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Abstract. We consider the solution of a linear system Ax = b on a distributedmemorymachine
when the matrixA is large, sparse and symmetric positive de�nite. In a previous paper we developed
an algorithm to compute a �ll-reducing nested dissection ordering of A on a distributed memory
machine. We now develop algorithms for the remaining steps of the solution process. The large-
grain task parallelism resulting from sparsity is identi�ed by a tree of separators available from
nested dissection. Our parallel algorithms use this separator tree to estimate the structure of the
Cholesky factor L and to organize numeric computations as a sequence of dense matrix operations.
We present results of an implementation on an Intel iPSC/860 parallel computer. An an alternative
to estimating the structure of L using the separator tree, we develop an algorithm to compute the
elimination tree on a distributed memory machine. Our algorithm uses the separator tree to achieve
better time and space complexity than earlier work.
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1. Introduction and Overview. Consider the solution of a system of linear
equations Ax = b, where A is an N � N , symmetric positive de�nite matrix. Direct
solution requires a Cholesky decomposition A = LLT , where L is lower triangular.
This step is followed by solution of the triangular systems Ly = b and LTx = y.
When the matrix A is sparse, the numeric steps are preceded by a symbolic phase in
which a symmetric permutation is applied to the rows and columns of A. The purpose
of reordering the system is to ensure that the factor L su�ers low �ll-in, i.e., only a
small number of zero values in A become nonzero during factorization. Various serial
algorithms such as the minimum degree heuristic and automatic nested dissection [5]
produce appropriate orderings of the matrix A by manipulating its graph G(A).

As a consequence of sparsity, during numeric factorization a speci�c column is
updated only by columns in a subset of lower numbered columns instead of all lower
numbered columns. Such column dependencies, implicit from the ordering, are rep-
resented using a tree structure known as an elimination tree. The elimination tree is
computed from the structure of A and the ordering, and is used in turn to compute
the exact structure of the factor L and to allocate storage to complete the symbolic

phase. In the numeric phase, transformations are applied as dictated by column de-
pendencies given by the elimination tree. The factor L and the vector y are computed
bottom-up on the elimination tree, followed by triangular solution applied top-down
to compute x.

Sparse linear systems occur at the core of a wide variety of large-scale scien-
ti�c applications that require the computing speed provided by parallel architectures.
Therefore, the parallel solution of such linear systems is a problem of considerable im-
portance. In our earlier work [8], we developed and implemented a Cartesian nested
dissection algorithm to compute a �ll-reducing ordering in parallel. In this work, we
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provide distributed parallel algorithms for the remaining symbolic and numeric com-
putations to complete a suite of algorithms for the parallel solution of sparse linear
systems.

We now briey describe the set of steps used in the serial case. First, the matrix
is reordered according to a �ll-reducing permutation in an initial symbolic step. A
second symbolic step then estimates the structure of L, i.e., the column and row
subscripts that will contain nonzero values in L. These values are either a result of
nonzero values in the same position of A or are �ll-in values that occur in the course
of factorization. The position of �ll-in in a column j depends on the sequence of
columns by which a column j is updated. Such column dependencies are represented
by paths in the elimination tree, whose nodes represent columns. The elimination tree
can be computed from the structure of the reordered matrix A. This tree can be used
in turn to compute the number of nonzero values in each column of L, and the row
subscripts of such values, in time proportional to L, which is signi�cantly less than
the cost of computing the factor L. Finally, the tree can be viewed as a task graph
for the numeric phase; columns of L are computed in post order on the elimination
tree. The interested reader is referred to the excellent survey article [11] on the role
of elimination trees in sparse matrix computations.

In the parallel case, a coherent suite of algorithms has not previously been pro-
posed for this problem. Most of the earlier work has focussed on the parallelization
of the numeric phase. Work on parallel numeric computations is based on the fol-
lowing two assumptions: (1) an elimination tree is available, and (2) the structure of
the factor L is available, or at least the number of nonzeros in each column of L is
known. Based on these assumptions, several authors [9, 13, 15] have proposed that a
structure called a clique tree be computed (sequentially) to organize parallel numeric
computations. A clique tree is a tree of maximal cliques in the �lled graph, i.e., the
graph of L. Since cliques correspond to dense submatrices, the clique tree is suitable
for structuring sparse numeric factorization as a sequence of dense matrix operations.
Clique tree computations incur exactly the �ll-in and arithmetic cost arising from the
ordering.

Other authors [1] have proposed using the elimination tree to compute a supern-
ode partition; each supernode is a collection of columns that are considered e�ectively
dense. The supernode partition is a relaxation of a clique partition. Some extra �ll-in
and arithmetic work are allowed in order to structure the computation in terms of
dense matrices of a size suitable for e�cient data parallelism in each matrix opera-
tion. Once again, such a supernode partition is based on the elimination tree. One
conclusion that can be drawn from this body of work is that researchers have found
it suitable to organize numeric computations in terms of tree-structured dense matrix
operations. Although there is no consensus on the exact tree structure to be used,
their work draws upon the elimination tree (in which each node is a column) to com-
pute another tree structure in which each node represents a subset of e�ectively dense
columns, i.e., a dense submatrix. In this paper, we use the term decomposition tree

to denote the tree structure representing the sequence of dense matrix operations.
It follows from the preceding paragraphs that parallel numeric factorization draws

signi�cantly upon the elimination tree and the structure of L. The serial and parallel
complexity of computing the elimination tree and the structure of L are therefore of
much import. Let N be the number of equations and M the number of nonzeros in
A. Let �(L) denote the number of nonzeros in the factor L. We also introduce �(i; j)
to stand for a quantity related to the inverse of Ackerman's function; for all practical
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values of i and j, �(i; j) is bounded above by 5. We consider parallel MIMD machines
with P processors and we use Nmax, Mmax, and �(Lmax) to denote, respectively, the
maximum number of columns of A, the maximum number of nonzeros of A, and the
maximum number of nonzeros of L assigned to any one processor.

