
LAPACK WORKING NOTE 63 (UT CS-93-202)

LINE AND PLANE SEPARATORS
�

PADMA RAGHAVAN y

Abstract. We consider sparse matrices arising from �nite-element or �nite-di�erence methods.
The graphs of such matrices are embedded in two or three dimensional Euclidean space, and the
coordinates of their vertices are readily available. Such coordinate information was used earlier to
develop a parallel Cartesian nested dissection heuristic that computes a �ll reducing ordering for
a matrix with an embedding in two dimensions. We extend Cartesian nested dissection to graphs
embedded in three dimensions and to compute an ordering for a non-symmetric matrix A without
explicitly forming the graph of ATA. We show that for an r-local graph with N vertices embedded
in d dimensions (d=2, 3), a single step of Cartesian nested dissection computes a separator of size
O(N1�1=d). The separator also divides the graph into two subgraphs, each with at leastN=5 vertices
when d = 2 and at least N=7 vertices when d = 3. Computational results indicate that the algorithm
performs rather well for a wide variety of graphs.

Key words. parallel algorithms, sparse linear systems, ordering, Cartesian coordinates, nested

dissection, Cholesky factorization

AMS(MOS) subject classi�cations. 65F, 65W

1. Introduction. The solution of a sparse linear system Ax = b associated with

a �nite-element or �nite-di�erence mesh is often required as part of many scienti�c and

engineering applications. Exploiting sparsity in the solution process and computing

the solution in parallel are of signi�cant interest. Factorization methods for solving

the linear system involve a symbolic phase followed by a numeric phase. In the

symbolic phase, a symmetric permutation ~A = PAPT is computed such that factors

of the matrix ~A su�er low �ll-in, i.e., remain sparse. When the matrix A is symmetric

and positive de�nite, the factorization process is numerically stable regardless of the

ordering, so the permutation can be computed independent of numeric values. In the

subsequent numeric phase, the reordered matrix is factored; the task parallelism in

the factorization process stems from sparsity. A nested dissection ordering partitions

the sparse matrix into a set of submatrices that can be processed independently and

in parallel, and is thus suitable for parallel computation. For the solution process

to be completely parallel, the nested dissection ordering itself must be computed in

parallel.

In the next section, we describe nested dissection and provide a brief survey

of nested dissection methods. To enable easy exposition of our main results, an

overview of our earlier Cartesian nested dissection algorithm is provided in Section 3.

Algorithmic extensions are developed in Section 4. In Section 5 we provide bounds

on the sizes of the separator and resulting subgraphs when our algorithm is applied

to an r-local graph. Section 6 contains computational results, and conclusions are

presented in Section 7. Throughout this paper, the symbol Rd is used to denote d�
dimensional Euclidean space, for d = 2 or 3.

2. Nested Dissection. Nested dissection was �rst proposed by Alan George

[1] as an optimal method for ordering sparse systems associated with 2-dimensional

� This research was supported by the Defense Advanced Research Projects Agency through the
Army Research O�ce under contract number DAAL03-91-C-0047.

y National Center for Supercomputing Applications, University of Illinois, 405 N. Mathews Ave.,
Urbana, IL 61801.

1

regular grids. Nested dissection recursively restructures a sparse matrix by computing

separators and renumbering vertices of an associated graph. The graph of an N �N

symmetric matrix A is an undirected graph with N vertices and an edge between

vertices i and j i� the matrix entry aij is nonzero. A separator Vs of a graph G

partitions the set of vertices into three sets V1, V2 and Vs such that no edge joins a

vertex in V1 with a vertex in V2. We now illustrate one step of nested dissection. Let

V1 and V2 and Vs be a partition of the vertices of the graph of A such that Vs is a

vertex separator. By numbering contiguously columns corresponding to V1, V2 and

Vs, with those corresponding to Vs numbered last, the matrix will be reordered into

bordered block diagonal form:
2
4

A1 0 S1
0 A2 S2

S1
T S2

T As

3
5 :

With the above form, sparsity is preserved as the zero blocks remain zero; sec-

ondly, numeric operations can be applied to A1 and A2 independently and in parallel.

