N, — 1)+ T}.
Otherwise, it will be [(N,—1)/N,| * T, + ([(N,—1) mod N,] — 1) « Ts. Note: it is possible
that if N, is large, enough T,’s could build up to make it so that the last ring waits longer
than the last long ring. This is a detail, and should make no real difference.

Most instantiations of the multiring topology will be relatively “quiet”, since at worst
N, processors will be sending at the same time.

Calling the multiring algorithm is more complicated than the less general algorithms
described above. Not only must a topology be selected, but a number of rings must be
passed to the BLACS. Therefore, there is an support routine, SETBRANCHES, which allows

24

the user to set an internal variable in the BLACS describing the number of rings to use.
Multiring is called by setting TOP = ’m’. Here is an example of the recommended way to
call the multiring topology:

call setbranches(3)
call dgebs2d(’Row’, ’m’, m, n, A, lda)

call dgebs2d(’Column’, ’m’, 3, 2, work, 5)

Notice that SETBRANCHES need only be called when changing N, therefore, in the exam-
ple above, both the row and column broadcasts will split their processors into 3 increasing
rings.

Pipelining All ring-based topologies can display pipelining. However, as the number of
rings (N,) increases, the pipeline advantage tends to decrease. After a ring broadcast, each
separate ring is correctly pipelined with respect to the processors within its ring, but not
with the source processor. As the source processor sends more and more messages, this lack
of synchronization becomes worse. An example illustrates this principle. Assume we have
just finished a N.-ring broadcast. At this point the maximum cost payed is that given in
the topology description above (call this time T1). We then repeat this broadcast & times.
If we have a 1-ring, all processors are synchronized so that the total cost is just 7'+ k * T...
If N, > 1, however, for each iteration beyond the first we pay the T. cost, plus the cost
of the other sends the source has had to issue before sending to our ring again. Thus, in
general, the cost is T* + k * (T. + (N, — 1)T) (or T* + k [T,, + T. + (N, — 1)Ts], if the
BLACS are buffering to support locally-blocking sends).

4.3.2 Broadcast Tree Topologies

Hypercube The first tree-based topology is called hypercube. This algorithm is a spe-
cialized broadcast which matches the Intel i860°s hypercube network. It uses bit level
operations to achieve low overhead in computing source and destination of messages. It
was originally coded by Robert van de Geijn[11, 12], and only slightly modified for inclu-
sion in the BLACS. This topology requires that IV, be an integer power of 2. If it is not,
the general tree algorithm described below is called instead. A final detail is that at each
node in the tree, messages are sent to the nearest node first. This broadcast strategy is
shown in figure 16.

Hypercube broadcasts are most useful when getting the information out to all processors
is more important than saving origin node time. It requires the origin node to spend
Ts+loga(Np) time in the broadcast. However, the longest any node need wait is T xlog, (N,).
Hypercube broadcasts are relatively “noisy”, since the number of processors sending at one
time grows with N,. In the last step of the broadcast, N,/2 processors will be sending
simultaneously.

25

General Tree The final topology that is supported is the general tree broadcast. It allows
the user to choose the number of branches (NN;) at each step in the broadcast tree. Figures
17, 18 and 19 show general tree broadcasts with N, = 1,2,3. Note that general tree with
Np = 11is a hypercube broadcast where at each node in the tree, the node furthest from the
present node is sent to first. This tends to minimize link contentions, if the assumption is
made that processors far away from each other tend not to share the same link.

With this algorithm, IV, does not have to be an integer power of Ny. Since Nj varies,
more terminology is required to discuss this algorithm. The height of the tree required
to finish the broadcast will be Hy = [logn,+1(Np)]. The number of initial sends (sends
done by origin node in S = 0) is given by Ny, = [N,/(Ny + 1)H:=)] — 1. With these
quantities defined, it can be shown that the time the origin node spends in the broadcast
is [Npy(Hy — 1) + Nis] * Ts. The longest time any processor spends in the algorithm is:
[(Hi—1)(Ny— 1)+ (N;s = 1)] xTs + H; + T.. General tree broadcasts are obviously “noisy”,
and the greater IV, and NV, are, the more “noisy” the algorithm becomes. This topology
may be called in several ways. If the user sets TOP = ’t?, the routine setbranches should
be used in the same way as discussed for multiring. An example should clarify this:

call setbranches(2)

call dgebs2d(’Row’, ’t’, m, n, A, lda)

This would call the general tree algorithm with Ny = 2. Table 10 summarizes the ways
to call the general tree broadcast.

H TOP ‘ Explanation H

e tree with NV, = 1

2’ tree with N, = 2

'3’ tree with N, = 3

4’ tree with Ny = 4.

’5’ tree with NV, = 5.

6’ tree with NV, = 6

7 tree with N, = 7

]’ tree with NV, = 8.

'y’ tree with NV, = 9.

t’ tree with N, = I,where I
is set by CALL SETBRANCHES(I).

bk perform fully-connected broadcast: source sends to all
participating processes

Table 10: General tree topology entry points

26

[\

w

—_

[\

w

Figure 16: Hypercube broadcast, nearest node first.

O O
(& O
OOOOOOOO

Figure 17: General tree broadcast with N, =1

27

n
Il
=

O ()
OOOOOLOC

Figure 18: General tree broadcast with N = 2

n
Il
N

O,
OO OWE

Figure 19: General tree broadcast with Ny = 3

& A2

4.4 Timings

Here we present the broadcast times for each machine. Two times are presented for each
broadcast. The first is the time the source processor spends in the broadcast, and the
second is the maximum time spent by any processor in the broadcast. As with the point
to point timings, we concentrate on those timings that allow us to compare against system
broadcasts. This means that we once again send 1-D arrays, and that we primarily concern
ourselves with the topology that minimizes the maximal time in the broadcast.

As mentioned before, there are many ways to define the “best” broadcast topology. If
pipelining can occur, rings are often best. If a particular processor’s time is more important
that others, again a ring may be the best choice. However, the most widely-used standard
for “best” is the algorithm that, starting from synchronized processors, gets the answer to
all participating processors in the least amount of time. Even here, it is impossible to say
one topology is best, because it may depend on the size of the message being sent. We
choose the topology that performs best over the entire curve, even if it is not as good in
a specific region. In the following sections, we will concentrate our efforts on the topology
that meets these qualifications.

In analyzing these times, it is important to understand how they were obtained. First,
all processors are roughly synchronized by a call to the system’s barrier or synchronization
routine. Like the timings for 7., the broadcast is repeated several times within a loop
to insure the timings are above clock resolution. However, this can lead to results which
are biased either for or against the topology. Ring topologies, for instance, will gain a
positive bias, since the first broadcast will synchronize the processors so that any additional
broadcasts will cost roughly 7. (i.e., pipelining occurs). On the other hand, it could be the
case that messages sent in the last stage of a previous iteration interfere with the messages
being sent in the initial stage of the present iteration, and the results are therefore negatively
influenced. This issue is addressed in section 4.4.3.

The broadcast timings are split into three sections. Section 4.4.1 shows the results of a
single run of several interesting topologies. The next section uses these timings to see how
closely the theoretical models proposed in the topology section match with observed data.
Finally we further analyze the BLACS “best” topology and the system broadcast to see
how reproducible our timings are, and we give a least squares fit for both.

4.4.1 Survey of Topologies

The first test run on each platform is a survey of topologies with a range of N = 0, ..., 50,000
where a a data point is taken every 1000 double precision elements.

For each platform, figures 20, 21, 22, and 23, show four broadcast strategies that we
find interesting. One curve is always the system broadcast, represented by a solid line.
The curve represented by a dashed line is the “best” BLACS topology. By “best”, we mean
the topology that, starting from roughly synchronized processors, gets the message to all
processors most rapidly. As was mentioned in the topology section, this does not imply the
topology is best for all broadcasts. The other two curves show timings of other topologies
of interest, such as rings, where the effects of pipelining make them interesting.

The only real surprise here is on the CM-5. On all other platforms, the BLACS are
quite competitive, but, as expected, not quite as good as the system. On the CM-5, how-

29

12

Source Time

dotted : 3-ring

dash-dot : Increasing ring

1 dashed : Hypercube 9 1 dashed : Hypercube e B
solid : System solid : System e
0 1] e
2 2 .
508 1 508 P f
5 o 4
Q Q P
0 2] ~
< - < e
2o6 > 1 206 L P 1
= = .
0.4 b 0.4 o7 1
02 T 0.2 P 1
N e SR R e S S
0 0.5 1 15 2 25 3 35 4 45 0 0.5 1 15 2 25 3 35 4 45
Number of double precision elements being broadcast x10° Number of double precision elements being broadcast X 10
Figure 20: Survey of 32 processor i860 broadcast topologies, reps=5
Source Time Maximum Time
0.06 T T T 0.06 T T T
dotted : 3-ring (reps=10) dotted : 3-ring (reps=10)
dash-dot : Hypercube id dash-dot : Hypercube 7 z
0.05 dashed : 1-tree ,/i/) 0.05 dashed : 1-tree 220
solid : System i solid : System L
0.04 B q
n 1)
o o
c c
o Q
o o
Q Q
2 003 4 0 i E
£ £
[} [
E E
F F
0.02 B B
0.01 4 |
0 0
0 0.5 1 15 2 25 3 35 4 45 5 0 0.5 1 15 2 25 3 35 4 45 5
Number of double precision elements being broadcast x10° Number of double precision elements being broadcast x10°

14

Maximum Time

12

dotted : 3-ring

dash-dot : Increasing ring

Figure 21: Survey of 32 processor Paragon broadcast topologies, reps=30

30

05

0.45

0.4

0.35

o
w

Time in seconds
o
N
o

Source Time

dotted : 3-ring J
dash-dot : Increasing ring

dashed : 1-tree b
solid : System

0.2 -7 B 0.2r -7 PR 1
015 7 : 0.15F et T :
01 - 1 0.1F /////// 7
0.05 .- IR 0.0 LT 1

N R R e R R R R
0 0.5 1 15 2 25 3 35 4 45 0 0.5 1 15 2 25 3 35 4 45
Number of double precision elements being broadcast x10° Number of double precision elements being broadcast X 10
Figure 22: Survey of 32 processor CM-5 broadcast topologies, reps=15
Source Time Maximum Time
T T T T T T
dotted : 3-ring dotted : 3-ring
0.3 dash-dot : Increasing ring B 0.3r dash-dot : Increasing ring /\’ B
s
dashed : 1-tree dashed : 1-tree /
7
0.25 solid : System 72 9 0.25- solid : System _ q
s VA
/ P g

0 N 0 7/ 7

2 N 2 N - -

S 02 , S 02f , , 1

o - o ~y ’

b . b N .

£ Z £ L e

2015 g go.1st I e g

F 9 F e _ -

Z y /
/ ,
0.1 / , 0.1+ B ,
'~ // / Vi 7 -
” 7/ - v ”
0.05 R , 0.05- -7 ,
/ /
e im i — — /

0 T o e il M | I I 0 I I I I I I I I I
0 0.5 1 15 2 25 3 35 4 45 0 0.5 1 15 2 25 3 35 4 45 5
Number of double precision elements being broadcast x10° Number of double precision elements being broadcast x10°

05

0.45

0.4

0.35

o
w

Time in seconds
o
n
o

Maximum Time

dotted : 3-ring
dash-dot : Increasing ring
dashed : 1-tree
solid : System

Figure 23: Survey of 32 processor SP1 broadcast topologies, reps=15

31

ever, the BLACS are considerably faster than the system. These system broadcast times
were confirmed by Thinking Machines. The BLACS broadcast times are confirmed by the
theoretical predictions, and are shown to be repeatable. Thinking Machines has stated that
the next version of CMMD features faster broadcast and combine operations. Also, they
noted that the system broadcast provides a better synchronization point than the tree-based
topology used by the BLACS.

4.4.2 Accuracy of Theoretical Models

In this section we demonstrate how closely the topology models presented in section 4.3
match our experimental results. On the graphs 24 through 31, each observed data point is
represented by ‘o’ (these points are obtained by repeating the broadcast within the timing
loop), and the prediction given by the theoretical model is represented by a solid line.

For each platform, we choose to look at two topologies, one a ring, and one a tree. The
first topology will be 3-ring, which as we see displays pipelining. In order to highlight the
value of pipelining, two values are shown. Data points indicated by +’s were obtained by
calling the broadcast only one time, so there is no pipelining. The predicted time for the non-
pipelined broadcast is shown as a dotted line. We do not bother to plot the non-pipelined
source time, since source time does not experience pipelining. The second topology shown
is the BLACS “best” topology for each platform.

It should be noted that the single repetition times may not be individually meaningful,
i.e., the length of time being measured is small enough that relatively large errors may occur.
However, looking at all the data points provides a good indicator of whether the repeating
of the test is noticeably effecting the times. Since these data points are not reliable, we do
not calculate a relative error for the single repetition runs.

An example of how the predicted times are derived may be of interest. We will illustrate
how the prediction for the CM-5’s 3-ring broadcast was made. First we note that present
version of the CM-5 BLACS are designed to have locally-blocking broadcast/sends (which
will change for the next release), so we must figure the cost of the memory copy (7},,) in
with the cost of the communication. The cost for one broadcast should be N, x T, for the
source processor, and taking into account that 7T is almost the same size as T,, the maximal
time in the algorithm is ((N,—1)/N,) * T. + (N, — 1) « T (this comes from the analysis
presented in the topology section). Now we instantiate these predictions using the following
facts:

1. Number of processors, N, = 32

2. Number of rings, NV, = 3

3. The T, cost must be paid

4. After paying the T, costs, the system Ts and T, values will be used

5. These numbers predict single iteration runs: we have pipelining

Source time does not display pipelining, so predicted source time for all repetitions is
T, + 3 +«Ts. The maximal time in the algorithm does display pipelining, so we have two

32

Source Time
1.8 T T T

16 0 : observed time b
line : predicted time

o = =
® - N >
T T T T
L L L L

Time in seconds

o
o
T
L

0.4

02

. . . .
0.5 1 15 2 25 3 35 4 45
Number of double precision elements being broadcast x10°

Max Time
1.8 T
+++
16F +:reps = 1 (no pipelining) run + B
+
0: reps = 5 (pipelining) run +F
"
141 dotted line : reps = 1 predicted time +F 1
+
solid line : reps =5 predicted time +++

12r +++ il
a +
2 +++

+

0
£ o+t
0081 + i
£ +F
[+++

0.6f s B

+
o
0.4 o B
o
0.2f * B
W
o | | | | | | | | |
0 0.5 1 15 2 25 3 35 4 45
Number of double precision elements being broadcast x10°

Figure 24: Predicted vs. measured time for 32 processor i860 BLACS 3-ring broadcast

Source Time
0.8 T T T

0.7r 0: observed time 042
line: predicted time
0.6 oO 4

o
13
T
L

Time in seconds
o
~
T
.

o
w
T
L

0.2 4

0.1F 4

o I I I I I I I I I
0 05 1 15 2 25 3 35 4 45

Number of double precision elements being broadcast x10°

Figure 25: Predicted vs. measured time for

08

Max Time

0.71

0.6

o
13
T

Time in seconds
o
~
T

o
w
T

0.2

0.1f

o: observed time 0,

line: predicted time

0¥
0

0.5

. . .
1 15 2 25 3 35 4 45
Number of double precision elements being broadcast x10°

32 processor 1860 BLACS hypercube broadcast

0.14

0.12

0.1

Source Time

0 : observed time q

line : predicted time

0.14

0.12

0.1

Max Time

+: reps = 1 (no pipelining) run

0 : reps = 10 (pipelining) run

dotted line : reps = 1 predicted time
solid line : reps = 10 predicted time

Figure 26: Predicted vs. measured time for 32 processor Paragon BLACS 3-ring broadcast

0.06

0.05

0.04

0.03

0.02

0.01

Source Time

0 : observed 1-tree times (reps=30) o

line : predicted 1-tree times 0°

Figure 27: Predicted vs.

