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Abstract

The construction of elementary unitary matrices that transform a complex

vector to a multiple of e1, the �rst column of the identity matrix, are studied. We

present four variants and their software implementation, including a discussion on

the LAPACK subroutine CLARFG. Comparisons are also given.

1 Introduction

The goal of this paper is to survey elementary unitary matrices. We begin by �rst

discussing elementary unitary matrices that are Hermitian. Let w be a complex vector.

De�ne the elementary Hermitian matrix U = I � 2wwH; where wHw = 1. It is easily

veri�ed that U is both Hermitian and unitary. In particular, if w is a real vector, then

U is orthogonal and symmetric, and is commonly referred to as a Householder re
ector.

Since U is unitary, its inverse is readily available.

Two important applications of elementary Hermitians include the computation of

the QR factorization of a matrix, and the orthogonal reduction of a square matrix

A into upper Hessenberg form. The former application is often used for the stable

computation of a solution for the linear least squares problem. The latter application

is needed for many eigenvalue computations. The literature on elementary Hermitians

is vast. For information on applications concerning Householder matrices see Golub

and Van Loan [4]. Parlett [7] examines the algorithmic and stability issues of computing

Householder matrices. A detailed error analysis by Wilkinson [10] shows the stability of

numerical techniques using elementary Hermitians. Besides these excellent numerical

properties, their application demonstrates their e�ciency. If A is a matrix, then UA =

A � 2w(AHw)H , and hence explicit formation and storage of U is not required. Only

the ability to form the matrix-vector product AHw and a rank one update to A.

Fundamental to the use of elementary Hermitians in the above applications is their

ability to transform a vector x to a multiple of e1, the �rst column of the identity

matrix. As we will show, an elementary Hermitian is not always de�ned when x is to

be transformed to a real multiple of e1. However, the crucial property of unitariness

may be preserved. The purpose of this paper is to review and examine the details of

constructing an elementary unitary matrix so that a complex vector x is transformed

to a multiple of e1.
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The paper is organized as follows. In x 2 the mathematical problem is stated and

general conditions for constructing elementary unitary matrices are derived. The four

approaches for construction are then introduced in x 2.1{x 2.4. The �rst one is imple-
mented in EISPACK [8] and is based upon a development by Wilkinson [9, pages 48{50].

The LINPACK [2] approach is the second one studied. The third approach is due to

Hammarling and Du Croz. It is implemented in the NAG Fortran Library subrou-

tine F06HRF [6]. The �nal variation is implemented by the LAPACK [1] subroutine

CLARFG. The details of this software implementation are also discussed. Section three

is a comparison and summary of our �ndings. In fact, our attempt to understand the

di�erences between the Wilkinson approach and the alternate formulation implemented

by LAPACK led to this study.

We employ Householder notational conventions. Capital and lower case letters

denote matrices and vectors, respectively, while lower case Greek letters denote scalars.

In particular, �i = eT
i
x denotes the i-th element of the vector x. Unless otherwise stated,

all quantities are assumed to be complex and i �
p
�1. The real and imaginary part of

a complex number � are denoted by Re(�) and Im(�), respectively. The vector norm

used is the Euclidean one: kxk =
p
xHx. The reader is also reminded that j�j2 = ���

where �� is the complex conjugate of �:

2 Elementary Unitary matrices

Let us clearly state the problem at hand. Find an elementary unitary matrix that

satis�es the following three conditions:

U = I � �wwH; UHx = 
kxke1; j
j = 1; (1)

where x is a vector with n components. The third condition is a consequence of

the second one since kUHxk=kxk = j
j: The second condition gives that xHUHx =


kxkxHe1 implying that U is an elementary Hermitian matrix if and only if � and


xHe1 are real.

The matrix U as de�ned by (1) is a special member of the more general class of

elementary matrices de�ned by

E(w; v; �) = I � �wvH: (2)

See Householder [5] and Wilkinson [11] for introductions. Dubrulle [3] presents a com-

prehensive study for the case of real w,v and �, that includes a discussion to block

implementations.

Let us determine general conditions for an elementary matrix to be unitary. Since

E(w; v; �) must be unitary,

I = (I � �wvH)H(I � �wvH) = I � ��vwH � �wvH + ���(wHw)vvH :

Cancelling terms results in

���(wHw)vvH = ��vwH + �wvH : (3)

Rearranging terms gives (���(wHw)v � �w)vH = ��vwH ; and a row space argument

implies that w and v are linearly dependent. Substituting v = w into (3) gives

j�j2kwk2 = � + �� = 2Re(�) (4)
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as the required relationship between � and w. Note that the above relationship contains

some redundancy. Scaling w by a complex number � and dividing � by j�j2 still

satisfy the relationship. This scaling also satis�es the second condition of (1) since

(��j�j�2)(w�)(w�)H = �wwH : Finally, the second condition of (1) gives that w is a

linear combination of x and e1:

Four sets choices for w, � and 
 are the subject of the x 2.1{2.2. A standard

modi�cation for w = �x + �e1 is that ��1 and � share the same sign. In 
oating

point arithmetic, this choice of sign leads to a small relative error when computing

w. For example, if � = 1 the sign of e1 is that of Re(�1): Parlett [7] presents a

thorough discussion on the choice of sign when computing Householder re
ectors. For

the remainder of the paper, � � Sign(Re(�1))kxk:
Note that an elementary Hermitian (and Householder) matrix chooses w = (x +

�e1)=kx+ �e1k so that wHw = 1, 
 = �1. Conditions (1) and (4) are satis�ed.