Observe that if the size of Vs is small, the blocks S1, S2 and As are also small, re-

sulting in a smaller number of nonzeroes. Therefore, it is desired that the separator

Vs contain no more than �f(N) vertices, where f(N) is O(N); < 1, and � is a

small constant. The relative sizes of A1 and A2 would determine the load balance for

a natural parallel implementation. As a consequence, both V1 and V2 should contain

at least �N vertices, where 0 < � < 1. A recursive application of the step described

above would give rise to a decomposition tree whose nodes are associated with op-

erations on submatrices. Such a decomposition tree would be suitable for parallel

processing of associated submatrices.

Sequential algorithms for nested dissection have traditionally used a combinatorial

approach to computing separators. One such algorithm which is used extensively in

sparse matrix computations is the \general nested dissection" heuristic of George

and Liu [3]. Nested dissection was generalized to the class of planar graphs in [8]

where it was shown that all N -vertex planar graphs can be split into subsets whose

sizes are bounded by (2=3)N with a separator size of no more than 2
p
2N . However,

the O(N) serial algorithm for computing a single separator is quite complicated; an

interesting feature is that this algorithm relies on a representation of the graph in

terms of a planar embedding. Computing a nested dissection ordering in parallel on
MIMD machines is a very challenging task, and recent algorithms have tended to use

a non-combinatorial approach.

An algebraic approach to computing separators was proposed by Pothen, Simon

and Liou [12]. Their heuristic is based on the idea that lower bounds on separator

sizes can be obtained in terms of the eigenvalues of the Laplacian matrix of the sparse

graph. The time for computing a separator depends on the convergence properties of

the algorithm used to compute the eigenvector to desired accuracy. In principle, the

algorithm is parallelizable in the sense that the algorithm for computing an eigenvector

is parallelizable.

Geometric methods to compute a separator use an embedding of the graph in Rd.

The approach of Vavasis [15] obtains asymptotically optimal separators for grid graphs

(lattices) and generalizes to r-local graphs in R3. Algorithms proposed by Miller,

Vavasis, Thurston and Teng [9, 10], compute \sphere" separators of size O(N1�1=d).

At the heart of their method lies the problem of computing a center point, for which
there is no e�cient deterministic algorithm. However, they show that a single sepa-

rator can be computed in O(N) randomized time. We are interested in simple and

2

practical parallel algorithms for computing a nested dissection ordering using an em-

bedding of the graph. Our Cartesian nested dissection algorithm [6] is shown to be

an e�ective heuristic for computing separators in parallel.

3. Cartesian Nested Dissection. The reader is referred to [6] for a detailed

discussion of the algorithm; here we provide only a brief summary of the key ideas. We

assume an embedding of the graph in R2; for managing data structures e�ciently, the

natural coordinate values in each dimension are sorted and consecutive integer values

are assigned to distinct real values in sequence. With respect to Cartesian nested

dissection, by coordinates values we mean these new integer values. We treat edges

as intervals along the x- and y- dimensions. Consider a vertex v whose coordinates

are given by x(v) and y(v); the vertex is entered into lists at coordinate values x(v)

and y(v). We consider two intervals associated with each edges (u; v) of the form

[x(u); x(v)] and [y(u); y(v)]. An interval [x(u); x(v)] associated with an edge (u; v)

is listed in a structure at coordinates x(u) and x(v), with the entry at the smaller

value marked as begin and at the larger value as the end. We compute separators by

searching along the x- and y- dimensions. Consider the search along the x- dimension.

With the aid of suitable data structures, the lists of vertices and intervals along the

x- dimension are traversed in ascending order of coordinate values to determine a

speci�c coordinate s. The coordinate s corresponds to the smallest estimated size of

a separator. Let �(i) denote the estimate of the size of a separator; then �(i) is the

number of vertices at coordinate i plus the number of edges (intervals) that span i.