0.06

0.05

Max Time

0 : observed 1-tree times (reps=30)

line : predicted 1-tree times

measured time for 32 processor Paragon BLACS 1-tree broadcast

Source Time

0.6

0.5f

0.3

0.2f

0 : observed time
line : predicted time

0.5 1 15 2 25

Max Time

T
+:reps = 1 (no pipelining) run
0.6- p: (.PP_ : 9) ++J_
o : reps = 15 (pipelining) run I
+
dotted line : reps = 1 predicted time . t
0.5f solid line : reps = 15 predicted time +, b
4t
¥
+++ e
0.4f Gt q
+ .
IS
4
L +7 4
03 +t 7
+
++f/
02f L
137
4
+/+/+/
0.1 hd b
e
5
0
0 05 1 15 2 25 3 35 4 45
x10

Figure 28: Predicted vs. measured time for 32 processor CM-5 BLACS 3-ring broadcast

Source Time

0.25

0.2

0.15

0.1

0.05

0 : observed 1-tree times (reps=15)

line : predicted 1-tree times

0.5 1 15 2 25

Max Time

0.3

0.25

0 : observed 1-tree times (reps=15)

line : predicted 1-tree times

Figure 29: Predicted vs. measured time for 32 processor CM-5 BLACS 1-tree broadcast

35

Source Time Max Time
T T T ++
et
+:1eps = 1 (no pipelining) run +
0.6r 0: observed time 1 0.6 P 15((.p pl .)g) +++ 1
o:.reps= ipelining) run
line : predicted time P) Pipeining N 4T
dotted line : reps = 1 predicted time o
+
0.5 q 0.5f solid line : reps = 15 predicted time +F q
4+t
0.4 0.4 +++
. . o
¥
oF
ot
0.3r B 0.3r + B
W
+++
¥
0.2r 1 0.2r o Ooef
o) o
o
0.1F 1 0.1F +" 1
g - +
o o o
o
o T !
0 0.5 1 15 25 3 35 4 45 5 0 0.5 1 15 2 25 3 35 4 45 5
x 10 x 10

Figure 30: Predicted vs. measured time for 32 processor SP1 BLACS 3-ring broadcast

Source Time

0 : observed time

line : predicted time

Figure 31: Predicted vs.

measured time for

36

Max Time

0 observed time 0o 7

line : predicted time o

32 processor SP1 BLACS hypercube broadcast

predictions. For the reps=1 run, the time is T}, + 10 x T, + 2 * T;. The reps=15 broadcast
will benefit from pipelining. The first broadcast’s cost is the reps=1 time given above. Each
additional broadcast, however, will only add T, + T. + 2 x T to the cost of the algorithm.
We now use our linear models of Ty, T,, and T, to arrive at our prediction.

Examining figures 24, 26, 28, and 30 should convince the reader that, when it can be
employed, pipelining is a very effective optimizer of broadcasts. Further, it can be seen that
the timing models are quite accurate on all platforms for the multiple repetition runs of the
ring topologies.

Figures 25, 27, 29, and 31 show the predicted times for the tree broadcasts. We see that
as messages grow larger, our prediction is not precise for the CM-5. Remember that we
made the assumption that all our communication was nearest neighbor, and that we had at
least the number of links required by the algorithm. Neither of these assumptions are true
for tree broadcasts on the CM-5, and this causes our tree predictions to be inaccurate.

The SP1 shows a more consistent underestimation of maximal time in the tree broad-
cast. According to the system specifications, the network should behave as if it were fully-
connected: all processors are the same distance away, and link conflicts do not occur. As
we will see in the next section, it appears that repeating the broadcast multiple times does
negatively affect communication time, however. This may be due to the way the BLACS
are coded, and more experimentation will be required to isolate this problem. Since the
theoretical models work for other platforms, it unlikely they are wrong. The fact that the
combine models also underestimate the time required by the SP1 indicates that it is indeed
a system-dependent error. In both cases, however, the error is not that much greater than
the variance separate timing runs display.

Table 11 shows the relative errors of prediction versus actual times. If 7°(7) is the
observed time at the 7" data point, and T?(i) is the predicted time, then we define the
relative error of the prediction as RE = maxj<;<11(|T°(2) — T7(¢)|/|T°(¢)]). As with the
point to point timings, we find that at the first data point (N = 0) the time is not large
enough to give reliable results at the number of repetitions chosen, and thus it is ignored
in our computation of RE. The SP1 has a large relative error, but this is at least partially
due to inaccurate timings, as the error is high in only the first few data points.

SYSTEM 3-RING “BEST”
Source | Maximum | Source | Maximum
i860 2.95 % 3.16 % | 4.18% 3.56 %
Paragon | 10.40% 4.60% | 10.00% 6.84%
CM-5 1.71 % 2.07% | 2.45 % 5.61 %
SP1 26.55% 44.41% | 26.76% 42.64%

Table 11: Relative errors for predicted times

4.4.3 Validity of Timings

Finally, we would like assurance that our times are meaningful, in the sense that they
represent reproducible behavior for the machine. Also, we need to show that the tree

37

topologies are relatively unaffected by the fact that we have repeated the broadcast multiple
times (we account for this effect on ring-based topologies — for rings it is pipelining).

To accomplish this, we concentrate on our two most important times, the maximum time
in the system broadcast, and the maximum time in the BLACS’ “best” topology. For these
quantities, every fifth data point is run an additional ten times. If we get a large spread of
values, we know our timings are unreliable. These data points, together with those done
in the survey, are shown as o’s in figures 32, 33, 34, and 35. To show that repeating the
broadcast within the timing loop has little effect on broadcast time, we run the larger data
points with repetitions set to 1; these points are shown on the graph as +’s (Note that the
Paragon graph has no reps=1 points: the times were not even vaguely repeatable). Finally,
the least squares fit of all of these points is shown on the graph by the solid line.

On the i860, we see that the reps=1 times are well in line with the reps=>5 runs, and we
conclude that the timings done with multiple repetitions are accurate for reps=1 as well.
All of the CM-5"s reps=1 times, on the other hand, are noticeably (but not grossly) greater
those of the multiple repetitions runs. This may be a timing artifact, but since all of the
reps=1 runs are above the reps=15 runs, this seems unlikely. We recall that T, is relatively
expensive on the CM-5. Since we are using non-blocking sends in the BLACS, we may
be able to hide some of this 7, time. The way this would work is that a process would
perform the first pack (7),,), and start the non-blocking send. It returns before the message
is actually sent, and does at least part of the next iteration’s pack before being interrupted
to actually send the message. If this is occurring, it could easily explain the difference we
see between the multiple repetition and single repetition times.

Finally, we see that the SP1’s single repetition runs are slightly below those of the
multiple repetition runs. Again, this difference could easily be a timing artifact, but the
fact that so many of the reps=1 data points agree argue against it. More to the point,
the reps=1 data points fall more in line with the predicted time for the algorithm. As
mentioned in the previous section, it will take a more detailed analysis to determine what,
if anything, is occurring here.

Table 12 gives the relative error of the system and BLACS broadcasts. This table also
gives the least squares fit of the multiple repetition data points, so that the reader can get
a numerical value to associate with the graphs. The BLACS are quite competitive across
all platforms. It should be noted that we have not chosen the topology to optimize the
small size broadcasts. Using a different topology could cut the latency, at the expense of

bandwidth.

SYSTEM SYSTEM TIMES BLACS TIMES

a| ﬁ|RelErr a| 08 |Rel Err
i860 557 | 14.2976 | 3.69% | 1086 | 14.3598 | 3.78%
Paragon 403 | 0.9444 | 4.82% | 1028 | 1.0437 1.69%
CM-5 -755 | 9.3167 | 0.78% | -523 | 5.6090 | 4.96%
SP1 2764 | 5.7323 | 25.88% | 9150 | 6.0549 | 24.78%

Table 12: Least squares fit (in microseconds) and relative error of broadcast times for
N =0,...,50000

38

System broadcast

08

o
13
T

Time in seconds
o
~
T

o
w
T

+: observed time with reps=1 o
0 : observed time with reps=5 0
line : least squares fit of reps=5 times

R

0.06

0.05

0.04

Time in seconds
o
o
w

0.02

0.01

0.5

. . .
1 15 2 25 3 35 4 45
Number of double precision elements broadcast x10*

BLACS hypercube broadcast

Figure 32: Variance between runs on 32 processor i860 broadcasts

System broadcast

0 : observed time with reps=30

line : least squares fit of reps=30 times

. . .
15 2 25 3 35 4 45
Number of double precision elements broadcast x10°

0.8 T T T T T
0.7 +: observed time with reps=1 0 7
0 : observed time with reps=5
line : least squares fit of reps=5 times
06F ® i
0
0 0.51 i
T
c
S o)
Q
0 04 L .
£
o
£
Fosl i
0.2r il
0.1r il
I
0 0.5 1 15 2 25 3 35 4 45 5
Number of double precision elements broadcast x10*
BLACS 1-tree broadcast
0.06 T T T
0 : observed time with reps=30
0.05 B
line : least squares fit of reps=30 times
0.04 |
n
o
c
o
o
Q
©0.03 B
£
[}
E
=
0.02 B
0.01 4
0
0 05 15 2 25 3 35 4 45 5
Number of double precision elements broadcast x10°

Figure 33: Variance between runs on 32 processor Paragon broadcasts

39

05

0.45

0.4

0.35

o
w

Time in seconds
o
N
o

System broadcast

+: observed time with reps=1
0 : observed time with reps=15
line : least squares fit of reps=15 times 9

05

0.45

0.4

0.35

o
w

Time in seconds
o
n
o

BLACS 1-tree broadcast

+: observed time with reps=1
0 : observed time with reps=15
line : least squares fit of reps=15 times

0.2F i 02k
0.15r J 0.15r
01f i 01k
0.05f q 0.05-
0%
0 05 1 15 2 25 3 35 4 45 0 05 1 15 2 25 3 35 45 5
Number of double precision elements broadcast x10° Number of double precision elements broadcast x10°
Figure 34: Variance between runs on 32 processor CM-5 broadcasts
System broadcast BLACS hypercube broadcast
T T T T T T T T
n 0
0.3r +: observed time with reps=1 +, 0.3r +: observed time with reps=1 Q
0 : observed time with reps=15 + 5} 0 : observed time with reps=15 +
9 +
0.25f line : least squares fit of reps=15 times b 0.25 line : least squares fit of reps=15 times b
n n
E E
5 02r o 1 5 02 1
o o
k 8
< iy <
goast 1 2o.15 i
[= j £
¥
L
0.1r 4 0.1 4
9
0.051 q 0.05 4
.
0 05 1 15 2 25 3 35 4 45 0 05 1 15 2 25 3 35 45 5
Number of double precision elements broadcast x10° Number of double precision elements broadcast x10°

Figure 35: Variance between runs on 32 processor SP1 broadcasts

40

5 Combines

5.1 Semantics

In a combine operation, each participating process contributes data which is combined with
all other processes’ data to produce a result. This result can be left on a particular process
(called the destination process), or on all participating processes. If the result is left on
only one process, we refer to the operation as a leave-on-one combine, and if the result is
given to all participating processes we reference it as a leave-on-all combine.

At present, three kinds of combines are supported. They are element-wise summation,
maximization, and minimization of general rectangular arrays. Note that a combine op-
eration combines data between processors. By definition, then, a combine done across a
scope of only one processor does not change the input data. This is why we specify that the
operations (max/min/sum) are element-wise. Element-wise indicates that each element of
the input array will be combined with the corresponding element from all other processes’
arrays to produce the result. Thus, a 4 X 2 array of inputs produces a 4 X 2 answer array.
The example given in the next section should help if further clarification is required.

If a processor is to receive the result, then obviously it cannot leave the routine until all
processes have contributed their data to the combine operation. Therefore, the combine is
globally-blocking (i.e., no process returns from the routine until all participating processes
call it) for at least one process. If the answer is left on all processes, then the combine
is globally-blocking for all processes. Finally, it may be possible to perform superior opti-
mizations on certain platforms it it is allowed to create even a leave-on-one combine which
is globally-blocking. The BLACS standard therefore states that while it may not always
be the case, all combines should be programmed as if they were globally-blocking for all
participating processes.

5.2 Syntax

The general form of the names for combines is vGZZZ2D, where v is the same as shown
in table 2. The position ZZZ indicates what type of operation should be performed when
sending the data. The operations presently supported are shown on table 13.

vGZZ72D
| ZZZ | MEANING |

MAX | Entries of result matrix will have the value of the greatest
absolute value found in that position.

MIN | Entries of result matrix will have the value of the smallest
absolute value found in that position.

SUM | Entries of result matrix will have the summation of that position.

Table 13: Values and meanings of combine routines’ name positions
The calling sequences for these routines are:

vGSUM2D(SCOPE, TOP, M, N, A, LDA, RDEST, CDEST)

41

vGMAX2D(SCOPE, TOP, M, N, A, LDA, RA, CA, LDIA, RDEST , CDEST)
vGMIN2D(SCOPE, TOP, M, N, A, LDA, RA, CA, LDIA, RDEST , CDEST)

Parameters:

As before, output parameters are underlined.

SCOPE

TOP

= = =

LDA
RA

LDIA
RDEST

CDEST

For an operation to proceed, all processes indicated by the SCOPE command must call
the given routine. Once again, an example should demonstrate how these routines are used.
Assume we have a 2 x 4 process mesh (as shown in figure 1). Process {1,3} needs the
maximum of the matrix B (of size 4 x 4) over all processes. All processes would make the

Scope of processes to participate in operation. Limited to ‘ROW’,
‘COLUMN’, or ‘ALL’. See section 2.2 for details.

Network topology to be emulated during communication. Topologies
presently supported are discussed in section 5.4.

Row dimension of matrix being compared/summed.
Column dimension of matrix being compared/summed.

Input: Two dimensional array of values being compared/summed
(element-wise). Output: 2D array of results. If a process calls the
routine but is not indicated to receive the final result, his array may
be overwritten with intermediate results.

Leading dimension of the 2D array A.

Integer array (of size at least M x N) indicating the row index of the
process that provided the maximum/minimum. If a process calls the
routine but is not indicated to receive the final result, his array may
be overwritten with intermediate results.

Integer array (of size at least M x N) indicating the column index of
the process that provided the maximum /minimum. If a process calls
the routine but is not indicated to receive the final result, his array
may be overwritten with intermediate results.

Leading dimension of the integer arrays RA and CA.

Row index of process on which result is to be accumulated. On all
other processes A, RA, and CA may be overwritten with intermediate
results. RDEST = -1 indicates the result is to be left on all partici-
pating processes.