A sequential algorithm to compute the elimination tree requires space propor-
tional to M and time proportional to M�(M;N ). Computing the structure of L
requires time and space proportional to �(L). The best known algorithm for comput-
ing the elimination tree on MIMD machines [20] has time requirements proportional
to (Mmax �(Mmax; N ) +N log2 P �(N;N )), and space requirements proportional to
max(Mmax; N ) on each processor. This space complexity makes the algorithm un-
suitable for large systems regardless of the number of processors available, since N
may be beyond the storage available on any one processor. Furthermore, the time
required increases with the number of processors.

In developing distributed algorithms for estimating the structure of L and per-
forming numeric computations, the �rst question that arises is: What is a good de-
composition tree for a distributed memory machine? We attempt an answer in terms
of what is required of the tree structure. A primary consideration is that it should be
possible to compute this tree structure e�ciently in parallel. Secondly, this tree should
be suitable for structuring parallel numeric computations, i.e., the tree should be short
and bushy as opposed to a long chain. Finally, computations on this tree structure
must result in �ll-in and operation counts comparable to that of a serial algorithm
based on the elimination tree; in other words, any �ll-in and additional arithmetic
cost introduced to enhance parallelism must be quite small. Although these require-
ments certainly do not result in a precise de�nition of the appropriate tree structure,
they can be used to provide alternative tree structures that can e�ectively capture as
many as possible of the desired characteristics.

Our work draws upon the partition tree associated with the divide-and-conquer
strategy used for computing a �ll-reducing ordering. A single step in nested dissection
divides the matrix into two submatrices by computing a vertex separator in the graph
of the matrix. This process is applied recursively and leads to a tree of separators.
If nested dissection is performed e�ciently in parallel [8], then the separator tree is
readily available on the set of processors. We may use this separator tree in various
ways to achieve good performance. For example, we can use the separator tree directly
as the decomposition tree, which leads to the following sequence of steps:

1. Use the separator tree to compute an estimate of the structure of L in parallel.
2. Use the separator tree to perform numeric computations in parallel.

Alternatively, we can use a decomposition tree based on the elimination tree,
but use the separator tree to implement the various steps e�ciently in parallel. This
approach leads to the following sequence of steps:

1. Use the separator tree to compute the elimination tree in parallel.
2. Use the elimination tree to compute the structure of L in parallel.
3. Use the elimination tree and the structure of L to compute a suitable decom-

position tree (e.g., supernode or clique tree) for distributed numeric compu-
tations.

4. Use this decomposition tree to perform numeric computations in parallel.
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Both of these approaches lead to a natural formulation of distributed algorithms
in which each processor initially performs computations independently and in parallel
in a local subtree. Processors then cooperate to perform computations associated with
nodes of the decomposition tree along paths to the root. Direct use of the separator
tree as the decomposition tree is attractive because it is readily available at no extra
cost after parallel nested dissection. Signi�cant additional computation would be
required to determine a decomposition tree based on the elimination tree, but may
lead to somewhat less work later due to the exact computation of the structure of L.
In any case, the latter approach is now more viable on distributed memory machines
as a consequence of our algorithms.

Our work relies signi�cantly on earlier algorithms to compute an elimination tree
[10, 19, 20], compute the structure of L [11], perform numeric factorization using the
multifrontal method [3, 12], and to perform dense matrix operations on distributed
machines [4, 6]. Thus, throughout this paper we include brief reviews of relevant
background material interspersed with descriptions of our algorithms. Section 2 con-
tains parallel algorithms for symbolic computations, while x 3 contains algorithms for
parallel numeric factorization and triangular solution. These algorithms are suitable
for any decomposition tree. Empirical results and conclusions are provided in x 4 and
x 5. We conclude this section with a note on notation.

We consider an irreducible matrix A. We use the terms vertex and column inter-
changeably with respect to A, G(A), and L. We assume that the matrix has been
reordered by a �ll-reducing permutation �. A symbol of the form xj denotes a ver-
tex in G(A), or the corresponding column in A, whose � number is j. The symbol
AdjG(X)(Y ) represents the set of vertices adjacent to the set Y in the graph of the
matrix X. We use ak;j (lk;j) to denote the value in row k and column j of A (L). We
use the phrase \structure of column j," and the notation struc(xj), to refer to the
set of row subscripts of nonzero values in column xj of L. More generally, we will use
the notation struc(X) to denote the structures of a set X of columns, or of an entire
matrixX, as will be clear from context. We use T to denote either the separator tree
or the decomposition tree and Te to denote the elimination tree. Further subscripts
are added to each of these symbols to denote suitable subtrees. The symbol S, with
or without a suitable subscript, is used to denote a collection of vertices that form
a separator in G(A), or a node (which might be a supernode or a clique) in a de-
composition tree. Further notation is introduced as needed. For additional relevant
background information on sparse linear systems, we refer the reader to [5] for serial
algorithms and [7] for parallel algorithms.

2. Symbolic Algorithms. In this section we de�ne a separator tree and use
it to develop parallel symbolic algorithms. We present an algorithm to compute an
(over)estimate of the structure of L in parallel using the separator tree. We then
relate the separator tree to the elimination tree and provide an algorithm to compute
the latter in parallel. This is followed by a brief sketch of a parallel algorithm to
compute a supernode partition.

We begin the presentation of our symbolic algorithms with a more precise speci�-
cation of the separator tree. A separator tree has as many nodes as the total number
of separators for G(A). We use the term representative vertex to denote a node in this
tree since it represents a set of vertices of G(A). Consider a separator S produced at
some stage during nested dissection of G(A). Any two vertices in S are related by
an ancestor-descendant relationship in the elimination tree, and a similar relationship
applies to any pair of separators in the separator tree. Let S = fxp1 ; : : : ; xpkg be a
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separator. Vertices within S are related based on the value of their � numbers; if
p1 < p2 < � � � < pk denotes the ordering of their � numbers, then xpi is an ancestor
of xpj whenever pj < pi for 1 � i; j � k. In other words, the set of vertices in S form
a chain, which we denote by the representative vertex, rep(S) = xp1 ; rep(S) is the
vertex with the smallest � value in S. Let S dissect G into components G1; : : : ; Gk,
and let Si denote a separator of the subgraph Gi; 1 � i � k. Now rep(Si) is a child
of rep(S) in the separator tree. In this work we consider a separator tree in which
each representative vertex has at most two children corresponding to the two sets (not
necessarily connected components) produced by the separator.