With some initial sorting, each such search is accomplished in time O(e), where e is

the number of edges. The algorithm does a similar search along the y- dimension to

extract a coordinate r with minimumestimate of separator size over all y- coordinates.

The coordinate corresponding to minf�(s); �(r)g is used to induce a line separator.

The actual separator is computed by using a group-tree to search e�ciently for edges

that straddle the separating line.

The method described attempts to compute a small separator; however, it is also

important to ensure that the resulting pieces are of roughly equal size. To ensure

this, the separating line is constrained to lie in a subrange based on a user speci�ed

value of �, the balance factor. In each dimension, values of � are computed only for

coordinates in a range containing projections of at least (1 � 2�) j V j vertices. For

example, along the x- dimension, the selected range [a; : : : ; b] is such that subgraphs

to the left of a and to the right of b each contain at least � j V j vertices.
>From the preceding discussion, it can be seen that computing a separator requires

identifying a separating line, which in turn involves counting vertices and edges along

each dimension. Such counting is formulated in terms of parallel pre�x operations.

Constructing a separator requires searching for edges (intervals) that straddle the

separating coordinate. This is done independently and in parallel by partitioning the

edges among processors and executing group-tree searches on each processor. The

distributed algorithm is shown to have time and space complexity of O(E=P logN)

and O(E=P) under the assumption that the original vertices and edges of the graph

have been evenly distributed among P processors.

4. Extensions to Cartesian Nested Dissection. In this section, we present

extensions to our Cartesian nested dissection algorithm for graphs embedded in R3

and for solving general sparse non-symmetric systems associated with an embedding.

4.1. Three Dimensional Problems. The Cartesian nested dissection heuristic

can be naturally extended to compute separators for a graph G = (V;E) whose

3

vertices are embedded in R3. In the case of R2, the separating coordinate resulted

in a separating line. For an embedding in R3, a separating coordinate results in a

separating plane. The search for a coordinate with minimum � is now performed

in all three dimensions. The coordinate with the smallest � is selected to induce a

separating plane. Group trees are employed for fast selection of edges that straddle a

given coordinate level. As before, the user is allowed to specify an � value to ensure

that the resulting subgraphs are balanced in size. Without loss of generality, assume

the coordinate s is chosen as the separating plane along the x- dimension. Then the

separator consists of all vertices with x- coordinate s and end points of edges (u; v)

such that x(u) < i < x(v) or x(v) < i < x(u). The algorithm has sequential time and

space complexity of O(E logN) and O(E), where E is the number of edges. With P

processors, the parallel time complexity is O(E=P logN) and the space complexity

O(E=P).

4.2. Non-symmetric Problems. It is often of interest to solve the system

Ax = b when the matrix A is non-symmetric and sparse. Let A have M � N rows

and rank N . Then, direct methods for the solution require either an LU or QR factor-

ization. For either factorization, a �ll reducing permutation for the symmetric matrix

ATA can be used induce a sparsity-preserving column order of A [2, 5]. Observe

that a row of A forms a clique in the graph of ATA. When the columns correspond

to vertices embedded in Rd, this observation can be used along with our Cartesian

nested dissection algorithm to compute a �ll reducing ordering without forming ATA.

We assume that we are given the nonzero structure of the rows of a non-symmetric

matrix A. We also assume that columns of A correspond to vertices embedded in Rd.

In this setting, we use the nonzero structure of each row of A to compute implicitly

separators of the graph of B = ATA. A compact Cartesian representation C(B) of

G(B) is constructed in which edges are coalesced into \macro-intervals." Cartesian

nested dissection is extended appropriately and applied to C(B).