Column index of process on which result is to be accumulated. On all
other processes A, RA, and CA may be overwritten with intermediate
results. NOTE: if RDEST = -1, CDEST is not referenced.

following call:
DGMAX2D(’ALL’, ’1-TREE’, 4, 4, B, 4, RA, CA, 4, 1, 3)

Upon completion, process {1,3} would have three matrices that contain information on the
maximize function. The matrix B is still of size 4 x 4. Element (1,2) of B would contain
the element with the largest absolute value found on any process at matrix location (1,2).
RA(1,2) would indicate what process row that maximum was found on, while CA(1,2) would

tell which process column it was found on.

42

5.3 Related Topics
5.3.1 Additional Buffering Demands

In a broadcast or a send, only one buffer is required (assuming the send is not being used
to simulate a send with a different level of blocking — see section 6.2 for details). Data can
be sent from, received into, or in a broadcast/receive operation, both sent and received into
this one buffer. Combine operations require at least two buffer spaces. One space is needed
to receive other processes’ data, and the second buffer stores the answer (so far) that the
operation has produced. A simple example would be in the DGSUM2D operation. One buffer
is received into, and then its’ contents are added into another buffer.

This leads to two types of buffers. The first is a receive buffer, which is used to receive
other process’s contribution to the combine. The second buffer is the result buffer, which
stores the result of the operation. The receive buffer must be contiguous, since it is receiving
contiguous messages. It is highly desirable that the result buffer be contiguous as well.

The Intel BLACS were originally written on the Intel i860, and our machine had only
SMB of memory per node. The Touchstone Delta was a little better, with 16MB. However,
on both machines, insufficient memory was a constant problem. Therefore, in order to
conserve memory space, the Intel BLACS never get more than one buffer. For combines,
this BLACS’ allocated buffer is used as the receive buffer. The user’s matrix A is then used
as the result buffer. This saves memory, but it has several drawbacks. First, the user’s
buffer may not be contiguous in memory. This means that it requires two loops to perform
the operation, and if the columns of A are short, there may be numerous cache misses.
Further, messages cannot be directly sent from the result buffer if it is not contiguous in
memory. If a message is to be sent from the result buffer, it must be packed into the receive
buffer, and sent from there. This will require data copying.

Unfortunately, it is almost always the case that we wish to send from the result buffer.
The usual way an operation proceeds is: receive into receive buffer, combine this information
with that already stored in the result buffer, and then send this result on to another process.
With this in mind, we see that a contiguous result buffer will save many unneeded data
copies, since we could send directly from the result buffer.

On the SP1 and CM-5, the BLACS get two buffers, and therefore this situation is
handled more efficiently (these platforms require at least two buffers anyway: one to perform
non-blocking sends out of, and one to receive into — see section 6.2 for full details).

As mentioned earlier, PVM does its own buffering. Since there is already the cost of
packing and unpacking into the PVM buffers, it does not seem worthwhile for the BLACS
to add yet another layer of buffering. Therefore, the user’s matrix is used as the operation
buffer, and the PVM buffer serves, mostly, as the communication buffer. PVM allows only
pack/unpack access on its buffers, so we cannot perform the operation directly using the
PVM buffers. The BLACS therefore allocate a buffer equal to the column length, which is
M (see section 2.1 for details). A column of data is then unpacked, operated on (leaving
the result in A), and then the M-length buffer is overwritten with the next column. For
DGMAX2D and DGMIN2D these buffers are slightly longer. For the sum routines, the length is
M x sizeof (type), where type is the data type being operated on. For max/min operations,
the buffer is of size M * (sizeof(type) + sizeof(short)). The extra M « sizeof(short) space is
required to hold values indicating which process the max/min came from.

43

5.3.2 Communication and Its Effect on Fan-in

Figure 36 shows a simple 5 to 1 fan-in. An understanding of the fan-in operation is neces-
sary for an informed analysis of the combine topologies. The behavior of fan-in is system
dependent.

SNOIOI0X0JO.

Figure 36: Simple 5 to 1 Fan-in

If the sending processes are not synchronized, it is very important that no ordering
be imposed by the receiver. The BLACS avoid this ordering by using the ID generating
algorithm discussed in section 6.1.

To analyze the cost of this operation, it is necessary to understand how the underlying
message passing platform works. An example should highlight the effect of different schemes
on performance.

Assume that process 0 above is the last to enter the operation. On the Intel machines,
this means that when 0 does begin the code, no T, costs will be levied. This is because
the Intel system buffers messages on the receiving process. Therefore, when 0 enters the
routine, the messages from all four processors are waiting to be accessed, and the cost,
instead of 1., will be that of a memory to memory copy (7},). The cost of this operation is
then 4 * (1), + T,). An additional note is that processors 1,...4 can leave as soon as their
send is completed.

On the other hand, when using a blocking send such as available on the CM-5 or SP1,
process 1,...,4 will enter the routine, and then wait. When 0 arrives, the receives are
posted, the operations done, and the cost is 4 % (1. + 1,). Further, process 1,...4 must
either wait until process 0 arrives, or issue non-blocking sends so that they may leave
immediately.

This sequence of execution is not necessary to obtain speedup on the Intel systems.
Assume 0 enters the operation first. It then waits until the first processor arrives and sends
its message. At that point, it pays the T. 4 T, cost of receiving and operating on the
data. After that period of time, however, it is likely that at least one of the other processes
will have entered the code, and already have begun its send. If the processors are poorly
synchronized, this kind of savings can become appreciable.

The SP1 or CM-5 will have to pay the full T, cost regardless of order. Since there is
no communication/computation overlap on these machines, not even the intelligent use of

44

non-blocking message passing can prevent this.

5.4 Topologies

At the present time, only two topologies are supported for combines. All of the notation
used in the discussion of broadcast topologies is required in this discussion. In addition, the
time T, defined to be the time required to perform the given operation (max, min, or sum)
and Tp, the time the destination processor spends in the algorithm, are also needed. To
rigorously define the T, as used in the discussion below, T, should include all time during
the operation where the process is not communicating, and as such, its true value would
be T, + ¢. Then, ¢ would indicate the time to set up the loops, perform the function calls
required by the algorithm, etc. Note that this € was ignored in our discussion of broadcast
topology, and we do the same here - it should be small enough to be overwhelmed by T,.

5.4.1 General Tree Gather

The first combine topology is the general tree gather, or fan-in, which is basically the same
algorithm as the general tree broadcast (or fan-out) described in the 4.3.2, except that
communication flows in the opposite direction. Figures 37 and 38 show the communication
patterns of this algorithm with Ny, = 1 and Ny = 4 (as before, N} refers to the number of
branches at each node of the tree).

If all processors in the scope of the operation need the information, it is rebroadcast
using broadcast’s general tree algorithm. This topology can be called in the exact same
way as broadcast’s general tree algorithm, i.e. through the use of SETBRANCHES and setting
TOP = ’t’, or by setting TOP =1’ ...’9°.

Assuming that only one processor needs the answer (the case when all processors require
the answer will be dealt with later) this topology has many desirable features. First, at
each step of the algorithm only NLb of the processors left in the operation go on to the next
step.

It is difficult to write a general tree timing analysis because much of the behavior of
these trees depends on how the machine handles communication (i.e., is there computa-
tion /communication overlap, where are messages buffered, etc.). However, careful analysis
can demonstrate that NV, = 1 will usually be the best choice to minimize Tp on the systems
presently supported. It will be shown below that N, > 2 will, in general, be slower than
N, = 1, assuming a processor can receive only one message at a time (this is the true for
all present platforms).

We may break the analysis of this algorithm into two distinct cases. The first is when 7,
(time to perform sum/max/min) is greater than 7. (time to communicate). As we increase
Ny, the height of the tree will decrease, with a corresponding increase in the number of T},’s
that a receiving processor must perform at each step.

Since T, > T, only the first send in each step is costly. The rest of the T,.’s can be accom-
plished in the time where the previous T}, is operating (assuming computation/communication
overlap). However, for the case where T, > T, it is obviously not useful to subtract a 7. at
the price of adding a T,.

The other case, where T, < T, might then seem like an opportunity for high degree
trees to shine. A close analysis reveals this is not true. Again, as Ny increases, each re-

45

S=0
S=1
S=2
S=3
S=0
S=1
S=2

@

Figure 37: General tree gather with N, = 1

OOOOOOOE
O ()
(2

Figure 38: General tree gather with NV, = 4

46

ceiver performs the operation more and more times. However, since T, < T,, even assuming
computation/communication overlap, the cost of the communication cannot be hidden en-
tirely by 7,. The time each receiver spends will then be (again assuming a processor can
receive only one message at a time) 7. + Ny« T, + (Np — 1)(T. = T,) = Ny x T. + T, thus
Tp = [logn, 11 (Np) | (Ny+ Te+T,) (the ~ is here because the last step of the algorithm may
not have the full N, senders).

If we differentiate T with respect to Ny, we get T}, = I (Np [(Not DIn(No 4 1) = NoJTe—To |

(Np+1) In? (N +1)
If T, < T., this function is strictly positive for all Ny > 2. This implies that Tp is strictly

increasing, which tells us that the destination processor’s time increases with Ny. Therefore,
once again, NV, = 1 is the best choice.

Therefore, N, > 1 will only be of use in special situations. If a processor can overlap
receives, IV > 1 would be useful. If processors will be poorly synchronized when entering the
operation, larger Np’s may be useful. In this case, the large N, would increase the likelihood
of a receiving processor having something to do while it waits for the next processor to enter
the operation. Ny > 1 also allows more processors to leave at each step. On a platform where
unreceived sends are buffered on the receiver (at the moment, only the Intel machines), if
sending processors arrives before receivers, all communication is essentially free, leaving
only T, costs. Note that the number of receivers decreases as N increases, so this can be
useful.

With these caveats, we can say that Ny = 1 is the interesting choice, and then, Tp =
[loga(N,) (1. + T,). If all processors require the answer, it is found as above, and then
broadcast to all processors via the general tree algorithm described in section 4.3.2. The
longest time any processor would then spend in the algorithm would be [logs(N,)](2+1.+1})

5.4.2 Bidirectional Exchange

This topology is specialized for the case where all processors require the information (i.e.
RDEST = -1, as described in section 5), and if RDEST does not equal -1, the general tree
algorithm with N, = 1 is called instead. It is based on an algorithm presented in [11]. This
topology involves having pairs of processors exchange information, and thus it performs best
when N, is an integer power of 2. The communication pattern inherent in this algorithm
is shown in figure 39. As the user can see, this an extremely “noisy” algorithm: every
processor is sending and receiving at every step in the algorithm. It is called by setting
TOP = ’h’.

Unless the platform supports the overlap of sends and receives, this topology is inferior
to fan-in/fan-out. If sends and receives cannot occur simultaneously, the best speed this
algorithm can achieve is Tp = loga(Ny) * (2% T, +1,). This Tp is for all processors. Fan-
in /fan-out with N, = 1 has the same maximal cost, but half of the processors finish earlier.
Therefore, this topology should only be used on platforms where sends and receives can be
overlapped.

Assuming simultaneous send and receive, we have two interesting cases. If N, is an
integer power of two, all processors will spend roughly Tp = loga(N,) * (1. + 1,) in the
algorithm. If N, is not an integer power of two, the first step of the algorithm requires
processors beyond the power of two to send their values to processors within an integer
power of two, the normal bidirectional exchange takes place, and then the answers are sent

47

RN 010J010J0101010
<><>
g

Figure 39: Bidirectional exchange

back out to the non-power of two processors.

This means that processors within an integer power of two will spend Tp =T. + T, +
Ts+ |loga(N,) |+ (1. +T,) in the algorithm, and those processors beyond the integer power
of two will spend Tp =2+ T, 4+ T, 4 [loga(Np) | * (T +15).

In the best case, this algorithm will give all processors the answer in the same amount of
time that it takes to get the answer to one processor using the fan-in algorithm. However, it
will rarely be the case that this speed is realized. Not only must simultaneous send/receive
be allowed, but a twice the bandwidth is required, and a network of at least the richness
of a hypercube is required to avoid link conflicts. Therefore, fan-in/fan-out should be used
in the general case, and this topology should be utilized only when timings show that it is
superior.

5.5 Timings

Here we present timings for the sum combine operation, where the result is left on all
participating processors. All platforms except the CM-5 possess only leave-on-all combines.
The CM-5 possesses only leave-on-one combines. The BLACS possess both. Since the
majority of the platforms have only leave-on-all combines, our comparisons are made with
leave-on-all. On the CM-5, a leave-on-all combine is constructed by performing a leave-on-
one, followed by a broadcast (analogous to the leave-on-all 1-tree of the BLACS).

None of the machines natively possessed a maximization/minimization combine oper-
ation which returned the processor which supplied the max/min. Therefore, max/min

48

operations are not suitable for a system/BLACS comparison. Further, max/min are only
rarely used on anything but scalars, so their performance throughout our 0,...,50,000
range is relatively uninteresting. Therefore, timings for maximization and minimization are
not presented. The user should be aware, however, that for large problems, the BLACS
will be considerably slower on max/min operations, since the extra information inherent in
supplying the source of the max/min must be communicated along with the max/min data.

5.5.1 Survey of Topologies

Our first action for global timings was to run a range of topologies and see which ones are
best. It was discovered that the 2 and higher level trees were quite bad for large N, just
as our analysis had predicted. For extremely small N (i.e. in the range of N < 30), higher
level trees were faster than 1-tree’s. This was because synchronization became an issue
for such small messages (as mentioned in 5.4). For larger sizes, these trees inevitably did
poorly. Therefore, the survey graphs (figures 40, 41, 42, and 43) feature 3 topologies, 1-tree
(dashed line), bidirectional exchange (dotted line), and the system’s sum (solid line).

Since the CM-5 did not possess a leave-on-all combine, it was necessary to use a broad-
cast to create a leave-on-all. However, since the BLACS have already been shown to possess
a superior broadcast, this may seem prejudicial. Therefore, our CM-5 survey includes a sys-
tem and BLACS leave-on-one combine.

One look at the Paragon timings (figure 41) should be enough to alert the reader that
something is wrong. When these timings were taken, a new (f release) version of the
operating system had just been installed on the Paragon, and it seems that there is an
error in the system’s sum combine. It has been reported to Intel, and they are looking into
it. The BLACS are also noticeably superior to the CM-5’s system combine. As with the
broadcast times, the next version of CMMD is supposed to feature faster combines.

5.5.2 Accuracy of Theoretical Models

The time T, is required to apply the theoretical models. T, was obtained by looping over
calls to the BLACS summation routine. We then did a least squares fit over the 0, ..., 50,000
data range, as with other times. No particular insight is gained by the graphs, and so for
space purposes we just report the results. Table 14 gives the least squares fit of the times
for the BLACS summation operation on the various platforms. Notice that the Paragon
is slower than the i860 for T,. This is rather surprising since the Paragon possesses a
faster version of the same chip (a 50MHz 1860, as opposed to a 40MHz). However, the
Paragon is running a full-blown unix operating system, including virtual memory, etc. It is
assumed that the many background processes present in a full unix implementation cause
this slowdown.

Figures 44, 45, 46, and 47 show the predicted time (solid line) and the observed time
for bidirectional exchange (0’s) and 1-tree (+'s).

For the i860, we see that the prediction of 1-tree is accurate, but that for large NV,
the bidirectional exchange prediction is considerably low. The Intel BLACS do not make
optimally use the Intel’s primitives in bidirectional exchange, with the result that some link
conflicts occur between iterations of bidirectional exchange, and thus we see this gap.

