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Abstract

We survey general techniques and open problems in numerical lin-

ear algebra on parallel architectures. We �rst discuss basic principles of

parallel processing, describing the costs of basic operations on parallel ma-

chines, including general principles for constructing e�cient algorithms.

We illustrate these principles using current architectures and software

systems, and by showing how one would implement matrix multiplica-

tion. Then, we present direct and iterative algorithms for solving linear

systems of equations, linear least squares problems, the symmetric eigen-

value problem, the nonsymmetric eigenvalue problem, and the singular

value decomposition. We consider dense, band and sparse matrices.
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1 Introduction

Accurate and e�cient algorithms for many problems in numerical linear alge-
bra have existed for years on conventional serial machines, and there are many
portable software libraries that implement them e�ciently (Dongarra, Bunch,
Moler and Stewart, 1979; Dongarra and Grosse, 1987; Garbow, Boyle, Dongarra
and Moler, 1977; Smith, Boyle, Dongarra, Garbow, Ikebe, Klema and Moler,
1976). One reason for this profusion of successful software is the simplicity of
the cost model: the execution time of an algorithm is roughly proportional to
the number of 
oating point operations it performs. This simple fact makes it
relatively easy to design e�cient and portable algorithms. In particular, one
need not worry excessively about the location of the operands in memory, nor
the order in which the operations are performed. That we can use this approxi-
mation is a consequence of the progress from drum memories to semiconductor
cache memories, software to hardware 
oating point, assembly language to opti-
mizing compilers, and so on. Programmers of current serial machines can ignore
many details earlier programmers could ignore only at the risk of signi�cantly
slower programs.

With modern parallel computers we have come full circle and again need
to worry about details of data transfer time between memory and processors,
and which numerical operations are most e�cient. Innovation is very rapid,
with new hardware architectures and software models being proposed and im-
plemented constantly. Currently one must immerse oneself in the multitudinous
and often ephemeral details of these systems in order to write reasonably e�-
cient programs. Perhaps not surprisingly, a number of techniques for dealing
with data transfer in blocked fashion in the 1960s are being rediscovered and
reused (Bell, Hatlestad, Hansteen and Araldsen, 1973).

Our �rst goal is to enunciate two simple principles for identifying the impor-
tant strengths and weaknesses of parallel programming systems (both hardware
and software): locality and regularity of operation. We do this in Section 2.
Only by understanding how a particular parallel system embodies these princi-
ples can one design a good parallel algorithm for it; we illustrate this in Section
3 using matrix multiplication.1

Besides matrix multiplication, we discuss parallel numerical algorithms for
linear equation solving, least squares problems, symmetric and nonsymmet-
ric eigenvalue problems, and the singular value decomposition. We organize
this material with dense and banded linear equation solving in Section 4, least
squares problems in Section 5, eigenvalue and singular value problems in Sec-
tion 6, direct methods for sparse linear systems in Section 7, iterative methods
for linear systems in Section 8, and iterative methods for eigenproblems in Sec-
tion 9. We restrict ourselves to general techniques, rather than techniques like

1This discussion will not entirely prepare the reader to write good programs on any par-

ticular machine, since many machine-speci�c details will remain.
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multigrid and domain decomposition that are specialized for particular applica-
tion areas.

We emphasize algorithms that are scalable, i.e. remain e�cient as they are
run on larger problems and larger machines. As problems and machines grow,
it is desirable to avoid algorithm redesign. As we will see, we will sometimes
pay a price for this scalability. For example, though many parallel algorithms
are parallel versions of their serial counterparts with nearly identical roundo�
and stability properties, others are rather less stable, and would not be the
algorithm of choice on a serial machine.

Any survey of such a busy �eld is necessarily a snapshot re
ecting some
of the authors' biases. Other recent surveys include Dongarra, Du�, Sorensen
and van der Vorst (1991) and Gallivan, Heath, Ng, Ortega, Peyton, Plemmons,
Romine, Sameh and Voigt (1990), the latter of which includes a bibliography of
over 2000 entries.

2 Features of parallel systems

2.1 General principles

A large number of di�erent parallel computers (Gottlieb and Almasi, 1989),
languages (see Zima and Chapman (1991) and the references therein), and soft-
ware tools have recently been built or proposed. Though the details of these
systems vary widely, there are two basic issues they must deal with, and these
will guide us in understanding how to design and analyse parallel algorithms.
These issues are locality and regularity of computation.

Locality refers to the proximity of the arithmetic and storage components of
computers. Computers store data in memories, which are physically separated
from the computational units that perform useful arithmetic or logical functions.
The time it takes to move the data from the memory to the arithmetic unit can
far exceed the time to perform arithmetic unless the memory is immediately
proximate to the arithmetic unit; such memory is usually called the register �le
or cache. There are good electrical and economic reasons that not all memory
can consist of registers or cache. Therefore all machines, even the simplest
PCs, have memory hierarchies of fast, small, expensive memory like registers,
then slower, larger and cheaper main memory, and �nally down to disk or other
peripheral storage. Parallel computers have even more levels, possibly including
local memory as well as remote memory, which may serve as the local memory for
other processors (see Figure 1). Useful arithmetic or logical work can occur only
on data stored at the top of the memory hierarchy, and data must be moved
from the lower, slower levels in the hierarchy to the top level to participate
in computation. Therefore, much of algorithm design involves deciding where
and when to store or fetch data in order to minimize this movement. The
action of processor i storing or fetching data in memory j in Figure 1 is called
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P1 P2 � � � Pn

Network

M1 M2 � � � Mn

Figure 1: Diagram of a parallel computer (P = processor, M = memory).

communication. Depending on the machine, this may be done automatically by
the hardware whenever the program refers to nonlocal data, or it may require
explicit sending and/or receiving of messages on the part of the programmer.
Communication among processors occurs over a network.

A special kind of communication worth distinguishing is synchronization,
where two or more processors attempt to have their processing reach a commonly
agreed upon stage. This requires an exchange of messages as well, perhaps quite
short ones, and so quali�es as communication.

A very simple model for the time it takes to move n data items from one
location to another is � + � � n, where 0 � �; �. One way to describe � is the
start up time of the operation; another term for this is latency. The incremental
time per data item moved is �; its reciprocal is called bandwidth. Typically
0 < � � �, i.e. it takes a relatively long time to start up an operation, after
which data items arrive at a higher rate of speed. This cost model, which we
will see again later, re
ects the pipeline implementation of the hardware: the
pipeline takes a while to �ll up, after which data arrive at a high rate.

The constants � and � depend on the parts of the memory between which
transfer occurs. Transfer between higher levels in the hierarchy may be orders of
magnitude faster than those between lower levels (for example, cache{memory
versus memory{disk transfer). Since individual memory levels are themselves
built of smaller pieces, and may be shared among di�erent parts of the machine,
the values of � and � may strongly depend on the location of the data being
moved.

Regularity of computation means that the operations parallel machines per-
form fastest tend to have simple, regular patterns, and e�ciency demands
that computations be decomposed into repeated applications of these patterns.
These regular operations include not only arithmetic and logical operations but
communication as well. Designing algorithms that use a very high fraction of
these regular operations is, in addition to maintaining locality, one of the major
challenges of parallel algorithm design. The simplest and most widely applica-
ble cost models for these regular operations is again �+ � �n, and for the same
reason as before: pipelines are ubiquitous.

Amdahl's Law quanti�es the importance of using the most e�cient parallel
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operations of the machine. Suppose a computation has a fraction 0 < p < 1 of
its operations which can be e�ectively parallellized, while the remaining fraction
s = 1� p cannot be. Then with n processors, the most we can decrease the run
time is from s+ p = 1 to s+ p=n, for a speed up of 1=(s+ p=n) � 1=s; thus the
serial fraction s limits the speed up, no matter how many parallel processors
n we have. Amdahl's Law suggests that only large problems can be e�ectively
parallellized, since for the problems we consider p grows and s shrinks as the
problem size grows.

2.2 Examples

We illustrate the principles of regularity and locality with examples of current
machines and software systems.

A sequence of machine instructions without a branch instruction is called a
basic block. Many processors have pipelined execution units that are optimized
to execute basic blocks; since there are no branches, the machine can have several
instructions in partial stages of completion without worrying that a branch will
require `backing out' and restoring an earlier state. So in this case, regularity of
computation means code without branches. An algorithmic implication of this
is loop unrolling, where the body of a loop like

for i = 1 : n
ai = ai + b � ci

is replicated four times (say) yielding

for i = 1 : n step 4
ai = ai + b � ci
ai+1 = ai+1 + b � ci+1
ai+2 = ai+2 + b � ci+2
ai+3 = ai+3 + b � ci+3

In this case the basic block is the loop body, since the end of the loop is a
conditional branch back to the beginning. Unrolling makes the basic block four
times longer.

One might expect compilers to perform simple optimizations like this au-
tomatically, but many do not, and seemingly small changes in loop bodies can
make this di�cult to automate (imagine adding the line `if i > 1, di = ei' to
the loop body, which could instead be done in a separate loop from i = 2 to
n without the `if'). For a survey of such compiler optimization techniques see
Zima and Chapman (1991). A hardware approach to this problem is optimistic
execution, where the hardware guesses which way the branch will go and com-
putes ahead under that assumption. The hardware retains enough information
to undo what it did a few steps later if it �nds out it decided incorrectly. But
in the case of branches leading back to the beginning of loops, it will almost
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always make the right decision. This technique could make unrolling and similar
low-level optimizations unnecessary in the future.

A similar example of regularity is vector pipelining, where a single instruction
initiates a pipelined execution of a single operation on a sequence of data items;
componentwise addition or multiplications of two arrays or `vectors' is the most
common example, and is available on machines from Convex, Cray, Fujitsu,
Hitachi, NEC, and others. Programmers of such machines prefer the unrolled
version of the above loop, and expect the compiler to convert it into, say, a
single machine instruction to multiply the vector c by the scalar b, and then
add it to vector a.

An even higher level of such regularity is so-called SIMD parallellism, which
stands for Single Instruction Multiple Data, where each processor in Figure 1
performs the same operation in lockstep on data in its local memory. (SIMD
stands in contrast to MIMD or Multiple Instruction Multiple Data, where each
processor in Figure 1 works independently.) The CM-2 and MasPar depend on
this type of operation for their speed. A sample loop easily handled by this
paradigm is

for i = 1 : n
if ci > 0 then

ai = bi +
p
ci

else
ai = bi � di

endif

A hidden requirement for these examples to be truly regular is that no excep-
tions arise during execution. An exception might be 
oating point over
ow or
address out of range. The latter error necessitates an interruption of execution;
there is no reasonable way to proceed. On the other hand, there are reasonable
ways to continue computing past 
oating point exceptions, such as in�nity arith-
metic as de�ned by the IEEE 
oating point arithmetic standard (ANSI/IEEE,
1985). This increases the regularity of computations by eliminating branches.

IEEE arithmetic is implemented on almost all microprocessors, which are often
building blocks for larger parallel machines. Whether or not we can make sense
out of results that have over
owed or undergone other exceptions depends on
the application; it is true often enough to be quite useful.

Now we give some examples of regularity in communication. The CM-2
(Thinking Machines Corporation, 1987) may be thought of in di�erent ways;
for us it is convenient to think of it as 2048 processors connected in an 11-

dimensional hypercube, with one processor and its memory at each of the 2048
corners of the cube, and a physical connection along each edge connecting each
corner to its 11 nearest neighbours. All 11�2048 such connections may be used
simultaneously, provided only one message is sent on each connection.

We illustrate such a regular communication by showing how to compute
fi =

PN

j=1F (xi; xj), i.e. an N -body interaction where fi is the force on body i,
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F (xi; xj) is the force on body i due to body j, and xi and xj are the positions
of bodies i and j respectively (Brunet, Edelman and Mesirov, 1990). Consider
implementing this on a d-dimensional hypercube, and suppose N = d2d for
simplicity. We need to de�ne the Gray code G(d) � (Gd;0; :::; Gd;2d�1), which is
a permutation of the d-bit integers from 0 to 2d � 1, ordered so that adjacent
codes Gd;k and Gd;k+1 di�er only in one bit. G(d) may be de�ned recursively
by taking the d � 1-bit numbers G(d � 1), followed by the same numbers in
reverse order and incremented by 2d�1. For example,G(2) = f00; 01; 11; 10g and
G(3) = f000; 001; 011;010;110; 111; 101;100g. Now imagining our hypercube as
a unit hypercube in d-space with one corner at the origin and lying in the
positive orthant, number each processor by the d-bit string whose bits are the
coordinates of its position in d-space. Since the physically nearest neighbours
of a processor lie one edge away, their coordinates or processor numbers di�er
in only one bit. Since Gd;k and Gd;k+1 di�er in only one bit, the Gray code
sequence describes a path among the processors in a minimal number of steps
visiting each one only once; such a path is called Hamiltonian. Now de�ne the

shifted Gray code G(s)(d) = fG(s)
d;0; :::; G

(s)

d;2d�1
g where G

(s)
d;k is obtained by left-

circular shifting Gd;k by s bits. Each G(s)(d) also de�nes a Hamiltonian path,
and all may be traversed simultaneously without using any edges simultaneously.

Let g
(s)
d;k denote the bit position in which G

(s)
d;k and G

(s)
d;k+1 di�er.

Now we de�ne the program each processor will execute in order to compute
fi for the bodies it owns. Number the bodies xk;l, where 0 � l � 2d � 1 is the
processor number and 0 � k � d � 1; so processor l owns x0;l through xd�1;l.
Then processor l executes the following code, where `forall' means each iteration
may be done in parallel (a sample execution for d = 2 is shown in Figure 2).

Algorithm 1 N-body force computation on a hypercube

for k = 0 : d� 1, tmpk = xk;l
for k = 0 : d� 1, fk;l = 0 /* fk;l will accumulate force on xk;l */
for m = 0 : 2d � 1

forall k = 0 : d� 1, swap tmpk with processor in direction g
(k)
d;m

for k = 0 : d� 1
for k0 = 0 : d� 1

fk;l = fk;l + F (xk;l; tmpk0)

In Section 3 we will show how to use Gray codes to implement matrix mul-
tiplication e�ciently. Each processor of the CM-2 can also send data to any
other processor, not just its immediate neighbours, with the network of physi-
cal connections forwarding a message along to the intended receiver like a net-
work of post-o�ces. Depending on the communication pattern this may lead
to congestion along certain connections and so be much slower than the special
communication pattern discussed earlier.

Here are some other useful regular communication patterns. A broadcast

sends data from a single source to all other processors. A spread may be de-
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x0;1;x1;1 x0;3;x1;3 x0;0;x1;3 x0;2;x1;1 x0;2;x1;2 x0;0;x1;0 x0;3;x1;0 x0;1;x1;2

Initial data After m = 0 After m = 1 After m = 2

Figure 2: Force computation on two-dimensional hypercube.

scribed as partitioned broadcast, where the processors are partitioned and a
separate broadcast done within each partition. For example, in a square array
of processors we might want to broadcast a data item in the �rst column to all
other processors in its row; thus we partition the processor array into rows and
do a broadcast to all the others in the partition from the �rst column. This
operation might be useful in Gaussian elimination, where we need to subtract
multiples of one matrix column from the other matrix columns. Another oper-
ation is a reduction, where data distributed over the machine are reduced to a
single datum by applying an associative operation like addition, multiplication,
maximum, logical or, and so on; this operation is naturally supported by pro-
cessors connected in a tree, with information being reduced as it passes from
the leaves to the root of the tree.

A more general operation than reduction is the scan or parallel pre�x op-
eration. Let x0; :::xn be data items, and � any associative operation. Then the
scan of these n data items yields another n data items de�ned by y0 = x0,
y1 = x0 �x1, ... , yi = x0 �x1 � � �xi; thus yi is the reduction of x0 through xi. An
attraction of this operation is its ease of implementation using a simple tree of
processors. We illustrate in Figure 3 for n = 15, or f in hexadecimal notation;
in the �gure we abbreviate xi by i and xi � � �xj by i : j. Each row indicates
the values held by the processors; after the �rst row only the data that change
are indicated. Each updated entry combines its current value with one a �xed
distance to its left.

Parallel pre�x may be used, for example, to solve linear recurrence relations
zi+1 =

Pn

j=0 ai;jzi�j + bi; this can be converted into simple parallel operations
on vectors plus parallel pre�x operations where the associative operators are n by
n matrix multiplication and addition. For example, to evaluate zi+1 = aizi+bi,
i � 0, z0 = 0, we do the following operations:

Algorithm 2 Linear recurrence evaluation using Parallel Pre�x

Compute pi = a0 � � �ai using parallel pre�x multiplication
Compute �i = bi=pi in parallel
Compute si = �0 + � � �+ �i�1 using parallel pre�x addition
Compute zi = si � pi�1 in parallel

10



0 1 2 3 4 5 6 7 8 9 a b c d e f

0:1 2:3 4:5 6:7 8:9 a:b c:d e:f

0:3 4:7 8:b c:f

0:7 8:f

0:f

0:b

0:5 0:9 0:d

0:2 0:4 0:6 0:8 0:a 0:c 0:e

Figure 3: Parallel pre�x on 16 data items.

Similarly, we can use parallel pre�x to evaluate certain rational recurrences
zi+1 = (aizi + bi)=(cizi + di) by writing zi = ui=vi and reducing to a linear
recurrence for ui and vi:�

ui+1
vi+1

�
=

�
ai bi
ci di

�
�
�
ui
vi

�
: (1)

We may ask more generally about evaluating the scalar rational recurrence
zi+1 = fi(zi) in parallel. Let d be the maximumof the degrees of the numerators
and denominators of the rational functions fi. Then Kung (1974) has shown
that zi can be evaluated faster than linear time (i.e. zi can be evaluated in o(i)
steps) if and only if d � 1; in this case the problem reduces to 2 � 2 matrix
multiplication parallel pre�x in (1). Interesting linear algebra problems that
can be cast in this way include tridiagonal Gaussian elimination, solving bidiag-
onal linear systems of equations, Sturm sequence evaluation for the symmetric
tridiagonal eigenproblem, and the bidiagonal dqds algorithm for singular values
(Parlett and Fernando, 1992); we discuss some of these later. The numerical
stability of these procedures remains open, although it is often good in practice
(Swarztrauber, 1992).

We now turn to the principle of locality. Since this is an issue many algo-
rithms do not take into account, a number of so-called shared memory machines
have been designed in which the hardware attempts to make all memory loca-
tions look equidistant from every processor, so that old algorithms will continue
to work well. Examples include machines from Convex, Cray, Fujitsu, Hitachi,
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NEC, and others (Gottlieb and Almasi, 1989). The memories of these machines
are organized into some number, say b, of memory banks, so that memory ad-
dress m resides in memory bank m mod b. A memory bank is designed so that
it takes b time steps to read/write a data item after it is asked to do so; until
then it is busy and cannot do anything else. Suppose one wished to read or
write a sequence of n+1 memory locations i, i+ s, i+2s, ... , i+ns; these will
then refer to memory banks i mod b, i+ s mod b, ... , i+ns mod b. If s = 1, so
that we refer to consecutive memory locations, or if s and b are relatively prime,
b consecutive memory references will refer to b di�erent memory banks, and so
after a wait of b steps the memory will deliver a result once per time step; this
is the fastest it can operate. If instead gcd(s; b) = g > 1, then only b=g memory
banks will be referenced, and speed of access will slow down by a factor of g.
For example, suppose we store a matrix by columns, and the number of rows is
s. Then reading a column of the matrix will be gcd(s; b) times faster than read-
ing a row of the matrix, since consecutive row elements have memory addresses
di�ering by s; this clearly a�ects the design of matrix algorithms. Sometimes
these machines also support indirect addressing or gather/scatter, where the ad-
dresses can be arbitrary rather than forming an arithmetic sequence, although
it may be signi�cantly slower.