In our explanation of distributed algorithms, the separator tree plays a central
role in partitioning the computation among processors. We describe a simple partition
that allows easy exposition of the algorithms in later sections. For simplicity, we
assume that the total number of processors, denoted by P , is a power of two. We
denote the processor numbers by �0; : : : ; �P�1. Let p processors be assigned to subtree
rooted at rep(Si). Then if p > 1, each subtree rooted at a child of rep(Si) is assigned
p=2 processors. This partition is applied recursively, starting at the root. At level
l = log2P from the root, each subtree is assigned a single processor. For a processor
�i, we use L(�i) to denote the columns in this subtree. We use the symbol �i�d to
denote the neighbor of �i whose processor number di�ers from that of �i in the d-th
bit, and P(�i; d) is used to denote the processor subset of size 2d to which �i belongs.
Furthermore, we use S1(�i) to denote the �rst separator such that TS1(�i) is mapped
to processors P(�i; 1). Finally, Si(�i); : : : ;Sj(�i) denotes a sequence of separators on
the path from S1(�i) to the root Sl(�i).

Our aim is to use the separator tree to estimate the structure of the factor L.
The following result, which characterizes nonzero positions in L, has been proved in
[18].

Lemma 2.1. Let j < i. Then li;j 6= 0 if and only if there exists a path

xi; xp1 ; : : : ; xpk; xj

in G(A) such that all subscripts in fp1; : : : ; pkg are numbered less than j.

We state part of this path condition in terms of the separator tree to enable us
to use the latter to estimate struc(L).

Lemma 2.2. For any vertex xj in G(A), let Sj denote the separator to which

xj belongs. Let TSj denote the separator subtree rooted at rep(Sj). If li;j 6= 0, where

j < i, then there exists a path

xi; xp1 ; : : : ; xpk; xj

in G(A) such that fxp1 ; : : : ; xpkg � TSj . Furthermore, either rep(Si) is an ancestor

of rep(Sj) or rep(Si) = rep(Sj).
Proof: By Lemma 2.1, each pl, 1 � l � k, is numbered less than j. Let C =

fxp1 ; : : : ; xpk; xj; xig. At some stage in nested dissection, vertices in C belong to the
same subgraph. Since xi is the highest numbered column, at least xi is contained in
the �rst separator that separates the component C. Since i > j, and xi and xj are
connected, there are two possibilities. In one case, they could both belong to the same
separator Si. In this case, since i > j, xi is an ancestor of xj and rep(Si) = rep(Sj).
Alternatively,Cnfxig could be in exactly one of the resulting components. In this case
xj will belong to a later separator. Since all separators of C n fxig are descendants
of Si, it follows that rep(Si) is an ancestor of rep(Sj). Furthermore, xj is in TSj .
The same argument can be applied to the two highest numbered vertices in C n fxig,
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namely, xj and xpk to show that xpk is a descendant of xj and belongs to TSj . The
proof follows from repeated application of the above argument.

2.1. Symbolic Factorization Using a Separator Tree. We now show that
an estimate of the structure of L can be determined using a separator tree by a process
similar to symbolic factorization using the elimination tree. For the separator tree,
however, the structure determined can be an overestimate. Let the separator tree be
as previously de�ned and let Sj = fxj; : : : ; xkg. Let child(Sj) be the set of separators
that are immediate descendants of xj . Consider

lset(Sj ) =
S
Sk2child(Sj )

struc(Sk)

struc(Sj) = flset(Sj) [AdjG(A)(Sj)g n fxk : k < jg:

The set struc(Sj) provides the structure of columns corresponding to vertices in Sj .
The column corresponding to a vertex xk 2 Sj has a nonzero value in row i, where
i 2 struc(Sj) and i > k. According to this scheme, the columns of L in Sj are
e�ectively dense in the subscript set given by struc(Sj). We next show that the
above construction accounts for any nonzero value in L.

Lemma 2.3. Let si;j denote a position in the structure computed by symbolic

factorization on a separator tree. If li;j 6= 0 then si;j 6= 0, i.e., the structure computed

contains space for all nonzero values of L.

Proof: Follows from Lemma 2.2 and symbolic factorization on the separator tree.

2.2. Symbolic Factorization in Parallel. Using a separator tree, the sym-
bolic factorization can be computed e�ectively in parallel as follows. Assume that
processors have been mapped to subtrees of the separator tree as described ear-
lier. Each processor initially computes the structure of the columns in its local
tree independently and in parallel without any communication. Each processor �i
also computes the partial structure of columns in S1(�i); : : : ;Sl(�i) based on the
data it contains. Denote this partial structure by struc(S1; : : : ;Sl)(�i). Now each
processor �i needs the complete structure of each separator Sk(�i) for 1 � k �

l, which we denote by struc(S1; : : : ;Sl). We show that the latter can be com-
puted by pairwise merging using log2P steps. Let �i�d denote the d-th neighbor
of �i. In a �rst step, �i sends struc(S1; : : : ;Sl)(�i) to �i�1 and receives in exchange
struc(S1; : : : ;Sl)(�i�1). Now both processors can merge structure information to
form struc(S1) and struc(S2; : : : ;Sl)(�i; �i�1). In a second step �i and �i�2 do the
same with respect to structures of columns in S2(�i); : : : ;Sl(�i) to �nish computing
struc(S2) and to accumulate the structure corresponding to the remaining portion
over a subset of processors P(�i; 2) of size 2

2. At the end of log2 P such steps, each
processor �i would have the complete structure of columns in S1(�i); : : : ;Sl(�i).

We now compute the complexity of distributed symbolic factorization using the
separator tree. Let �(LD) denote the size of the largest set of subscripts over all
struc(S1; : : : ;Sl), and let �(LL) denote the maximum number of subscripts over all
separators in a local phase computation. Then the communication for each processor
is O(log2P �(LD)) and involves log2P messages. The computation at each processor
is O(�(LL) + log2P �(LD)).

2.3. Computing the Elimination Tree in Parallel. Elimination trees have
played a central role in numerous aspects of sparse matrix computations [11]. The
elimination tree has N nodes and each node corresponds to a column of the matrix.
An edge (xj; xi) links column xj of A to the smallest column xi, i > j, such that
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li;j 6= 0, with xi being the parent of xj in the elimination tree. The elimination tree
is a spanning tree of the �lled graph G(L). The elimination tree is represented by a
vector parent of size N ; parent[j] = i if i = minfk : lk;j 6= 0; k > jg. Computing the
parent vector is equivalent to determining the elimination tree.