A compact representation of G(B) should provide a low cost mechanism for iden-

tifying edges that straddle a separating level without explicitly storing all edges. In

this compact representation, the structure of A is stored, and its relationship to the

structure of B is used to identify edges required in computing a separator. Let the

columns of A and B correspond to vertices labeled f1; : : : ; Ng, and let (x(i); y(i); z(i))
be the Cartesian coordinates of vertex i; 1 � i � N . Furthermore, let struc(rk) denote

the nonzero column subscripts in row k of A; the set struc(rk) is a clique in G(B). Let

struc(rk) = fi1; : : : ; irg, and let x(i1) � x(i2) � � � � x(ir). Rather than store edges

between all members of struc(rk), we represent struc(rk) by the \macro-interval"

[x(i1); x(ir)] in C(B). The macro-interval contains pointers to identify the members

of the clique. Such macro-intervals are stored along each dimension for each row of

A, requiring storage bounded by d j A j. All macro-intervals that span s are identi�ed

using a group tree search. Each macro-interval is explored in turn to identify members

with the appropriate coordinate value less than s; such members are vertices at end

points of edges in E(B) that straddle s. If we set E to be the number of nonzeroes

in A, then the bounds given earlier for the running time remain applicable.

5. Bounds on Separator Size. We now show that the Cartesian nested dis-

section algorithm is provably good for a class of r-local graphs. These graphs were

de�ned by Vavasis in [15].

De�nition. Let k:k1 denote the L1 norm on Rd and let the graph G be em-

bedded in Rd. Let � be the minimumdistance between any two nodes of G and let �

be the maximum distance between any pair of nodes that are connected by an edge.

4

The graph G is r-local if d�=�e+ 1 = r; i.e., the length of the longest edge is at most

r � 1 times the smallest internode distance.

Graphs arising from �nite-di�erence methods are r-local. For graphs associated

with �nite-element methods, the r-local property will in general be true of domains

triangulated with elements of roughly uniform size. For such graphs, simple geometric

searching along the coordinate axes results in the construction of separators of small

size.

To prove bounds on the quality of a line separator for d = 2 and a plane separator

for d = 3, we consider the set of vertices (points) to be sparse in Rd; i.e., we assume

that any box of size � contains at most bd vertices, where bd is a small constant. In

general, such an assumption is justi�ed [13]. We �rst show in Lemma 5.1 that for any

sparse set of N vertices, a box of width r �, perpendicular to one of the coordinate

axes, can be found such that sparse subsets on either side of this box contain O(N)

nodes. Furthermore, if S denotes the set of points in the box, then S contains at most

O(N1�1=d) vertices. A similar result of Bentley and Shamos is given in [13].

Lemma 5.1. Consider a set S of N points in Rd such that a small constant bd is
an upper bound to the number of points contained in a box of size �. Let r be a small
constant independent of N and let N � 343 bd. Then, there exists a set S consisting
of points in box of width r �, perpendicular to one of the coordinate axes, such that:

(i) both subsets S1 and S2 on either side of S contain at least N=�d points; �2 = 5

and �3 = 7;
(ii) there are at most dN

1�1=d points in S, where d = 1:71 bdr.
Proof: The proof is by contradiction; we show that unless conditions (i) and (ii)

are satis�ed, a subvolume must have too few and too many points at the same time.

Assume the set of points is sorted in increasing order of the coordinate value in each

dimension. Consider each dimension i in turn; �nd a middle range of coordinates

[ai; : : : ; bi] containing N (1 � 2=�d) points. For example, along the x- dimension the

value ai is such that there are N=�d points to the left of ai and the value bi is such

that there are N=�d points to the right of bi. Consider projections of points onto

dimension i; then condition (ii) is satis�ed if there is a strip of width r � along any

of the dimensions containing dN
1�1=d points.

Assume that no such strip exists. This implies that projections onto dimension i

of points in every set of (d N
1�1=d) points lie in a strip of size less than r �. >From

the assumption of sparsity, the width of the region bounded by ai and bi is given by:

N (1� 2=�d)

d N1�1=d
(r �):

Let V denote the volume bounded by planes corresponding to ai and bi along each di-

mension i. Once again, by the assumption of sparsity, the number of points contained

in V, denoted by j V j, satis�es

j V j � (
1�2=�d

d
)d (rd bdN):

However, by choice of values ai and bi, at most (2=�d)N points are excluded from

V in each dimension. So the volume V must satisfy

j V j � (1� 2d=�d)N :

It can be easily veri�ed that this results in a contradiction for the speci�ed values of

�d and d when N � 343 bd. Hence the proof.