Another hardware approach to making memory access appear regular are
virtual shared memory machines like the Kendall Square Research machine and
Stanford's Dash. Once the memory becomes large enough, it will necessarily
be implemented as a large number of separate banks. These machines have a
hierarchy of caches and directories of pointers to caches to enable the hardware
to locate quickly and fetch or store a nonlocal piece of data requested by the
user; the hope is that the cache will successfully anticipate enough of the user's
needs to keep them local. To the extent that these machines ful�l their promise,
they will make parallel programming much easier; as of this writing it is too
early to judge their success.2

For machines on which the programmer must explicitly send or receive mes-
sages to move data, there are two issues to consider in designing e�cient algo-
rithms. The �rst issue is the relative cost of communication and computation.
Recall that a simple model of communicating n data items is � + n�; let 

be the average cost of a 
oating point operation. If � � �, which is not un-
common, then sending n small messages will cost n(� + �), which can exceed
by nearly a factor n the cost of a single message � + n�. This forces us to
design algorithms that do infrequent communications of large messages, which
is not always convenient. If �� 
 or � � 
, which are both common, then we
will also be motivated to design algorithms that communicate as infrequently
as possible. An algorithm which communicates infrequently is said to exhibit
coarse-grained parallellism, and otherwise �ne-grained parallellism. Again this

2There is a good reason to hope for the success of these machines: parallel machines will

not be widely used if they are hard to program, and maintaining locality explicitly is harder
for the programmer than having the hardware do it automatically.
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is sometimes an inconvenient constraint, and makes it hard to write programs
that run e�ciently on more than one machine.

The second issue to consider when sending messages is the semantic power
of the messages (Wen and Yelick, 1992). The most restrictive possibility is that
the processor executing `send' and the processor executing `receive' must syn-
chronize, and so block until the transaction is completed. So for example, if one
processor sends long before the other receives, it must wait, even if it could have
continued to do useful work. At the least restrictive the sending processor e�ec-
tively interrupts the receiving processors and executes an arbitrary subroutine
on the contents of the message, without any action by the receiving program;
this minimizes time wasted waiting, but places a burden on the user program
to do its own synchronization.

To illustrate these points, imagine an algorithm that recursively subdivides
problems into smaller ones, but where the subproblems can be of widely varying
complexity that cannot be predicted ahead of time. Even if we divide the initial
set of problems evenly among our processors, the subproblems generated by
each processor may be very di�erent. A simple example is the use of Sturm
sequences to compute the eigenvalues of a symmetric tridiagonal matrix. Here
the problem is to �nd the eigenvalues in a given interval, and the subproblems
correspond to subintervals. The time to solve a subproblem depends not only on
the number but also on the distribution of eigenvalues in the subinterval, which
is not known until the problem is solved. In the worst case, all processors but
one �nish quickly and remain idle while the other one does most of the work.
Here it makes sense to do dynamic load balancing, which means redistributing
to idle processors those subproblems needing further processing. This clearly
requires communication, and may or may not be e�ective if communication is
too expensive.

2.3 Important tradeo�s

We are accustomed to certain tradeo�s in algorithm design, such as time versus
space: an algorithm that is constrained to use less space may have to go more
slowly than one not so constrained. There are certain other tradeo�s that arise
in parallel programming. They arise because of the constraints of regularity of
computation and locality to which we should adhere. For example, load balanc-
ing to increase parallellism requires communication, which may be expensive.
Limiting oneself to the regular operations the hardware performs e�ciently may
result in wasted e�ort or use of less sophisticated algorithms; we will illustrate
this later in the case of the nonsymmetric eigenvalue problem.

Another interesting tradeo� is parallellism versus numerical stability. For
some problems the most highly parallel algorithms known are less numerically
stable than the conventional sequential algorithms. This is true for various
kinds of linear systems and eigenvalue problems, which we will point out as
they arise. Some of these tradeo�s can be mitigated by better 
oating point
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arithmetic (Demmel, 1992b). Others can be dealt with by using the following
simple paradigm:

1. Solve the problem using a fast method, provided it is rarely unstable.

2. Quickly and reliably con�rm or deny the accuracy of the computed solu-
tion. With high probability, the answer just (quickly) computed is accu-
rate enough.

3. Otherwise, fall back on a slower but more reliable algorithm.

For example, the most reliable algorithm for the dense nonsymmetric eigenvalue
problem is Hessenberg reduction and QR iteration, but this is hard to parallel-
lize. Other routines are faster but occasionally unreliable. These routines can
be combined according to the paradigm to yield a guaranteed stable algorithm
which is fast with high probability (see Section 6.5).

3 Matrix multiplication

Matrix multiplication is a very regular computation that is basic to linear alge-
bra and lends itself well to parallel implementation. Indeed, since it is the easiest
nontrivial matrix operation to implement e�ciently, an e�ective approach to de-
signing other parallel matrix algorithms is to decompose them into a sequence
of matrix multiplications; we discuss this in detail in later sections.

One might well ask why matrix multiplication is more basic than matrix{
vector multiplication or adding a scalar times one vector to another vector.
Matrix multiplication can obviously be decomposed into these simpler oper-
ations, and they also seem to o�er a great deal of parallelism. The reason is
that matrix multiplication o�ers much more opportunity to exploit locality than
these simpler operations. An informal justi�cation for this is as follows.

Table 1 gives the number of 
oating point operations (
ops), the minimum
number of memory references, and their ratio q for the three Basic Linear Alge-
bra Subroutines, or BLAS: scalar-times-vector-plus-vector (or saxpy for short,
for �x+y), matrix{vector multiplication, and matrix{matrixmultiplication (for
simplicity only the highest order term in n is given for q). When the data are
too large to �t in the top of the memory hierarchy, we wish to perform the most

ops per memory reference to minimize data movement; q gives an upper bound
on this ratio for any implementation. We see that only matrix multiplication
o�ers us an opportunity to make this ratio large.

This table re
ects a hierarchy of operations: Operations like saxpy operate
on vectors and o�er the worst q values; these are called Level 1 BLAS (Lawson,
Hanson, Kincaid and Krogh, 1979) and include inner products and other simple
operations. Operations like matrix{vector multiplication operate on matrices
and vectors, and o�er slightly better q values; these are called Level 2 BLAS
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Table 1: Memory references and operation counts for the BLAS.

Operation De�nition Floating Memory q

point references

operations

saxpy yi=�xi+yi, i=1; :::; n 2n 3n+1 2=3

Matrix{vector mult yi =
Pn

j=1Aijxj + yi 2n2 n2 + 3n 2

Matrix{matrix mult Cij=
Pn

k=1AikBkj+Cij 2n3 4n2 n=2

(Dongarra, Du Croz, Hammarling and Richard Hanson, 1988), and include solv-
ing triangular systems of equations and rank-1 updates of matrices (A + xyT ,
x and y column vectors). Operations like matrix{matrix multiplication oper-
ate on pairs of matrices, and o�er the best q values; these are called Level 3
BLAS (Dongarra, Du Croz, Du� and Hammarling, 1990), and include solving
triangular systems of equations with many right hand sides. These operations
have been standardized, and many high performance computers have highly op-
timized implementations of these that are useful for building more complicated
algorithms (Anderson, Bai, Bischof, Demmel, Dongarra, Du Croz, Greenbaum,
Hammarling, McKenney, Ostrouchov and Sorensen, 1992); this is the subject of
several succeeding sections.

3.1 Matrix multiplication on a shared memory machine

Suppose we have two levels of memory hierarchy, fast and slow, where the slow
memory is large enough to contain the n � n matrices A, B and C, but the
fast memory contains only M words where n < M � n2. Further assume the
data are reused optimally (which may be optimistic if the decisions are made
automatically by hardware).

The simplest algorithm one might try consists of three nested loops:

Algorithm 3 Unblocked Matrix Multiplication

for i = 1 : n
for j = 1 : n

for k = 1 : n
Cij = Cij +Aik �Bkj

We count the number of references to the slow memory as follows: n3 for
reading B n times, n2 for reading A one row at a time and keeping it in fast
memory until it is no longer needed, and 2n2 for reading one entry of C at a
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time, keeping it in fast memory until it is completely computed. This comes to
n3 + 3n2 for a q of about 2, which is no better than the Level 2 BLAS and far
from the maximum possible n=2. If M � n, so that we cannot keep a full row
of A in fast memory, q further decreases to 1, since the algorithm reduces to
a sequence of inner products, which are Level 1 BLAS. For every permutation
of the three loops on i, j and k, one gets another algorithm with q about the
same.

The next possibility is dividingB andC into column blocks, and computingC
block by block. We use the notation B(i : j; k : l) to mean the submatrix in rows
i through j and columns k through l. We partition B = [B(1); B(2); :::; B(N)]
where each B(i) is n � n=N , and similarly for C. Our column block algorithm
is then

Algorithm 4 Column-blocked Matrix Multiplication

for j = 1 : N
for k = 1 : n

C(j) = C(j) +A(1 : n; k) �B(j)(k; 1 : n=N )

AssumingM � 2n2=N+n, so that fast memory can accommodateB(j), C(j)

and one column of A simultaneously, our memory reference count is as follows:
2n2 for reading and writing each block of C once, n2 for reading each block of B
once, and Nn2 for reading A N times. This yields q � M=n, so that M needs
to grow with n to keep q large.

Finally, we consider rectangular blocking, where A is broken into an N �
N block matrix with n=N � n=N blocks A(ij), and B and C are similarly
partitioned. The algorithm becomes

Algorithm 5 Rectangular-blocked Matrix Multiplication

for i = 1 : N
for j = 1 : N

for k = 1; N

C(ij) = C(ij) +A(ik) �B(kj)

Assuming M � 3(n=N )2 so that one block each from A, B and C �t in
memory simultaneously, our memory reference count is as follows: 2n2 for read-
ing and writing each block of C once, Nn2 for reading A N times, and Nn2

for reading B N times. This yields q �
p
M=3, which is much better than the

previous algorithms.
In Hong and Kung (1981) an analysis of this problem leading to an upper

bound near
p
M is given, so we cannot expect to improvemuch on this algorithm

for square matrices. On the other hand, this brief analysis ignores a number of
practical issues:

1. high level language constructs do not yet support block layout of matrices
as described here (but see the discussion in Section 3.3);
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2. if the fast memory consists of vector registers and has vector operations
supporting saxpy but not inner products, a column blocked code may be
superior;

3. a real code will have to deal with nonsquare matrices, for which the optimal
block sizes may not be square (Gallivan et al., 1990).

Another possibility is Strassen's method (Aho, Hopcroft and Ullman, 1974),
which multiplies matrices recursively by dividing them into 2�2 block matrices,
and multiplying the subblocks using 7 matrix multiplications (recursively) and
15 matrix additions of half the size; this leads to an asymptotic complexity
of nlog2 7 � n2:81 instead of n3. The value of this algorithm is not just this
asymptotic complexity but its reduction of the problem to smaller subproblems
which eventually �t in fast memory; once the subproblems �t in fast memory
standard matrix multiplicationmay be used. This approach has led to speedups
on relatively large matrices on some machines (Bailey, Lee and Simon, 1991). A
drawback is the need for signi�cant workspace, and somewhat lower numerical
stability, although it is adequate for many purposes (Demmel and Higham, 1992;
Higham, 1990).

Given the complexity of optimizing the implementation of matrix multipli-
cation, we cannot expect all other matrix algorithms to be equally optimized
on all machines, at least not in a time users are willing to wait. Indeed, since
architectures change rather quickly, we prefer to do as little machine-speci�c
optimization as possible. Therefore, our shared memory algorithms in later sec-
tions assume only that highly optimized BLAS are available and build on top
of them.

3.2 Matrix multiplication on a distributed memory ma-

chine

In this section it will be convenient to number matrix entries (or subblocks) and
processors from 0 to n� 1 instead of 1 to n.

A dominant issue is data layout, or how the matrices are partitioned across
the machine. This will determine both the amount of parallellism and the cost
of communication. We begin by showing how best to implement matrix multi-
plication without regard to the layout's suitability for other matrix operations,
and return to the question of layouts in the next section.

The �rst algorithm is due to Cannon (1969) and is well suited for computers
laid out in a square N �N mesh, i.e. where each processor communicates most
e�ciently with the four other processors immediately north, east, south and
west of itself. We also assume the processors at the edges of the grid are directly
connected to the processors on the opposite edge; this makes the topology that
of a two-dimensional torus. Let A be partitioned into square subblocks A(ij)

as before, with A(ij) stored on processor (i; j). Let B and C be partitioned
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A(00) A(01) A(02) A(01) A(02) A(00) A(02) A(00) A(01)

A(11) A(12) A(10) A(12) A(10) A(11) A(10) A(11) A(12)

A(22) A(20) A(21) A(20) A(21) A(22) A(21) A(22) A(20)

B(00) B(11) B(22) B(10) B(21) B(02) B(20) B(01) B(12)

B(10) B(21) B(02) B(20) B(01) B(12) B(00) B(11) B(22)

B(20) B(01) B(12) B(00) B(11) B(22) B(10) B(21) B(02)

A, B after skewing A, B after shift k = 1 A, B after shift k = 2

Figure 4: Cannon's algorithm for N = 3.

similarly. The algorithm is given below. It is easily seen that whenever A(ik)

and B(kj) `meet' in processor i; j, they are multiplied and accumulated in C(ij);
the products for the di�erent C(ij) are accumulated in di�erent orders.

Algorithm 6 Cannon's matrix multiplication algorithm

forall i = 0 : N � 1

Left circular shift row i by i, so that A(i;j)

is assigned A(i;(j+i)modN).
forall j = 0 : N � 1

Upward circular shift column j by j, so that B(i;j)

is assigned B((j+i)modN;j).
for k = 1 : N

forall i = 0 : N � 1, forall j = 0 : N � 1

C(ij) = C(ij) + A(ij) �B(ij)

Left circular shift each row of A by 1, so A(i;j)

is assigned A(i;(j+1)modN).

Upward circular shift each column of B by 1, so B(i;j)

is assigned B((i+1)modN;j).

Figure 4 illustrates the functioning of this algorithm for N = 3. A variation
of this algorithm suitable for machines that are e�cient at spreading subblocks
across rows (or down columns) is to do this instead of the preshifting and ro-
tation of A (or B) (Fox, Johnson, Lyzenga, Otto, Salmon and Walker, 1988).

This algorithm is easily adapted to a hypercube. The simplest way is to
embed a grid (or two-dimensional torus) in a hypercube, i.e. map the processors
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0000 0001 0011 0010

0100 0101 0111 0110

1100 1101 1111 1110

1000 1001 1011 1010

Figure 5: Embedding a 4 � 4 grid in a four-dimensional hypercube (numbers
are processor numbers in hypercube).

in a grid to the processors in a hypercube, and the connections in a grid to a
subset of the connections in a hypercube (Ho, 1990; Johnsson, 1987). Suppose
the hypercube is d-dimensional, so the 2d processors are labelled by d bit num-
bers. We embed a 2n�2m grid in this hypercube (where m+n = d) by mapping
processor (i1; i2) in the grid to processor Gn;i12

m +Gm;i2 in the hypercube; i.e.
we just concatenate the n bits of Gn;i1 and m bits of Gm;i2 . Each row (column)
of the grid thus occupies an m- (n-) dimensional subcube of the original hyper-
cube, with nearest neighbours in the grid mapped to nearest neighbours in the
hypercube (Ho, Johnsson and Edelman, 1991). We illustrate for a 4 � 4 grid
in Figure 5. This approach easily extends to multi-dimensional arrays of size
2m1 � � � � � 2mr , where

Pr

i=1mi is at most the dimension of the hypercube.
This approach (which is useful for more than matrix multiplication) uses

only a subset of the connections in a hypercube, which makes the initial skewing
operations slower than they need be: if we can move only to nearest neighbours,
each skewing operation takes N � 1 communication steps, as many as in the
computational loop. We may use all the wires of the hypercube to reduce the
skewing to log2N operations. In the following algorithm, 
 denotes the bitwise
exclusive-or operator. We assume the 2n � 2n grid of data is embedded in the
hypercube so that A(i;j) is stored in processor i � 2n + j (Dekel, Nassimi and
Sahni, 1981):

Algorithm 7 Dekel's matrix multiplication algorithm

for k = 1 : n
Let jk = (kth bit of j) � 2k
Let ik = (kth bit of i) � 2k
forall i = 0 : 2n � 1, forall j = 0 : 2n � 1

Swap A(i;j
ik) and A(i;j)

Swap B(jk
i;j) to B(i;j)

for k = 1 : 2n

forall i = 0 : 2n � 1, forall j = 0 : 2n � 1

C(ij) = C(ij) + A(ij) �B(ij)

Swap A(i;j
gd;k) and A(i;j)
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Table 2: Cost of matrix multiplication on a hypercube.

Algorithm Message Data Sending Floating Point

Startups Steps Steps

Cannon (6) 2(2n � 1) 2n2(2n � 1) 2n32n

Dekel (7) n+ 2n � 1 n3 + n2(2n � 1) 2n32n

Ho et al. (8) n+ 2n � 1 n3 + n(2n � 1) 2n32n

Swap B(i
gd;k;j) and B(i;j)

Finally, we may speed this up further (Ho et al., 1991; Johnsson and Ho,
1989) provided the A(i;j) blocks are large enough, by using the same algorithm
as for force calculations in Section 2. If the blocks are n by n (so A and B are
n2n � n2n), then the algorithm becomes

Algorithm 8 Ho, Johnsson, and Edelman's matrix multiplication algorithm

for k = 1 : n
Let jk = (kth bit of j) � 2k
Let ik = (kth bit of i) � 2k
forall i = 0 : 2n � 1, forall j = 0 : 2n � 1

Swap A(i;j
ik) and A(i;j)

Swap B(jk
i;j) to B(i;j)

for k = 1 : 2n

forall i = 0 : 2n � 1, forall j = 0 : 2n � 1

C(ij) = C(ij) + A(ij) �B(ij)

forall l = 0 : n� 1

Swap A
(i;j
g

(l)

d;k
)

l and A
(i;j)
l (A

(ij)
l is the lth row of A(ij))

Swap B
(i
g

(l)

d;k
;j)

l and B
(i;j)
l (B

(ij)
l is the lth column of B(ij))

Algorithms 6, 7 and 8 all perform the same number of 
oating point op-
erations in parallel. Table 2 compares the number of communication steps,
assuming matrices are n2n � n2n, swapping a datum along a single wire is one
step, and the motions of A and B that can occur in parallel do occur in parallel.
Note that for large enough n the number of 
oating point steps overwhelms the
number of communication steps, so the e�ciency gets better.