We begin with a review of the sequential elimination tree algorithm [11]. The
parent vector is �rst initialized to contain nil values. Nonzeros in the lower triangle
of A are scanned in increasing order of rows. For any ak;j 6= 0 with k < j, the
root of the subtree containing xk is searched for and is made the child of xj . The
running time of the algorithm is determined by the e�ciency of computing the root
of a subtree containing a column xk. This can be done e�ciently by using disjoint
set union operations on a short and squat version of the tree. The details are not
presented since they are not signi�cant for our purposes. It su�ces to state that the
algorithm runs in time proportional to M�(M;N ).

Zmijewski and Gilbert [20] have developed a parallel algorithm for MIMD ma-
chines with P processors, where each processor �i holds Mi of a total of M nonzeros
of A. In their algorithm, each processor computes a partial elimination tree based on
its Mi nonzeros. These partial elimination trees are then merged to compute the ac-
tual elimination tree. The algorithm has a time complexity of (Mmax �(Mmax; N ) +
N �(N;N ) log2 P ) and requires space proportional to max(Mmax; N ) on each pro-
cessor. For sparse matrices arising from �nite element applications, the value of M is
essentially a constant times N . As a consequence, a parallel algorithm in which a pro-
cessor requires storage proportional to N is not suitable since the solution of a large
problem is limited by the memory available on a single processor, even though the
total memory over the ensemble of processors may be more than su�cient. An added
drawback is the fact that the time for computing the elimination tree increases as the
logarithm of the number of processors. We propose an algorithm that overcomes these
drawbacks by utilizing the separator tree to compute the elimination tree in parallel.
In our algorithm, each processor computes a partial elimination tree using its own
nonzeros. However, the merging of these partial elimination trees is done using the
separator tree to exploit locality and thereby reduce the time and space requirements.

We �rst review some details of the algorithm of Zmijewski and Gilbert. Each
processor �i computes a partial elimination tree based on its nonzeros of A using the
sequential algorithm. Let Te(�i) denote this partial elimination tree. These partial
elimination trees are merged pairwise to obtain the elimination tree Te. Any two
partial elimination trees are merged by observing that if xk is a child of xi in one
elimination tree and xk is a child of xj in another, then lk;j 6= 0 and lk;i 6= 0. Hence,
the elimination tree algorithmmust process these nonzeros. If j < i, this would result
in i being made the ancestor of j in the resulting elimination tree. This process can
be formalized by scanning each Te(�i) and Te(�j) and constructing a list nzrow to
contain the union of nonzero positions. The sequential elimination tree algorithm
is used to process nonzeros represented in this list. In [20], the nonzeros of A are
arbitrarily placed on processors and an O(N ) space and time algorithm is needed to
compute the list nzrow. Furthermore, running the serial elimination tree algorithm
on this list takes time proportional to N�(N;N ). The elimination tree is available at
a processor after log2 P such merges.

Our algorithmperforms merges more selectively since we assume that the nonzeros
of A are partitioned among processors as explained earlier. Let L(�i) denote the
columns assigned to �i for local phase computations. The nonzeros of all columns
in L(�i) are contained entirely on processor �i. Assume the processor computes an
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elimination tree Te(�i) using its nonzeros and the sequential algorithm. Recall that �i
also has nonzeros corresponding to columns on the path from its local phase subtree
to the root. Let this path consist of separators S1(�i); : : : ;Sl(�i), where l � log2 P .
We show that Te(�i) = Te(L(�i)) + Te(S1; : : : ;Sl)(�i). Now Te(L(�i)) cannot be
a�ected by nonzeros in any other processor. Only Te(S1; : : : ; Sl)(�i) need be merged
with corresponding portions from other processors. We state this more formally in
Lemma 2.4, where we show that after �i and �i�1 merge their elimination trees, a
complete elimination tree is formed for all columns in the set L(�i), L(�i�1), and
S1(�i). This result can be applied repeatedly to obtain the entire elimination tree.

This merging of partial elimination trees could be done pairwise. In the �rst step,
processor subsets of size 2 can exchange their lists and merge. At the end of that step,
columns in the �rst separator S1 would be completed for each pair of processors. In
the next step processors �i and �i�2 communicate and merge lists pertaining to the
remaining separators. At the end of log2 P such steps the portion of the elimination
tree required by each processor would be available at that processor. Let ND denote
the maximum number of columns over all separators in the distributed phase on a
path to the root. Then the work at a processor for the pairwise merging would be
proportional to (ND �(ND; ND) log2 P ) and the total cost would be proportional to
(Mmax �(Mmax; N ) + ND �(ND; ND) log2P ). The communication volume would be
proportional to (ND log2P ) and would involve log2P messages.

If message latency is small, then more messages could be exchanged to cut down
the amount of work at each processor. Assume PSi processors are involved for a
separator Si. At the �rst step, PSi = 2 and processors could communicate the
portions corresponding to S1 and merge them. At the next step PS2 = 4, and
over log2(PS2 ) steps lists corresponding to S2 could be merged, and so on. As
a result, the communication at a processor would be bounded by Smax(log2P )

2

over (log2 P )
2 messages, where Smax is the size of the largest separator. The cost

of merging would then be bounded by Smax(log2 P )
2 �(Smax; Smax), leading to an

O(Mmax�(Mmax; Nmax) + Smax (log2P )
2�(Smax; Smax)) algorithm.

We now show that the elimination tree computed by merging based on the sep-
arator tree is indeed correct. In the proof we use Te to stand for the parent vector
corresponding to nodes x1; : : : ; xN . The symbol Te(�i; : : : ; �j) denotes the parent
vector computed using information over processors �i; : : : ; �j, and Te(S)(�i; : : : ; �j)
denotes the portion of the parent vector corresponding to columns in S over all pro-
cessors �i; : : : ; �j.

Lemma 2.4. The tree computed by a processor �i based on its portion of A is

Te(�i) = Te(L(�i))+Te(S1; : : : ;Sl)(�i). Furthermore, upon merging Te(S1; : : : ;Sl)(�i)
and Te(S1; : : : ;Sl)(�i�1), the resulting tree is Te(S1) + Te(S2; : : : ;Sl)(P(�i; 1)).