5

Observe that in an r-local graph, all edges are of length less than r � and so the

vertices in the set S form a separator. This fact is used in Lemma 5.2 to show that

Cartesian nested dissection computes a separator of size O(N1�1=d) that splits an

r-local graph into two subgraphs of size O(N).

Lemma 5.2. Let G = (V;E) be an r-local graph with N vertices embedded in
Rd. The Cartesian nested dissection algorithm, with � = 1=�d, computes a vertex
separator Vs with the property that

j Vs j � dN
1�1=d:

The values of �d and d are as de�ned in Lemma 5.1. The separator Vs splits V into
sets V1 and V2 such that

j V1 j; j V2 j � (N=�d) � dN
1�1=d and j V1 j; j V2 j � (1�N=�d):

Proof: Consider an r-local graph embedded in Rd and the sets S, S1 and S2
de�ned by Lemma 5.1. Vertices in the set S form a separator since the graph is

r-local.
Consider Cartesian nested dissection with � = 1=�d; the separator computed by

the algorithm is one induced by a coordinate s with the smallest value of �(s). Let Vs
be the separator computed; j Vs j� �(s). By the choice of �, we know that a separator

S exists as de�ned. The bound on j Vs j follows by observing that �(s) �j S j. The
bounds on the sizes of V1 and V2 follow directly from the chosen value of �.

6. ComputationalResults. We compute Cartesian nested dissection orderings

for several irregular meshes. We provide measures of the quality of the ordering in

terms of separator sizes and the relative sizes of induced subgraphs. The observed

results are rather encouraging. The test suite consists of 14 meshes embedded in

R2 and 11 embedded in R3, as described in Tables 1 and 2. For each mesh, a

count of vertices and edges is provided along with the value of r, the ratio of the

length of the longest edge to the smallest internode distance in the L1 norm. The

meshes embedded in R2 were obtained from triangulations of domains that are either

simple polygons or polygons with holes. With respect to Table 1, the airfoils and the

problem labeled \binaca" arise from practical applications. The problems, \eppstein",

\parc", \venkat 1" and \venkat 2" were generated by various mesh generators. The

remaining problems were generated using a commercial structural analysis package

called PATRAN to resemble meshes in the test collection in [4], which are typical of

meshes used in structural analysis and in the study of heat conduction. However, we

constructed these problems so that they would pose a challenge to Cartesian nested

dissection with respect to at least the �rst few separators. In short, we made these

meshes have very small (and hence many) elements along lines that would result in a

split into pieces of roughly equal size.

Most meshes in Table 2 were obtained from tetrahedralization of objects such

as an aircraft ap, or of a domain enclosed between two spherical sections. Two of

the meshes in Table 2, \sphere 5" and \sphere 6", are surface triangulations of three

dimensional objects. Observe that meshes in the test suite are highly graded and

irregular, with element sizes that vary by factors larger than 1000 in the L1 norm.

We report on the size of the separator and the size of the resulting pieces for

Cartesian nested dissection of problems in the test suite. At some stage in nested

dissection, let V denote the set of vertices in the subgraph to be dissected. Let S

6

Label j V j j E j r Comments

airfoil 1 4,253 12,289 1,538 airfoil mesh by Barth and Jesperson

airfoil 2 4,720 13,722 4,640 same as airfoil 1

airfoil 3 15,606 45,878 15,224 4-element airfoil mesh by Barth

binaca 3,572 10,444 1,665 mesh around 2 airfoils

eppstein 547 1,566 19 triangulation with angles between

36� and 80� by Eppstein

graded box 7,861 22,983 4,609 small elements at bottom right corner

graded L 6,142 18,153 1,540 small elements at a middle corner

graded + 6,043 16,866 318 small elements at a middle corner

hollow box 5,512 16,224 159 small elements around hollow

parc 1,240 3,355 195 PARC cut from a rectangle,

small elements around letters

pinched hole 8,848 26,208 103 pentagon with hole,

small elements around hole

six hole 9,971 29,240 53 small elements around each hole

venkat 1 10,089 29,720 7,285 concentric layers with elements

of increasing size

venkat 2 460 1,303 114 polygon with hole

Table 1

Description of two-dimensional meshes.