In this section we have shown how to optimize matrix multiplication in
a series of steps tuning it ever more highly for a particular computer archi-
tecture, until essentially every communication link and 
oating point unit is
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utilized. Our algorithms are scalable, in that they continue to run e�ciently
on larger machines and larger problems, with communication costs becoming
ever smaller with respect to computation. If the architecture permitted us to
overlap communication and computation, we could pipeline the algorithm to
mask communication cost further.

On the other hand, let us ask what we lose by optimizing so heavily for one
architecture. Our high performance depends on the matrices having just the
right dimensions, being laid out just right in memory, and leaving them in a
scrambled �nal position (although a modest amount of extra communication
could repair this). It is unreasonable to expect users, who want to do several
computations of which this is but one, to satisfy all these requirements. There-
fore a practical algorithm will have to deal with many irregularities, and be
quite complicated. Our ability to do this extreme optimization is limited to
a few simple and regular problems like matrix multiplication on a hypercube,
as well as other heavily used kernels like the BLAS, which have indeed been
highly optimized for many architectures. We do not expect equal success for
more complicated algorithms on all architectures of interest, at least within a
reasonable amount of time.3 Also, the algorithm is highly tuned to a particular
interconnection network topology, which may require redesign for another ma-
chine (in view of this, a number of recent machines try to make communication
time appear as independent of topology as possible, so the user sees essentially
a completely connected topology).

3.3 Data layouts on distributed memory machines

Choosing a data layout may be described as choosing a mapping f(i; j) from
location (i; j) in a matrix to the processor on which it is stored. As discussed
previously, we hope to design f so that it permits highly parallel implementa-
tion of a variety of matrix algorithms, limits communication cost as much as
possible, and retains these attractive properties as we scale to larger matrices
and larger machines. For example, the algorithms of the previous section use the
map f(i; j) = (bi=rc; bj=rc), where we subscript matrices starting at 0, number
processors by their coordinates in a grid (also starting at (0,0)), and store an
r � r matrix on each processor.

There is an emerging consensus about data layouts for distributed memory
machines. This is being implemented in several programming languages (Fox,
Hiranandani, Kennedy, Koelbel, Kremer, Tseng and Wu, 1990; High Pefor-
mance Fortran, 1991), that will be available to programmers in the near future.
We describe these layouts here.

High Performance Fortran (HPF) (High Peformance Fortran, 1991) permits
the user to de�ne a virtual array of processors, align actual data structures

3The matrix multiplication subroutine in the CM-2 Scienti�c Subroutine Library took
approximately 10 person-years of e�ort (Johnsson, 1990).
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like matrices and arrays with this virtual array (and so with respect to each
other), and then to layout the virtual processor array on an actual machine.
We describe the layout functions f o�ered for this last step. The range of f is
a rectangular array of processors numbered from (0; 0) up to (p1 � 1; p2 � 1).
Then all f can be parameterized by two integer parameters b1 and b2 as follows:

fb1;b2(i; j) =

��
i

b1

�
mod p1;

�
j

b2

�
mod p2

�

Suppose the matrix A (or virtual processor array) is m � n. Then choosing
b2 = n yields a column of processors, each containing some number of complete
rows of A. Choosing b1 = m yields a row of processors. Choosing b1 = m=p1
and b2 = n=p2 yields a blocked layout, where A is broken into b1� b2 subblocks,
each of which resides on a single processor. This is the simplest two-dimensional
layout one could imagine (we used it in the previous section), and by having large
subblocks stored on each processor it makes using the BLAS on each processor
attractive. However, for straightforward matrix algorithms that process the
matrix from left to right (including Gaussian elimination, QR decomposition,
reduction to tridiagonal form, and so on), the leftmost processors will become
idle early in the computation and make load balance poor. Choosing b1 = b2 = 1
is called scatter mapping (or wrapped or cyclic or interleaved mapping), and
optimizes load balance, since the matrix entries stored on a single processor
are as nearly as possible uniformly distributed throughout the matrix. On the
other hand, this appears to inhibit the use of the BLAS locally in each processor,
since the data owned by a processor are not contiguous from the point of view
of the matrix. Finally, by choosing 1 < b1 < m=p1 and 1 < b2 < n=p2, we get
a block-scatter mapping which trades o� load balance and applicability of the
BLAS. These layouts are shown in Figures 6 through 8 for a 16�16 matrix laid
out on a 4� 4 processor grid; each array entry is labelled by the number of the
processor that stores it.

By being a little more 
exible about the algorithms we implement, we can
mitigate the apparent tradeo� between load balance and applicability of BLAS.
For example, the layout of A in Figure 7 is identical to the layout in Figure 6
of PTAP , where P is a permutation matrix. This shows that running the
algorithms of the previous section to multiplyA times B in scatter layout is the
same as multiplying PAPT and PBPT to get PABPT , which is the desired
product. Indeed, as long as (1) A and B are both distributed over a square
array of processors; (2) the permutations of the columns of A and rows of B
are identical; and (3) for all i the number of columns of A stored by processor
column i is the same as the number of rows of B stored by processor row i,
the algorithms of the previous section will correctly multiply A and B. The
distribution of the product will be determined by the distribution of the rows
of A and columns of B. We will see a similar phenomenon for other distributed
memory algorithms later.
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0,0 0,0 0,0 0,0 0,1 0,1 0,1 0,1 0,2 0,2 0,2 0,2 0,3 0,3 0,3 0,3

0,0 0,0 0,0 0,0 0,1 0,1 0,1 0,1 0,2 0,2 0,2 0,2 0,3 0,3 0,3 0,3
0,0 0,0 0,0 0,0 0,1 0,1 0,1 0,1 0,2 0,2 0,2 0,2 0,3 0,3 0,3 0,3
0,0 0,0 0,0 0,0 0,1 0,1 0,1 0,1 0,2 0,2 0,2 0,2 0,3 0,3 0,3 0,3
1,0 1,0 1,0 1,0 1,1 1,1 1,1 1,1 1,2 1,2 1,2 1,2 1,3 1,3 1,3 1,3
1,0 1,0 1,0 1,0 1,1 1,1 1,1 1,1 1,2 1,2 1,2 1,2 1,3 1,3 1,3 1,3
1,0 1,0 1,0 1,0 1,1 1,1 1,1 1,1 1,2 1,2 1,2 1,2 1,3 1,3 1,3 1,3
1,0 1,0 1,0 1,0 1,1 1,1 1,1 1,1 1,2 1,2 1,2 1,2 1,3 1,3 1,3 1,3

2,0 2,0 2,0 2,0 2,1 2,1 2,1 2,1 2,2 2,2 2,2 2,2 2,3 2,3 2,3 2,3
2,0 2,0 2,0 2,0 2,1 2,1 2,1 2,1 2,2 2,2 2,2 2,2 2,3 2,3 2,3 2,3

2,0 2,0 2,0 2,0 2,1 2,1 2,1 2,1 2,2 2,2 2,2 2,2 2,3 2,3 2,3 2,3
2,0 2,0 2,0 2,0 2,1 2,1 2,1 2,1 2,2 2,2 2,2 2,2 2,3 2,3 2,3 2,3
3,0 3,0 3,0 3,0 3,1 3,1 3,1 3,1 3,2 3,2 3,2 3,2 3,3 3,3 3,3 3,3
3,0 3,0 3,0 3,0 3,1 3,1 3,1 3,1 3,2 3,2 3,2 3,2 3,3 3,3 3,3 3,3
3,0 3,0 3,0 3,0 3,1 3,1 3,1 3,1 3,2 3,2 3,2 3,2 3,3 3,3 3,3 3,3

3,0 3,0 3,0 3,0 3,1 3,1 3,1 3,1 3,2 3,2 3,2 3,2 3,3 3,3 3,3 3,3

Figure 6: Block layout of a 16� 16 matrix on a 4� 4 processor grid.

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3
1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3
3,0 3,1 3,2 3,3 3,0 3,1 3,2 3,3 3,0 3,1 3,2 3,3 3,0 3,1 3,2 3,3
0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3
2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3 3,0 3,1 3,2 3,3 3,0 3,1 3,2 3,3 3,0 3,1 3,2 3,3
0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3
1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3
2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3
3,0 3,1 3,2 3,3 3,0 3,1 3,2 3,3 3,0 3,1 3,2 3,3 3,0 3,1 3,2 3,3

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3
1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3
2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3
3,0 3,1 3,2 3,3 3,0 3,1 3,2 3,3 3,0 3,1 3,2 3,3 3,0 3,1 3,2 3,3

Figure 7: Scatter layout of a 16� 16 matrix on a 4� 4 processor grid.
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0,0 0,0 0,1 0,1 0,2 0,2 0,3 0,3 0,0 0,0 0,1 0,1 0,2 0,2 0,3 0,3
0,0 0,0 0,1 0,1 0,2 0,2 0,3 0,3 0,0 0,0 0,1 0,1 0,2 0,2 0,3 0,3
1,0 1,0 1,1 1,1 1,2 1,2 1,3 1,3 1,0 1,0 1,1 1,1 1,2 1,2 1,3 1,3
1,0 1,0 1,1 1,1 1,2 1,2 1,3 1,3 1,0 1,0 1,1 1,1 1,2 1,2 1,3 1,3
2,0 2,0 2,1 2,1 2,2 2,2 2,3 2,3 2,0 2,0 2,1 2,1 2,2 2,2 2,3 2,3
2,0 2,0 2,1 2,1 2,2 2,2 2,3 2,3 2,0 2,0 2,1 2,1 2,2 2,2 2,3 2,3

3,0 3,0 3,1 3,1 3,2 3,2 3,3 3,3 3,0 3,0 3,1 3,1 3,2 3,2 3,3 3,3
3,0 3,0 3,1 3,1 3,2 3,2 3,3 3,3 3,0 3,0 3,1 3,1 3,2 3,2 3,3 3,3
0,0 0,0 0,1 0,1 0,2 0,2 0,3 0,3 0,0 0,0 0,1 0,1 0,2 0,2 0,3 0,3
0,0 0,0 0,1 0,1 0,2 0,2 0,3 0,3 0,0 0,0 0,1 0,1 0,2 0,2 0,3 0,3
1,0 1,0 1,1 1,1 1,2 1,2 1,3 1,3 1,0 1,0 1,1 1,1 1,2 1,2 1,3 1,3
1,0 1,0 1,1 1,1 1,2 1,2 1,3 1,3 1,0 1,0 1,1 1,1 1,2 1,2 1,3 1,3
2,0 2,0 2,1 2,1 2,2 2,2 2,3 2,3 2,0 2,0 2,1 2,1 2,2 2,2 2,3 2,3
2,0 2,0 2,1 2,1 2,2 2,2 2,3 2,3 2,0 2,0 2,1 2,1 2,2 2,2 2,3 2,3
3,0 3,0 3,1 3,1 3,2 3,2 3,3 3,3 3,0 3,0 3,1 3,1 3,2 3,2 3,3 3,3

3,0 3,0 3,1 3,1 3,2 3,2 3,3 3,3 3,0 3,0 3,1 3,1 3,2 3,2 3,3 3,3

Figure 8: Block scatter layout of a 16�16 matrix on a 4�4 processor grid with
2� 2 blocks.

A di�erent approach is to write algorithms that work independently of the
location of the data, and rely on the underlying language or run-time system to
optimize the necessary communications. This makes code easier to write, but
puts a large burden on compiler and run-time system writers (Van de Velde,
1992).

4 Systems of linear equations

We discuss both dense and band matrices, on shared and distributed memory
machines. We begin with dense matrices and shared memory, showing how
the standard algorithm can be reformulated as a block algorithm, calling the
Level 2 and 3 BLAS in its innermost loops. The distributed memory versions
will be similar, with the main issue being laying out the data to maximize load
balance and minimize communication. We also present some highly parallel,
but numerically unstable, algorithms to illustrate the tradeo� between stability
and parallellism. We conclude with some algorithms for band matrices.

4.1 Gaussian elimination on a shared memory machine

To solve Ax = b, we �rst use Gaussian elimination to factor the nonsingular
matrix A as PA = LU , where L is lower triangular, U is upper triangular, and
P is a permutation matrix. Then we solve the triangular systems Ly = Pb

and Ux = y for the solution x. In this section we concentrate on factoring
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PA = LU , which has the dominant number of 
oating point operations, 2n3=3+
O(n2). Pivoting is required for numerical stability, and we use the standard
partial pivoting scheme (Golub and Van Loan, 1989); this means L has unit
diagonal and other entries bounded in magnitude by one. The simplest version
of the algorithm involves adding multiples of one row of A to others to zero out
subdiagonal entries, and overwriting A with L and U :

Algorithm 9 Row oriented Gaussian elimination (kij-LU decomposition)

for k = 1 : n� 1
f choose l so jAlkj = maxk�i�n jAikj, swap rows l and k of A g
for i = k + 1 : n

Aik = Aik=Akk

for j = k + 1 : n
Aij = Aij �Aik �Akj

There is obvious parallellism in the innermost loop, since each Aij can be
updated independently. If A is stored by column, as is the case in Fortran, then
since the inner loop combines rows of A, it accesses memory entries (at least)
n locations apart. As described in Section 2, this does not respect locality.
Algorithm 9 is also called kij-LU decomposition, because of the nesting order
of its loops. All the rest of 3! permutations of i, j and k lead to valid algorithms,
some of which access columns of A in the innermost loop. Algorithm 10 is one
of these, and is used in the LINPACK routine sgefa (Dongarra et al., 1979):

Algorithm 10 Column oriented Gaussian elimination (kji-LU decomposition)

for k = 1 : n� 1
f choose l so jAlkj = maxk�i�n jAikj, swap Alk and Akk g
for i = k + 1 : n

Aik = Aik=Akk

for j = k + 1 : n
f swap Alj and Akj g
for i = k + 1 : n

Aij = Aij �Aik �Akj

The inner loop of Algorithm 10 can be performed by a single call to the
Level 1 BLAS operation saxpy. To achieve higher performance, we modify this
code �rst to use the Level 2 and then the Level 3 BLAS in its innermost loops.
Again, 3! versions of these algorithms are possible, but we just describe the
ones used in the LAPACK library (Anderson et al., 1992). To make the use of
BLAS clear, we use matrix/vector operations instead of loops:

Algorithm 11 Gaussian elimination using Level 2 BLAS

for k = 1 : n� 1
f choose l so jAlkj = maxk�i�n jAikj, swap rows l and k of A g
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A(k + 1 : n; k) = A(k + 1 : n; k)=Akk

A(k + 1 : n; k+ 1 : n) = A(k + 1 : n; k+ 1 : n)
�A(k + 1 : n; k) �A(k; k + 1 : n)

The parallellism in the inner loop is evident: most work is performed is a
single rank-1 update of the trailing n�k � n�k submatrix A(k+1 : n; k+1 : n),
where each entry of A(k + 1 : n; k + 1 : n) can be updated in parallel. Other
permutations of the nested loops lead to di�erent algorithms, which depend
on the BLAS for matrix{vector multiplication and solving a triangular system
instead of rank-1 updating (Anderson and Dongarra, 1990; Robert, 1990); which
is faster depends on the relative speed of these on a given machine.

To convert to the Level 3 BLAS involves column blocking

A = [A(1); : : : ; A(m)]

into n � nb blocks, where nb is the block size and m = n=nb. The optimal
choice of nb depends on the memory hierarchy of the machine in question: our
approach is to compute the LU decomposition of each n � nb subblock of A
using Algorithm 11 in the fast memory, and then use Level 3 BLAS to update
the rest of the matrix:

Algorithm 12 Gaussian elimination using Level 3 BLAS (we assume nb divides
n)

for l = 1 : m
k = (l � 1) � nb + 1

Use Algorithm 11 to factorize PA(l) = LU in place
Apply P to prior columns A(1 : n; 1 : k � 1) and later columns

A(1 : n; k+ nb : n)
Update block row of U :

Replace A(k : k + nb � 1; k+ nb : n) by the solution X of
TX = A(k : k + nb � 1; k+ nb : n), where T is the lower
triangular matrix in A(k : k + nb � 1; k : k + nb � 1)

A(k + nb : n; k+ nb : n) = A(k + nb : n; k + nb : n)�
A(k + nb : n; k : k + nb � 1) �A(k : k + nb � 1; k+ nb : n)

Most of the work is performed in the last two lines, solving a triangular
system with many right-hand sides, and matrix multiplication. Other similar
algorithmsmay be derived by conformally partitioningL, U and A, and equating
partitions in A = LU . Algorithms 11 and 12 are available as, respectively,
subroutines sgetf2 and sgetrf in LAPACK (Anderson et al., 1992).

We illustrate these points with the slightly di�erent example of Cholesky
decomposition, which uses a very similar algorithm: Table 3 shows the speeds
in mega
ops of the various BLAS and algorithms on 1 and 8 processors of a
Cray YMP.
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Table 3: Speed of Cholesky on a Cray YMP

1 PE 8 PEs

Maximum speed 330 2640
LINPACK (Cholesky with BLAS 1), n = 500 72 72
Matrix{vector multiplication 311 2285
Matrix{matrix multiplication 312 2285
Triangular solve (one right hand side) 272 584
Triangular solve (many right hand sides) 309 2398
LAPACK (Cholesky with BLAS 3), n = 500 290 1414
LAPACK (Cholesky with BLAS 3), n = 1000 301 2115

4.2 Gaussian elimination on a distributed memory ma-

chine

As described earlier, layout strongly in
uences the algorithm. We show the
algorithm for a block scatter mapping in both dimensions, and then discuss
how other layouts may be handled. The algorithm is essentially the same as
Algorithm 12, with communication inserted as necessary. The block size nb
equals b2, which determines the layout in the horizontal direction.

Communication is required in Algorithm 11 to �nd the pivot entry at each
step and swap rows if necessary; then each processor can perform the scaling
and rank-1 updates independently. The pivot search is a reduction operation,
as described in Section 2. After the block column is fully factorized, the pivot
information must be broadcast so other processors can permute their own data,
as well as permute among di�erent processors.

In Algorithm 12, the nb�nb L matrix stored on the diagonal must be spread
rightward to other processors in the same row, so they can compute their entries
ofU . Finally, the processors holding the rest ofL below the diagonalmust spread
their submatrices to the right, and the processors holding the new entries of U
just computed must spread their submatrices downward, before the �nal rank-nb
update in the last line of Algorithm 12 can take place.

The optimal choice of block sizes b1 and b2 depends on the cost of communi-
cation versus computation. For example, if the communication required to do
pivot search and swapping of rows is expensive, b1 should be large. The execu-
tion time is a function of dimension n, block sizes b1 and b2, processor counts
p1 and p2, and the cost of computation and communication (from Section 2, we
know how to model these). Given this function, it may be minimized as a func-
tion of b1, b2, p1 and p2. Some theoretical analyses of this sort for special cases
may be found in Robert (1990) and the references therein. See also Dongarra
and Ostrouchov (1990) and Dongarra and van de Geijn (1991a). As an example
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of the performance that can be attained in practice, on an Intel Delta with 512
processors the speed of LU ranged from a little over 1 giga
op for n = 2000 to
nearly 12 giga
ops for n = 25000.