49

Time in Seconds

Time in Seconds

18

Lol dotted : bidirectional exchange (reps=5) .
solid : system (reps=5) e
14 e g
dashed : 1-tree (reps=5)
12f g .
1 . -
0.8r e R
0.6r o |
0.4 a2 1
0.2r s i
0 | | | | | | | | |
0 0.5 1 15 2 25 3 35 4 45
Number of double precision elements %« 10°
Figure 40: Survey of 32-processor i860 combines
Maximum time
4.5 T T T
4r dotted line : bidirectional exchange (reps=30) b
solid line : system (reps=30)
3.5r dashed line : 1-tree (reps=30) 1
3 L ,
2.5¢ R
2 . -
1.5F b
1 L ,
0.5r R
0 g = T T T T T ‘7\ 4\' I I
0 0.5 1 15 2 25 3 35 4 45
Number of double precision elements % 10*

Figure 41: Survey of 32-processor Paragon combines

50

Time in Seconds

Time in Seconds

Maximum time

25 T T T
dotted line : bidirectional exchange (leave-on-all, reps=10)
solid line : system (leave-on-all, reps=10)
2r dashed line : 1-tree (leave-on-all, reps=10) i
0 : system (leave-on-one, reps=10)
+: 1-tree (leave-on-one, reps=10)
15
1
0.5
+
G 1 1 1 1
0 0.5 1 15 2 25 3 35 4 45 5
Number of double precision elements x10°
Figure 42: Survey of 32-processor CM-5 combines
Maximum time
0.7 T T T
0.6r dotted line : bidirectional exchange (reps=10) b
solid line : system (reps=40)
0.5 dashed line : 1-tree (reps=40) b
0.4F b
0.3f N
0.2f b
0.1F b
1 1 1 1

1 1 1
0 0.5 1 15 2 25 3 35 4 45 5
Number of double precision elements % 10*

Figure 43: Survey of 32-processor SP1 combines

51

Maximum time

18 T T T
16 0 : bidirectional exchange (reps=>5) Ooo
' +: 1-tree (reps=5) 00 _f
14 line : Predicted BLACS time Oooo
. o0
00°
1.2f 5 00 1
3 0
c OO
g 1f o R
D o
0 o
€ -0
0.8 b
: 2
= o0
o
061 o2 1
0
00
0.4f B
0.2f b
(K 1 1 1 1 1 1 1 1 1
0 0.5 1 15 2 25 3 35 4 45 5
Number of double precision elements % 10*

Figure 44: Predicted vs. measured maximum time for i860 BLACS combine (sum)

Maximum time
0.4 T T T
0.35F 0 : hidirectional exchange (reps = 30 & 1) ol
+: 1-tree (reps=30) OOO
0.3+ line : Predicted BLACS time 0©° .

o

N

o1
T

Time in Seconds
o
N
T

0.15r
0.1f
0.05f
(ﬁ 1 1 1 1 1 1 1 1 1
0 0.5 1 15 2 25 3 35 4 45 5
Number of double precision elements % 10"

Figure 45: Predicted vs. measured maximum time for Paragon BLACS combine (sum)

52

Maximum time

0.9 T T T
0.8r 0 : bidirectional exchange (reps=10) o0
+: 1-tree (reps=10) b o o
07F line: Predicted BLACS time R
)
&
0.6F ®® i
) ®®
° [}
8§05]
S 0.5 40
0 ®
£ @dj
o 0.4f ®® 9
£ o
[EB@
)
0.3t 02 g
&
6%
)
0.2 i
0.1F b
1 1 1 1 1 1 1 1 1
0 0.5 1 15 2 25 3 35 4 45 5
Number of double precision elements 4

Figure 46: Predicted vs. measured maximum time for CM-5 BLACS combine (sum)

0.7

Maximum time

0.6

0.5

o
~

o
w

Time in Seconds

0.2

0.1

0 : bidirectional exchange (reps=10)

+: 1-tree (reps=40)

line : Predicted time

1
0.5 1 15 2

1
25

3

1
35 4 4.5 5

Number of double precision elements 4

x 10

Figure 47: Predicted vs. measured maximum time for SP1 BLACS combine (sum)

53

SYSTEM T,

o | 08
i860 -14 | 0.4145
Paragon -45 | 0.4506
CM-5 -392 | 1.0706
SP1 -24 1 0.1052

Table 14: Least squares fit of T, (in microseconds) for various platforms

The Paragon prediction is low for both bidirectional exchange and 1-tree. Partly this
is because neither of the topologies will result in nearest neighbor communication on the
Paragon. The main cause of this gap, however, is link contention. Both strategies call for
more links than the Paragon, which is a 2D grid, possesses. We see that these factors, plus
the non-optimal coding of bidirectional exchange mentioned above, cause the prediction to
be extremely poor for bidirectional exchange. The reader should notice that the bidirectional
exchange algorithm curve contains reps = 30 and reps = 1 runs. This is because for large
problem sizes the extreme link contention involved in performing multiple repetitions of
bidirectional exchange would effectively cause a hang on the Paragon. We therefore ran
some of the larger sizes by doing only a single repetition. We may therefore conclude that
bidirectional exchange (at least in its present form) should never be used on the Paragon.

On the CM-5, we see that our prediction is slightly low for both algorithms. This small
error in the prediction is probably due to the fact that the CM-5 does not possess enough
links to stop link contention, and that this communication pattern will not be nearest
neighbor.

The SP1’s combine times, like those of it’s broadcast, are slower than predicted. Again,
further investigation will be required to determine the cause. At any rate, while the under-
estimation is noticeable, it is not gross.

Table 15 shows the relative errors of prediction versus actual times. If 7°(¢) is the
observed time at the ! data point, and TP?(¢) is the predicted time, then we define the
relative error of the prediction as RE = max;<;<11(|7°(7) — T?(i)|/|T7(¢)|). Note that the
predicted time is in the denominator, unlike the relative error used for broadcasts. We
choose this relative error because, for the systems supported here, bidirectional exchange
and 1-tree have the same predicted time. Therefore, by using the predicted time in the
denominator, the relative error will tell us which algorithm is closest to the predicted time.

H SYSTEM ‘ Bidirectional Exchange ‘ 1-tree H

i860 10.72% | 3.05%
Paragon 78.16% | 19.99%
CM-5 7.04% | 7.98%
SP1 55.08% | 45.13%

Table 15: Relative errors for predicted combine times

As with the point to point timings, we find that at the first data point (N = 0) the time

54

is not large enough to give reliable results at the number of repetitions chosen, and thus it
is ignored in our computation of RE. The SP1 once again has a large relative error. As
with the broadcast predictions, only in the first few points have this large error.

5.5.3 Validity of Timings

As in the broadcast section, the system and the best BLACS topology are further analyzed
to determine validity. Every fifth point is ran 10 additional times to observe the variance.
Normal data points are indicated by o’s, and those data points with reps=1 are indicated
by +’s (due to time constraints, we were unable to obtain any reps=1 times on the SP1).
The least squares fit is the solid line.

Examining figures 48, 49, 50, and 51 should convince the reader that the use of multiple
repetitions has no real effect on our timings on the i860, Paragon, or CM-5. We cannot
make this assertion for the SP1, since we have no reps=1 times.

Table 16 gives the relative errors and least squares fit of the data points. These least
squares fits should demonstrate to the reader that not only are the BLACS quite competitive
across all platforms, but indeed are slightly better on some. Again, the CM-5 is the only
platform where the difference is large enough to be alarming, and we are told that the next
version of CMMD provides for faster combines. As far as validity of the data is concerned,
we see that, as usual, the Paragon and SP1 have the most suspicious data. However, with
a maximal RE of around 10%, even these times are fairly reliable. Notice that the we do
not present the Paragon’s system data, since there appears to be an error in the present

version.
SYSTEM SYSTEM TIMES BLACS TIMES
a| ﬁ|Re1 Err a| ﬁ|Re1 Err
i860 -214 | 33.1828 | 3.60% | 2828 | 30.9618 | 0.66%
Paragon N/A N/A N/A | 3502 | 4.8024 | 7.47%
CM-5 -3529 | 40.7289 | 0.29% | 1883 | 15.8834 | 1.12%
SP1 8968 | 12.4721 | 9.88% | 23675 | 12.1638 | 10.07%

Table 16: Least squares fit (microseconds) and relative error of combine times for N =
0,...,50000

6 Implementation and Portability Issues

6.1 Message Identifiers

Because it may be of interest to other researchers, a sketch of the BLACS’ ID generation
algorithms follows. There are two different algorithms, one for point to point ID generation,
and one for when the operation involves a scope.

After the user has accepted the default, or has specified a legal range of msgid values
for the BLACS to use (via the support routine SHIFT_RANGE), this range is split in two.
The first range is reserved for point to point IDs, and the second is reserved for the scoped
routines.

55

System combine (sum) BLACS 1-tree combine (sum)

18 T T T 18 T T T T T

1.6 +: observed time with reps=1 ; 1.6 +: observed time with reps=1 pt
0 : observed time with reps=5 0 : observed time with reps=5

14f line : least squares fit of reps=5 times 0 J 14f line : least squares fit of reps=5 times J

Figure 48: Variance between 32-processor i860 combine runs

BLACS 1-tree combine (sum)

0.25 T T T T T
+: observed time with reps=1
0 : observed time with reps=10 N
0.2 line : least squares fit of reps=10 times B 9

45 5
x10"

Figure 49: Variance between 32-processor Paragon combine runs

56

System combine (sum)

25

25

+: observed time with reps=1

0 : observed time with reps=10

line : least squares fit of reps=10 times

BLACS bidirectional exchange combine (sum)

+: observed time with reps=1
0 : observed time with reps=10

line : least squares fit of reps=10 times

o8

Figure 50: Variance between 32-processor CM-5 combine runs

System combine (sum)

0.7

0.6

0 : observed time with reps=40

line : least squares fit of reps=40 times

Figure 51: Variance between

BLACS 1-tree combine (sum)

0.7

0.6

0 : observed time with reps=40

line : least squares fit of reps=40 times

32-processor SP1 combine runs

Before the details of the algorithm are described, the cost of this algorithm should be
mentioned. In terms of memory, each process requires: 3 integer vectors of size IV, 1 integer
vector of size P, and 1 integer vector of size Q. The need for these vectors is explained
below. The computation of a msgid requires roughly five integer operations.

6.1.1 Point To Point Message ID Generation

Let N, = P x Q, the number of processes in the grid. Each process keeps two vectors
(sndcount and rcvcount), each of length N, which contain a history of its point to point
communication within the grid. These vectors are indexed by a virtual process ID (V;q).
The actual process ID cannot be used since, if the grid was set up by calling GRIDMAP,
process IDs do not have any fixed relation to grid coordinates.

To obtain the virtual process ID of process {p, q}, the formula is V,;q = p* Q + ¢.
Therefore, rcvcount [i] contains the number of times the process has received from the
process with V,,;q = i. Similarly, sndcount[i] indicates how many times the process has
sent to Vg = 1.

We split the point to point range of IDs into N, subranges. Subrange i will be reserved
for messages who’s source has a V4 of i. Messages from source i will have a msgid that
starts in its subrange, plus the count of the number of sends it has made to the receiving
process.

The receiver calculates the ID similarly. It knows the source’s V,;q from the input
parameters RSRC and CSRC. It then uses the same calculation as the source process did,
except where the source uses the number of times it has sent to the receiver, the receiver
uses its count of the number of times it has received from the sender.

6.1.2 Scoped Message ID Generation

At present, all of our scoped operations are implemented as a series of point to point
communications. We could therefore use point to point msgids for scoped operations. There
are several reasons this is unsatisfactory.

The most important reason is that if we are fanning information into a process, such as
occurs in the combine operations (see section 5.4), one process may be receiving information
from several other processes. If we use the above scheme of message generation, we must
know who is sending the message before we can receive. In a fan-in operation, however,
all the messages may be identical in the sense that the order in which they are received is
unimportant. Then, for optimization reasons, it is not a good idea to force an order onto
the receives (in the worst-case scenario, forcing an artificial ordering can almost double the
time for the fan-in).

A second reason to avoid using the point to point ID generating routines is that a scoped
operation may involve several steps, and at each one a new ID would have to be generated.
Furthermore, the only information we have is the process that is the source (for broadcast)
or destination (for combines) — for point to point msgids, we need to know who is doing the
actual sending. The process presently sending is topology dependent, and the special case
code could wind up being too costly.

We therefore implement a slightly different ID generator for scoped operations. The
scoped 1D subrange is subdivided in three, one for each scope. For each scope, two counters

58

are kept. One is a scalar that counts the number of broadcast/sends the process has
initiated. The other is a vector, which keeps track of the number of times the process
has participated in a broadcast/receive initiated from other processes in the scope, and is
therefore of the same length as the number processes in the scope. This means that the
count for scope = ‘ROW’ is of size Q, for scope = ‘COLUMN’ it’s of size P, and for scope
= ‘ALL’, it’s of size N,.

The algorithm is now the same as for point to point, each subrange is further divided
to provide a range for each sender, etc. Note that we now need only a scaler to count
the number of sends, because the destination for each scope is always the same: the entire
scope.

6.2 Buffering

At the moment, buffering is done differently on all platforms except the CM-5 and the
SP1. On PVM, the PVM system does the buffering of messages, and the only buffer space
the BLACS ever need is for combine operations, where a workspace corresponding to the
parameter M is required (see section 5.4 for details).

6.2.1 Buffering On the Intel Machines

The Intel platforms feature locally-blocking sends, so if the user’s data is already contigu-
ous, the message is sent/received directly from/into the user’s space. A BLACS buffer is
required only when the user communicates non-contiguous data. There are two ways for
the BLACS to be given non-contiguous data to send/receive. The first is to use one of
the general rectangular routines, and specify the parameters N > 1 and M # LDA (see sec-
tion 2.1 for explanation of matrices and these parameters). The other option leading to
non-contiguous data is the sending/receiving of trapezoidal matrices. Since only a section
of the whole matrix is to be sent/received, it must be packed into contiguous storage for
the communication.

The buffering strategy on the Intel systems is therefore fairly straightforward. The
system starts out with no buffers allocated. If the user issues a request to communicate
non-contiguous data, a buffer of the correct size (M * N) is allocated. Allocating memory is
not free, so we do not release the buffer once the send /receive is complete. If we now receive
further calls which require a buffer space less than or equal to what we already have, we
don’t have to pay the cost of another memory allocation.

The BLACS buffer will be released on only three occasions. The first is at a call to
the support routine BLACSEXIT, which indicates all use of the BLACS is over. The support
routine FREEBBUFF exists so that if the user needs the space for his own code, he can
explicitly free the BLACS buffer. Finally, if a non-contiguous message requires more buffer
space than is currently available, the present buffer will be released and a new buffer of the
correct size will be allocated.

6.2.2 Buffering for the CM-5 and SP1 Platforms

Since the CM-5 and SP1’s native sends are globally-blocking, the BLACS must simulate a
locally-blocking send using non-blocking sends coupled with buffering.

59

Buffering the data is a straightforward way to simulate locally-blocking sends. Each
send request results in the BLACS copying the data to an internal buffer, starting an non-
blocking send, and then returning control to the user. The BLACS must not touch the
buffer until the non-blocking operation is complete, but the user does not need to know
about that — it is handled behind the scenes.