Proof: A processor �i is assigned all nonzeros corresponding to columns in L(�i).
Now S1 is a separator disconnecting the graph induced by the structure of L(�i) from
the rest of G(A). As a result, all paths of the form xi; xp1; : : : ; xpk ; xj with j < i and
p1; : : : ; pk each less than i, must be contained in the subgraph induced by L(�i). It
follows from Lemma 2.1 that Te(�i) contains Te(L(�i)).

Assume the merge is performed as described. We show that the resulting tree
contains the �nal parent values for columns in S1. We do this by proving that if
xi; xp1; : : : ; xpl; xj is a path such that i < j and xi is in S1, then xi is a descendant of
xj in the merged tree. The proof is by induction on the length of the path. If l = 0,
then aj;i 6= 0. It must be assigned to one of the processors, and hence xi must be a
descendant of xj in either of Te(�i) or Te(�i+1). By construction, xi is a descendant
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of xj in the merged tree.
Assume the statement holds for all paths of length l. Consider the path of length

l given by xi; xp1 ; : : : ; xpl. Now xpl is a descendant of xi. By a similar argument
we can show that xpl is a descendant of xj. By the merging construction, nzrow

has nonzeros corresponding to (xi; xpl) and (xj; xpl). The elimination tree algorithm
makes xi a descendant of xj . Since S1 is separated from the rest of the graph by S2,
this merge completes the subtree corresponding to columns in S1. For all columns
in S2; : : : ;Sl, the merging results in the parent vector based on contributions from
P(�i; 1) = f�i; �i�1g. Hence the proof.

2.4. Computing a Decomposition Tree. Once an elimination tree has been
computed, processors could cooperate to determine an initial supernode partition.
A simple initial supernode tree would result if chains (a sequence of nodes in the
elimination tree in which all but the �rst and last have no siblings) are identi�ed.
This can be accomplished by having processors compute the number of children for
each node and merging this information in pairwise fashion over log2P steps. The
exact structure of the factor L can be computed by performing symbolic factorization
on the initial supernode tree using an algorithm similar to the one in Section 2.1.
This would result in su�cient information to compute a suitable decomposition tree
[1, 9, 15]. We do not provide an explicit algorithm here since there are several possible
choices for a clique or supernode partition.

3. Numeric Factorization and Triangular Solution. This section presents
distributed algorithms for the numeric phase of the computation. The problem of
partitioning computations among processors is discussed, followed by details of orga-
nizing numeric computations in terms of distributed dense kernels for factorization
and triangular solution.

In order to solve the equation Ax = b, we need to compute the numerical entries
of the Cholesky factor L so that A = LLT . We then compute the vector y satisfying
Ly = b, and �nally the solution vector x satisfying LTx = y. Numeric computations
are based on a decomposition tree, in which each representative vertex is associated
with processing a chain of e�ectively dense columns. Such a set of computations
is essentially the multifrontal method [3]. We now provide a brief overview of the
multifrontal method; the reader is referred to [3, 12] for a comprehensive treatment.

Consider a representative vertex rep(Si), with Si = fxi; : : : ; xkg. Let struc(Si)
denote the structure of columns in Si and let anc(Si) = struc(Si) n Si denote the

set of vertices that are ancestors of vertices in Si. Consider the case when rep(Si)
is a leaf node in the decomposition tree. Then columns in Si can be factored to
result in corresponding columns of L. However, these factored columns a�ect columns
in anc(Si), and this information must be accumulated and propagated up the tree
as needed. The process of factoring columns in Si and accumulating updates to
columns in anc(Si) is simply a partial Cholesky factorization of a dense submatrix
Di, composed of columns in struc(Si). Let the dense matrix be

Di =

�
Fi 0
~Fi Hi

�
:

The submatrices Fi and Hi correspond to columns in Si and anc(Si). In the case
rep(Si) is not a leaf, let its children vertices be given by the set child(Si). For each
child rep(Sj) 2 child(Si), values in the submatrix associated with columns in anc(Sj)
must be assembled into Di. After this assembly process, a partial factorization of
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the columns of struc(Si) in Si can be computed to complete the factorization step at
rep(Si), resulting in

�
Li 0
~Li Ui

�
:

The submatrices Li and ~Li correspond to completed columns of the factor L; the
submatrix Ui must be assembled into the matrix for the parent of Si.

The forward solution step can be applied immediately after the partial factoriza-
tion step for rep(Si). Assume values of b and y corresponding to columns in Si are
gathered into bi and yi. Furthermore, let ~bi and ~yi correspond to columns in anc(Si).
Then yi can be computed by partial triangular solution of the system

�
Li 0
~Li Ui

��
yi
~yi

�
=

�
bi
~bi

�
:

Once again, the e�ect of the triangular solution for components in b corresponding to
anc(Si) must be propagated to the parent by using ~bi. Likewise, if Si is not a leaf,
then e�ects from children vertices are assembled into bi and ~bi prior to computing a
partial triangular solution.

After partial factorization and triangular solution are applied at all representative
vertices in a bottom-up traversal of the decomposition tree, a sequence of triangular
solutions must then be applied top-down to compute the �nal solution x. If rep(Si) is
the root of the decomposition tree, then the associated matrix is Li, and the system
LTi xi = yi is solved to compute xi. Let rep(Sj) be a child of rep(Si). The matrix
associated with rep(Sj) is

�
Lj 0
~Lj Uj

�
:

Values of x corresponding to columns in anc(Sj) are available from the solution at
rep(Si). Let these values be denoted by ~xj. Then the solution xj is computed using

LTj xj = yj � ~LTj ~xj:

3.1. Distributed Multifrontal Computation. We now consider the imple-
mentation of multifrontal numeric computations on a distributed-memory parallel
architecture. The major issues to be addressed are the assignment of subsets of pro-
cessors to decomposition subtrees, and the e�ective use of dense matrix kernels given
that the e�ects of partial dense matrix operations must be propagated to ancestors
or descendants with low overhead in storage, computation, and interprocessor com-
munication. We discuss these issues in this section.