Even if the layout is not block scatter as described so far, essentially the
same algorithmmay be used. As described in Section 3.3, many possible layouts
are related by permutation matrices. So simply performing the algorithm just
described with (optimal) block sizes b1 and b2 on the matrix A as stored is
equivalent to performing the LU decomposition of P1AP2 where P1 and P2 are
permutationmatrices. Thus at the cost of keeping track of these permutations (a
possibly nontrivial software issue), a single algorithm su�ces for a wide variety
of layouts.

Finally, we need to solve the triangular systems Ly = b and Ux = y arising
from the LU decomposition. On a shared memorymachine, this is accomplished
by two calls to the Level 2 BLAS. Designing such an algorithm on a distributed
memory machine is harder, because the fewer 
oating point operations per-
formed (O(n2) instead of O(n3)) make it harder to mask the communication
(see Eisenstat, Heath, Henkel and Romine, 1988; Heath and Romine, 1988; Li
and Coleman, 1988; Romine and Ortega, 1988).

4.3 Clever but impractical parallel algorithms for solving

Ax = b

The theoretical literature provides us with a number of apparently fast but ulti-
mately unattractive algorithms for solving Ax = b. These may be unattractive
because they need many more parallel processors than is reasonable, ignore lo-
cality, are numerically unstable, or any combination of these reasons. We begin
with an algorithm for solving n � n triangular linear systems in O(log2 n) par-
allel steps. Suppose T is lower triangular with unit diagonal (the diagonal can
be factored out in one parallel step). For each i from 1 to n � 1, let Ti equal
the identity matrix except for column i where it matches T . Then it is simple
to verify T = T1T2 � � �Tn�1 and so T�1 = T�1n�1 � � �T�12 T�11 . One can also easily

see that T�1i equals the identity except for the subdiagonal of column i, where
it is the negative of Ti. Thus it takes no work to compute the T�1i , and the
work involved is to compute the product T�1n�1 � � �T�11 in log2 n parallel steps
using a tree. Each parallel step involves multiplying n� n matrices (which are
initially quite sparse, but �ll up), and so takes about log2 n parallel substeps,
for a total of log22 n. The error analysis of this algorithm (Sameh and Brent,
1977) yields an error bound proportional to �(T )3" where �(T ) = kTk�kT�1k is
the condition number and " is machine precision; this is in contrast to the error
bound �(T )" for the usual algorithm. The error bound for the parallel algorithm
may be pessimistic { the worst example we have found has an error growing like
�(T )1:5" { but shows that there is a tradeo� between parallellism and stability.
Also, to achieve the maximum speedup O(n3) processors are required, which is
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unrealistic for large n.
We can use this algorithm to build an O(log2 n) algorithm for the general

problem Ax = b (Csanky, 1977), but this algorithm is so unstable as to be
entirely useless in 
oating point (in IEEE double precision 
oating point, it
achieves no precision in inverting 3I, where I is an identity matrix of size 60 or
larger). There are four steps:

1. Compute the powers of A (A2, A3, ... , An�1) by repeated squaring (log2 n
matrix multiplications of log2 n steps each).

2. Compute the traces si = tr(Ai) of the powers in log2 n steps.

3. Solve the Newton identities for the coe�cients ai of the characteristic
polynomial; this is a triangular system of linear equations whose matrix
entries and right hand side are known integers and the si (we can do this
in log22 n steps as described above).

4. Compute the inverse using Cayley-Hamilton Theorem (in about log2 n
steps).

For a survey of other theoretical algorithms, see Bertsekas and Tsitsiklis (1989)
and Karp and Ramachandran (1990).

4.4 Solving banded systems

These problems do not lend themselves as well to the techniques described
above, especially for small bandwidth. The reason is that proportionately less
and less parallel work is available in updating the trailing submatrix, and in the
limiting case of tridiagonal matrices, the parallel algorithm derived as above
and the standard serial algorithm are nearly identical. If the bandwidth is wide
enough, however, the techniques of the previous sections still apply (Du Croz et
al., 1990; Fox et al., 1988).

The problem of solving banded linear systems with a narrow band has been
studied by many authors, see for instance the references in Gallivan, Heath, Ng
et al. (1990) and Ortega (1988). We will only sketch some of the main ideas
and we will do so for rather simple problems. The reader should keep in mind
that these ideas can easily be generalized for more complicated situations, and
many have appeared in the literature.

Most of the parallel approaches perform more arithmetic operations than
standard (sequential) Gaussian elimination (typically 2:5 times as many), twisted
factorization being the only exception. In twisted factorization the Gaussian
elimination process is carried out in parallel from both sides. This method was
�rst proposed in Babuska (1972) for tridiagonal systems Tx = b as a means to
compute a speci�ed component of x more accurately. For a tridiagonal matrix
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twisted factorization leads to the following decomposition of T :0
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or T = PQ, where we have assumed that no zero diagonal element is created in
P or Q. Such decompositions exist if A is symmetric positive de�nite, or if A
is an M -matrix, or when A is diagonally dominant. The twisted factorization
and subsequent forward and back substitutions with P and Q take as many
arithmetic operations as the standard factorization, and can be carried out with
twofold parallellism by working from both ends of the matrix simultaneously.
For an analysis of this process for tridiagonal systems, see van der Vorst (1987a).
Twisted factorization can be combined with any of the following techniques,
often doubling the parallellism.

The other techniques we will discuss can all be applied to general banded
systems, for which most were originally proposed, but for ease of exposition
we will illustrate them just with a lower unit bidiagonal system Lx = b. A
straight forward parallellization approach is to eliminate the unknown xi�1 from
equation i using equation i�1, for all i in parallel. This leads to a new system in
which each xi is coupled only with xi�2. Thus, the original system splits in two
independent lower bidiagonal systems of half the size, one for the odd-numbered
unknowns, and one for the even-numbered unknowns. This process can be
repeated recursively for both new systems, leading to an algorithm known as
recursive doubling (Stone, 1973). In Algorithm 2 (Section 2.2) it was presented
as a special case of parallel pre�x. It has been analysed and generalized for
banded systems in Dubois and Rodrigue (1977). Its signi�cance for modern
parallel computers is limited, which we illustrate with the following examples.
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Suppose we perform a single step of recursive doubling. This step can be
done in parallel, but it involves slightly more arithmetic than the serial elimina-
tion process for solving Lx = b. The two resulting lower bidiagonal systems can
be solved in parallel. This implies that on a two-processor system the time for a
single step of recursive doubling will be slightly more than the time for solving
the original system with only one processor. If we have n processors (where n
is the dimension of L), then the elimination step can be done in very few time
steps, and the two resulting systems can be solved in parallel, so that we have
a speedup of about 2. However, this is not very practical, since during most of
the time n�2 processors are idle, or formulated di�erently, the e�ciency of the
processors is rather low.

If we use n processors to apply this algorithm recursively instead of splitting
into just two systems, we can solve in O(logn) steps, a speedup of O(n= logn),
but the e�ciency decreases like O(1= logn). This is theoretically attractive but
ine�cient. Because of the data movement required, it is unlikely to be fast
without system support for this communication pattern.

A related approach, which avoids the two subsystems, is to eliminate only
the odd-numbered unknowns xi�1 from the even-numbered equations i. Again,
this can be done in parallel, or in vector mode, and it results in a new system
in which only the even-numbered unknowns are coupled. After having solved
this reduced system, the odd-numbered unknowns can be computed in parallel
from the odd-numbered equations. Of course, the trick can be repeated for the
subsystem of half size, and this process is known as cyclic reduction (Lambiotte
and Voigt, 1974; Heller, 1978). Since the amount of serial work is halved in
each step by completely parallel (or vectorizable) operations, this approach has
been successfully applied on vector supercomputers, especially when the vector
speed of the machine is signi�cantly greater than the scalar speed (Ortega, 1988;
de Groen, 1991; Schlichting and van der Vorst, 1987). For distributed memory
computers the method requires too much data movement for the reduced system
to be practical.

However, the method is easily generalized to one with more parallellism.
Cyclic reduction can be viewed as an approach in which the given matrix L is
written as a lower block bidiagonal matrix with 2 � 2 blocks along the diag-
onal. In the elimination process all (2; 1) positions in the diagonal blocks are
eliminated in parallel. An obvious idea is to subdivide the matrix into larger
blocks, i.e. we write L as a block bidiagonal matrix with k� k blocks along the
diagonal (for simplicity we assume that n is a multiple of k). In practical cases k
is chosen so large that the process is not repeated for the resulting subsystems,
as for cyclic reduction (where k = 2). This approach is referred to as a divide-

and-conquer approach. For banded triangular systems it was �rst suggested
by Chen, Kuck and Sameh (1978), for tridiagonal systems it was proposed by
Wang (1981).

To illustrate, let us apply one parallel elimination step to the lower bidiagonal
system Lx = b to eliminate all subdiagonal elements in all diagonal blocks. This

31



yields a system ~Lx = ~b, where for k = 4 and n = 16 we get

~L =

0
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? 1
? 1
? 1
? 1

? 1
? 1
? 1
? 1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

: (3)

There are two possibilities for the next step. In the original approach (Wang,
1981), the �ll-in in the subdiagonal blocks is eliminated in parallel, or vector
mode, for each subdiagonal block (note that each subdiagonal block has only
one column with nonzero elements). It has been shown in van der Vorst and
Dekker (1989) that this leads to very e�cient vectorized code for machines such
as Cray, Fujitsu, etc.

For parallel computers, the parallellism in eliminating these subdiagonal
blocks is relatively �ne-grained compared with the more coarse-grained paral-
lellism in the �rst step of the algorithm. Furthermore, on distributed memory
machines the data for each subdiagonal block has to be spread over all proces-
sors. In Michielse and van der Vorst (1988) it has been shown that this limits
the performance of the algorithm, the speedup being bounded by the ratio of
computational speed and communication speed. This ratio is often very low
(Michielse and van der Vorst, 1988).

The other approach is �rst to eliminate successively the last nonzero elements
in the subdiagonal blocks ~Lj;j�1. This can be done with a short recurrence of
length n=k � 1, after which all �ll-in can be eliminated in parallel. For the
recurrence we need some data communication between processors. However, for
k large enough with respect to n=k, one can attain speedups close to 2k=5 for this
algorithm on a k processor system (van der Vorst, 1989c). For a generalization
of the divide-and-conquer approach for banded systems, see Meier (1985); the
data transport aspects for distributed memory machines have been discussed in
Michielse and van der Vorst (1988).

There are other variants of the divide-and-conquer approach that move the
�ll-in into other columns of the subblocks or are more stabile numerically. For
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example, in Mehrmann (1991) the matrix is split into a block diagonal matrix
and a remainder via rank-1 updates.

5 Least squares problems

Most algorithms for �nding the x minimizing kAx�bk2 require computing a QR
decomposition of A, where Q is orthogonal and R is upper triangular. We will
assume A is m�n, m � n, so that Q is m�m and R is m�n. For simplicity we
consider only QR without pivoting, and mention work incorporating pivoting
at the end.

The conventional approach is to premultiply A by a sequence of simple or-
thogonal matrices Qi chosen to introduce zeros below the diagonal of A (Golub
and Van Loan, 1989). Eventually A becomes upper triangular, and equal to R,
and the product QN � � �Q1 = Q. One kind of Qi often used is a Givens rotation,
which changes only two rows of A, and introduces a single zero in one of them;

it is the identity in all but two rows and columns, where it is

�
c s

�s c

�
, with

c2 + s2 = 1. A second kind of Qi is a Householder re
ection, which can change
any number of rows of A, zeroing out all entries but one in the changed rows of
one column of A; a Household re
ection may be written I � 2uuT , where u is a
unit vector with nonzeros only in the rows to be changed.

5.1 Shared memory algorithms

The basic algorithm to compute a QR decomposition using Householder trans-
formations is given in (Golub and Van Loan, 1989):

Algorithm 13 QR decomposition using Level 2 BLAS

for k = 1 : n� 1
Compute a unit vector uk so that (I � 2uku

T
k )A(k + 1 : m; k) = 0

Update A = A� 2 � uk(uTkA) (= QkA where Qk = I � 2uku
T
k )

Computing uk takes O(n � k) 
ops and is essentially a Level 1 BLAS
operation. Updating A is seen to consist of a matrix{vector multiplication
(wT = uTkA) and a rank-1 update (A � 2ukw

T ), both Level 2 BLAS opera-
tions. To convert to Level 3 BLAS requires the observation that one can write
Qb �Qb�1 � � �Q1 = I �UTUT where U = [u1; :::; ub] is m� b, and T is b� b and
triangular (Schreiber and Van Loan, 1989); for historical reasons this is called
a compact WY transformation. Thus, by analogy with the LU decomposition
with column blocking (Algorithm 12), we may �rst use Algorithm 13 on a block
of nb columns of A, form U and T of the compact WY transformation, and then
update the rest of A by forming A � UTUTA, which consists of three matrix{
matrix multiplications. This increases the number of 
oating point operations
by a small amount, and is as stable as the usual algorithm:
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Algorithm 14 QR decomposition using Level 3 BLAS (same notation as Al-
gorithm 12)

for l = 1 : m
k = (l � 1) � nb + 1

Use Algorithm 13 to factorize A(l) = QlRl,
Form matrices Ul and Tl from Ql

Multiply X = UT
l �A(k : m; k + nb : n)

Multiply X = TlX

Update A(k : m; k + nb : n) = A(k : m; k + nb : n)� UX

Algorithm 14 is available as subroutine sgeqrf from LAPACK (Anderson
et al., 1992). Pivoting complicates matters slightly. In conventional column
pivoting at step k we need to pivot (permute columns) so the next column ofA to
be processed has the largest norm in rows k through m of all remaining columns.
This cannot be directly combined with blocking as we have just described it, and
so instead pivoting algorithms which only look among locally stored columns if
possible have been developed (Bischof and Tang, 1991a,b).

Other shared memory algorithms based on Givens rotations have also been
developed (Chu, 1988a; Gentleman and Kung, 1981; Sameh, 1985), although
these do not seem superior on shared memory machines. It is also possible to
use Level 2 and 3 BLAS in the modi�ed Gram{Schmidt algorithm (Gallivan,
Jalby, Meier and Sameh,1988).

5.2 Distributed memory algorithms

Just as we could mapAlgorithm 13 (Gaussian eliminationwith Level 3 BLAS) to
a distributed memorymachine with blocked and/or scattered layout by inserting
appropriate communication, this can also be done for QR with Level 3 BLAS.

An interesting alternative that works with the same data layouts is based on
Givens rotations (Chu, 1988a; Pothen, Jha and Vemulapati, 1987). We consider

just the �rst block column in the block scattered layout, where each of a subset
of the processors owns a set of p r � r subblocks of the block column evenly
distributed over the column. Each processor reduces its own p � r� r submatrix
to upper triangular form, spreading the Givens rotations to the right for other
processors to apply to their own data. This reduces the processor column to
p r � r triangles, each owned by a di�erent processor. Now there needs to be
communication among the processors in the column. Organizing them in a tree,
at each node in the tree two processors, each of which owns an r � r triangle,
share their data to reduce to a single r� r triangle. The requisite rotations are
again spread rightward. So in log2 p of these steps, the �rst column has been
reduced to a single r� r triangle, and the algorithm moves on to the next block
column.
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Other Givens based algorithms have been proposed, but seem to require
more communication than this one (Pothen et al., 1987).

6 Eigenproblems and the singular value decom-

position

6.1 General comments

The standard serial algorithms for computing the eigendecomposition of a sym-
metric matrixA, a general matrixB, or the singular value decomposition (SVD)
of a general matrix C have the same two-phase structure: apply orthogonal
transformations to reduce the matrix to a condensed form, and then apply an
iterative algorithm to the condensed form to compute its eigendecomposition or
SVD. For the three problems of this section, the condensed forms are symmet-
ric tridiagonal form, upper Hessenberg form and bidiagonal form, respectively.
The motivation is that the iteration requires far fewer 
ops to apply to the con-
densed form than to the original dense matrix. We discuss reduction algorithms
in Section 6.2.

The challenge for parallel computation is that the iteration algorithms for the
condensed forms can be much harder to parallellize than the reductions, since
they involve nonlinear, sometimes scalar recurrences and/or little opportunity
to use the BLAS. For the nonsymmetric eigenproblem, this has led researchers
to explore algorithms that are not parallel versions of serial ones. So far none
is as stable as the serial one; this is discussed in Section 6.5.

For the symmetric eigenproblem and SVD, the reductions take O(n3) 
ops,
but subsequent iterations to �nd just the eigenvalues or singular values take
only O(n2) 
ops; therefore these iterations have not been bottlenecks on serial
machines. But on some parallel machines, the reduction algorithms we discuss
are so fast that the O(n2) part becomes a bottleneck for surprisingly large
values of n. Therefore, parallellizing the O(n2) part is of interest; we discuss
these problems in Section 6.3.

Other approaches to the symmetric eigenproblem and SVD apply to dense
matrices instead of condensed matrices. The best known is Jacobi's method.
While attractively parallellizable, the convergence rate is su�ciently slower than
methods based on tridiagonal and bidiagonal forms that it is seldom competitive.
On the other hand, the Jacobi method is sometimes faster and can be much
more accurate than these other methods and so still deserves attention; see
Section 6.4. Another method that applies to dense symmetric matrices is a
variation of the spectral divide-and-conquer method for nonsymmetric matrices,
and discussed in Section 6.5.

In summary, reasonably fast and stable parallel algorithms (if not always im-
plementations) exist for the symmetric eigenvalue problem and SVD. However,
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no highly parallel and stable algorithms currently exist for the nonsymmetric
problem; this remains an open problem.

6.2 Reduction to condensed forms

Since the di�erent reductions to condensed forms are so similar, we discuss only
reduction to tridiagonal form; for the others see Dongarra et al. (1989). At step
k we compute a Householder transformation Qk = I � 2uku

T
k so that column k

ofQkA is zero below the �rst subdiagonal; these zeros are unchanged by forming
the similarity transformation QkAQ

T
k .

Algorithm 15 Reduction to tridiagonal form using Level 2 BLAS (same nota-
tion as Algorithm 12)

for k = 1 : n� 2
Compute a unit vector uk so that (I � 2uku

T
k )A(k + 2 : n; k) = 0

Update A = (I � 2uku
T
k )A(I � 2uku

T
k ) by computing

wk = 2Auk

k = wT

k uk
vk = wk � 
kuk
A = A � vku

T
k � ukv

T
k

The major work is updating A = A � vuTk � ukv
T , which is a symmetric

rank-2 update, a Level 2 BLAS operation. To incorporate Level 3 BLAS, we
emulate Algorithm 14 by reducing a single column-block of A to tridiagonal
form, aggregating the Householder transformations into a few matrices, and
then updating via matrix multiply:

Algorithm 16 Reduction to tridiagonal form using Level 3 BLAS (same nota-
tion as Algorithm 12)

for l = 1 : m
k = (l � 1) � nb + 1
Use Algorithm 15 to tridiagonalize the �rst nb columns of

A(k : n; k : n) as follows:

Do not update all of A at each step, just A(l)

Compute wk = 2Auk as 2(A �Pk�1
q=1 (vqu

T
q + uqv

T
q ))uk

Retain U (l) = [u1; :::; uk] and V (l) = [v1; :::; vk]

Update A(k : n; k : n) = A(k : n; k : n)� U (l)V (l)T � V (l)U (l)T

Algorithms 15 and 16 are available from LAPACK (Anderson et al., 1992) as
subroutines ssytd2 and ssytrf, respectively. Hessenberg reduction is sgehrd,
and bidiagonal reduction is sgebrd. The mapping to a distributed memory
machine follows as with previous algorithms like QR and Gaussian elimination
(Dongarra and van de Geijn, 1991).
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For parallel reduction of a band symmetric matrix to tridiagonal form, see
Bischof and Sun (1992) and Lang (1992).