To fully simulate locally-blocking sends requires dynamic buffering, which allows as
many unreceived sends to be issued as available memory will support. However, the over-
head in managing dynamic buffers can be large, and the sender’s time must be optimized.
This is due to the fact that when performing a send, the time required to initiate the send
is added not only to the sender’s time, but to the time of all processors waiting to receive
from the sender as well. For instance, if a processor is sending to four other processors, any
delay experienced by the sender also delays the receivers, assuming they have called the
receive routine.

It is obvious that buffering causes a slight delay in each send, but we feel it is worth
the cost of a memory copy to avoid the kinds of hanging problems previously discussed. If
data being communicated is contiguous, we can still receive directly into the user’s space.

In the first release of the CM-5 BLACS (the one presently available on netlib), due to
its high overhead, dynamic buffering was not supported. Instead, two buffers at most were
allocated. When those buffers filled up, if further unreceived send requests were posted,
a hang would occur. This solution would make it so the code fragment given in section 3
would run, but if that code were changed so that each process sent twice to the other before
posting the corresponding receives, a hang would occur.

This was a workable temporary solution, simply because it is rare to find codes that
require more to prevent a hang. This state of affairs continued until a more general method
was discovered.

The key concept for performing less expensive dynamic buffering is that all of the over-
head associated with dynamic buffering should be performed after the non-blocking send
is initiated, but before the function returns. The present buffering strategy is explained
below.

There are three states a buffer can be in. The first state is active. Active buffers are
buffers from which non-blocking operations are being performed. Usually there is only one
operation per buffer, but during broadcasts, the BLACS may send up to N, — 1 messages
from the same buffer.

The second state is ready. A ready buffer is a buffer that is available for use. Only one
ready buffer is kept by the BLACS.

The last state is transitory. When the non-blocking operations of an active buffer are
finished, the buffer becomes inactive. When the BLACS poll and discover the buffer is
inactive, the inactive buffer is compared with the present ready buffer (if a ready buffer
exists). If the inactive buffer is larger than the ready buffer, the ready buffer is released,
and the inactive buffer becomes the ready buffer. If the ready buffer is bigger than the
inactive buffer, the inactive buffer is released.

In general then, the way this system works is that when a sending routine is called, it
immediately uses the ready buffer for its packing. If the ready buffer does not exist, one of
the needed size is allocated. If the ready buffer exists, but is too small, the present ready
buffer is released, and a new buffer of the correct size is allocated. After the send is begun,

60

the ready buffer is moved onto the active buffer queue. Then, before control is returned to
the user, the active queue is checked for buffers that have become inactive. Inactive buffers
become the ready buffer so that the next send operation won’t have to allocate its own.

Whenever any of the main BLACS routines are called, the status of the buffers is checked.
If there are any active buffers, they are polled to determine if they have become inactive.
If they have, they are treated as described above.

This algorithm results in a system where at most one unused buffer is in memory. It
may occur, however, that enough outstanding sends are issued that the BLACS are unable
to allocate further memory. If this occurs, the BLACS call an emergency routine which
waits for a user definable amount of time for active buffers to become inactive. If time
expires before a buffer becomes available, it is assumed a hang has occurred (i.e. the user
has issued many sends, but has not issued the corresponding receives), and the BLACS exit
with an error message.

The most important thing to note about this algorithm is that the handling of the
queues, the polling for non-blocking operation completion, etc., is done after the send is
begun. This means that the sender will have to pay these costs, but those processors waiting
to receive from him will not.

7 Future Directions

This section presents some proposed future directions for the BLACS. Some are more likely
to be pursued than others. These directions are roughly separated into two categories. The
first category involves extensions of the BLACS standards; optimizations to the present
code make up the second.

7.1 Possible Extensions to the BLACS
7.1.1 Arbitrary Scopes

The 2D process grid allows for three natural scopes, as has been previously discussed. This
may seem unnecessarily restrictive. It is a relatively simple matter to modify the scoped
routines to allow for arbitrary scopes, where the scope is defined, for instance, by a linear
array of processes passed in as a vector. However, there are certain drawbacks to this. First,
all message IDs will have to be generated using the point to point algorithm presented in
section 6.1, since the scoped ID generation algorithm depends on having static scopes.
There is also an increased opportunity for user error, since it would be up to the user to
ensure that everyone calling the operation had the correct scope vector.

Using arbitrary scopes would obviate the idea of a 2D process grid, and the entire
interface would have to be re-designed. Therefore, if arbitrary scopes are later seen to
be required for certain types of algorithms, a new interface using the same BLACS core
routines will have to be written, and this version will not be the 2D BLACS, since the grid
would no longer possess any special relevance.

61

7.1.2 Wildcard Receive

At present, the user must specify which process is the source of the incoming message in
order to post a receive. This can result in operations that are inefficient because of unneeded
ordering of receives. The most obvious example of this is the simple fan-in with functionally
equivalent messages (i.e., a group of processors send data to a receiving processor, which
does not care about the order in which it receives the messages). This kind of fan-in
occurs regularly in combine operations, but by using the ID generating scheme presented
in section 6.1, the BLACS avoid the unneeded ordering. If the fan-in is written using the
BLACS’ point to point communication, however, the user cannot avoid the ordering.

It is therefore proposed to extend the point to point receive by allowing the user to
pass in RSRC = -1, which indicates that any message will be received. The address of
the process that actually sent the message will be returned in RSRC and CSRC. This is
potentially dangerous: the BLACS cannot compute a message 1D until the sender is known,
and therefore any outstanding message directed to the receiving process will be accepted.
It will be the user’s responsibility to ensure that no unwanted messages are outstanding
when this wildcard receive is issued.

7.1.3 Additional Combine Operations

The BLACS presently provide three combine operations, which allow maximization, min-
imization, or summation on rectangular matrices. Several algorithms require trapezoidal
summation, and there have been requests for exclusive OR,, sum of squares, and other com-
bines. It is clearly impractical for one package to support all conceivable operations. A
promising idea, however, is to provide a combine called, for example, vTUOP2D, which is a
trapezoidal user-defined operation. If UPLO = ‘G’, the matrix will be assumed to have a
general rectangular shape, rather than a trapezoidal.

In addition to the usual parameters, the user will pass in three function pointers. The
first will be an initialization routine, the second points to the function which performs the
user’s operation (exclusive OR, for instance), and the final will be a routine which performs
any needed post-operation computation. In this way, the BLACS combines may support
almost any associative and commutative operation.

7.1.4 Built-in Debug and Timing Levels

To avoid unnecessary overhead, the BLACS presently perform almost no error checking and
take no timings at all. However, when an error occurs in a code, it is often difficult to track
the error down. Therefore, we propose to add the pre-processor variable BlacsDebugLvl.
So that certain statistics useful in code optimization can be determined, the pre-processor
BlacsTimingLvl will also be added. These variables will be used to selectively compile
different portions of code. If both are set to 0, the code will be the same as today: no
timing or debug information available.

At the present, roughly three debug levels seem practical. Level 1 would perform mainly
parameter checking, and its effect on speed should be negligible.

Level two would be more active, and would involve using non-blocking receives cou-
pled with polling to detect hangs. When such a hang occurred, messages explaining what

62

operation was being performed, etc., should be helpful in finding the cause. This level of
debugging would include everything short of off-process access of data in its attempt to
discover errors. Its heavy use of polling would cause it to be noticeably slower than level 0
or 1.

Level three would be extremely intrusive. It could involve anything, including send-
ing/receiving extra messages to ensure things are working correctly.

Since these levels are determined at compile time, no speed is lost if the user needs no
debugging help. If required, however, the BLACS could be compiled with a higher level of
debugging, and the user could link to the debug version until the code was fully developed.
Then, for production runs, the code would be linked to the optimized version (debug level
0).

The timing level would work similarly, with several levels of increasingly intrusive tim-
ings. A survey of users is required before these levels may be finalized, but a few statistics
are of obvious use. These include time spent in each BLACS routine, time spent waiting
for/sending messages, number of messages sent, maximum, minimum, and average message
length, etc. These kinds of data will allow the developer to get an idea of where the majority
of time is spent, and thus where optimization is required.

7.2 Optimizations

There are many optimizations that are available for exploration. In this section we discuss
some of the more interesting ideas.

7.2.1 Intel BLACS

The first implementation of the BLACS was on the Intel machines, and since we learn from
experience (we hope), it is not surprising that this platform contains the most easily seen
areas for improvement. The greatest opportunity for optimization should come from the
use of non-blocking messages. At present, the Intel BLACS use no non-blocking messages
at all. Those times when the BLACS copy data to a buffer anyway (when the message is
not contiguous in memory), it certainly makes sense to exploit non-blocking sends. Even
when the message is sent from the user’s buffer, non-blocking sends may help speed up
broadcasts, where the sender sends the same message to more than one processor.

A second area for improvement is in the combine’s buffering. When enough memory is
available, two buffers can be allocated, so that cache usage is maximized, and the result
buffer can be used to send data directly.

The use of forced type messages needs to be investigated. Forced type messages are
locally-blocking sends with no buffering. As previously mentioned, regular messages are
buffered on the receiving process. To accomplish this, an Intel send first sends a request for
buffer space to the receiver, and when an acknowledgment is returned, the actual message
is sent. A forced type message avoids this buffer request, resulting in faster communication.
Forced type messages are also the only practical way to allow a processor to simultaneously
send and receive messages. Because this implementation does not use forced types for the
bidirectional exchange algorithm, we have seen that it does poorly on the Intel. Intelligent
use of forced type messages should noticeably decrease the time required for bidirectional
exchange. Other uses of forced types should also be explored.

63

Finally, with the introduction of the Paragon, Intel added new routines to their com-
munication library. Use of these new routines needs to be investigated, to see if it is worth
having a Paragon-specific version of the BLACS.

7.2.2 CM-5 BLACS

It should first be noted that the primary problem on the CM-5 at this time is an inability to
access the vector units of the machine. Because of the way the machine is set up, fortran 77
or C message passing codes basically see the machine as a collection of Spark-2 processors. In
this configuration, codes are far more likely to be computation bound than communication
bound. Therefore, unless faster processor speeds are achieved, optimizations to the BLACS
are unlikely to have a real effect on the speed of most codes.

With this in mind, we briefly survey a few optimizations for the CM-5. We have seen
the the CM-5’s locally-blocking send is better, at least in regards to the echo test, than that
presently used in the BLACS. We need to investigate where in the BLACS this primitive
can be efficiently utilized. It seems likely that we can use the CM-5s locally-blocking send
to support the BLACS point to point communication, and thus improve the BLACS point
to point performance.

When the CM-5 BLACS were written, it had not been defined that the broadcast and
combine operations were globally-blocking. We therefore did a data copy to make them
(when possible) locally-blocking. Since they are now defined to be globally-blocking, we
can save the cost of the data copy. This will result in even more efficient scoped operations,
which are already faster than those provided by the system.

The CM-5 possesses a message passing layer beneath the CMMD layer presently used in
the BLACS. This layer (called CMAML) can be used to build a very rich message passing
system. For instance, a routine allowing a processor to execute a remote procedure call,
i.e., call a routine on another processor, is available. This capability could be exploited in
order to cause the receiver to do buffering, for instance.

There are numerous other optimizations that CMAML would allow. The present CM-
5 BLACS implementation does not use CMAML because it is not guaranteed to remain
constant as software is updated. Still, if the speed win is great enough, it may be worth
having to update the code when CMAML is changed.

7.2.3 SP1 BLACS

As with the CM-5, now that the broadcast and combine operations are defined as globally
blocking, we can speed up these operations by avoiding the memory copy.

We have seen that the SP1’s combine and broadcast are faster than the BLACS. If this is
still the case after optimization for the platform is finished, we can add the SP1’s broadcast
and combine as topologies for the BLACS. Unlike the other platforms, the SP1’s primitives
allow groupings which can be used to support the BLACS scoped operations.

7.2.4 PVM BLACS

By its very nature, little can be said about the underlying architecture of a PVM machine.
One area where PVM often differs from other supported platforms, however, is that PVM

64

is often implemented on systems where there is only one communication link for the entire
system (ethernet, token ring, etc). In this case, most topologies are useless. Since only one
process may be sending at a time in such a system, using trees or multiple rings for the
broadcast changes nothing.

However, there is a topology that can be added that, at least theoretically, should provide
speedup for combines. Broadcast topologies cannot be improved, because the entire time
in the algorithm consists of message passing. Combines, as discussed earlier, have two time
components. While one section of processors are communicating, another section can be
performing the local operation (max/min/sum).

It is therefore proposed to add a multiring combine topology. The amount of speedup
that can be obtained will depend on the ratio of T, to T.. If T, > T,, then we may use
T,/T. rings to achieve a speedup of of roughly T, /T.. True speedup will be less than this,
due to link contention and improper synchronization.

If T, <« T., the speedup obtained by using multiple rings will probably not be worth the
added link contention. Unfortunately, for most systems using standard ethernet, this may
be the case. However, we are increasingly seeing systems that, while they have only one
link, that link is very fast. In this case, we should see some speedup. Therefore, a multiring
scoped operator should be interesting. Codes that are strongly pipelined might conceivably
benefit from this topology as well.

8 Conclusion

While there are many avenues of investigation still to be pursued, we believe we have met
the basic goals of the project. Codes written using the BLACS can run unchanged on
the iPSC2, i860, Touchstone Delta, Paragon, CM-5, SP1, and PVM. Support for scoped
operations, message ID computation, sending of matrices, and locally-blocking sends greatly
enhance the programmability and ease of use of the library.

We have shown that the only real loss of performance comes in point to point commu-
nication, where supporting locally-blocking sends causes the CM-5 BLACS, and to a lesser
extent the SP1 BLACS, to compare unfavorably to the system code. We feel the added
programmability of locally-blocking sends makes this sacrifice worthwhile.

In broadcasts and combines, the BLACS are quite competitive, and sometimes even beat
the system primitives in minimizing maximal time in the algorithm. However, by varying
the topology parameter, the BLACS allow for a much greater variety of broadcast/combine
behavior, resulting in code that is more easily made to fit the user’s specific needs.

65

REFERENCES

66

References

[1]

[2]

[3]

[11]

[12]

G. A. GrisT, A. L. BEGUELIN, J. J. DoNCGARRA, W. JiaNG, R. J. MANCHEK, AND
V. S. SUNDERAM., PVM 3 User’s Guide and Reference Manual, Technical Report
ORNL/TM-12187, Oak Ridge National Laboratory, Oak Ridge, Tennessee, May, 1993

MPI Forum, MPI: A Message Passing Interface, Proceedings of Supercomputing 93,
pgs 878-885 IEEE Computer Society Press, 1993.

J. J. DoNncaRRA, J. DU CroZz, S. HAMMARLING, AND 1. DUFF, A set of level 3 basic
linear algebra subprograms, ACM Trans. Math. Soft., 16 (1990), pp. 1-17.

J. J. DoONGARRA, J. DU CroZ, S. HAMMARLING, AND R. J. HANSON, An extended
set of FORTRAN basic linear algebra subprograms, ACM Trans. Math. Soft., 14 (1988),
pp- 1-17.

C. L. Lawson, R. J. Hanson, D. R. Kincaip, aND F. T. KrocH, Basic linear
algebra subprograms for Fortran usage, ACM Trans. Math. Soft., 5 (1979), pp. 308-323.