Primary considerations in assigning processor subsets to subtrees in the decompo-
sition tree are to exploit both task parallelism and data parallelism while minimizing
communication overhead and load imbalance. Since computations in disjoint subtrees
are independent, a natural approach would be to select P disjoint subtrees and assign
one to each processor as a local phase subtree. Computations within this subtree can
be processed locally and in parallel on each processor without any communication.
For any of the remaining representative vertices, say rep(Si), let PSi denote the set of
processors whose local subtrees are contained in TSi . The data required for computa-
tions at rep(Si) are distributed among processors in PSi and it is natural to distribute

10



the computations at rep(Si) among processors in this set. Observe that in such an
assignment, the size of disjoint processor subsets increases towards the root. This
approach is well suited to tree-structured sparse computations in which the number
of independent tasks decreases toward the root while the task size increases. Thus,
as the amount of task parallelism decreases toward the root, the amount of data
parallelism increases due to the increasing size of the dense matrices involved.

The remaining question is how to select the subtrees of the decomposition tree
for the local phase. Most assignment schemes can be expressed recursively as follows.
Consider a representative vertex rep(Si) assigned a subset of processors PSi of size
pi > 1. Suppose that rep(Si) has n children vertices labeled rep(Sj), 1 � j �

n. Partition the set of processors PSi , into n disjoint subsets of size cj pi for 1 �

j � n. Assign the processor subset of size cj pi to rep(Sj) for 1 � j � n (i.e.,
cj determines the proportion of processors assigned to child rep(Sj)). Apply the
above assignment starting with the root and P processors. The processor assignment
could be changed for each major step of the computation, that is, the assignment for
symbolic factorization could be di�erent from that for numeric factorization. Each
such change of assignment would require data redistribution, however, which is an
expensive operation on current MIMD machines.

The e�ectiveness of a given assignment scheme is ultimately determined by the
load balance and communication requirements it leads to, but the cost of computing
the assignment must also be taken into consideration. In the case of using the sep-
arator tree as the decomposition tree, the balance criterion used in Cartesian nested
dissection is meant to provide some control over the balance of the resulting separa-
tor tree, but of course the actual amount of work in each subtree is not completely
determined simply by the number of vertices in the respective subgraphs. Thus, the
simple assignment scheme described earlier, in which each subtree at a given level is
given equal weight, may or may not provide an adequate load balance in subsequent
computations. This simple assignment scheme does have the virtue, however, of re-
sulting in exactly log2 P distributed steps and very straightforward code for pairwise
merging. It also requires no additional computation to determine the assignment,
which can be accomplished directly after parallel nested dissection.

More sophisticated assignment schemes include making the processor subsets of
size proportional to the number of nonzeros or columns in each subtree [14], or the
total arithmetic work in each subtree [16]. For most practical problems, these would
result in at most c log2P distributed steps at a processor, where c is a small constant.
Using the actual arithmetic work could in principle provide the best possible load
balance, but unfortunately this would require in an additional redistribution step,
since the arithmetic work cannot be estimated until after the structure of L has been
computed. Thus, there is a tradeo� here between load balance and communication
overhead. Our initial implementation uses the separator tree as the decomposition
tree and the simple assignment scheme.

The issue of propagating e�ects of partial factorization and triangular solution
e�ciently in the distributed phase is closely tied to that of the choice and e�ective
use of distributed dense kernels. Distributed dense kernels are required for partial
Cholesky factorization and triangular solution. A natural choice would a column-
oriented Cholesky factorization algorithm such as fan-out or fan-in [4]. For relatively
small dense matrices arising from sparse factorization, a wrap mapping of columns to
processors is suitable for providing load balance for a given dense matrix operation.
Such a wrap mapping is not readily available in sparse factorization, however, since
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a dense submatrix is obtained from the assembly of update matrices from descendent
representative vertices, so that, for example, the columns of update matrices would
be wrap mapped among processors in each of two disjoint processor subsets.

A redistribution step to allow wrap mapping prior to each distributed dense fac-
torization would be prohibitively expensive on current architectures. We propose
instead a strategy that weaves redistribution into the communication required for
factorization. Consider a representative vertex rep(Si) with children vertices rep(Sj)
and rep(Sk). The matrix to be partially factored is Di, which consists of original
nonzeros of A corresponding to columns in Si and update submatrices Uj and Uk.
Each processor in the set PSi allocates enough storage to contain its share of a wrap
map of columns of Di, while retaining its share of either of Uj or Uk. Consider dense
factorization with n = jstruc(Si)j and columns in Di numbered 1; : : : ; n. We use the
fan-in algorithm, in which, to compute a given column l, all processors in the set
PSi compute the update to column l from their columns numbered less than l and
send it to the processor assigned column l. In the context of sparse factorization,
a processor also adds the appropriate column of either of Uj or Uk. This approach
provides the bene�ts of wrap-mapping, the systematic assembly of update matrices,
and the use of a well established dense factorization kernel, without requiring an extra
communication phase for data redistribution.

We now examine the computational work required. Let t = jSij, and let p = jPSi j.
The arithmetic work is that of factoring t columns of a dense matrix of size n and
modifying the n � t later columns by the �rst t columns. The higher order serial
arithmetic cost is A1 = (1=2)(n2t�nt2+t3=3). The arithmetic cost for each processor
is Ap = A1=p+ n2=2 + np=2. However, the communication cost for each processor is
approximately n2=2. Given the large communication to computation ratio for current
MIMD machines, this can seriously degrade performance when t is small. A way to
reduce this cost would be to postpone the assembly and updating of the later n � t

columns. If the assembly and update were postponed until each column becomes a
factor column, we would then have the sparse fan-in factorization algorithm [2], which
requires sparse storage schemes and more overhead.

An approach similar to the numeric factorization is used for performing a partial
forward triangular solution. The fact that Di is wrap mapped as a result of factor-
ization serves well for this step. The components of yi and ~yi are wrap-mapped to
processors, and a fan-in triangular solver [6] is used. Again, the assembly of con-
tributions to the l-th component in bi is woven into the communication required to
compute the l-th component of y. The arithmetic work for each processor is nt�t2=2,
and the communication cost is n.