The initial reduction of a generalized eigenproblem A� �B involves �nding
orthogonal matrices Q and Z such that QAZ is upper Hessenberg and QBZ

is triangular. So far no pro�table way has been found to introduce higher
level BLAS into this reduction, in contrast to the other reductions previously
mentioned. We return to this problem in Section 6.5.

6.3 The symmetric tridiagonal eigenproblem

The basic algorithms to consider are QR iteration, (accelerated) bisection and
inverse iteration, and divide-and-conquer. Since the bidiagonal SVD is equiv-
alent to �nding the nonnegative eigenvalues of a tridiagonal matrix with zero
diagonal (Demmel and Kahan, 1990; Golub and Van Loan, 1989), our comments
apply to that problem as well.

6.3.1 QR Iteration

The classical algorithm is QR iteration, which produces a sequence of orthog-
onally similar tridiagonal matrices T = T0, T1, T2, ... converging to diagonal
form. The mapping from Ti to Ti+1 is usually summarized as (1) computing
a shift �i, an approximate eigenvalue; (2) factoring Ti � �iI = QR; and (3)
forming Ti+1 = RQ+�iI. Once full advantage is taken of the tridiagonal form,
this becomes a nonlinear recurrence that processes the entries of Ti from one
end to the other, and amounts to updating T repeatedly by forming PTPT ,
with P a Givens rotation. If the eigenvectors are desired, the P s are accumu-
lated by forming PV , where V is initially the identity matrix. As it stands this
recurrence is not parallellizable, but by squaring the matrix entries it can be
changed into a recurrence of the form (1) in Section 2.2 (see Kuck and Sameh,
1977). The numerical stability of this method is not known, but available anal-
yses are pessimistic (Kuck and Sameh, 1977). Furthermore, QR iterations must
be done sequentially, with usually just one eigenvalue converging at a time.
If one only wants eigenvalues, this method does not appear to be competitive
with the alternatives below. When computing eigenvectors, however, it is easy
to parallellize: Each processor redundantly runs the entire algorithm updating
PTPT , but only computes n=p of the columns of PV , where p is the number
of processors and n is the dimension of T . At the end each processor has n=p
components of each eigenvector. Since computing the eigenvectors takes O(n3)

ops but updating T just O(n2), we succeed in parallellizing the majority of the
computational work.
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6.3.2 Bisection and inverse iteration

One of the two most promising methods is (accelerated) bisection for the eigen-
values, followed by inverse iteration for the eigenvectors (Ipsen and Jessup, 1990;
Lo, Phillipe and Sameh, 1987). If T has diagonal entries a1; :::; an and o�diag-
onals b1; :::; bn�1, then we can count the number of eigenvalues of T less than �

(Golub and Van Loan, 1989).

Algorithm 17 Counting eigenvalues using Sturm sequences (1)

count = 0, d = 1, b0 = 0
for i = 1 : n

d = ai � � � b2i�1=d

if d < 0, count = count+ 1

This nonlinear recurrence may be transformed into a two-term linear recur-
rence in pi = d1d2 � � �di:
Algorithm 18 Counting eigenvalues using Sturm sequences (2)

count = 0, p0 = 1, p�1 = 0, b0 = 0
for i = 1 : n

pi = (ai � �)pi�1 � b2i�1pi�2
if pipi�1 < 0, count = count+ 1

In practice, these algorithms need to protected against over/under
ow; Al-
gorithm 17 is much easier to protect (Kahan, 1968). Using either of these
algorithms, we can count the number of eigenvalues in an interval. The tra-
ditional approach is to bisect each interval, say [�1; �2], by running Algorithm
17 or 18 at � = (�1 + �2)=2. By continually subdividing intervals containing
eigenvalues, we can compute eigenvalue bounds as tight as we like (and roundo�
permits). Convergence of the intervals can be accelerated by using a zero-�nder
such as zeroin (Brent, 1973; Lo et al., 1987), Newton's method, Rayleigh quo-
tient iteration (Beattie and Fox, 1989), Laguerre's method, or other methods
(Li, Zhang and Sun, 1991). to choose � as an approximate zero of dn or pn, i.e.
an approximate eigenvalue of T .

There is parallellism both within Algorithm 18 and by running Algorithm
17 or 18 simultaneously for many values of �. The �rst kind of parallellism uses
parallel pre�x as described in (1) in Section 2.2, and so care needs to be taken to
avoid over/under
ow. The numerical stability of the serial implementations of
Algorithms 17 (Kahan, 1968) and 18 (Wilkinson, 1965) is very good, but that
of the parallel pre�x algorithm is unknown, although numerical experiments
are promising (Swarztrauber, 1992). This requires good support for parallel
pre�x operations, and is not as easy to parallellize as simply having each pro-
cessor re�ne di�erent sets of intervals containing di�erent eigenvalues (Demmel,
1992a).
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Within a single processor one can also run Algorithm 17 or 18 for many
di�erent � by pipelining or vectorizing (Simon, 1989). These many � could
come from disjoint intervals or from dividing a single interval into more than
two small ones (multi-section); the latter approach appears to be e�cient only
when a few eigenvalues are desired, so that there are not many disjoint intervals
over which to parallellize (Simon, 1989). Achieving good speedup requires load
balancing, and this is not always possible to do by statically assigning work
to processors. For example, having the ith processor out of p �nd eigenvalues
(i � 1)n=p through in=p results in redundant work at the beginning, as each
processor re�nes the initial large interval containing all the eigenvalues. Even
if each processor is given a disjoint interval containing an equal number of
eigenvalues to �nd, the speedup may be poor if the eigenvalues in one processor
are uniformly distributed in their interval and all the others are tightly clustered
in theirs; this is because there will only be one interval to re�ne in each clustered
interval, and many in the uniform one. This means we need to rebalance the
load dynamically, with busy processors giving intervals to idle processors. The
best way to do this depends on the communication properties of the machine.
Since the load imbalance is severe and speedup poor only for problems that run
quickly in an absolute sense anyway, pursuing uniformly good speedup may not
always be important. The eigenvalues will also need to be sorted at the end if
we use dynamic load balancing.

Given the eigenvalues, we can compute the eigenvectors by using inverse
iteration in parallel on each processor. At the end each processor will hold the
eigenvectors for the eigenvalues it stores; this is in contrast to the parallel QR
iteration, which ends up with the transpose of the eigenvector matrix stored.
If we simply do inverse iteration without communication, the speedup will be
nearly perfect. However, we cannot guarantee orthogonality of eigenvectors of
clustered eigenvalues (Ipsen and Jessup, 1990), which currently seems to require
reorthogonalization of eigenvectors within clusters (other methods are under in-
vestigation (Parlett, 1992)). We can certainly reorthogonalize against eigenvec-
tors of nearby eigenvalues stored on the same processor without communication,
or even against those of neighbouring processors with little communication; this
leads to a tradeo� between orthogonality, on the one hand, and communication
and load balance, on the other.

Other ways to count the eigenvalues in intervals have been proposed as well
(Krishnakumar and Morf, 1986; Swarztrauber, 1992), although these are more
complicated than either Algorithm 17 or 18. There have also been general-
izations to the band de�nite generalized symmetric eigenvalue problem (Ma,
Patrick and Szyld, 1989).

6.3.3 Cuppen's divide-and-conquer algorithm

The third algorithm is a divide-and-conquer algorithm by Cuppen (Cuppen,
1981), and later analysed and modi�ed by many others (Barlow, 1991; Dongarra
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and Sorensen, 1987; Gu and Eisenstat, 1992; Ipsen and Jessup, 1990; Jessup
and Sorensen, 1989; Sorensen and Tang, 1991). If T is 2n � 2n, we decompose
it into a sum

T =

�
T1 0
0 T2

�
+ �xxT

of a block diagonal matrix with tridiagonal blocks T1 and T2, and a rank-1
matrix �xxT which is nonzero only in the four entries at the intersection of rows
and columns n and n + 1. Suppose we now compute the eigendecompositions
T1 = Q1�1Q

T
1 and T2 = Q2�2Q

T
2 , which can be done in parallel and recursively.

This yields the partial eigendecomposition

�
Q1 0
0 Q2

�
�
��

�1 0
0 �2

�
+ �zzT

�
�
�
QT
1 0
0 QT

2

�

where z = diag (QT
1 ; Q

T
2 )x. So to compute the eigendecomposition of T , we

need to compute the eigendecomposition of the matrix diag (�1;�2) + �zzT �
D + �zzT , a diagonal matrix plus a rank-1 matrix. We can easily write down
the characteristic polynomial of D + �zzT , of which the relevant factor is f(�)
in the following so-called secular equation

f(�) � 1 + �

2nX
i=1

z2i
di � �

= 0:

The roots of f(�) = 0 are the desired eigenvalues. Assume the diagonal entries
di of D are sorted in increasing order. After de
ating out easy to �nd eigen-
values (corresponding to tiny zi or nearly identical di) we get a function with
guaranteed inclusion intervals [di; di+1] for each zero, and which is also mono-
tonic on each interval. This lets us solve quickly using a Newton-like method
(although care must be taken to guarantee convergence (Li, 1992)). The corre-
sponding eigenvector for a root �j is then simply given by (D � �jI)

�1z. This
yields the eigendecomposition D + �zzT = Q�QT , from which we compute the
full eigendecomposition T = (diag (Q1; Q2)Q)�(diag (Q1; Q2)Q)

T .
This algorithm, while attractive, proved hard to implement stably. The

trouble was that to guarantee the computed eigenvectors were orthogonal, di��j
had to be computed with reasonable relative accuracy, which is not guaranteed
even if �j is known to high precision; cancellation in di � �j can leave a tiny
di�erence with high relative error. Work by several authors (Barlow, 1991;
Sorensen and Tang, 1991) led to the conclusion that �i had to be computed
to double the input precision in order to determine di � �i accurately. When
the input is already in double precision (or whatever is the largest precision
supported by the machine), then quadruple is needed, which may be simulated
using double, provided double is accurate enough (Dekker, 1971; Priest, 1991).
Recently, however, Gu and Eisenstat (1992) have found a new algorithm that
makes this unnecessary.
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There are two types of parallellism available in this algorithm and both must
be exploited to speed up the whole algorithm (Dongarra and Sorensen, 1987;
Ipsen and Jessup, 1990). Independent tridiagonal submatrices (such as T1 and
T2) can obviously be solved in parallel. Initially there are a great many such
small submatrices to solve in parallel, but after each secular equation solution,
there are half as many submatrices of twice the size. To keep working in parallel,
we must �nd the roots of the di�erent secular equations in parallel; there are
equally many roots to �nd at each level. Also, there is parallellism in the matrix
multiplication diag (Q1; Q2) �Q needed to update the eigenvectors.

While there is a great deal of parallellism available, there are still barriers
to full speedup. First, the speed of the serial algorithm depends strongly on
there being a great deal of de
ation, or roots of the secular equation that can
be computed with little work. If several processors are cooperating to solve
a single secular equation, they must either communicate to decide which of
their assigned roots were de
ated and to rebalance the work load of �nding
nontrivial roots, or else not communicate and risk a load imbalance. This is the
same tradeo� as for the bisection algorithm, except that rebalancing involves
more data movement (since eigenvectors must be moved). If it turns out, as
with bisection, that load imbalance is severe and speedup poor only when the
absolute run time is fast anyway, then dynamic load balancing may not be worth
it. The second barrier to full speedup is simply the complexity of the algorithm,
and the need to do many di�erent kinds of operations in parallel, including
sorting, matrix multiplication, and solving the secular equation. The current
level of parallel software support on many machines can make this di�cult to
implement well.

6.4 Jacobi's method for the symmetric eigenproblem and

SVD

Jacobi's method has been used for the nonsymmetric eigenproblem, the sym-
metric eigenproblem, the SVD, and generalizations of these problems to pairs
of matrices (Golub and Van Loan, 1989). It works by applying a series of Ja-
cobi rotations (a special kind of Givens rotation) to the left and/or right of the
matrix in order to drive it to a desired canonical form, such as the diagonal
form for the symmetric eigenproblem. These Jacobi rotations, which a�ect only
two rows and/or columns of the matrix, are chosen to solve the eigenproblem
associated with those two rows and/or columns (this is what makes Jacobi ro-
tations special). By repeatedly solving all 2 � 2 subproblems of the original,
one eventually solves the entire problem. The Jacobi method works reliably on
the symmetric eigenvalue problem and SVD, and less so on the nonsymmetric
problem. We will consider only the symmetric problem and SVD in this section,
and the nonsymmetric Jacobi later.

Until recently Jacobi methods were of little interest on serial machines be-
cause they are usually several times slower than QR or divide-and-conquer
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schemes, and seemed to have the same accuracy. Recently, however, it has been
shown that Jacobi's method can be much more accurate than QR in certain
cases (Deichmoller, 1991; Demmel and Veseli�c, 1992; Slapni�car, 1992), which
makes it of some value on serial machines.

It has also been of renewed interest on parallel machines because of its in-
herent parallellism: Jacobi rotations can be applied in parallel to disjoint pairs
of rows and/or columns of the matrix, so a matrix with n rows and/or columns
can have bn=2c Jacobi rotations applied simultaneously (Brent and Luk, 1985).
The question remains of the order in which to apply the simultaneous rotations
to achieve quick convergence. A number of good parallel orderings have been
developed and shown to have the same convergence properties as the usual serial
implementations (Luk and Park, 1989; Shro� and Schreiber, 1989); we illustrate
one here in the following diagram (P1{P4 denotes Processor 1{Processor 4). As-
sume we have distributed n = 8 columns on p = 4 processors, two per processor.
We may leave one column �xed, and `rotate' the others so that after n�1 steps
all possible pairs of columns have simultaneously occupied a single processor,
so they could have a Jacobi rotation applied to them:

P1: 1,8 1,7 1,6 1,5 1,4 1,3 1,2

P2: 2,7 8,6 7,5 6,4 5,3 4,2 3,8

P3: 3,6 2,5 8,4 7,3 6,2 5,8 4,7

P4: 4,5 3,4 2,3 8,2 7,8 6,7 5,6

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7

This is clearly easiest to apply when we are applying Jacobi rotations only
to columns of the matrix, rather than to both rows and columns. Such a one-
sided Jacobi is natural when computing the SVD (Hari and Veseli�c, 1987),
but requires some preprocessing for the symmetric eigenproblem (Demmel and
Veseli�c, 1992; Slapni�car, 1992); for example, in the symmetric positive de�nite
case one can perform Cholesky on A to obtain A = LLT , apply one-sided Jacobi
on L or LT to get its (partial) SVD, and then square the singular values to get
the eigenvalues of A. It turns out it accelerates convergence to do the Cholesky
decomposition with pivoting, and then apply Jacobi to the columns of L rather
than the columns of LT (Demmel and Veseli�c, 1992). It is possible to use the
symmetric-inde�nite decomposition of an inde�nite symmetric matrix in the
same way (Slapni�car, 1992).

Jacobi done in this style is a �ne-grain algorithm, operating on pairs of
columns, and so cannot exploit higher level BLAS. One can instead use block
Jacobi algorithms (Bischof, 1989; Shro� and Schreiber, 1989), which work on
blocks, and apply the resulting orthogonal matrices to the rest of the matrix
using more e�cient matrix{matrix multiplication.
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6.5 The nonsymmetric eigenproblem

Five kinds of parallel methods for the nonsymmetric eigenproblem have been
investigated:

1. Hessenberg QR iteration (Bai and Demmel, 1989; Davis, Funderlic and
Geist, 1987; Dubrulle, 1991; Geist and Davis, 1990; Stewart, 1987; van de
Geijn, 1987; 1989; Watkins, 1992; Watkins and Elsner, 1991);

2. Reduction to nonsymmetric tridiagonal form (Dongarra, Geist and Romine,
1990; Geist, 1990; 1991; Geist, Lu and Wachspress, 1989);

3. Jacobi's method (Eberlein, 1962; 1987; Paardekooper, 1989; Sameh, 1971;
Shro�, 1991; Stewart, 1985; Veseli�c, 1979);

4. Hessenberg divide-and-conquer (Chu, 1988b; Chu, Li and Sauer, 1988;
Dongarra and Sidani, 1991; Li and Zeng, 1992; Li, Zeng and Cong, 1992;
Zeng, 1991);

5. Spectral divide-and-conquer (Bai and Demmel, 1992; Lin and Zmijewski,
1991; Malyshev, 1991).

In contrast to the symmetric problem or SVD, no guaranteed stable and
highly parallel algorithm for the nonsymmetric problem exists. As described in
Section 6.2, reduction to Hessenberg form can be done e�ciently, but so far it
has been much harder to deal with a Hessenberg matrix (Dubrulle, 1991; Jessup,
1991). 4

6.5.1 Hessenberg QR iteration

Parallelizing Hessenberg QR is attractive because it would yield an algorithm
that is as stable as the quite acceptable serial one. Unfortunately, doing so
involves some of the same di�culties as tridiagonal QR: one is faced with either
�ne-grain synchronization or larger block operations that execute more quickly
but also do much more work without accelerating convergence much. The serial
method computes one or two shifts from the bottom right corner of the matrix,
and then processes the matrix from the upper left by a series of row and column
operations (this processing is called bulge chasing). One way to introduce par-
allellism is to spread the matrix across the processors, but communication costs
may exceed the modest computational costs of the row and column operations
(Davis et al., 1987; Geist and Davis, 1990; Stewart, 1987; van de Geijn and
Hudson, 1989; van de Geijn, 1987). Another way to introduce parallellism is to
compute k > 2 shifts from the bottom corner of the matrix (the eigenvalues of
the bottom right k � k matrix, say), which permits us to work on k rows and

4As noted in Section 6.2, we cannot even e�ciently reduce to condensed form for the

generalized eigenproblem A� �B.
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columns of the matrix at a time using Level 2 BLAS (Bai and Demmel, 1989).
Asymptotic convergence remains quadratic (Watkins and Elsner, 1991). The
drawbacks to this scheme are twofold. First, any attempt to use Level 3 BLAS
introduces rather small (hence ine�cient) matrix{matrix operations, and raises
the operation count considerably. Second, the convergence properties degrade
signi�cantly, resulting in more overall work as well (Dubrulle, 1991). As a result,
speedups have been extremely modest. This routine is available in LAPACK as
shseqr (Anderson et al., 1992).