Jack J. DoNGARRA, ROBERT A. VAN DE GEIN, AND R. CLINT WHALEY Two
Dimensional Basic Linear Algebra Communication Subprograms. Environments and
Tools for Parallel Scientific Computing, Elsevier Science Publishers B.V., 1993.

E. ANDERSON, Z. Bart, C. BiscHor, J.W. DEMMEL, J. J. DONGARRA, J. DU CrOZ,
A. GREENBAUM, S. HAMMARLING, A. MCKENNEY, AND D. SORENSEN, LAPACK:
A portable linear algebra library for high-performance computers, Computer Science
Dept. Technical Report CS-90-105, University of Tennessee, Knoxville, 1990. (LAPACK
Working Note 20).

J. DoNGARRA, R. VAN DE GEIIN AND D. WALKER, A Look at Scalable Dense Linear
Algebra Libraries, LAPACK Working Note 43, technical report, University of Ten-
nessee, 1992.

J. DONGARRA AND R. VAN DE GEUN, Two Dimensional Basic Linear Algebra Com-
munication Subprograms, LAPACK Working Note 37, technical report, University of
Tennessee, 1991.

J. CHol, J. DONGARRA R.P0zo AND D. WALKER, ScalAPACK: A Scalable Linear
Algebra Library for Distributed Memory Concurrent Computers, LAPACK Working
Note 55, technical report, University of Tennessee, 1992.

M. BARNETT, R. LITTLEFIELD, D. PAYNE, AND R. vAN DE GEUN, “Global Combine
on Mesh Architectures with Wormhole Routing, to appear in the proceedings of the 7th
International Parallel Processing Symposium, Newport Beach, CA, April 13-16, 1993

CHING-TIEN HO AND S. LENNART JOHNSSON, Distributed Routing Algorithms for
Broadcasting and Personalized Communication in Hypercubes, Proceedings of the 1986
International Conference on Parallel Processing, IEEE, 1986.

67

[13] T. H. DUNIGAN, Performance of the INTEL iPSC/860 Hypercube Technical Report
ORNL/TM-11491, Oak Ridge National Laboratory, Oak Ridge, Tennessee, May, 1990.

[14] G. A. GeisT AND M. T. HEAaTH AND B. W. PEYTON AND P. H. WORLEY, A users’
guide to PICL: a portable instrumented communication library, Oak Ridge National
Laboratory, September 1990.

68

APPENDICES

69

A Example Code: Matrix Vector Multiply

The following program performs a distributed matrix-vector multiply, and figures infinity
norms of distributed vectors and matrices using the BLACS. This example uses point-to-
point communication, global operations, and broadcasts. Notice in the code that we may
make BLACS calls with only the first letter of scope and topology as parameters, or we
may write out the full words. Figure 52 shows how the data would be distributed on a
2 x 2 processor grid. LM and LN refer to Local matrix rows and Local matrix columns,

respectively.
LN
Ag Ay

X

€1

T2

DATA STRUCTURE

LN

b

by

LM

0

PROCESSOR GRID

A11 €1 b1

A12 T2 b1

A21 €1 bz

A22 T2 bz

Figure 52: Matrix-vector multiply on 2 x 2 processor grid.

70

*

* ¥ * x*

PROGRAM MVMULT

. External Functions ..
INTEGER IDAMAX
DOUBLE PRECISION DRAND, DINFNRM
EXTERNAL IDAMAX, DRAND, DINFNRM

. External Subroutines ..

EXTERNAL AUXSETUP, BLACSINIT, GRIDINFO, DGMAX2D, DGSUM2D, DGEMV

Intrinsic Functions
INTRINSIC INT, REAL, SQRT

. Scalars
INTEGER LDA, LM, LN
PARAMETER (LDA = 50)
PARAMETER (LM = LDA)
PARAMETER (LN = LDA)
INTEGER IAM, NNODES, NPROW, NPCOL, MYROW, MYCOL
INTEGER I, J, ITMP1, ITMP2
DOUBLE PRECISION NORMA, NORMB, NORMX, NORMTST

. Arrays
DOUBLE PRECISION A(LM,LN), X(LN), B(LM)
Find out how many processors have been allocated for use
CALL INITPINFO(IAM, NNODES)

For PVM only: if virtual machine not set up, allocate
it with 8 processes

IF (NNODES .LT. 1) THEN

NNODES = 8
CALL AUXSETUP(IAM, NNODES)
END IF

Figure processor grid I want to use

NPROW
NPCOL

INT(SQRT(REAL (NNODES)))
NNODES / NPROW

Define the processor grid, and get grid information

71

10

20

CALL BLACSINIT(NPROW, NPCOL)
CALL GRIDINFO(NPROW, NPCOL, MYROW, MYCOL)

If I’m not in new processor grid, goto end of program
IF (MYCOL .GE. NPCOL .OR. MYROW .GE. NPROW) GOTO 100
Generate distributed matrix A
A(1,1) = DRAND(MYROW*NPCOL+MYCOL)
DO 10 J =1, LN

DO 10 I =1, LM

A(I,J) = DRAND(O)

CONTINUE
Figure the infinity norm of A
NORMA = DINFNRM(LM, LN, A, LDA, B)
IF (MYROW .EQ. O) THEN

Generate vector X, distributed over processor row O.

X(1) = DRAND(MYCOL)

DO 20 J =1, LN

X(J) = DRAND(O)

CONTINUE
A1l processor rows need a copy of X, so broadcast within columns

CALL DGEBS2D(’COLUMN’, ’HYPERCUBE’, LN, 1, X, LN)
ELSE

Receive my piece of X from processor row O.

CALL DGEBR2D(’COLUMN’, ’HYPERCUBE’, LN, 1, X, LN, O, MYCOL)
END IF

Figure the infinity norm of X

NORMX = X(IDAMAX(LN, X, 1))
CALL DGMAX2D(°R’, ’H’, 1, 1, NORMX, 1, ITMP1, ITMP2, 1, -1, 0)

72

Do b = A*x, where b is distributed over a processor column
NOTE: all processor columns have a copy of b

perform local A*x

I I I R

CALL DGEMV(’°N’, LM, LN, 1.0DO, A, LDA, X, 1, 0.0DO, B, 1)

*

Add in pieces of A*x done on other processors
CALL DGSUM2D(’ROW’, ’HYPERCUBE’, LM, 1, B, LM, -1, 0)
Figure the infinity norm of B

NORMB = B(IDAMAX(LM, B, 1))
CALL DGMAX2D(’°C’, ’H’, 1, 1, NORMB, 1, ITMP1, ITMP2, 1, -1, 0)

Print out norms

IF (MYROW.EQ.O .AND. MYCOL.EQ.0) THEN
WRITE (*, 1000), ’A’, NORMA
WRITE (*, 1000), ’x’, NORMX
WRITE (*, 1000), ’b’, NORMB

END IF

Mainly in order to show an example of using point-to-point
communication, the following test is done: is processor {0,0}’s
NORMB the same as processor {nprow-1, npcol-1}’s.

* X X ¥ *

IF (MYROW .EQ. NPROW-1 .AND. MYCOL .EQ. NPCOL-1) THEN
CALL DGESD2D(1, 1, NORMB, 1, 0, 0)
ELSE IF (MYROW .EQ. O .AND. MYCOL .EQ. 0) THEN
CALL DGERV2D(1, 1, NORMTST, 1, NPROW-1, NPCOL-1)
IF (NORMTST .NE. NORMB) WRITE(*, 2000) NORMB, NORMTST
END IF
*
100 STOP
*
1000 FORMAT (°|1’,A,’ || = *,G20.15)
2000 FORMAT (’ERROR: |IB|l’’s do not match. Values are: ’,
$ G20.15,G20.15)

* End program MVMULT

END

73

* ¥ X *

* *

* *

* ¥ X X *

O I R R R I R R I A R R R R R

*

DOUBLE PRECISION FUNCTION DINFNRM(LM, LN, A, LDA, WORK)
—-- BLACS example routine --

. Scalar Arguments ..
INTEGER LM, LN, LDA

. Array Arguments
DOUBLE PRECISION A(LDA, *), WORK(*)

PURPOSE:

Compute the infinity norm of a distributed matrix, where
the matrix is spread across a 2D processor grid.

Arguments

LM (input) INTEGER
Number of rows of the global matrix owned by this processor.

LN (input) INTEGER
Number of columns of the global matrix owned by this processor.

A (input) DOUBLE PRECISION, dimension (LDA,N)
The matrix who’s norm you wish to compute.

LDA (input) INTEGER
Leading Dimension of A.

WORK (temporary) DOUBLE PRECISION array, dimension (LM)
Temporary work space used for summing rows.

. External Subroutines ..
EXTERNAL DGSUM2D, DGMAX2D, GRIDINFO

. External Functions ..
INTEGER IDAMAX
DOUBLE PRECISION DASUM

. Local Scalars

INTEGER NPROW, NPCOL, MYROW, MYCOL, I, J
DOUBLE PRECISION MAX

74

. Executable Statements

Get processor grid information

* X X ¥ *

CALL GRIDINFO(NPROW, NPCOL, MYROW, MYCOL)

*

Add all local rows together
DO 20 I =1, LM

WORK(I) = DASUM(LN, A(I,1), LDA)
20 CONTINUE

Find sum of global matrix rows and store on column O of processor grid
CALL DGSUM2D(’r’, ’1’, LM, 1, WORK, LM, MYROW, O)
Find maximum sum of rows for supnorm
IF (MYCOL .EQ. O) THEN
MAX = WORK(IDAMAX(LM,WORK,1))
IF (LM .LT. 1) MAX = 0.0DO
CALL DGMAX2D(’c’, ’h’, 1, 1, MAX, 1, I, J, 1, -1, 0)
END IF
Processor column O has answer: send answer to all nodes
IF (MYCOL.EQ.O) THEN
CALL DGEBS2D(’r’, ’h’, 1, 1, MAX, 1)
ELSE
CALL DGEBR2D(’r’, ’h’, 1, 1, MAX, 1, 0, O)
END IF
DINFNRM = MAX
RETURN

End of DINFNRM

END

B Obtaining the BLACS from Netlib

Netlib is an automated system which allows users to obtain software, papers, etc., via e-
mail. The BLACS are in the ScaLAPACK directory on netlib. To obtain a list of of the

75

presently available ScalLAPACK codes, mail to netlib@ornl.gov and in the body of the
message type send index from scalapack. This index will also explain other options for
downloading software, such as Xnetlib or anonymous rcp.

To obtain the BLACS User’s Guide from netlib, mail to netlib@ornl.gov and in the
body of the message type send blacs_ug.ps from scalapack. the various versions of the
BLACS can be obtained by mailing to netlib@ornl.gov, and typing the message indicated
in table 17 in the body of the message.

| VERSION | MESSAGE

Intel

send intelblacs.uue from scalapack

CM-5

send cmbblacs.uue from scalapack

PVM

send pvmblacs.uue from scalapack

Table 17: How to obtain various BLACS versions from netlib

76

C Quick Reference To The BLACS

Fortran Interface

Initialization

INITPINFO(MYPNUM, NPROCS)

AUXSETUP(MYPNUM, NPROCS)

SETPVMTIDS(NTASKS, TIDS)

BLACSINIT(NPROW, NPCOL)

GRIDMAP(USERMAP, LDUMAP, NPROW, NPCOL)
IDRANGES(MINSND, MAXSND, MINBS, MAXBS)
SHIFT_RANGE(MINSND, MAXSND, MINBS, MAXBS)

Sending

CGESD2D (M, N, A, LDA, RDEST, CDEST)
OGEBS2D(SCOPE, TOP, M, N, A, LDA)
OTRSD2D(UPLO, DIAG, M, N, A, LDA, RDEST, CDEST)
OTRBS2D(SCOPE, TOP, UPLO, DIAG, M, N, A, LDA)
Receiving

OGERV2D (M, N, A, LDA, RSRC, CSRC)
OGEBR2D(SCOPE, TOP, M, N, A, LDA, RSRC, CSRC)
OTRRV2D (UPLO, DIAG, M, N, A, LDA, RSRC, CSRC)

OTRBR2D(SCOPE, TOP, UPLO, DIAG, M, N, A, LDA, RSRC, CSRC)

Global Maximum, Minimum, Sum
OGMAX2D(SCOPE, TOP, M, N, A, LDA, RA, CA, LDIA, RDEST, CDEST)

OGMIN2D(SCOPE, TOP, M, N, A, LDA, RA, CA, LDIA, RDEST, CDEST)

OGSUM2D(SCOPE, TOP, M, N, A, LDA, RDEST, CDEST)
Auxiliary Routines

BARRIER(SCOPE)

GRIDINFO(NPROW, NPCOL, PROW, PCOL)
IDRANGES (MINSND, MAXSND, MINBS, MAXBS)
KBRID(SCOPE, RSRC, CSRC)

KBSID(SCOPE)

KPNUM(PROW, PCOL)

KRECVID (RSRC, CSRC)

KSENDID(RSRC, CSRC, RDEST, CDEST)
PCOORD(PNUM, PROW, PCOL)

SETBRANCHES(NBRANCHES)

FREEBUFF

BLACSEXIT(CONTINUE)

Note that all routines preceded by a O have the following prefizes: S, D, C, Z, I.

Declarations

INTEGER CDEST, CONTINUE, CSRC, LDA, LDIA
INTEGER M, MAXBS, MAXSND, MINBS, MINSND
INTEGER N, NBRANCHES, NPCOL, NPROW
INTEGER PCOL, PNUM, PROW, RDEST, RSRC
INTEGER CA(LDIA, *), RA(LDIA, *)
CHARACTER DIAG, SCOPE, TOP, UPLO
REAL/DOUBLE A(LDA, *)

or
COMPLEX/COMPLEX*16 A(LDA, *)
or

INTEGER A(C LDA, *)

Meaning of prefixes
- REAL

DOUBLE PRECISION
COMPLEX

- COMPLEX*16

- INTEGER

HNOQOW
]

=
|

INTEGER Function

GE - GENERAL
TR - TRAPEZOIDAL

SD - SEND
RV - RECEIVE

BS - BROADCAST SEND
BR - BROADCAST RECEIVE

GMAX - GLOBAL element-wise MAXIMUM
GMIN - GLOBAL element-wise MINIMUM
GSUM - GLOBAL element-wise SUMMATION

Options

UPLO = ’Upper triangular’, ’Lower triangular’;
DIAG = ’Non-unit triangular’, ’Unit triangular’;
SCOPE = ’A11’, ’row’, ’column’;

TOP = (SEE DESCRIPTION BELOW).