Label j V j j E j r Comments

ac 2,851 15,093 1,887 mostly tetrahedral,

some beam and plate elments

body 45,087 163,734 16,277 same as above

ap 51,537 479,620 2,088 same as above

hscts 2,028 20,341 525 same as above

kall0 3,000 15,950 1 same as above

shuttle 10,429 46,585 262 mostly 2-D elements,

some 3-D elements

skirt 12,598 91,961 1,255 same as above

sphere 5 4,098 12,288 17 surface triangulation of a sphere

sphere 6 16,386 49,152 35 surface triangulation of a sphere

two spheres 20,374 131,764 1,968 tetrahedral elements,

domain between 2 spheres

vaughan 29,681 81,795 2,526 tetrahedral elements

Table 2

Description of three-dimensional meshes.

7

denote the set of vertices in the separator and A and B the sets of vertices in the

resulting subgraphs. For two dimensional problems, we compare the size of S to that

of j V j1=2 and for three dimensional problems we compare j S j to j V j2=3. The

balance in the size of subgraphs is expressed as the ratio of the size of the larger piece

to that of the smaller. It is naturally of interest to see how these ratios vary over all
steps of nested dissection of the original graph until the resulting subgraphs contain

relatively few vertices. It is also of interest to observe how the value of the balance

factor � a�ects the size of separators. For each problem, we indicate the range of

ratios observed over all steps of nested dissection until the resulting subgraphs have

fewer than 150 vertices. The range of ratios is also presented for two di�erent values

of �; the di�erence in the ranges reects the tradeo� between small separator size

and balanced subgraphs. For many of the two dimensional meshes, visual inspection

indicates that the �rst few steps of Cartesian nested dissection indeed cut the graph

into roughly equal pieces with a separator of small size. The top level separator for

problems \airfoil 1" and \venkat 2" are shown in Figures 1 and 2; the vertices in the

separator are marked by the symbol \�."
The results for two dimensional problems are summarized in Table 3. For � = 1=3,

the sizes of the subgraphs are balanced to within a factor of 2. The corresponding

ratio of separator sizes is within a factor of 2
p
2 j V j for all meshes except those that

we generated using PATRAN. For the latter the ratio is at most twice the bound;

we consider that quite encouraging since we constructed these problems to challenge

our algorithm. Hence it seems fair to conclude that for the two dimensional problems

in the test suite, Cartesian nested dissection performs quite well. For � = 1=5, the

subgraphs are balanced to within a factor of 3; however the range of separator sizes

varies rather little.

The results for three dimensional problems are summarized in Table 4 for � = 1=3

and � = 1=7. Recall that the problems \sphere 5" and \sphere 6" are surface tri-

angulations and the problems \shuttle" and \skirt" contain mostly two dimensional

elements. For these problems, we indicate the range of the ratio
jSj

jV j1=2
within paren-

theses in a second line below the main entry for the problem. Once again, the results

are very encouraging since the separator sizes are within a factor of three of j V j2=3

with subgraphs balanced to within a factor of three. The algorithm is also e�ective

in computing separators to within 2 j V j1=2 for the surface triangulation meshes.

For the three dimensional problems, the tradeo� between small separator size and

balanced subgraphs is rather unclear; relaxing the balance condition does not always

lead to a smaller range of separator sizes.