Yet another way to introduce parallellism into Hessenberg QR is to pipeline
several bulge chasing steps (van de Geijn, 1987; Watkins, 1992; Watkins and
Elsner, 1991). If we have several shifts available, then as soon as one bulge
chase is launched from the upper left corner, another one may be launched,
and so on. Since each bulge chase operates on only two or three adjacent rows
and columns, we can potentially have n=2 or n=3 bulge chasing steps going on
simultaneously on disjoint rows (and columns). The problem is that in the serial
algorithm, we have to wait until an entire bulge chase has been completed before
computing the next shift; in the parallel case we cannot wait. Therefore, we must
use `out-of-date' shifts to have enough available to start multiple bulge chases.
This destroys the usual local quadratic convergence, but it remains superlinear
(van de Geijn, 1987). It has been suggested that choosing the eigenvalues of the
bottom right k�k submatrix may have superior convergence to just choosing a
sequence from the bottom 1�1 or 2�2 submatrices (Watkins, 1992). Parallelism
is still �ne-grain, however.

6.5.2 Reduction to nonsymmetric tridiagonal form

This approach begins by reducing B to nonsymmetric tridiagonal form with a
(necessarily) nonorthogonal similarity, and then �nding the eigenvalues of the
resulting nonsymmetric tridiagonal matrix using the tridiagonal LR algorithm
(Dongarra et al., 1990; Geist, 1990; 1991; Geist et al., 1989). This method
is attractive because �nding eigenvalues of a tridiagonal matrix (even nonsym-
metric) is much faster than for a Hessenberg matrix (Wilkinson, 1965). The
drawback is that reduction to tridiagonal form may require very ill conditioned
similarity transformations, and may even break down (Parlett, 1992). Break-
down can be avoided by restarting the process with di�erent initializing vectors,
or by accepting a `bulge' in the tridiagonal form. This happens with relatively
low probability, but keeps the algorithm from being fully reliable. The current
algorithms pivot at each step to maintain and monitor stability, and so can be
converted to use Level 2 and Level 3 BLAS in a manner analogous to Gaus-
sian elimination with pivoting. This algorithm illustrates how one can trade
o� numerical stability for speed. Other nonsymmetric eigenvalue algorithms we
discuss later make this tradeo� as well.
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6.5.3 Jacobi's method

As with the symmetric eigenproblem, nonsymmetric Jacobi methods solve a
sequence of 2 � 2 eigenvalue subproblems by applying 2 � 2 similarity trans-
formations to the matrix. There are two basic kinds of transformations used.
Methods that use only orthogonal transformations maintain numerical stability
and converge to Schur canonical form, but converge only linearly at best (Eber-
lein, 1987; Stewart, 1985). If nonorthogonal transformations are used, one can
try to drive the matrix to diagonal form, but if it is close to having a nontrivial
Jordan block, the required similarity transformation will be very ill conditioned
and so stability is lost. Alternatively, one can try to drive the matrix to be
normal (AAT = ATA), at which point an orthogonal Jacobi method can be
used to drive it to diagonal form; this still does not get around the problem of
(nearly) nontrivial Jordan blocks (Eberlein, 1962; Paardekooper, 1989; Sameh,
1971; Shro�, 1991; Veseli�c, 1979). On the other hand, if the matrix has distinct
eigenvalues, asymptotic quadratic convergence is achieved (Shro�, 1991). Using
n2 processors arranged in a mesh, these algorithms can be implemented in time
O(n logn) per sweep. Again, we trade o� control over numerical stability for
speed (of convergence).

6.5.4 Hessenberg divide-and-conquer

The divide-and-conquer algorithms we consider here involve setting a middle
subdiagonal entry of the original upper Hessenberg matrix H to zero, resulting
in a block upper Hessenberg matrix S. The eigenproblems for the two Hessen-
berg matrices on the diagonal of S can be solved in parallel and recursively. To
complete the algorithm, one must merge the eigenvalues and eigenvectors of the
two halves of S to get the eigendecomposition of H. Two ways have been pro-
posed to do this: homotopy continuation and Newton's method. Parallelism lies
in having many Hessenberg submatrices whose eigendecompositions are needed,
in being able to solve for n eigenvalues simultaneously, and in the linear algebra
operations needed to �nd an individual eigenvalue. The �rst two kinds of par-
allellism are analogous to those in Cuppen's method (Section 6.3.3). The main
drawback of these methods is loss of guaranteed stability and/or convergence.
Newton's method may fail to converge, and both Newton and homotopy may
appear to converge to several copies of the same root without any easy way to
tell if a root has been missed, or if the root really is multiple. The subproblems
produced by divide-and-conquer may be much more ill conditioned than the
original problem. These drawbacks are discussed in Jessup (1991).

Homotopy methods replace the original Hessenberg matrix H by the one-
parameter linear family H(t) = tS + (1 � t)H, 0 � t � 1. As t increases
from 0 to 1, the eigenvalues (and eigenvectors) trace out curves connecting the
eigenvalues of S to the desired ones of H. The numerical method follows these
curves by standard curve-following schemes, predicting the position of a nearby
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point on the curve using the derivative of the eigenvalue with respect to t, and
then correcting its predicted value using Newton's method.

Two schemes have been investigated. The �rst (Li et al., 1992) follows
eigenvalue/eigenvector pairs. The homotopy function is h(z; �; t) = [(H(t)z �
�z)T ; kzk22� 1]T , i.e. the homotopy path is de�ned by choosing z(t) and �(t) so
that h(z(t); �(t); t) = 0 along the path. The simplicity of the homotopy means
that over 90% of the paths followed are simple straight lines that require lit-
tle computation, resulting in a speed up of a factor of up to 2 over the serial
QR algorithm. The drawbacks are lack of stability and convergence not being
guaranteed. For example, when homotopy paths get very close together, one
is forced to take smaller steps (and so converge more slowly) during the curve
following. Communication is necessary to decide if paths get close. And as
mentioned previously, if two paths converge to the same solution, it is hard to
tell if the solution really is a multiple root or if some other root is missing. A dif-
ferent homotopy scheme uses only the determinant to follow eigenvalues (Li and
Zeng, 1992; Zeng, 1991); here the homotopy function is simply det(H(t)� �I).
Evaluating the determinant of a Hessenberg matrix costs only a triangular solve
and an inner product, and therefore is e�cient. It shares similar advantages
and disadvantages as the previous homotopy algorithm.

Alternatively, one can use Newton's method to compute the eigendecompo-
sition of H from S (Dongarra and Sidani, 1991). The function to which one
applies Newton's method is f(z; �) = [(Hz� �z)T ; eT z� 1]T , where e is a �xed
unit vector. The starting values for Newton's method are obtained from the
solutions to S.

6.5.5 Spectral divide-and-conquer

A completely di�erent way to divide-and-conquer a matrix is using a projection
on part of the spectrum. It applies to a dense matrix B. Suppose Q1 is an
n�m orthogonal matrix spanning a right invariant subspace of B, and Q2 is an
n� (n�m) matrix constructed so that Q = [Q1; Q2] is square and orthogonal.
Then Q de
ates B as follows:

QTBQ =

�
B11 B12

0 B22

�
:

Note that this is equivalent to having Q2 span a left invariant subspace of
B. The eigenvalues of B11 are those corresponding to the invariant subspace
spanned by Q1. Provided we can construct Q1 e�ectively, we can use this to
divide-and-conquer the matrix.

Of course Hessenberg QR iteration �ts into this framework, with Q2 being
n� 1 or n� 2, and computed by (implicit) inverse iteration applied to B � �I,
where � is a shift. Just splitting so that B22 is 1� 1 or 2 � 2 does not permit
much parallellism, however; it would be better to split the matrix nearer the
middle. Also, it would be nice to be able to split o� just that part of the
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spectrum of interest to the user, rather than computing all eigenvalues as these
methods must all do.

There are several approaches to computing Q. They may be motivated by
analogy to Hessenberg QR, where Q is the orthogonal part of the QR factor-
ization QR = B � �I. If � is an exact eigenvalue, so that B � �I is singular,
then the last column of Q is (generically) a left eigenvector for 0. One can then
verify that the last row of QT (B � �I)Q is zero, so that we have de
ated the
eigenvalue at �. Now consider a more general function f(B); in principle any
(piecewise) analytic function will do. Then the eigenvalues of f(B) are just f
evaluated at the eigenvalues of B, and f(B) and B have (modulo Jordan blocks)
the same eigenvectors. Suppose that the rank of f(B) is m < n, so that f(B)
has (at least) n � m zero eigenvalues. Factorize QR = f(B). Then the last
n �m columns of Q (generally) span the left null space of f(B), i.e. a left in-
variant subspace of f(B) for the zero eigenvalue. But this is also a left invariant
subspace of B so we get

QTf(B)Q =

�
B̂11 B̂12

0 0

�
and QTBQ =

�
B11 B12

0 B22

�
:

The problem thus becomes �nding functions f(B) that are easy to evaluate and
have large null spaces, or which map selected eigenvalues of B to zero. One such
function f is the sign function (Bai and Demmel, 1992; Howland, 1983; Kenney
and Laub, 1991; Lin and Zmijewski, 1991; Robert, 1980; Stickel, 1991) which
maps points with positive real part to +1 and those with negative real part to
�1; adding 1 to this function then maps eigenvalues in the right half plane to 2
and in the left plane to 0, as desired.

The only operations we can easily perform on (dense) matrices are multipli-
cation and inversion, so in practice f must be a rational function. A globally,
asymptotically quadratically convergent iteration to compute the sign function
of B is Bi+1 = (Bi + B�1

i )=2 (Howland, 1983; Robert, 1980; Stickel, 1991);
this is simply Newton's method applied to B2 = I, and can also be seen to be
equivalent to repeated squaring (the power method) of the Cayley transform of
B. It converges more slowly as eigenvalues approach the imaginary axis, and
is in fact nonconvergent if there are imaginary eigenvalues, as may be expected
since the sign function is discontinuous there. Other higher order convergent
schemes exist, but they can be more expensive to implement as well (Kenney
and Laub, 1991; Pandey, Kenney and Laub, 1990). Another scheme that divides
the spectrum between the eigenvalues inside and outside the unit circle is given
in Malyshev (1991).

If the eigenvalues are known to be real (as when the matrix is symmetric),
we need only construct a function f that maps di�erent parts of the real axis to
0 and 1 instead of the entire left and right half planes. This simpli�es both the
computation of f(B) and the extraction of its null space. See Auslander and
Tsao (1992), Bischof and Sun (1992) and Lederman, Tsao and Turnbull (1992)
for details.
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Of course, we wish to split not just along the imaginary axis or unit circle
but other boundaries as well. By shifting the matrix and multiplying by a
complex number ei� one can split along an arbitrary line in the complex plane,
but at the cost of introducing complex arithmetic. By working on a shifted and
squared real matrix, one can divide along lines at an angle of �=4 and retain
real arithmetic (Bai and Demmel, 1992; Howland, 1983; Stickel, 1991).

This method is promising because it allows us to work on just that part
of the spectrum of interest to the user. It is stable because it applies only
orthogonal transformations to B. On the other hand, if it is di�cult to �nd
a good place to split the spectrum, convergence can be slow, and the �nal
approximate invariant subspace inaccurate. At this point, iterative re�nement
could be used to improve the factorization (Demmel, 1987). These methods
apply to the generalized nonsymmetric eigenproblem as well (Bai and Demmel,
1992; Malyshev, 1991).

7 Direct methods for sparse linear systems

7.1 Cholesky factorization

In this section we discuss parallel algorithms for solving sparse systems of linear
equations by direct methods. Paradoxically, sparse matrix factorization o�ers
additional opportunities for exploiting parallellism beyond those available with
dense matrices, yet it is usually more di�cult to attain good e�ciency in the
sparse case. We examine both sides of this paradox: the additional parallellism
induced by sparsity, and the di�culty in achieving high e�ciency in spite of
it. We will see that regularity and locality play a similar role in determining
performance in the sparse case as they do for dense matrices.

We couch most of our discussion in terms of the Cholesky factorization, A =
LLT , where A is symmetric positive de�nite (SPD) and L is lower triangular
with positive diagonal entries. We focus on Cholesky factorization primarily
because this allows us to discuss parallellism in relative isolation, without the
additional complications of pivoting for numerical stability. Most of the lessons
learned are also applicable to other matrix factorizations, such as LU and QR.
We do not try to give an exhaustive survey of research in this area, which is
currently very active, instead referring the reader to existing surveys, such as
Heath, Ng and Peyton (1991). Our main point in the current discussion is
to explain how the sparse case di�ers from the dense case, and examine the
performance implications of those di�erences.

We begin by considering the main features of sparse Cholesky factorization
that a�ect its performance on serial machines. Algorithm 19 gives a standard,
column-oriented formulation in which the Cholesky factor L overwrites the ini-
tial matrix A, and only the lower triangle is accessed:

Algorithm 19 Cholesky factorization
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for j = 1; n
for k = 1; j � 1

for i = j; n fcmod(j; k)g
aij = aij � aik � ajk

ajj =
p
ajj

for k = j + 1; n fcdiv(j)g
akj = akj=ajj

The outer loop in Algorithm 19 is over successive columns of A. The the
current column (indexed by j) is modi�ed by a multiple of each prior column
(indexed by k); we refer to such an operation as cmod(j; k). The computation
performed by the inner loop (indexed by i) is a saxpy. After all its modi�cations
have been completed, column j is then scaled by the reciprocal of the square
root of its diagonal element; we refer to this operation as cdiv(j). As usual, this
is but one of the 3! ways of ordering the triple-nested loop that embodies the
factorization.

The inner loop in Algorithm 19 has no e�ect, and thus may as well be
skipped, if ajk = 0. For a dense matrix A, such an event is too unlikely to
o�er signi�cant advantage. The fundamental di�erence with a sparse matrix is
that ajk is in fact very often zero, and computational e�ciency demands that
we recognize this situation and take advantage of it. Another way of expressing
this condition is that column j of the Cholesky factor L does not depend on
prior column k if `jk = 0, which not only provides a computational shortcut,
but also suggests an additional source of parallellism that we will explore in
detail later.

7.2 Sparse matrices

Thus far we have not said what we mean by a `sparse' matrix. A good oper-
ational de�nition is that a matrix is sparse if it contains enough zero entries
to be worth taking advantage of them to reduce both the storage and work
required in solving a linear system. Ideally, we would like to store and operate
on only the nonzero entries of the matrix, but such a policy is not necessarily a
clear win in either storage or work. The di�culty is that sparse data structures
include more overhead (to store indices as well as numerical values of nonzero
matrix entries) than the simple arrays used for dense matrices, and arithmetic
operations on the data stored in them usually cannot be performed as rapidly
either (due to indirect addressing of operands). There is therefore a tradeo�
in memory requirements between sparse and dense representations and a trade-
o� in performance between the algorithms that use them. For this reason, a
practical requirement for a family of matrices to be `usefully' sparse is that
they have only O(n) nonzero entries, i.e. a (small) constant number of nonzeros
per row or column, independent of the matrix dimension. For example, most
matrices arising from �nite di�erence or �nite element discretizations of PDEs
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satisfy this condition. In addition to the number of nonzeros, their particular
locations, or pattern, in the matrix also has a major e�ect on how well sparsity
can be exploited. Sparsity arising from physical problems usually exhibits some
systematic pattern that can be exploited e�ectively, whereas the same number
of nonzeros located randomly might o�er relatively little advantage.

In Algorithm 19, the modi�cation of a given column of the matrix by a prior
column not only changes the existing nonzero entries in the target column,
but may also introduce new nonzero entries in the target column. Thus, the
Cholesky factor L may have additional nonzeros, called �ll, in locations that
were zero in the original matrix A. In determining the storage requirements
and computational work, these new nonzeros that the matrix gains during the
factorization are equally as important as the nonzeros with which the matrix
starts out.

The amount of such �ll is dramatically a�ected by the order in which the
columns of the matrix are processed. For example, if the �rst column of the
matrixA is completely dense, then all of the remaining columns, no matter how
sparse they start out, will completely �ll in with nonzeros during the factoriza-
tion. On the other hand, if a single such dense column is permuted (symmet-
rically) to become the last column in the matrix, then it will cause no �ll at
all. Thus, a critical part of the solution process for sparse systems is to deter-
mine an ordering for the rows and columns of the input matrix that limits �ll
to preserve sparsity. Unfortunately, �nding an ordering that minimizes �ll is
a very hard combinatorial problem (NP-complete), but heuristics are available
that do a good job of reducing, if not exactly minimizing, �ll. These techniques
include minimum degree, nested dissection, and various schemes for reducing
the bandwidth or pro�le of a matrix (see, e.g., Du�, Erisman and Reid (1986)
and George and Liu (1981) for details on these and many other concepts used
in sparse matrix computations).

One of the key advantages of SPD matrices is that such a sparsity preserving
ordering can be selected in advance of the numeric factorization, independent
of the particular values of the nonzero entries: only the pattern of the nonzeros
matters, not their numerical values. This would not be the case, in general,
if we also had to take into account pivoting for numerical stability, which ob-
viously would require knowledge of the nonzero values, and would introduce a
potential con
ict between preserving sparsity and preserving stability. For the
SPD case, once the ordering is selected, the locations of all �ll elements in L

can be anticipated prior to the numeric factorization, and thus an e�cient static
data structure can be set up in advance to accommodate them (this process is
usually called symbolic factorization). This feature also stands in contrast to
general sparse linear systems, which usually require dynamic data structures to
accommodate �ll entries as they occur, since their locations depend on numer-
ical information that becomes known only as the numeric factorization process
unfolds. Thus, modern algorithms and software for solving sparse SPD systems
include a symbolic preprocessing phase in which a sparsity-preserving ordering

50



is computed and a static data structure is set up for storing the entries of L
before any 
oating point computation takes place.

We introduce some concepts and notation that will be useful in our subse-
quent discussion of parallel sparse Cholesky factorization. An important tool in
understanding the combinatorial aspects of sparse Cholesky factorization is the
notion of the graph of a symmetric n�nmatrix A, which is an undirected graph
having n vertices, with an edge between two vertices i and j if the corresponding
entry aij of the matrix is nonzero. We denote the graph of A by G(A). The
structural e�ect of the factorization process can then be described by observing
that the elimination of a variable adds �ll edges to the corresponding graph so
that the neighbours of the eliminated vertex become a clique (i.e. a fully con-
nected subgraph). We also de�ne the �lled graph, denoted by F (A), as having
an edge between vertices i and j, with i > j, if `ij 6= 0 in the Cholesky factor L
(i.e. F (A) is simply G(A) with all �ll edges added).