77

Broadcast Topologies

TOP

’I’ increasing ring;

’D’ decreasing ring;

’H’ hypercube (minimum spanning tree);

’S’ split-ring;

’F? fully connected;

(calls multipath with NPATHS = NNODES-1)

’M? : nodes divided into I increasing
rings, where I is set with call
to SETBRANCHES

= ’1’ : tree broadcast with NBRANCHES = 1

= ’27 : tree broadcast with NBRANCHES = 2

= ’3’ : tree broadcast with NBRANCHES = 3

= ’4’ : tree broadcast with NBRANCHES = 4

= ’5’ : tree broadcast with NBRANCHES = 5

= ’6’ : tree broadcast with NBRANCHES = 6

= ’7’ : tree broadcast with NBRANCHES = 7

= ’8’ : tree broadcast with NBRANCHES = 8

= ’9’ : tree broadcast with NBRANCHES = 9

= ’T’> : tree broadcast with NBRANCHES = I,
where I is set with call to
SETBRANCHES

Global Topologies
TOP =1’ : tree gather with NBRANCHES = 1

= ’27 : tree gather with NBRANCHES = 2

= ’3’ : tree gather with NBRANCHES = 3

= ’4’ : tree gather with NBRANCHES = 4

= ’5’ : tree gather with NBRANCHES = 5

= ’6’ : tree gather with NBRANCHES = 6

= ’7’ : tree gather with NBRANCHES = 7

= ’8’ : tree gather with NBRANCHES = 8

= ’9’ : tree gather with NBRANCHES = 9

= ’T’ : tree gather with NBRANCHES = I,
where I is set with call to
SETBRANCHES

= ’F? : Fully connected -- calls tree gather

with NBRANCHES = NNODES - 1

’H’ : if IRDEST = -1, a specialized
"leave on all" hypercube topology
called bidirectional exchange is used.
Otherwise, TOP = ’1’ is substituted.

Initialization

An initial call to BLACSINIT or GRIDMAP must occur
at the beginning of your program before calling any non-
initialization BLACS routine. BLACSINIT or GRIDMAP
may be called repetitively in order to change the processor
grid.

A call to BLACSINIT or GRIDMAP must be made after
SHIFT_RANGE in order to have the range shift take affect.

Notation

Any subroutine parameter argument that is underlined is
an output argument. If a subroutine is underlined it is a
function that returns a value. Specifically, if it is prefixed
by K-, it returns an integer value. The prefix P- stands for
processor. For example, integer function KPNUM returns
the processor number for the specified grid coordinates.

Topology Hints

Topologies allow the user to optimize communication pat-
terns for a particular operation. For the Intel BLACS, good
defaults are broadcast and global TOP = '"HYPERCUBE’.
For the PVM BLACS, good default values are broadcast
TOP = 'T" and global TOP = ’1’. For more details read
the paper referenced below.

References

J. J. Dongarra, LAPACK Working Note 34, Workshop on
the BLACS, Computer Science Dept. Technical Report
(CS-91-134, University of Tennessee, Knoxville, May, 1991.
To receive a postscript copy, send email to netlib@ornl.gov
and in the mail message type: send lawn34.ps from
lapack/lawns. For a more up-to-date report, send your
request for the BLACS users’ guide to blacs@cs.utk.edu.

Obtaining the BLACS

In order to get instructions for downloading the BLACS,
send email to netlib@ornl.gov and in the body of the mes-
sage type send index from scalapack.

Send comments and questions to blacs@cs.utk.edu.

Basic

Linear

Algebra
Communication

Subprograms

Quick Reference Guide
Release 1.0BETA

April 22, 1994

University of Tennessee

78

D Timing Codes

This appendix contains the actual code used to perform the timings given in this paper. It
is impossible to construct a 100% correct test for some of the quantities measured here. We
therefore present the timers that were used, so the biases, if any, can be examined by the

reader.

79

D.1 7. Timing Code

#include <stdio.h>

#define
#define
#define
#define

#define
#define

#define
#define

BLACS 1
INTEL 2
SP1 3
CHM5 4

BLOCK O
INTR 1 /* are interrupts off (0) or on? */

dwalltime00_ dcputime00_
SYS BLACS

#if (SYS == BLACS)

#define
#define

#define

PLAT "Intel BLACS"

Tsend(msgid, dest, length, buff)\

sgesd2d_(&(length), &one, (buff), &(length), &zero, &(dest));
Trecv(msgid, src, length, buff)\

sgerv2d_(&(length), &one, (buff), &(length), &zero, &(src));

#elif (SYS == INTEL)

#define
#define
#define

#define

PLAT "Intel"

dwalltimeOO_ dclock

Tsend(msgid, dest, length, buff)\
csend((msgid), (buff), (length), (dest), 0);
Trecv(msgid, src, length, buff)\
crecv((msgid), (buff), (length));

#elif (SYS == CM5)

#include </usr/include/cm/cmmd.h>

#define
#define

PLAT "CM5"
dwalltime00_ dcputime00_

#if (BLOCK)

#define

#else
#define

#tendif
#define

Tsend(msgid, dest, length, buff)\
CMMD_send_block((dest), (msgid), (buff), (length));

Tsend(msgid, dest, length, buff)\
CMMD_send_noblock((dest), (msgid), (buff), (length));

Trecv(msgid, src, length, buff)\
CMMD_receive_block((src), (msgid), (buff), (length));

#elif (SYS == SP1)

#define
#define

PLAT "SP1L"
Tsend(msgid, dest, length, buff)\

80

mpc_bsend((buff), (length), (dest), (msgid));
#define Trecv(msgid, src, length, buff)\
mpc_brecv((buff), (length), &(src), &(msgid), &(itmp));

#tendif

main(nargs, args)
int nargs;
char *args[];
/*
* Measures time for point to point communication. Usage:
* Tc <lenl> <lenN> <inclen> <repititions> <sending node> <1st recving node>
* <last recving node> <recv increment> [<outfile>]
* 1f <recv increment> greater than <last recv node>, then increment is by
* power of 2.

*/

double dwalltimeQO_();

char *outfile;

FILE *fp=stdout;

int len, lenil, lenN, inclen, reps, sender, recvl, recvN, recvinc;
int iam, nnodes, msgid, dest, length, i, j, itmp;

int *ibuff=NULL;

int one=1, zero=0;

double timel, *time;

/*
* Get my node number and the number of nodes in system
*/
#if (SYS == BLACS)
initpinfo_(&iam, &nnodes);
#elif (SYS == INTEL)
iam = mynode();
nnodes = numnodes();
#elif (SYS == CM5)
iam = CMMD_self_address();
nnodes = CMMD_partition_size();
CMMD_node_timer_clear(63);
CMMD_node_timer_start(63);
CMMD_fset_io_mode(stdout, CMMD_independent);
CMMD_fset_io_mode(stderr, CMMD_independent);

#if (INTR)
CMMD_enable_interrupts();
#else
CMMD_disable_interrupts();
#endif

#elif (SYS == SP1)
mpc_environ(&nnodes, &iam);

#endif

/*

81

* Read in params from command line, or use defaults

*/
if
{

}

(nargs >= 9)

lenl = atoi(args[1]);
lenN = atoi(args[2]);
inclen = atoi(args[3]);
reps = atoi(args[4]);
sender = atoi(args[5]);
recvl = atoi(args([6]);
recvN = atoi(args([7]);
nnodes = recvN + 1;
recvinc = atoi(args([8]);

if (nargs > 9) fp = fopen(args[9], "w");

else

{

}

if (iam == sender)
fprintf (stderr,

"Incorrect number of parameters. Should be 7. Using defaults.\n");

len = 1024;
reps = 10;
sender = 0;
recvl = 1;

if (nnodes > 0) recvN = nnodes - 1;

else recvN = nnodes = 4;
recvinc = 1;

#if (SYS == BLACS)
auxsetup_(&iam, &nnodes);
blacsinit_(&one, &nnodes);

#endif

time = (double *) malloc(nnodes * sizeof(*time));

for(dest=recvl, i=0; dest <= recvN; i++)

{

}

if (recvinc < 0) dest = (dest << 1) + 1;

else dest += recvinc;

for (len=lenl, j=0; len <= lenN; j++)

{

if

if (inclen < lenN) len += inclen;

else len *= len;

(iam == sender)
fprintf (fp,

"Start of %d node ’%s’ run:

sender=Yd, nlengths=Yd, nrecvs=/d, reps=/d.\n",

nnodes, (PLAT), sender, j, i, reps);

82

len = leni;
while (len <= lenN)
{
#if (SYS == BLACS)
length = len/4;
#else
length = len;
#endif
if (ibuff) free(ibuff);
ibuff = (int *) malloc(len);
if (iam == sender)
fprintf (fp,
" Message Len=Yd, reps=id, sender=Vd, recvi=id, recvN=Yd, recvinc=Yd.\n",
len, reps, sender, recvl, recvN, recvinc);

for(dest=recvl, i=0; dest <= recvN; i++)

{
for (j=0; j < len/4; ibuff[j++]=0); /* page in ibuff if needed */
msgid = dest;
if (iam == sender)
{
/*
* Send out wake-up message, get back ready acknowledgement
*/
Tsend(msgid, dest, zero, ibuff);
Trecv(msgid, dest, zero, ibuff);
timel = dwalltime00_();
for (j=0; j < reps; j++)
{
Tsend(msgid, dest, length, ibuff);
Trecv(msgid, dest, length, ibuff);
¥
time[i] = dwalltime0O0_() - timel;
¥
else if (iam == dest)
{
/*
* Wait for wake-up call, then tell sender I’m ready
*/
Trecv(msgid, sender, zero, ibuff);
Tsend(msgid, sender, zero, ibuff);
for (i=0; i < reps; i++)
{
Trecv(msgid, sender, length, ibuff);
Tsend(msgid, sender, length, ibuff);
¥
¥
if (recvinc < 0) dest = (dest << 1) + 1;
else dest += recvinc;
¥

83

if (iam == sender)
{
for(dest=recvl, i=0; dest <= recvN; i++)
{
fprintf (fp,

Node %d send to %d: length=Yd, Tc = %8.21f (us), ThruPut = %1f (KB/s).\n",
sender, dest, len, (0.5e6+time[i])/reps,
(len*reps)/(1000.0*time[i]));

if (recvinc < 0) dest = (dest << 1) + 1;
else dest += recvinc;

}

fprintf(fp, " End of tests, length=Yd.\n", len);
¥
if (inclen < lenN) len += inclen;
else len *= len;
¥
if (iam == sender) fprintf(fp, "End of Run.\n");
if (fp '= stdout) fclose(fp);

84

D.2 7T, Timing Code

#include <stdio.h>

#define
#define
#define
#define

#define
#define

#define
#define

BLACS 1
INTEL 2
SP1 3
CHM5 4

INTR 1 /* are interrupts off (0) or on? */
BLOCK 1 /* use blocking send? */

SYS BLACS
dwalltime00_ dcputime00_

#if (SYS == BLACS)

#define
#define

#define

PLAT "CMb BLACS"

Tsend(msgid, dest, length, buff)\

sgesd2d_(&(length), &one, (buff), &(length), &zero, &(dest));
Trecv(msgid, src, length, buff)\

sgerv2d_(&(length), &one, (buff), &(length), &zero, &(src));

#elif (SYS == INTEL)

#define
#define
#define

#define

PLAT "Intel"

dwalltimeOO_ dclock

Tsend(msgid, dest, length, buff)\
csend((msgid), (buff), (length), (dest), 0);
Trecv(msgid, src, length, buff)\
crecv((msgid), (buff), (length));

#elif (SYS == CM5)

#include </usr/include/cm/cmmd.h>

#define
#define

PLAT "CM5"
dwalltime00_ dcputime00_

#if (BLOCK)

#define

#else
#define

#tendif
#define

Tsend(msgid, dest, length, buff)\
CMMD_send_block((dest), (msgid), (buff), (length));

Tsend(msgid, dest, length, buff)\
CMMD_send_noblock((dest), (msgid), (buff), (length));

Trecv(msgid, src, length, buff)\
CMMD_receive_block((src), (msgid), (buff), (length));

#elif (SYS == SP1)

#define
#define

PLAT "SP1L"
Tsend(msgid, dest, length, buff)\

85

mpc_bsend((buff), (length), (dest), (msgid));
#define Trecv(msgid, src, length, buff)\
mpc_brecv((buff), (length), &(src), &(msgid), &(itmp));

#tendif

main(nargs, args)
int nargs;
char *args[];
/*
* Measures time for point to point communication. Usage:
* Ts <outfile> <# reps> <lenl> <lenN> <inclen> <sending node>
* <recvl> .. <recvN>
*/
{
double dwalltimeQO_();
char *outfile;
FILE *fp=stdout;
int len, leni, lenN, inclen, reps, sender, nrecvers;
int iam, nnodes, msgid, dest, length, i, j, itmp;
int *ibuff=NULL, *recvers=NULL;
int one=1, zero=0;
double timel, time;

/*
* Get my node number and the number of nodes in system
*/
#if (SYS == BLACS)
initpinfo_(&iam, &nnodes);
#elif (SYS == INTEL)
iam = mynode();
nnodes = numnodes();
#elif (SYS == CM5)
iam = CMMD_self_address();
nnodes = CMMD_partition_size();
CMMD_node_timer_clear(63);
CMMD_node_timer_start(63);
CMMD_fset_io_mode(stdout, CMMD_independent);
CMMD_fset_io_mode(stderr, CMMD_independent);

#if (INTR)
CMMD_enable_interrupts();
#else
CMMD_disable_interrupts();
#endif

#elif (SYS == SP1)
mpc_environ(&nnodes, &iam);

#endif

/*

* Read in params from command line, or use defaults

86

*/
if (nargs >= 8)

{
if (!'strcmp(args[1], "stdout")) fp = stdout;
else if (!strcmp(args[1], "stderr")) fp = stderr;
else fp = fopen(args[1], "w");
reps = atoi(args[2]);
lenl = atoi(args([3]);
lenN = atoi(args([4]);
inclen = atoi(args[5]);
sender = atoi(args([6]);
nrecvers = nargs - 7;
recvers = (int *) malloc(nrecvers * sizeof (*recvers));
nnodes = 1;
for (i=0; i < nrecvers; i++)
{
recvers[i] = atoi(args[7+i]);
if (recvers[i] >= nnodes) nnodes = recvers[i] + 1;
¥
¥
else
{
if (iam == 0) fprintf(stderr,
"Incorrect number of parameters. Should be >= 8. Using defaults.\n");
fp = stdout;
reps = 1;
lenl = 0; lenN = 100; inclen = 10;
sender = 0;
nrecvers = 1;
recvers = (int *) malloc(nrecvers * sizeof (*recvers));
for (i=0; i < nrecvers; i++) recvers[i] = i+1;
nnodes = nrecvers + 1;
¥

#if (SYS == BLACS)
auxsetup_(&iam, &nnodes);
blacsinit_(&one, &nnodes);

#tendif

for (len=lenl, j=0; len <= lenN; j++)

{
if (inclen < lenN) len += inclen;
else len *= 2;

¥

if (iam == sender)

{

fprintf (fp,
"Start of %d node ’%s’ run: sender=/d, nlengths=Yd, nrecvs=}d, reps=/d.\n",
nnodes, (PLAT), sender, j, nrecvers, reps);

87

fprintf (fp, "Receivers:");
for (i=0; i < nrecvers; i++) fprintf(fp, " %d",recvers[i]);
fprintf (fp, "\n");

¥
/*
¥ Quit if I am not sender or recver
*/
else
{
for(i=0; i < nrecvers; i++) if (recvers[i] == iam) break;
if (i == nrecvers) exit(0);
¥

if (ibuff) free(ibuff);
ibuff = (int *) malloc(lenN);
len = leni;
while (len <= lenN)
{
#if (SYS == BLACS)
length = len/4;
#else
length = len;
#endif
if (iam == sender)
fprintf(fp, " Message Len=Yd.\n", len);

for (j=0; j < len/4; ibuff[j++]=0); /* page in ibuff if needed */

msgid = 0;
if (iam == sender)
{
/*
* Send out wake-up message, get back ready acknowledgement
*/
for(i=0; i < nrecvers; i++)
{
j = zero;
Tsend(msgid, recvers[i], j, ibuff);
Trecv(msgid, recvers[i], j, ibuff);
¥
timel = dwalltime00_();
for (j=0; j < reps; j++)
Tsend(msgid, recvers[j¥nrecvers], length, ibuff);
time = dwalltimeOO_() - timel;
¥
else
{
/*
* Wait for wake-up call, then tell sender I’m ready
*/