2.1 The Wilkinson Approach

Wilkinson [9, pages 49{50] suggested the following modi�cation. Let �1 = ei�1 j�1j where
0 � �1 < 2� and

x = ei�1y = ei�1 [j�1j; e�i�1�2; : : : ; e�i�1�n]T :

Then even if �1 has a non-zero imaginary part, eT
1
y is a real number, an elementary

Hermitian P may be constructed so that Py is a real multiple of e1. Thus, condition (4)

is satis�ed as already discussed. Set U = ei�1P and

UHx = (e�i�1P )(ei�1y) = Py = 
kxke1;

where 
 = �1. The matrix U is a multiple of an elementary unitary matrix. Since the

�rst component of y is a non-negative number, �1 is zero.

Although EISPACK [8] does not have a subroutine that computes an elementary

unitary matrix, the subroutines CORTH and HTRIDI implement a slight variation of

the Wilkinson approach. CORTH [8, pages 300{305] and HTRIDI [8, pages 357{363]

orthogonally reduce a general and Hermitian matrix to upper Hessenberg and tridiag-

onal form, respectively. They set U = P directly and thus transform y to �ei�1kxke1.
The software sets w = x + ei�1kxke1(= ei�1(y + kxke1)) and � = 2(wHw)�1. Hence

wHw = 2kxk(kxk+ j�1j) and � = 1=kxk(kxk+ j�1j) thus satisfying condition (4). A

simple calculation shows that

UHx = x� ��(wHx)x = x� �kxk(kxk+ j�1j)x = 
kxke1;

where 
 = �ei�1 . In order to prevent possible over
ow when computing �, the vector

x is is initially normalized by � = jRe(�1)j+ jIm(�1)j+ � � �+ jRe(�n)j+ jIm(�n)j:

2.2 The LINPACK Approach

As in EISPACK, LINPACK does not have a general purpose subroutine implementing the

solution of problem (1). However, subroutines CQRDC [2, chapter 9] and CSVDC [2,

chapter 11] employ elementary unitary matrices. Subroutines CQRDC and CSVDC
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compute the QR factorization and singular value decomposition of a complex matrix,

respectively.

The LINPACK form for an elementary unitary matrix is easily derived by scaling

the w used by EISPACK with � = e�i�1=kxk. From the remarks regarding the scaling

of equation (4), � = kxk=(kxk+ j�1j) and the LINPACK U is such that UHx = 
kxke1
where 
 = �ei�1 : Note that for non-zero x, :5 � � � 1 thus avoiding the risk of over
ow

possible in the in the (unscaled) EISPACK variant.

2.3 The NAG Approach

The second form for an elementary unitary matrix is due to Hammarling and Du

Croz [6], (Introduction { F06). Unlike the previous two versions, this one computes an

elementary unitary matrix U so that UHx is a real multiple of e1. As explained at the

beginning of x 2, the resulting � cannot be real unless �1 is also.

Choosing � = (xHw)�1 where w = x + �e1 results in UHx = (I � ��wwH)x =

x � (��wHx)w = 
�e1 where 
 = �1. This choice of � will satisfy (4) as we now

demonstrate. First

wHx = (xH + �eT
1
)x = xHx+ ��1 = �(� + �1);

which determines � and kwk2 = (xH + �eT
1
)(x+ �e1) = 2�(� + Re(�1)): Finally

(wHx)(xHw)(� + ��) = (wHx)(xHw)(
1

wHx
+

1

xHw
);

= xHw + wHx;

= �(� + ��1) + �(� + �1);

= 2�(� +Re(�1));

shows that j�j2(� + ��) = kwk2 as claimed. Note that when �1 is real, U is Hermitian.

This version does not appear to be as widely known as the Wilkinson one.

The NAG subroutine F06HRF computes an elementary unitary matrix so that

Re(j�j�2�) = 1 and 1 � eT
1
�w �

p
2; (5)

for some scale factor �. First note that eT
1
w=(�1 + �) = 1: Then, from the manner in

which � was chosen, it follows that Re(�j�1+ �j�2) = (kxk+ jRe(�1)j)=kxk. Hence the
choice of � =

p
(kxk+ jRe(�1)j)=kxk=(�1 + �) is such that

eT
1
�w =

s
kxk+ jRe(�1)j

kxk and j�j�2� =
kxk+ Sign(Re(�1))�1

kxk+ jRe(�1)j
;

and the two conditions (5) on � are satis�ed. Note that 1 � j�j�2j�j � 2:

2.4 The LAPACK approach

The LAPACK subroutine CLARFG is a slight variant of the one used by the NAG

subroutine F06HRF. The resulting code is an excellent example of the art of developing

software from a numerical algorithm. Using the notation of the previous section for w

and �, let ��1 = �1 + � and hence eT
1
�w = 1 and j�j�2� = (�1 + �)=�: Conditions (1)
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Problem Statement:

Compute U = I � �wwH where UHx = 
kxke1, UHU = I , and j
j = 1:

Notation:

�i = eT
i
x for i = 1 : n; � = Sign(Re(�1))kxk;

�1 = ei�1 j�1j where 0 � �1 < 2�; � = (jRe(�1)j+ kxk)=kxk
Method w � 


EISPACK x+ ei�1kxke1 1=kxk(j�1j+ kxk) �ei�1

LINPACK xe�i�1=kxk+ e1 kxk=(j�1j+ kxk) �ei�1

NAG (x+ �e1)
p
�=(�1 + �) (�1 + �)=�� �1

LAPACK (x+ �e1)=(�1+ �) (�1 + �)=� �1

Table 1: Comparisons for the four variants used to compute an elementary unitary

matrix

and (4) are satis�ed since w and � are scaled here by � and j�j�2; respectively. Note

that 1 � j�j�2j�j � 2: If x is a real multiple of e1 then �  0 and U  I:

Representing U for use in further computation only requires storage for the complex

� . The storage for x may be re-used to write both � and the essential part of w, that

is x [�; �2=(�1 + �); : : : ; �n=(�1 + �)]T :

One who reviews subroutine CLARFG will notice the programmer took care not to

reciprocate the number kxk that may fall below a certain machine dependent tolerance,

SAFMIN. The value SAFMIN, computed by the LAPACK auxiliary subroutine SLAMCH

is a machine dependent lower bound for numbers that may be safely reciprocated and

not cause an over
ow condition. If kxk is less than the lower bound then the vector

x is scaled by a multiple of the reciprocal of SAFMIN until it is at least as large as

SAFMIN. De�ning the integer k to represent the number of scalings required, let � =

k=SAFMIN: The number � may now be safely computed as �  (�+��1)=� where �  
Sign(Re(��1))(k�xk): The essential part of u is computed as (��1+��)�1[��2; : : : ; ��n]

T :

This same scaling technique is also used by the real precision version of CLARFG|

SLARFG.

3 Comparisons and Conclusions

Four di�erent forms of elementary unitary matrices were presented to solve the

elimination problem de�ned by (1). Table 1 presents a summary of the four approaches.

We now brie
y analyze the information in the table.

� The EISPACK approach. Bene�t: Real �. Cost: An initial scaling of x to prevent

possible over
ow when computing � and storing a possibly complex 
.

� The LINPACK approach. Bene�t: Real �; :5 � j�j � 1. Cost: Storing a possibly

complex 
.
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� The NAG approach. Bene�t: Directly obtains a real 
. Cost: Storing a possibly

complex � and forming a square root; 1 � j�j � 2:

� The LAPACK approach. Bene�t: Directly obtains a real 
. Cost: Storing a

possibly complex �; 1 � j�j � 2.

Examining the application of U to a matrix A allows the following analysis:

� The EISPACK and LINPACK approaches require computing A��w(AHw)H with

real �.

� The LAPACK and NAG compute A� �w(AHw)H with possibly complex �:

Since computing the QR factorization of a matrix,the bidiagonal, Hessenberg, and

tridiagonal reductions, involve applications of elementary unitary matrices to A, the

computation is always cheaper with real �.

The bene�t of directly computing a real 
 is that it allows reuse of software. For ex-

ample, when reducing a Hermitian matrix to tridiagonal form, the resulting tridiagonal

matrix is real, and the symmetric tridiagonal QR algorithm may then be employed [1].

The same may be said about the preliminary reduction of a matrix to bidiagonal form

needed by the singular value decomposition: see [1, page 42] and [2, chapter 9]. A

third example is when computing a QR factorization of a matrix A. For stable compu-

tation of a solution to a linear least squares problem, a triangular system of equations

involving R is often required. Directly computing a real 
 results in real numbers on

the diagonal of R. Thus the careful scaling algorithms used by LAPACK when solving

triangular system of equations may be employed.

On the other hand, when using either the EISPACK and LINPACK forms of elemen-

tary unitary matrices, a diagonal unitary matrix D may always be computed to allow

reuse of software or the use of careful scaling algorithms. For example, when computing

a QR factorization of a matrix A with m rows and n columns, let D = Diag(�1; : : : ; �m)

be the diagonal matrix where �j = eT
j
Rej=jeTj Rej j for j = 1 : min(m;n) and �j = 1

otherwise. It then follows that A = QR = (QD)(DHR); QD is unitary and the diag-

onal elements of DHR are real numbers. Similar procedures may be employed when

further reducing a Hermitian tridiagonal matrix to real symmetric tridiagonal form

and when reducing a matrix to real bidiagonal form. Further computation and storage

is required. The elementary unitary matrices based on the Hammarling and Du Croz

approach implicitly perform this post-processing step.
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