We use the notation Mi� to denote the ith row, and M�j to denote the jth
column, of a matrix M . For a given sparse matrix M , we de�ne

Struct(Mi�) = fk < i j mik 6= 0g

and
Struct(M�j) = fk > j j mkj 6= 0g:

In other words, Struct(Mi�) is the sparsity structure of row i of the strict lower
triangle of M , while Struct(M�j) is the sparsity structure of column j of the
strict lower triangle of M . For the Cholesky factor L, we de�ne the parent

function as follows:

parent(j) =

�
minfi 2 Struct(L�j)g; if Struct(L�j) 6= ;;
j otherwise:

Thus, parent(j) is the row index of the �rst o�diagonal nonzero in column j

of L, if any, and has the value j otherwise. Using the parent function, we
de�ne the elimination tree as a graph having n vertices, with an edge between
vertices i and j, for i > j, if i = parent(j). If the matrix is irreducible, then the
elimination tree is indeed a single tree with its root at vertex n (otherwise it is
more accurately termed an elimination forest). The elimination tree, which we
denote by T (A), is a spanning tree for the �lled graph F (A). The many uses of
the elimination tree in analysing and organizing sparse Cholesky factorization
are surveyed in Liu (1990). We will illustrate these concepts pictorially in several
examples below.

7.3 Sparse factorization

There are three basic types of algorithms for Cholesky factorization, depending
on which of the three indices is placed in the outer loop:

51



row-Cholesky column-Cholesky submatrix-Cholesky

modi�ed

used for modi�cation

Figure 9: Three forms of Cholesky factorization.

1. Row-Cholesky: Taking i in the outer loop, successive rows of L are com-
puted one by one, with the inner loops solving a triangular system for
each new row in terms of the previously computed rows.

2. Column-Cholesky: Taking j in the outer loop, successive columns of L are
computed one by one, with the inner loops computing a matrix{vector
product that gives the e�ect of previously computed columns on the col-
umn currently being computed.

3. Submatrix-Cholesky: Taking k in the outer loop, successive columns of
L are computed one by one, with the inner loops applying the current
column as a rank-1 update to the remaining unreduced submatrix.

These three families of algorithms have markedly di�erent memory reference
patterns in terms of which parts of the matrix are accessed and modi�ed at each
stage of the factorization, as illustrated in Figure 9, and each has its advantages
and disadvantages in a given context.

For sparse Cholesky factorization, row-Cholesky is seldom used for a number
of reasons, including the di�culty in providing a row-oriented data structure
that can be accessed e�ciently during the factorization, and the di�culty in
vectorizing or parallellizing the triangular solutions required. We will there-
fore focus our attention on the column-oriented methods, column-Cholesky and
submatrix-Cholesky. Expressed in terms of the column operations cmod and
cdiv and the Struct notation de�ned earlier, sparse column-Cholesky can be
stated as follows:

Algorithm 20 Sparse column-Cholesky factorization

for j = 1; n
for k 2 Struct(Lj�)
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cmod(j; k)
cdiv(j)

In column-Cholesky, a given column j of A remains unchanged until the
outer loop index reaches that value of j. At that point column j is updated
by a nonzero multiple of each column k < j of L for which `jk 6= 0. After
all column modi�cations have been applied to column j, the diagonal entry `jj
is computed and used to scale the completely updated column to obtain the
remaining nonzero entries of L�j . Column-Cholesky is sometimes said to be a
`left-looking' algorithm, since at each stage it accesses needed columns to the
left of the current column in the matrix. It can also be viewed as a `demand-
driven' algorithm, since the inner products that a�ect a given column are not
accumulated until actually needed to modify and complete that column. For
this reason, Ortega (1988) terms column-Cholesky a `delayed-update' algorithm.
It is also sometimes referred to as a `fan-in' algorithm, since the basic opera-
tion is to combine the e�ects of multiple previous columns on a single target
column. The column-Cholesky algorithm is the most commonly used method
in commercially available sparse matrix packages.

Similarly, sparse submatrix-Cholesky can be expressed as follows.

Algorithm 21 Sparse submatrix-Cholesky factorization

for k = 1; n
cdiv(k)
for j 2 Struct(L�k)

cmod(j; k)

In submatrix-Cholesky, as soon as column k has been computed, its e�ects on
all subsequent columns are computed immediately. Thus, submatrix-Cholesky
is sometimes said to be a `right-looking' algorithm, since at each stage columns
to the right of the current column are modi�ed. It can also be viewed as a `data-
driven' algorithm, since each new column is used as soon as it is completed to
make all modi�cations to all the subsequent columns it a�ects. For this reason,
Ortega (1988) terms submatrix-Cholesky an `immediate-update' algorithm. It
is also sometimes referred to as a `fan-out' algorithm, since the basic operation is
for a single column to a�ect multiple subsequent columns. We will see that these
characterizations of the column-Cholesky and submatrix-Cholesky algorithms
have important implications for parallel implementations.

We note that many variations and hybrid implementations that lie some-
where between pure column-Cholesky and pure submatrix-Cholesky are possi-
ble. Perhaps the most important of these are the multi-frontal methods (see,
e.g., Du� et al. (1986)), in which updating operations are accumulated in and
propagated through a series of front matrices until �nally being incorporated
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into the ultimate target columns. Multifrontal methods have a number of attrac-
tive advantages, most of which accrue from the localization of memory references
in the front matrices, thereby facilitating the e�ective use of memory hierarchies,
including cache, virtual memory with paging, or explicit out-of-core solutions
(the latter was the original motivation for these methods (Irons, 1970)). In
addition, since the front matrices are essentially dense, the operations on them
can be done using optimized kernels, such as the BLAS, to take advantage of
vectorization or any other available architectural features. For example, such
techniques have been used to attain very high performance for sparse factoriza-
tion on conventional vector supercomputers (Ashcraft, Grimes, Lewis, Peyton
and Simon, 1987) and on RISC workstations (Rothberg and Gupta, 1989).

7.4 Parallelism in sparse factorization

We now examine in greater detail the opportunities for parallellism in sparse
Cholesky factorization and various algorithms for exploiting it. One of the most
important issues in designing any parallel algorithm is selecting an appropriate
level of granularity, by which we mean the size of the computational subtasks
that are assigned to individual processors. The optimal choice of task size
depends on the tradeo� between communication costs and the load balance
across processors. We follow Liu (1986) in identifying three potential levels of
granularity in a parallel implementation of Cholesky factorization:

1. �ne-grain, in which each task consists of only one or two 
oating point
operations, such as a multiply-add pair,

2. medium-grain, in which each task is a single column operation, such as
cmod or cdiv,

3. large-grain, in which each task is the computation of an entire group of
columns in a subtree of the elimination tree.

Fine-grain parallellism, at the level of individual 
oating point operations,
is available in either the dense or sparse case. It can be exploited e�ectively
by a vector processing unit or a systolic array, but would incur far too much
communication overhead to be exploited pro�tably on most current generation
parallel computers. In particular, the communication latency of these machines
is too great for such frequent communication of small messages to be feasible.

Medium-grain parallellism, at the level of operations on entire columns, is
also available in either the dense or the sparse case. This level of granularity
accounts for essentially all of the parallel speedup in dense factorization on cur-
rent generation parallel machines, and it is an extremely important source of
parallellism for sparse factorization as well. This parallellism is due primarily
to the fact that many cmod operations can be computed
simultaneously by di�erent processors. For many problems, such a level of gran-
ularity provides a good balance between communication and computation, but
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scaling up to very large problems and/or very large numbers of processors may
necessitate that the tasks be further broken up into chunks based on a two-
dimensional partitioning of the columns. One must keep in mind, however, that
in the sparse case an entire column operation may require only a few 
oating
point operations involving the sparsely populated nonzero elements in the col-
umn. For a matrix of order n having a planar graph, for example, the largest
embedded dense submatrix to be factored is roughly of order

p
n, and thus a

sparse problem must be extremely large before a two-dimensional partitioning
becomes essential.

Large-grain parallellism, at the level of subtrees of the elimination tree, is
available only in the sparse case. If Ti and Tj are disjoint subtrees of the elim-
ination tree, with neither root node a descendant of the other, then all of the
columns corresponding to nodes in Ti can be computed completely indepen-
dently of the columns corresponding to nodes in Tj, and vice versa, and hence
these computations can be done simultaneously by separate processors with no
communication between them. For example, each leaf node of the elimination
tree corresponds to a column of L that depends on no prior columns, and hence
all of the leaf node columns can be completed immediatelymerely by performing
the corresponding cdiv operation on each of them. Furthermore, all such cdiv
operations can be performed simultaneously by separate processors (assuming
enough processors are available). By contrast, in the dense case all cdiv opera-
tions must be performed sequentially (at least at this level of granularity), since
there is never more than one leaf node at any given time.

We see from this discussion that the elimination tree serves to characterize
the parallellism that is unique to sparse factorization. In particular, the height
of the elimination tree gives a rough measure of the parallel computation time,
and the width of the elimination tree gives a rough measure of the degree or
multiplicity of large-grain parallellism. These measures are only very rough,
however, since the medium level parallellism also plays a major role in deter-
mining overall performance. Still, we can see that short, bushy elimination trees
are more advantageous then tall, slender ones in terms of the large-grain paral-
lellism available. And just as the �ll in the Cholesky factor is very sensitive to
the ordering of the matrix, so is the structure of the elimination tree. This sug-
gests that we should choose an ordering to enhance parallellism, and indeed this
is possible (see, e.g., Jess and Kees (1982), Lewis, Peyton and Pothen (1989),
Liu (1989)), but such an objective may con
ict to some degree with preservation
of sparsity. Roughly speaking, sparsity and parallellism are largely compatible,
since the large-grain parallellism is due to sparsity in the �rst place. However,
these two criteria are by no means coincident, as we will see by example below.

We now illustrate these concepts using a series of simple examples. Figure 10
shows a small one-dimensional mesh with a `natural' ordering of the nodes, the
nonzero patterns of the corresponding tridiagonal matrix A and its Cholesky
factor L, and the resulting elimination tree T (A). On the positive side, the
Cholesky factor su�ers no �ll at all and the total work required for the factor-
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Figure 10: One-dimensional grid and corresponding tridiagonal matrix (left),
with Cholesky factor and elimination tree (right).

ization is minimal. However, we see that the elimination tree is simply a chain,
and therefore there is no large-grain parallellism available. Each column of L
depends on the immediately preceding one, and thus they must be computed
sequentially. This behaviour is typical of orderings that minimize the band-
width of a sparse matrix: they tend to inhibit rather than enhance large-grain
parallellism in the factorization. (As previously discussed in Section 4.4, there
is in fact little parallellism of any kind to be exploited in solving a tridiagonal
system in this natural order. The cmod operations involve only a couple of

ops each, so that even the `medium-grain' tasks are actually rather small in
this case.)

Figure 11 shows the same one-dimensional mesh with the nodes reordered
by a minimum degree algorithm. Minimum degree is the most e�ective general
purpose heuristic known for limiting �ll in sparse factorization (George and
Liu, 1989). In its simplest form, this algorithm begins by selecting a node of
minimum degree (i.e. one having fewest incident edges) in G(A) and numbering
it �rst. The selected node is then deleted and new edges are added, if necessary,
to make its former neighbours into a clique. The process is then repeated on
the updated graph, and so on, until all nodes have been numbered. We see in
Figure 11 that L su�ers no �ll in the new ordering, and the elimination tree
now shows some large-grain parallellism. In particular, columns 1 and 2 can
be computed simultaneously, then columns 3 and 4, and so on. This twofold
parallellism reduces the tree height (roughly the parallel completion time) by
approximately a factor of two.

At any stage of the minimumdegree algorithm, there may be more than one
node with the same minimum degree, and the quality of the ordering produced
may be a�ected by the tie breaking strategy used. In the example of Figure 11,
we have deliberately broken ties in the most favourable way (with respect to
parallellism); the least favourable tie breaking would have reproduced the orig-
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Figure 11: Graph and matrix reordered by minimum degree (left), with corre-
sponding Cholesky factor and elimination tree (right).

inal ordering of Figure 10, resulting in no parallellism. Breaking ties randomly
(which in general is about all one can do) could produce anything in between
these two extremes, yielding an elimination tree that reveals some large-grain
parallellism, but which is taller and less well balanced than our example in Fig-
ure 11. Again, this is typical of minimum degree orderings. In view of this
property, Liu (1989) has developed an interesting strategy for further reorder-
ing of an initial minimum degree ordering that preserves �ll while reducing the
height of the elimination tree.

Figure 12 shows the same mesh again, this time ordered by nested dissection,
a divide-and-conquer strategy (George, 1973). Let S be a set of nodes, called
a separator, whose removal, along with all edges incident upon nodes in S,
disconnects G(A) into two remaining subgraphs. The nodes in each of the two
remaining subgraphs are numbered contiguously and the nodes in the separator
S are numbered last. This procedure is then applied recursively to split each
of the remaining subgraphs, and so on, until all nodes have been numbered. If
su�ciently small separators can be found, then nested dissection tends to do a
good job of limiting �ll, and if the pieces into which the graph is split are of
about the same size, then the elimination tree tends to be well balanced. We
see in Figure 12 that for our example, with this ordering, the Cholesky factor
L su�ers �ll in two matrix entries (indicated by +), but the elimination tree
now shows a fourfold large-grain parallellism, and its height has been reduced
further. This behaviour is again typical of nested dissection orderings: they tend
to be somewhat less successful at limiting �ll than minimum degree, but their
divide-and-conquer nature tends to identify parallellismmore systematically and
produce better balanced elimination trees.

Finally, Figure 13 shows the same problem reordered by odd{even reduction.
This is not a general purpose strategy for sparse matrices, but it is often used
to enhance parallellism in tridiagonal and related systems, so we illustrate it
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Figure 12: Graph and matrix reordered by nested dissection (left), with corre-
sponding Cholesky factor and elimination tree (right).
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Figure 13: Graph and matrix reordered by odd{even reduction (left), with
corresponding Cholesky factor and elimination tree (right).

for the sake of comparison with more general purpose methods. In odd{even
reduction (see, e.g., Du� et al. (1986)), odd node numbers come before even
node numbers, and then this same renumbering is applied recursively within
each resulting subset, and so on until all nodes are numbered. Although the
resulting nonzero pattern of A looks super�cially di�erent, we can see from the
elimination tree that this method is essentially equivalent to nested dissection
for this type of problem.

7.5 Parallel algorithms for sparse factorization

Having developed some understanding of the sources of parallellism in sparse
Cholesky factorization, we now consider some algorithms for exploiting it. In
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designing any parallel algorithm, one of the most important decisions is how
tasks are to be assigned to processors. In a shared memory parallel architecture,
the tasks can easily be assigned to processors dynamically by maintaining a
common pool of tasks from which available processors claim work to do. This
approach has the additional advantage of providing automatic load balancing to
whatever degree is permitted by the chosen task granularity. An implementation
of this approach for parallel sparse factorization is given in George, Heath, Liu
and Ng (1986).

In a distributed memory environment, communication costs often prohibit
dynamic task assignment or load balancing, and thus we seek a static mapping
of tasks to processors. In the case of column-oriented factorization algorithms,
this amounts to assigning the columns of the matrix to processors according to
some mapping procedure determined in advance. Such an assignment could be
made using the block or wrap mappings, or combinations thereof, often used for
dense matrices. However, such simple mappings risk wasting much of the large-
grain parallellism identi�ed by means of the elimination tree, and may also incur
unnecessary communication. For example, the leaf nodes of the elimination tree
can be processed in parallel if they are assigned to di�erent processors, but the
latter is not necessarily ensured by a simple block or wrap mapping.

A better approach for sparse factorization is to preserve locality by assigning
subtrees of the elimination tree to contiguous subsets of neighbouring processors.
A good example of this technique is the `subtree-to-subcube' mapping often used
with hypercube multicomputers (George, Heath, Liu and Ng, 1989). Of course,
the same idea applies to other network topologies, such as submeshes of a larger
mesh. We will assume that some such mapping is used, and we will comment
further on its implications later. Whatever the mapping, we will denote the
processor containing column j by map[j], or, more generally, if J is a set of
column numbers, map[J ] will denote the set of processors containing the given
columns.

One of the earliest and simplest parallel algorithms for sparse Cholesky fac-
torization is the following version of submatrix-Cholesky (George, Heath, Liu
and Ng, 1988). Algorithm 22 runs on each processor, with each responsible for
its own subset, mycols, of columns.

Algorithm 22 Distributed fan-out sparse Cholesky factorization

for j 2 mycols

if j is a leaf node in T (A)
cdiv(j)
send L�j to processors in map(Struct(L�j))
mycols = mycols � fjg

while mycols 6= ;
receive any column of L, say L�k
for j 2 mycols \ Struct(L�k)

cmod(j; k)
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if column j requires no more cmods
cdiv(j)
send L�j to processors in map(Struct(L�j))
mycols = mycols � fjg

In Algorithm 22, any processor that owns a column of L corresponding to a leaf
node of the elimination tree can complete it immediately merely by performing
the necessary cdiv operation, since such a column depends on no prior columns.
The resulting factor columns are then broadcast (fanned-out) to all other pro-
cessors that will need them to update columns that they own. The remainder of
the algorithm is then driven by the arrival of factor columns, as each processor
goes into a loop in which it receives and applies successive factor columns, in
whatever order they may arrive, to whatever columns remain to be processed.
When the modi�cations of a given column have been completed, then the cdiv
operation is done, the resulting factor column is broadcast as before, and the
process continues until all columns of L have been computed.

Algorithm 22 potentially exploits both the large-grain parallellism charac-
terized by concurrent cdivs and the medium-grain parallellism characterized by
concurrent cmods, but this data-driven approach also has a number of draw-
backs that severely limit its e�ciency. In particular, performing the column
updates one at a time by the receiving processors results in unnecessarily high
communication frequency and volume, and in a relatively ine�cient computa-
tional inner loop. The communication requirements can be reduced by care-
ful mapping and by aggregating updating information over subtrees (see, e.g.,
George, Liu and Ng (1989), Mu and Rice (1992), Zmijewski (1989)), but even
with this improvement, the fan-out algorithm is usually not competitive with
other algorithms presented later. The shortcomings of the fan-out algorithm
motivated the formulation of the following fan-in algorithm for sparse factoriza-
tion, which is a parallel implementationof column-Cholesky (Ashcraft, Eisenstat
and Liu, 1990):

Algorithm 23 Distributed fan-in sparse Cholesky factorization

for j = 1; n
if j 2 mycols or mycols \ Struct(Lj�) 6= ;

u = 0
for k 2 mycols \ Struct(Lj�)

u = u+ `jk � L�k faggregate column update sg
if j 2 mycols

incorporate u into the factor column j
while any aggregated update column for

column j remains, receive in u another
aggregated update column for column j, and
incorporate it into the factor column j
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cdiv(j)
else

send u to processor map[j]

Algorithm 23 takes a demand-driven approach: the updates for a given col-
umn j are not computed until needed to complete that column, and they are
computed by the sending processors rather than the receiving processor. As a
result, all of a given processor's contributions to the updating of the column
in question can be combined into a single aggregate update column, which is
then transmitted in a single message to the processor containing the target col-
umn. This approach not only decreases communication frequency and volume,
but it also facilitates a more e�cient computational inner loop. In particular,
no communication is required to complete the columns corresponding to any
subtree that is assigned entirely to a single processor. Thus, with an appropri-
ate locality-preserving and load-balanced subtree mapping, Algorithm 23 has a
perfectly parallel, communication-free initial phase that is followed by a second
phase in which communication takes place over increasingly larger subsets of
processors as the computation proceeds up the elimination tree, encountering
larger subtrees. This perfectly parallel phase, which is due entirely to sparsity,
tends to constitute a larger proportion of the overall computation as the size
of the problem grows for a �xed number of processors, and thus the algorithm
enjoys relatively high e�ciencies for su�ciently large problems.