7. Conclusions. Computing a nested dissection ordering in parallel is a very

important step in parallel sparse matrix factorization. A parallel implementation of

our Cartesian nested dissection algorithm [6] has made possible the development of

a suite of parallel algorithms for factorization of symmetric sparse matrices [7]. We

have extended the algorithm to order a non-symmetric matrix A associated with a

mesh without explicitly forming the graph of ATA. We also show that the algorithm

is provably good for the class of r-local graphs. Our experiments indicate that the

algorithm computes good separators for a wide variety of irregular two and three

dimensional meshes arising from practical applications.

Further improvements in the algorithm are possible. For example, in the current

implementation, a vertex separator is computed from an edge separator by arbitrarily

selecting one end point of each edge. The separator size could be reduced by comput-

ing a minimum vertex cover of the bipartite graph induced by the edge separator.

8

Problem � = 1=3 � = 1=5
jAj

jBj

jSj

jV j1=2
jAj

jBj

jSj

jV j1=2

airfoil 1 1.0, 1.33 0.33, 2.02 1.24, 2.33 0.35, 1.52

airfoil 2 1.0, 1.27 0.25, 2.05 1.09, 2.47 0.30, 1.39

airfoil 3 1.0, 1.44 0.21, 3.15 1.0, 2.41 0.07, 1.49

binaca 1.0, 1.46 0.55, 2.38 1.04, 2.28 0.36, 1.41

eppstein 1.1, 1.21 0.62, 1.34 1.0, 2.01 0.51, 0.94

graded box 1.0, 1.38 0.16, 2.11 1.0, 2.25 0.12, 1.99

graded L 1.0, 1.46 0.22, 3.28 1.0, 2.35 0.16, 3.00

graded + 1.0, 1.42 0.05, 4.50 1.12, 2.16 0.04, 4.16

hollow box 1.0, 1.53 0.46, 1.44 1.0, 2.59 0.47, 1.39

parc 1.0, 1.19 0.65, 1.95 1.11, 2.34 0.07, 0.98

pinched hole 1.0, 1.65 0.47, 3.32 1.0, 2.40 0.47, 2.34

six hole 1.0, 1.35 0.18, 2.08 1.0, 1.58 0.38, 1.42

venkat 1 1.0, 1.44 0.12, 3.16 1.02, 2.38 0.75, 1.54

venkat 2 1.1, 1.28 0.75, 1.54 1.50, 2.43 0.84, 1.16

Table 3

Results for two-dimensional meshes.

Problem � = 1=3 � = 1=7
jAj

jBj

jSj

jV j2=3
jAj

jBj

jSj

jV j2=3

ac 1.0, 1.79 0.23, 1.15 1.2, 5.25 0.17, 1.05

body 1.0, 2.l9 0.01, 1.35 1.0, 4.02 0.01, 2.01

ap 1.0, 2.68 0.01, 2.28 1.04 4.69 0.01, 1.87

hscts 1.0, 2.04 0.71, 2.93 1.11, 2.38 0.30, 1.59

kall0 1.0, 1.67 0.48, 0.93 2.5, 4.00 0.48, 0.97

shuttle 1.0, 1.75 0.09, 1.34 1.0, 2.17 0.09, 1.62

(0.44, 4.44) (0.44, 4.83)

skirt 1.0, 2.43 0.23, 2.28 1.0, 3.32 0.23, 2.81

(1.13, 5.85) (1.13, 6.87)

sphere 5 1.0, 1.28 0.19, 0.61 1.06, 2.98 0.28, 0.50

(0.47, 1.49) (0.73, 2.00)

sphere 6 1.0, 1.35 0.17, 0.57 1.02, 3.05 0.22, 0.50

(0.52, 1.40) (0.71, 1.24)

two spheres 1.1, 2.01 0.37, 1.97 1.0, 3.62 0.52, 1.13

vaughan 1.0, 2.18 0.05, 1.26 1.01, 4.55 0.07, 1.02

Table 4

Results for three-dimensional meshes.