In performing a triangular backsolve, the problem is one of distributing the e�ects
for use at a descendant vertex after computation. This is unlike forward solution
(and factorization), in which e�ects from descendants were assembled or accumulated
prior to computation. In this setting, a fan-out triangular solver [6] algorithm is most
suitable and is the one we use. The complexity of this algorithm is the same as that
of the fan-in algorithm used for forward solution.

4. ComputationalResults. The overall performance of the algorithmswe have
described above depends on the total amount of work done, how that work is dis-
tributed across multiple processors, the execution rate of the individual processors,
and the cost of communication among the processors. The total amount of work for
a given problem depends mainly on the e�ectiveness of the ordering in limiting �ll.
We demonstrated in [8] that Cartesian nested dissection is competitive with other
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standard methods in this regard. We present computational results in this section
pertaining to the other performance issues just mentioned.

Our sparse test problems are described in Table 1. The �rst three problems are
k � k regular square grids with k = 400, 500, and 600, respectively. The remaining
problems were produced by the commercial �nite element package PATRAN. These
problems are patterned roughly after a series of test problems found in [5], but are
highly irregular and graded, with elements varying widely in size and density, in order
to present a challenge to our algorithms. In the table, the column headed \1

2
jAj"

indicates the number of nonzeros in the lower triangle of the symmetric matrix A.

Table 1

Description of test problems (numbers in thousands).

Label N 1
2
jAj Comments

G400 160 319 square grid
G500 250 499 square grid
G600 360 718 square grid

GHS1 39 113 hollow square
GHS2 74 216 hollow square

GPH1 35 104 pinched hole
GPH2 62 185 pinched hole

G6H1 30 89 6 holes
G6H2 61 181 6 holes

GL1 34 101 L shape
GL2 69 208 L shape

Our numerical experiments were all done on an Intel iPSC/860 hypercube at Oak
Ridge National Laboratory. This machine has 128 Intel i860 processors. Our programs
were written in C, but we used assembler-coded BLAS to enhance performance of the
dense computational kernels in our algorithm. To give some idea of the performance
level of this machine for our dense kernels, we provide in Table 2 the execution rates
of Cholesky factorization and triangular solution for a dense matrix of order 600 using
various numbers of processors. The choice of order 600 for illustration is based on
the fact that this is the largest dense submatrix that occurs for any of our sparse
test problems in our multifrontal implementation of sparse numeric factorization and
triangular solution. The single-processor speeds in Table 2 indicate the maximum
performance per processor that we can expect during the local phase of our algorithms,
and the multi-processor speeds give some idea of the incremental e�ect of additional
processors during the global phase of our algorithms. As expected for a problem
of �xed size, performance attens out as the number of processors increases. In
particular, there is essentially no incremental performance gain beyond 32 processors
for a dense problem of this size.

Table 2

Execution rate in Mops for dense matrix of order 600

P 1 2 4 8 16 32 64

factor 14.3 25.5 41.7 58.2 72.6 78.9 79.1
solve 1.8 2.2 2.9 3.5 3.7 3.8 3.8

The sparse matrices in Table 1 were ordered by our Cartesian nested dissection
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algorithm, and the resulting separator tree was used for organizing the computations
and assigning work to processors, as described above. The balance criterion used in
Cartesian nested dissection was chosen to maintain, at each level, an approximately
equal split between the resulting subgraphs. This choice was based on our experience
that good load balance is usually more important in a parallel implementation than the
greater reduction in �ll that might result from a smaller separator. Moreover, choosing
the smallest possible separator at a given level of dissection may actually produce a
worse choice of separator at some subsequent level, and so does not necessarily produce
consistently better results over the whole computation.

We do not give results for the symbolic factorization step because the execu-
tion time for this step is negligible compared to the other steps and is di�cult to
measure consistently. Unlike conventional symbolic factorization algorithms, there
is essentially no computation in our approach other than overhead, such as storage
allocation, whose execution time is inherently somewhat erratic (due to fractionation
of memory, garbage collection, etc.). Since our approach to the symbolic part of the
computation is inherently scalable, we expect its execution time to remain negligi-
ble (relative to the other steps in the computation) for larger problems using larger
numbers of processors.

We �rst examine the load balance across processors that results from the Carte-
sian nested dissection ordering and corresponding task assignment for multifrontal
numeric factorization. We are particularly interested in the behavior of the load bal-
ance as the number of processors increases, and hence more levels of dissection are
required. (Recall that our simple assignment scheme does not take the actual arith-
metic work in subtrees directly into account, but instead relies on the natural balance
that tends to be produced by nested dissection.) In Table 3 we show the minimum
and maximum amount of work on any processor for each test problem and for various
numbers of processors. In this and subsequent tables, blank entries indicate that the
corresponding problem could not be solved using the amount of memory available on
the given number of processors. We �rst note that for a given number of processors,
the maximum di�erence in processor workloads is almost always within a factor of
four, and usually within a factor of two. Thus, the overall load balance seems to be
within reason, especially given the vagaries of the irregular problems We note further
that the maximum load is generally cut approximately in half by each additional level
of nested dissection, showing that the problem is indeed being distributed among
the processors as intended. Thus, our algorithm seems to be doing a good job of
splitting the problems into as many pieces as necessary for reasonably well balanced
parallel execution. Similar comments also apply to the load balance for the triangular
solution, shown in Table 4, but of course the total amount of work is much smaller.

We next examine the execution rate for distributed multifrontal numeric factor-
ization. In Table 5 we show the overall execution rate using various numbers of
processors. We do not give \speedup" �gures (i.e., performance relative to a single
processor) because none of the problems could be solved in memory on a single pro-
cessor. In Table 5 we see a number of expected e�ects: larger problems yield greater
performance, but for any �xed problem, relative performance attens out as more
processors are employed. We see a maximum execution rate of 400 Mops, despite
the fact that the largest dense subproblem runs at only 79 Mops according to Table
2. The di�erence, of course, is due to the local phase of the distributed multifrontal
algorithm, during which there is no communication, so that we can achieve a con-
siderably higher execution rate for the overall computation than the largest dense
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Table 3