88

j = zero;
Trecv(msgid, sender, j, ibuff);
Tsend(msgid, sender, j, ibuff);

for (i=0; i < reps; i++)

if (iam == recvers[iYnrecvers]) Trecv(msgid, sender, length, ibuff);

¥
if (iam == sender)
{

fprintf(fp, " Ud: length=Yd, Ts = %8.2f (us).\n",

sender, len, (1.0e6*time)/reps);

fprintf(fp, " End of tests, length=Yd.\n", len);

¥

if (inclen < lenN) len += inclen;

else len *= 2;
}
if (iam == sender) fprintf(fp, "End of Run.\n");
if (fp '= stdout && fp '= stderr) fclose(fp);

89

D.3 Broadcast Timing Code

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>

#define BLACS 1
#define INTEL 2
#define SP1 3
#define CM5 4

#define SYS CM5
#if (SYS == INTEL)

#define PLAT "Intel"
#define dwalltimeOO_ dclock
#define Tsync() gsync()

#elif (SYS == CM5)

#define PLAT "CM5"
#define dwalltimeOO_ dcputime00_
#define Tsync() CMMD_sync_with_nodes()

#elif (SYS == SP1)

#define PLAT "SP1"
#define Tsync() mpc_sync(allgrp)

#tendif

main(int nargs, char *args[])
/*
* Measures time for point to point communication. Usage:
* Tbs <top> <lenl> <lenN> <inclen> <repititions> <src node> [<outfile>]
* 1f <recv increment> less than 1, then increment is by power of 2.
*/
{
double dwalltimeQO_();

FILE *fp=stdout;

char *outfile, *systyp;

char top;

int len, leni, lenN, inclen, nlens, reps, src, rsrc;
int iam, nnodes, msgid, length, i, j, itmp, allgrp;
int one=1, zero=0;

int *rA=NULL;

double *dbuff=NULL;

double timel, time, srcT, maxT, minT, avgT;

90

/*
* Get my node number and the number of nodes in system
*/

initpinfo_(&iam, &nnodes);

/*
* Read in params from command line
*/
if (nargs >= 7)
{
top = #*args[1];
lenl = atoi(args[2]);
lenN = atoi(args[3]);
inclen = atoi(args[4]);
reps = atoi(args[5]);
src = atoi(args[6]);
}
else
{
fprintf(stderr, "\nlncorrect usage\n");
exit(1);
}

auxsetup_(&iam, &nnodes);
blacsinit_(&one, &nnodes);

if ((iam == 0) && (nargs > 7)) fp = fopen(args[7], "w");

#if (SYS == SP1)
rA = (int *) malloc(sizeof(int)*4);
mpc_task_query(rd, 4, 3);
allgrp = rA[3];
free(rh);
#endif

dbuff = (double *) malloc(lenN*sizeof (double));
assert (dbuff '= NULL);

/*
* If we’re on a system that requires buffering even for contiguous messages,
* get the buffer of largest size by performing broadcast

*/
#if ((SYS == SP1) || (SYS == CM5))
if (top != ’p’)
{
if (iam == 0) dgebs2d_("a", &top, &lenN, &one, dbuff, &lenN);
else dgebr2d_(”a”, &top, &lenN, &one, dbuff, &lenN, &zero, &zero);
¥
#endif

for (nlens=0, len=lenl; len < lenN; nlens++)

91

if (inclen > 0) len += inclen;
else len *= len;

}

if (top == ’p’) systyp = "primitive";
else systyp = "BLACS";

if (iam == 0)

{
fprintf (fp,
"\n \n");
fprintf (fp,
"Time in milliseconds for double precision ’%s %s’ bcast, top='Y%c’,\n",
PLAT, systyp, top);
fprintf (fp, "nnodes=%d, reps=%d, src=%d, ntests=%d.\n",
nnodes, reps, src, nlens);
fprintf (fp,
" \n\n");
fprintf (fp,
" ELEMENTS SRC TIME MIN TIME MAX TIME AVG TIME\n");
fprintf (fp,
R kI aae atatt \n\n")
¥

len = leni;
while (len <= lenN)

{
for (j=0; j < len; j++) dbuff[j] = 1.0; /* init buffer */
if (iam == src)
{
if (top == ’p’) /* use system primitive */
{
Tsync();

timel = dwalltime00_();
for (j=0; j < reps; j++)
{
#if (SYS == INTEL)
msgid = (reps)*nlens + j;
csend(msgid, dbuff, len*sizeof(double), -1, 0);
#elif (SYS == SP1)
mpc_bcast(dbuff, len*sizeof (double), iam, allgrp);
#elif (SYS == CM5)
CMMD_bc_to_nodes(dbuff, len*sizeof (double));

#endif
¥
time = dwalltime00_() - timel;
¥
else /% call the BLACS */
{

92

Tsync();
timel = dwalltime00_();
for (j=0; j < reps; j++)
dgebs2d_("a", &top, &len, &one, dbuff, &len);
time = dwalltime00_() - timel;

¥
srcT = time;
if (src != 0) /* send source time to node 0 */
dgesd2d_(&one, &one, &srcT, &one, &zero, &zero);
¥
/*
* If I am receiving and participating in broadcast
*/
else
{
if (top == ’p’)
{

Tsync();
timel = dwalltime00_();
for (j=0; j < reps; j++)
{
#if (SYS == INTEL)
msgid = (reps)*nlens + j;
crecv(msgid, dbuff, len*sizeof(double));
#elif (SYS == SP1)
mpc_bcast(dbuff, len*sizeof (double), src, allgrp);
#elif (SYS == CM5)
CMMD_receive_bc_from_node(dbuff, len*sizeof(double));

#endif
¥
time = dwalltime00_() - timel;
¥
else
{
Tsync();
timel = dwalltime00_();
for (j=0; j < reps; j++)
dgebr2d_("a", &top, &len, &one, dbuff, &len, &zero, &src);
time = dwalltime00_() - timel;
¥
if (iam == 0) dgerv2d_(&one, &one, &srcT, &one, &zero, &src);
¥
time = (time * 1000.0) / reps; /* get time in msecs */

srcT = (srcT * 1000.0) / reps; /* get time in msecs */

minT = maxT = avgT = time;

dgmin2d_("a", "1", &one, &one, &minT, &one, dbuff, &dbuff[i],
&one, &zero, &zero);

dgmax2d_("a", "1", &one, &one, &maxT, &one, dbuff, &dbuff[i],
&one, &zero, &zero);

dgsum2d_(”a”, "1", &one, &one, &avgT, &one, &zero, &zero) ;

93

avgT /= nnodes;

if (iam == 0)
fprintf (fp, "%11d %13.31f %13.31f %13.31f %13.31f\n",
len, srcT, minT, maxT, ang);
if (inclen > 0) len += inclen;
else len *= len;

}

if (iam == 0)

{
fprintf (fp,

"\n \n");

fprintf (fp, "End of Run.\n");
if (fp != stdout) fclose(fp);

}

94

D.4 Combine Timing Code

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>

#define BLACS 1
#define INTEL 2
#define SP1 3
#define CM5 4

#define SYS CM5
#if (SYS == INTEL)

#define PLAT "Intel"
#define dwalltimeOO_ dclock
#define Tsync() gsync()

#elif (SYS == CM5)

#define PLAT "CMb5"

#define dwalltimeOO_ dcputime00_
#define Tsync() CMMD_sync_with_nodes()
#include </usr/include/cm/cmmd.h>

#elif (SYS == SP1)

#define PLAT "SP1"
#define Tsync() mpc_sync(allgrp)

#tendif

main(int nargs, char *args[])
/*
* Measures time for point to point communication. Usage:
* Tg <op> <top> <lenl> <lenN> <inclen> <repititions> <dest node> [<outfile>]
* 1f <recv increment> greater than <last recv node>, then increment is by
* power of 2.
*/
{
double dwalltimeQO_();
#if (SYS == SP1)
extern void d_vadd();
#endif

FILE *fp=stdout;

char *outfile, *systyp;

char op, top;

int len, lenil, lenN, inclen, reps, dest, rdest;

int iam, nnodes, msgid, length, i, j, itmp, allgrp;

95

int one=1, zero=0;

int *rA=NULL, *cA=NULL;

double *dbuff=NULL, *dbuff2=NULL;
double timel, time, maxT, minT, avgT;

/*
* Get my node number and the number of nodes in system
*/

initpinfo_(&iam, &nnodes);

/*
* Read in params from command line
*/

if (nargs >= 8)

{
op = *args[1];
top = *args[2];
lenl = atoi(args([3]);
lenN = atoi(args([4]);
inclen = atoi(args[5]);
reps = atoi(args[6]);
dest = atoi(args[7]);
if (dest < 0) rdest = -1;
else rdest = 0;

}

else

{
fprintf(stderr, "\n Incorrect usage.\n");

exit(1);
}

auxsetup_(&iam, &nnodes);
blacsinit_(&one, &nnodes);

if ((iam == 0) && (nargs > 8)) fp = fopen(args[8], "w");

#if (SYS == SP1)
rA = (int *) malloc(sizeof(int)*4);
mpc_task_query(rd, 4, 3);
allgrp = rA[3];
free(rh);
#endif

dbuff = (double *) malloc(lenN*sizeof (double));
assert (dbuff '= NULL);
/*
* If using platform dependant routine, get work buffer
*/
if (top == ’p’) /* platform dependant routine */
{
dbuff2 = (double *) malloc(lenN#*sizeof (double));

96

/*

}

assert (dbuff2 !'= NULL);
systyp = "primitive";

* If using BLACS, get buffer by doing an operation

*/

Il\n

else

{

if

systyp = "BLACS";
if (op == ’+?)
{
for (j=0; j < lenN; j++) dbuff[j] = 0.0; /* init buffer */
dgsum2d_("a", &top, &lenN, &one, dbuff, &lenN, &rdest, &dest);
¥
else
{
rh (int *) malloc(lenN*sizeof(int));
ch = (int *) malloc(lenN*sizeof(int));
assert (rA !'= NULL);
assert (cA != NULL);
for (j=0; j < lenN; j++) dbuff[j]=0.0; /* init buffer */
dgmax2d_(”a”, &top, &lenN, &one, dbuff, &lenN, rA, ch, &len,
&rdest, &dest);

(iam == 0)

for (i=0, len=lenl; len <= lenN; i++)
{
if (inclen > 0) len += inclen;
else len *= 2;

}

fprintf (fp,

\n'");
fprintf (fp,
"Time in milliseconds for double precision ’%s %s’ op=’%c’, top="%c’,\n",
PLAT, systyp, op, top);
fprintf (fp, "nnodes=%d, reps=%d, dest=Yd, ntests=}d.\n",
nnodes, reps, dest, 1i);
fprintf (fp,

}

len

\n\n");
fprintf (fp,

" ELEMENTS MIN TIME MAX TIME AVG TIME\n");
fprintf (fp,

= leni;

while (len <= lenNlN)

{

97

srand(len);
for (j=0; j < len; j++) dbuff[j]l = rand(); /# init buffer */

if (op == ’+?)
{
if (top == ’p’)
{
Tsync();

timel = dwalltime00_();
for (j=0; j < reps; j++)
{
#if (SYS == INTEL)
gdsum(dbuff, len, dbuff2);
#elif (SYS == SP1)
mpc_combine (dbuff, dbuff2, len*sizeof(double), d_vadd, allgrp);
#elif (SYS == CM5)
CMMD_scan_v(dbuff2, dbuff, CMMD_combiner_dadd, CMMD_downward,
CMMD_none, 0, CMMD_inclusive, sizeof(double), len);
if (rdest == -1)
{
if (iam == 0) CMMD_bc_to_nodes(dbuff2, len*sizeof(double));
else CMMD_receive_bc_from_node(dbuff2, len*sizeof(double));

¥
#endif
¥
time = dwalltime00_() - timel;
¥
else
{
Tsync();
timel = dwalltime00_();
for (j=0; j < reps; j++)
{
dgsum2d_("a", &top, &len, &one, dbuff, &len, &rdest, &dest);
¥
time = dwalltime00_() - timel;
¥
¥
else if (op == ’>?)
{
if (top == ’p’)
{

Tsync();
timel = dwalltime00_();
for (j=0; j < reps; j++)
{
#if (SYS == INTEL)
gdhigh(dbuff, len, dbuff2);
#elif (SYS == SP1)
mpc_combine (dbuff, dbuff2, len*sizeof(double), d_vmax, allgrp);
#elif (SYS == CM5)

98

CMMD_scan_v(dbuff2, dbuff, CMMD_combiner_dmax, CMMD_downward,
CMMD_none, 0, CMMD_inclusive, sizeof(double), len);
if (rdest == -1)
{
if (iam == 0) CMMD_bc_to_nodes(dbuff2, len*sizeof(double));
else CMMD_receive_bc_from_node(dbuff2, len*sizeof(double));

¥
#endif
¥
time = dwalltime00_() - timel;
¥
else
{
Tsync();
timel = dwalltime00_();
for (j=0; j < reps; j++)
{
dgmax2d_(”a”, &top, &len, &one, dbuff, &len,
rA, cA, &len, &rdest, &dest);
¥
time = dwalltime00_() - timel;
¥
¥
else if (op == ’<?)
{
if (top == ’p’)
{

Tsync();
timel = dwalltime00_();
for (j=0; j < reps; j++)
{
#if (SYS == INTEL)
gdlow(dbuff, len, dbuff2);
#elif (SYS == SP1)
mpc_combine (dbuff, dbuff2, len, d_vmin, allgrp);
#elif (SYS == CM5)
CMMD_scan_v(dbuff2, dbuff, CMMD_combiner_min, CMMD_upward,
CMMD_none, 0, CMMD_inclusive, sizeof(double), len);
#endif
¥
time = dwalltime00_() - timel;
¥
else
{
Tsync();
timel = dwalltime00_();
for (j=0; j < reps; j++)
{
dgmin2d_(”a”, &top, &len, &one, dbuff, &len,
rA, cA, &len, &rdest, &dest);

99

Il\n

time = dwalltime00_() - timel;

time = (time * 1000.0) / reps; /* get time in msecs */

minT = maxT = avgT = time;

dgmin2d_("a", "1", &one, &one, &minT, &one, dbuff, &dbuff[i],
&one, &zero, &zero);

dgmax2d_("a", "1", &one, &one, &maxT, &one, dbuff, &dbuff[i],
&one, &zero, &zero);

dgsum2d_(”a”, "1", &one, &one, &avgT, &one, &zero, &zero) ;

avgT /= nnodes;

if (iam == 0)
fprintf (fp, "%11d %13.31f %13.31f %13.31f\n",
len, minT, maxT, avgT);
if (inclen < lenN) len += inclen;
else len *= 2;

}
if (iam == 0)
{
fprintf (fp,
fprintf (fp, "End of Run.\n");
if (fp != stdout) fclose(fp);
}

100

\n");