9

In the course of our experiments, we observed that for a given subgraph, a less

stringent balance constraint does indeed lead to a smaller separator. However, over all

steps of nested dissection, sizes of separators are not consistently improved by a smaller

value of the balance factor �. Computational results for the two values of � show

that a smaller value does not lead to a substantial decrease in the range of separator

sizes. Since the subsequent parallel numeric phase requires good load balance, it is

possible that subgraphs of almost equal size may result in better performance despite

the extra arithmetic work incurred by slightly larger separators. An alternative would

be to vary the value of � at di�erent stages during nested dissection.

The class of planar graphs have been proved to have good separators [8], but

this class contains graphs for which there are no line separators satisfying the bound

on size [14]. Miller, Thurston, Teng and Vavasis have established several classes

of graphs (more general than r-local graphs) with provably good sphere separators

[9, 10, 11, 14]. Interestingly enough, our computational results show that good line

and plane separators can be computed for problems in the test suite which are not

r-local. A natural question that arises is that of identifying a larger class of graphs

for which such separators are provably good.

8. Acknowledgement. Thanks to Paul Chew, John Gilbert, Horst Simon and

Johan Zdenek for providing test problems. Thanks to Michael T. Heath for many

detailed, helpful comments about the presentation.

REFERENCES

[1] J. A. George, Nested dissection of a regular �nite element mesh, SIAM J. Numer. Anal., 10
(1973), pp. 345{363.

[2] J. A. George and M. T. Heath, Solution of sparse linear least squares problems using givens

rotations, Linear Alg. Appl., 88 (1980), pp. 223{238.

[3] J. A. George and J. W.-H. Liu, An automatic nested dissection algorithm for irregular �nite

element problems, SIAM J. Numer. Anal., 15 (1978), pp. 1053{1069.
[4] , Computer Solution of Large Sparse Positive De�nite Systems, Prentice-Hall Inc., En-

glewood Cli�s, New Jersey, 1981.
[5] J. A. George and E. G.-Y. Ng, Symbolic factorization for sparse gaussian elimination with

partial pivoting, SIAM J. Sci. Stat. Comput., 8 (1987), pp. 877{898.
[6] M. T. Heath and P. Raghavan, A Cartesian parallel nested dissection algorithm, Tech. Rep.

UIUCDCS-R-92-1772, University of Illinois at Urbana-Champaign, 1992.
[7] , Distributed solution of sparse linear systems, Tech. Rep. UIUCDCS-R-93-1793, Univer-

sity of Illinois at Urbana-Champaign, 1993.

[8] R. J. Lipton, D. J. Rose, and R. E. Tarjan, Generalized nested dissection, SIAM J. Numer.
Anal., 16 (1979), pp. 346{358.

[9] G. Miller, S. Teng, W. Thurston, and S. Vavasis, Automatic mesh partitioning, in Work-
shop on Sparse Matrix Computations: Graph Theory Issues and Algorithms, Institute for
Mathematics and Its Applications, Springer-Verlag, 1992.

[10] G. L. Miller, S. Teng, and S. A. Vavasis, A uni�ed geometric approach to graph separators,
in Proceedingsof the 32nd Annual Symposiumon Foundations of Computer Science, IEEE,
1991, pp. 538{547.

[11] G. L. Miller and W. Thurston, Separators in two and three dimensions, in Proc. 22nd Ann.

ACM Symp. Theory of Comput., New York, 1990, ACM, pp. 300{309.
[12] A. Pothen, H. D. Simon, and K.-P. Liou, Partitioning sparse matrices with eigenvectors of

graphs, SIAM J. Matrix Anal. Appl., 11 (1990), pp. 430{452.
[13] F. P. Preparata and M. I. Shamos, Computational Geometry, Springer-Verlag, 1985.
[14] S.Teng, Points, Spheres and Separators: A uni�ed approach to graph partitioning, PhD thesis,

Carnegie Mellon University, 1991.
[15] S. A. Vavasis, Automatic domain partitioning in three dimensions, SIAM J. Sci. Stat. Comput.,

12 (1991), pp. 950{970.

10

Fig. 1. A single separator for airfoil 1.

Fig. 2. A single separator for venkat 2.

11