Numeric factorization load balance. Minimum and maximum number of operations (in mil-

lions) on any processor

P 1 8 16 32 64 128

min max min max min max min max min max

G400 1225 57 91 26 46 13 24 6 12
G500 2470 52 91 35 46 12 24
G600 4250 90 157 44 80 21 41

GHS1 82 8 11 4 6 1.7 2.8 0.9 1.5 0.6 0.8
GHS2 191 21 24 11 15 4.2 6.9 2.2 3.7 1.4 1.7

GPH1 179 13 30 5 19 2.3 11.3 1.2 5.5 0.6 2.8

GPH2 451 34 84 13 52 6 33 3 17 1.6 9.3

G6H1 75 8 11 4 6 2.0 3.2 1.0 1.8 0.5 0.9
G6H2 213 23 34 11 18 5.7 9.5 2.4 4.8 1.5 2.7

GL1 580 63 89 31 79 17 24 7.4 8.9 4.1 4.9
GL2 2492 96 299 55 151 29 77 15 40

Table 4

Triangluar solution load balance. Minimum and maximum number of operations (in millions)

on any processor

P 1 8 16 32 64 128

min max min max min max min max min max

G400 26 1.5 1.7 .72 .88 .34 .44 .16 .22
G500 46 1.2 1.5 .56 .74 .28 .38
G600 64 1.8 2.2 .86 1.1 .40 .56

GHS1 4.2 .48 .55 .22 .28 .10 .15 .05 .08 .02 .04
GHS2 8.4 4.0 2.0 .44 .60 .20 .32 .10 .16 .06 .08

GPH1 6.4 .56 1.0 .24 .62 .10 .36 .05 .18 .02 .10
GPH2 12.6 1.1 2.2 .48 1.3 .20 .82 .10 .44 .04 .22

G6H1 4.0 .46 .54 .22 .28 .10 .14 .04 .08 .02 .02
G6H2 9.0 1.0 1.2 .50 .64 .24 .32 .10 .16 .06 .08

GL1 8.0 .86 1.0 .40 .60 .20 .30 .09 .11 .04 .06
GL2 19 .96 1.9 .48 1.0 .24 .51 .12 .24
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subproblem (which actually occurs during the later global phase of the algorithm)
would seem to suggest. Thus, our algorithm is bene�ting from the additional task
parallelism present in sparse systems that is not available in the dense case.

Table 5

Numeric factorization execution rate in Mops

P 8 16 32 64 128

G400 144 187 227 247
G500 224 289 324
G600 253 340 400

GHS1 34 53 72 85 89
GHS2 31 63 94 110 115

GPH1 67 92 114 130 138
GPH2 86 120 158 187 206

G6H1 43 68 86 98 107
G6H2 57 95 126 152 167

GL1 63 79 100 108 127
GL2 94 131 179 207

In Table 6 we show the corresponding execution rates for the triangular solution
phase. Here there is substantially less computation over which to amortize the com-
munication cost, so that the attening out of performance occurs more quickly than
it does for factorization. Indeed, performance for the triangular solution is more or
less at as the number of processors varies, actually declining for the largest numbers
of processors. Still, given the nature of triangular solution and our previous experi-
ence with parallel algorithms for it, just maintaining at performance over a fairly
wide range of processors suggests that our algorithms are controlling communication
costs and spreading the small amount of computational work reasonably well. More-
over, this is all that is really required, given that the total computation time is still
dominated by the numeric factorization phase.

Table 6

Triangular solution execution rate in Mops

P 8 16 32 64 128

G400 24 26 23 18
G500 31 29 25
G600 36 33 29

GHS1 12 15 13 11 8
GHS2 14 17 18 13 11

GPH1 15 19 19 15 12
GPH2 16 21 23 22 16

G6H1 13 17 15 11 10
G6H2 15 22 23 20 15

GL1 10 10 9 8 7
GL2 10 9 8 8

5. Conclusions. In this paper we have described a series of symbolic and nu-
meric factorization algorithms for solving sparse linear systems by Cholesky factoriza-
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tion. This work completes a suite of algorithms that began with the Cartesian nested
dissection algorithm presented in [8]. This suite of algorithms is the �rst we know of
that solves the entire problem, from initial ordering through triangular solution, in
parallel on a distributed memory architecture.

We have used the concept of a decomposition tree to organize the computations
in a way that balances the workload across the processors, limits communication, and
permits the use of e�cient dense kernels. The particular decomposition tree that we
use is derived naturally from the sequence of separators computed by the Cartesian
nested dissection algorithm. We showed how this approach could also produce the
exact elimination tree, if desired, e�ciently in parallel. This distributed multifrontal
implementation of Cholesky factorization enjoys a local phase requiring no communi-
cation, followed by a global phase in which information is systematicallymerged across
processors. Thus, the method is scalable in the sense that for any given number of
processors, the local phase will be dominant for large enough problems.

We illustrated the e�ectiveness of the algorithms by computational experiments
with a sequence of sparse test problems. The algorithm was seen to produce a good
load balance across processors. The overall performance of the numeric factorization
was quite satisfactory, given that our test problems did not saturate the full memory
capacity of the machine, but of course there is an inevitable attening out of perfor-
mance for any �xed problem as the number of processors grows. Performance of the
triangular solution was much lower, due to the much smaller amount of computation,
and was rather at as the number of processors varied. This behavior is actually an
improvement over some previous e�orts, and ultimately the triangular solution would
also be dominated by its local phase for su�ciently large problems.

Our original goal in this work was to produce a complete suite of prototype
scalable algorithms and software for all phases of solving sparse linear systems. We
feel that we have largely succeeded in accomplishing this goal, but obviously much
remains to be done. Among the potential algorithmic variations we have identi�ed, our
initial experimental implementation has, for the most part, taken the simplest option
in each case. A number of the alternatives should be explored as well, however, such as
di�erent choices for the decomposition tree and various strategies for assigning work
to processors. As another example, our one-dimensional, column-oriented partitioning
of the matrix holds up well for problems of the sizes we have encountered thus far,
but for ultimate scalability to extremely large problems and numbers of processors, a
two-dimensional partitioning of the matrix may become necessary. In future work we
expect to continue to improve the performance of these algorithms, to integrate them
better, and to test them on much larger and more diverse problems as this becomes
more logistically feasible. In particular, Cartesian nested dissection has recently been
generalized to three-dimensional problems [17]. We also expect to generalize this work
to include LU and QR factorizations for nonsymmetric and nonsquare problems.
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