In the fan-out and fan-in factorization algorithms, the necessary informa-
tion 
ow between columns is mediated by factor columns or aggregate update
columns, respectively. Another alternative is a multi-frontal method, in which
update information is mediated through a series of front matrices. In a sense,
this represents an intermediate strategy, since the e�ect of each factor column is
incorporated immediately into a front matrix, but its eventual incorporation into
the ultimate target column is delayed until until actually needed. The principal
computational advantage of multi-frontal methods is that the frontal matrices
are treated as dense matrices, and hence updating operations on them are much
more e�cient than the corresponding operations on sparse data structures that
require indirect addressing. Unfortunately, although the updating computa-
tions employ simple dense arrays, the overall management of the front matrices
is relatively complicated. As a consequence, multi-frontal methods are di�cult
to specify succinctly, so we will not attempt to do so here, but note that multi-
frontal methods have been implemented for both shared-memory (e.g., Benner,
Montry and Weigand (1987), Du� (1986)) and distributed-memory (e.g., Gilbert
and Schreiber (1992), Lucas, Blank and Tieman (1987)) parallel computers, and
are among the most e�ective methods known for sparse factorization in all types
of computational environments. For a uni�ed description and comparison of par-
allel fan-in, fan-out and multi-frontal methods, see Ashcraft, Eisenstat, Liu and
Sherman (1990).
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In this brief section on parallel direct methods for sparse systems, we have
concentrated on numeric Cholesky factorization for SPD matrices. We have
omitted many other aspects of the computation, even for the SPD case: com-
puting the ordering in parallel, symbolic factorization, and triangular solution.
More generally, we have omitted any discussion of LU factorization for general
sparse square matrices or QR factorization for sparse rectangular matrices. In-
stead we have concentrated on identifying the major features that distinguish
parallel sparse factorization from the dense case and examining the performance
implications of those di�erences.

8 Iterative methods for linear systems

In this section we discuss parallel aspects of iterative methods for solving large
linear systems. For a good mathematical introduction to a class of successful and
popular methods, the so-called Krylov subspace methods, see Freund, Golub and
Nachtigal (1992). There are many such methods and new ones are frequently
proposed. Fortunately, they share enough properties that to understand how to
implement them in parallel it su�ces to examine carefully just a few.

For the purposes of parallel implementation there are two classes of meth-
ods: those with short recurrences, i.e. methods that maintain only a very limited
number of search direction vectors, and those with long recurrences. The �rst
class includes CG (Conjugate Gradients), CR (Conjugate Residuals), Bi-CG,
CGS (CG squared), QMR (Quasi Minimum Residual),
GMRES(m) for smallm (Generalized MinimumResidual), truncated ORTHOMIN
(Orthogonal MinimumResidual), Chebychev iteration, and so on. We could fur-
ther distinguish between methods with �xed iteration parameters and methods
with dynamical parameters, but we will not do so; the e�ects of this aspect
will be clear from our discussion. As the archetype for this class we will con-
sider CG; the parallel implementation issues for this method apply to most
other short recurrence methods. The second class of methods includes GM-
RES, GMRES(m) with larger m, ORTHOMIN, ORTHODIR (Orthogonal Di-
rections), ORTHORES (Orthogonal Residuals), and EN (Eirola{Nevanlinna's
Rank-1 update method). We consider GMRES in detail, which is a popular
method in this class.

This section is organized as follows. In Section 8.1 we will discuss the par-
allel aspects of important computational kernels in iterative schemes. From the
discussions it should be clear how to combine coarse-grained and �ne-grained
approaches, for example when implementing a method on a parallel machine
with vector processors. The implementation for such machines, in particular
those with shared memory, is given much attention in Dongarra et al. (1991).
In Section 8.2, coarse-grained parallel and data-locality issues of CG will be
discussed, while in Section 8.3 the same will be done for GMRES.
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8.1 Parallelism in the kernels of iterative methods

The basic time-consuming computational kernels of iterative schemes are usu-
ally:

1. inner products,

2. vector updates,

3. matrix{vector products, like Api (for some methods also ATpi),

4. preconditioning (e.g., solve for w in Kw = r).

The inner products can be easily parallellized; each processor computes the in-
ner product of two segments of each vector (local inner products or LIPs). On
distributed memory machines the LIPs have to be sent to other processors in
order to be reduced to the required global inner product. This step requires
communication. For shared memory machines the inner products can be com-
puted in parallel without di�culty. If the distributed memory system supports
overlap of communication with computation, then we seek opportunities in the
algorithm to do so. In the standard formulation of most iterative schemes this
is usually a major problem. We will come back to this in the next two sections.
Vector updates are trivially parallellizable: each processor updates its `own'
segment. The matrix{vector products are often easily parallellized on shared
memorymachines by splitting the matrix into strips corresponding to the vector
segments. Each processor takes care of the matrix{vector product of one strip.

For distributed memory machines there may be a problem if each processor
has only a segment of the vector in its memory. Depending on the bandwidth of
the matrix we may need communication for other elements of the vector, which
may lead to communication problems. However, many sparse matrix problems
are related to a network in which only nearby nodes are connected. In such
a case it seems natural to subdivide the network, or grid, in suitable blocks
and to distribute these blocks over the processors. When computing Api each
processor needs at most the values of pi at some nodes in neighbouring blocks. If
the number of connections to these neighbouring blocks is small compared to the
number of internal nodes, then the communication time can be overlapped with
computational work. For more detailed discussions on implementation aspects
on distributed memory systems, see de Sturler (1991) and Pommerell (1992).

Preconditioning is often the most problematic part in a parallel environment.
Incomplete decompositions of A form a popular class of preconditionings in the
context of solving discretized PDEs. In this case the preconditioner K = LU ,
where L and U have a sparsity pattern equal or close to the sparsity pattern
of the corresponding parts of A (L is lower triangular, U is upper triangular).
For details see Golub and Van Loan (1989), Meijerink and van der Vorst (1977)
and Meijerink and van der Vorst (1981). Solving Kw = r leads to solving
successively Lz = r and Uw = z. These triangular solves lead to recurrence
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relations that are not easily parallellized. We will now discuss a number of
approaches to obtain parallellism in the preconditioning part.

1. Reordering the computations. Depending on the structure of the matrix
a frontal approach may lead to successful parallellism. By inspecting the
dependency graph one can select those elements that can be computed
in parallel. For instance, if a second order PDE is discretized by the
usual �ve-point star over a rectangular grid, then the triangular solves
can be parallellized if the computation is carried out along diagonals of
the grid, instead of the usual lexicographical order. For vector comput-
ers this leads to a vectorizable preconditioner (see Ashcraft and Grimes
(1988), Dongarra et al. (1991), van der Vorst (1989a) and (1989b)). For
coarse-grained parallellism this approach is insu�cient. By a similar ap-
proach more parallellism can be obtained in three-dimensional situations:
the so-called hyperplane approach (Schlichting and van der Vorst, 1989;
van der Vorst, 1989a; 1989b). The disadvantage is that the data need to be
redistributed over the processors, since the grid points, which correspond
to a hyperplane in the grid, are located quite irregularly in the array. For
shared memory machines this also leads to reduced performance because
of indirect addressing. In general one concludes that the data dependency
approach is not adequate for obtaining a suitable degree of parallellism.

2. Reordering the unknowns. One may also use a colouring scheme for re-
ordering the unknowns, so that unknowns with the same colour are not
explicitly coupled. This means that the triangular solves can be paral-
lellized for each colour. Of course, communication is required for cou-
plings between groups of di�erent colours. Simple colouring schemes, like
red-black ordering for the �ve-point discretized Poisson operator, seem
to have a negative e�ect on the convergence behaviour. Du� and Meu-
rant (1989) have carried out numerical experiments for many di�erent
orderings, which show that the numbers of iterations may increase signif-
icantly for other than lexicographical ordering. Some modest degree of
parallellism can be obtained, however, with so-called incomplete twisted
factorizations (Dongarra et al., 1991; van der Vorst, 1987b; van der Vorst,
1989a). Multi-colour schemes with a large number of colours (e.g., 20 to
100) may lead to little or no degradation in convergence behaviour (Doi,
1991), but also to less parallellism. Moreover, the ratio of computation to
communication may be more unfavourable.

3. Forced parallellism. Parallelism can also be forced by simply neglecting
couplings to unknowns residing in other processors. This is like block
Jacobi preconditioning, in which the blocks may be decomposed in incom-
plete form (Seager, 1986). Again, this may not always reduce the overall
solution time, since the e�ects of increased parallellism are more than un-
done by an increased number of iteration steps. In order to reduce this
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e�ect, it is suggested in Radicati di Brozolo and Robert (1989) to construct
incomplete decompositions on slightly overlapping domains. This requires
communication similar to that of matrix{vector products. In Radicati di
Brozolo and Robert (1989) results are reported on a six-processor shared
memory system (IBM3090), and speedups close to 6 have been observed.

The problems with parallellism in the preconditioner have led to searches for
other preconditioners. Often simple diagonal scaling is an adequate precondi-
tioner and this is trivially parallellizable. For results on a Connection Machine,
see Berryman, Saltz, Gropp and Mirchandaney (1989). Often this approach
leads to a signi�cant increase in iteration steps. Still another approach is to use
polynomial preconditioning: w = pj(A)r, i.e. K

�1 = pj(A), for some suitable
jth degree polynomial. This preconditioner can be implemented by forming
only matrix{vector products, which, depending on the structure of A, are easier
to parallellize (Saad, 1985b). For pj one often selects a Chebychev polynomial,
which requires some information on the spectrum of A.

Finally we point out the possibility of using the truncated Neumann series
for the approximate inverse of A, or parts of L and U . Madsen et al. (1976) dis-
cuss approximate inversion of A, which from the implementation point of view
is equivalent to polynomial preconditioning. In van der Vorst (1982) the use
of truncated Neumann series for removing some of the recurrences in the trian-
gular solves is discussed. This approach leads to only �ne-grained parallellism
(vectorization).

8.2 Parallelism and data locality in preconditioned CG

To use CG to solve Ax = b, A must be symmetric and positive de�nite. In other
short recurrence methods, other properties of A may be required or desirable,
but we will not exploit these properties explicitly here.

Most often, CG is used in combination with some kind of preconditioning
(Freund et al., 1991; Golub and Van Loan, 1989; Hestenes and Stiefel, 1954).
This means that the matrix A is implicitly multiplied by an approximation
K�1 of A�1. Usually, K is constructed to be an approximation of A, and
so that Ky = z is easier to solve than Ax = b. Unfortunately, a popular
class of preconditioners, those based on incomplete factorizations of A, are hard
to parallellize. We have discussed some e�orts to obtain more parallellism in
the preconditioner in Section 8.1. Here we will assume the preconditioner is
chosen such that the time to solve Ky = z in parallel is comparable with the
time to compute Ap. For CG we also require that the preconditioner K be
symmetric positive de�nite. We exploit this to implement the preconditioner
more e�ciently.

The preconditioned CG algorithm is as follows.

Algorithm 24 Preconditioned Conjugate Gradients { variant 1
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x0= initial guess; r0 = b� Ax0;
p�1 = 0; ��1 = 0;
Solve for w0 in Kw0 = r0;
�0 = (r0; w0)
for i = 0; 1; 2; ::::

pi = wi + �i�1pi�1;
qi = Api;
�i = �i=(pi; qi)
xi+1 = xi + �ipi;
ri+1 = ri � �iqi;
if xi+1 accurate enough then quit;
Solve for wi+1 in Kwi+1 = ri+1;
�i+1 = (ri+1; wi+1);
�i = �i+1=�i;

end;

If A or K is not very sparse, most work is done in multiplying qi = Api or
solving Kwi+1 = ri+1, and this is where parallellism is most bene�cial. It is
also completely dependent on the structures of A and K.

Now we consider parallellizing the rest of the algorithm. Note that updating
xi+1 and ri+1 can only begin after completing the inner product for �i. Since on
a distributed memory machine communication is needed for the inner product,
we cannot overlap this communication with useful computation. The same
observation applies to updating pi, which can only begin after completing the
inner product for �i�1. Apart from computing Api and solving Kwi+1 = ri+1,
we need to load 7 vectors for 10 vector 
oating point operations. This means
that for this part of the computation only 10=7 
oating point operation can be
carried out per memory reference on average.

Several authors (Chronopoulos and Gear, 1989; Meurant, 1984a,b; van der
Vorst, 1986) have attempted to improve this ratio, and to reduce the num-
ber of synchronization points (the points at which computation must wait for

communication). In Algorithm 24 there are two such synchronization points,
namely the computation of both inner products. Meurant (1984a) (see also
Saad (1985b)) has proposed a variant in which there is only one synchroniza-
tion point, however at the cost of possibly reduced numerical stability, and one
additional inner product. In this scheme the ratio between computations and
memory references is about 2. We show here yet another variant, proposed by
Chronopoulos and Gear (1989).

Algorithm 25 Preconditioned conjugate gradients { variant 2

x0= initial guess; r0 = b� Ax0;
q�1 = p�1 = 0; ��1 = 0;
Solve for w0 in Kw0 = r0;
s0 = Aw0;
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�0 = (r0; w0);�0 = (s0; w0);
�0 = �0=�0;
for i = 0; 1; 2; ::::

pi = wi + �i�1pi�1;
qi = si + �i�1qi�1;
xi+1 = xi + �ipi;
ri+1 = ri � �iqi;
if xi+1 accurate enough then quit;
Solve for wi+1 in Kwi+1 = ri+1;
si+1 = Awi+1;
�i+1 = (ri+1; wi+1); �i+1 = (si+1; wi+1);
�i = �i+1=�i;
�i+1 = �i+1=(�i+1 � �i+1�i=�i);

end;

In this scheme all vectors need be loaded only once per pass of the loop, which
leads to improved data locality. However, the price is 2n extra 
ops per iteration
step. Chronopoulos and Gear (1989) claim the method is stable, based on
their numerical experiments. Instead of two synchronization points, as in the
standard version of CG, we have now only one such synchronization point, as
the next loop can be started only when the inner products at the end of the
previous loop have been completed. Another slight advantage is that these inner
products can be computed in parallel.

Chronopoulos and Gear (1989) propose to improve further the data local-
ity and parallellism in CG by combining s successive steps. Their algorithm
is based upon the following property of CG. The residual vectors r0; :::; ri
form an orthogonal basis (assuming exact arithmetic) for the Krylov subspace
spanned by r0; Ar0; :::; A

i�1r0. Given r0 through rj , the vectors r0; r1; :::; rj,
Arj; :::; A

i�j�1rj also span this subspace. Chronopoulos and Gear propose to
combine s successive steps by generating rj; Arj; :::; A

s�1rj �rst, and then to
orthogonalize and update the current solution with this blockwise extended

subspace. Their approach leads to slightly more 
ops than s successive steps of
standard CG, and also one additional matrix{vector product every s steps. The
implementation issues for vector register computers and distributed memory
machines are discussed in great detail in Chronopoulos (1991).

The main drawback in this approach is potential numerical instability: de-
pending on the spectrum of A, the set rj; :::; A

s�1rj may converge to a vector
in the direction of a dominant eigenvector, or in other words, may become de-
pendent for large values of s. The authors claim success in using this approach
without serious stability problems for small values of s. Nevertheless, it seems
that s-step CG still has a bad reputation (Saad, 1988) because of these problems.
However, a similar approach, suggested by Chronopoulos and Kim (1990) for
other processes such as GMRES, seems to be more promising. Several authors
have pursued this direction, and we will come back to this in Section 8.3.
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We consider another variant of CG, in which we may overlap all commu-
nication time with useful computations. This is just a reorganized version of
the original CG scheme, and is therefore precisely as stable. The key trick is to
delay the updating of the solution vector. Another advantage over the previous
scheme is that no additional operations are required. We will assume that the
preconditioner K can be written as K = LLT . Furthermore, L has a block
structure, corresponding to the grid blocks, so that any communication can
again be overlapped with computation.

68



Algorithm 26 Preconditioned conjugate gradients { variant 3

x�1 = x0= initial guess; r0 = b�Ax0;
p�1 = 0; ��1 = 0;��1 = 0;
s = L�1r0;
�0 = (s; s)
for i = 0; 1; 2; ::::

wi = L�T s; (0)
pi = wi + �i�1pi�1; (1)
qi = Api; (2)

 = (pi; qi); (3)
xi = xi�1 + �i�1pi�1; (4)
�i = �i=
; (5)
ri+1 = ri � �iqi; (6)
s = L�1ri+1; (7)
�i+1 = (s; s); (8)
if ri+1 small enough then (9)

xi+1 = xi + �ipi
quit;

�i = �i+1=�i;
end;

Under the assumptions that we have made, CG can be e�ciently parallellized
as follows.

1. All compute intensive operations can be done in parallel. Only operations
(2), (3), (7), (8), (9), and (0) require communication. We have assumed
that the communication in (2), (7), and (0) can be overlapped with com-
putation.

2. The communication required for the reduction of the inner product in (3)
can be overlapped with the update for xi in (4), (which could in fact have
been done in the previous iteration step).

3. The reduction of the inner product in (8) can be overlapped with the
computation in (0). Also step (9) usually requires information such as the
norm of the residual, which can be overlapped with (0).

4. Steps (1), (2), and (3) can be combined: the computation of a segment
of pi can be followed immediately by the computation of a segment of qi
in (2), and this can be followed by the computation of a part of the inner
product in (3). This saves on load operations for segments of pi and qi.

5. Depending on the structure of L, the computation of segments of ri+1 in
(6) can be followed by operations in (7), which can be followed by the
computation of parts of the inner product in (8), and the computation of
the norm of ri+1, required for (9).
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6. The computation of �i can be done as soon as the computation in (8) has
been completed. At that moment, the computation for (1) can be started
if the requested parts of wi have been completed in (0).

7. If no preconditioner is used, then wi = ri, and steps (7) and (0) are
skipped. Step (8) is replaced by �i+1 = (ri+1; ri+1). Now we need some
computation to overlap the communication for this inner product. To this
end, one might split the computation in (4) in two parts. The �rst part
would be computed in parallel with (3), and the second part with �i+1.

More recent work on removing synchroniation points in CG while retain-
ing numerical stability appears in D'Azevedo and Romine (1992) and Eijkhout
(1992).

8.3 Parallelism and data locality in GMRES

GMRES, proposed by Saad and Schultz (1985), is a CG-like method for solving
general nonsingular linear systems Ax = b. GMRES minimizes the residual
over the Krylov subspace span[r0; Ar0; A

2r0; :::; A
ir0], with r0 = b� Ax0. This

requires, as with CG, the construction of an orthogonal basis of this space. Since
we do not require A to be symmetric, we need long recurrences: each new vector
must be explicitly orthogonalized against all previously generated basis vectors.
In its most common formGMRES orthogonalizes using Modi�ed Gram{Schmidt
(Golub and Van Loan, 1989). In order to limit memory requirements (since all
basis vectors must be stored), GMRES is restarted after each cycle ofm iteration
steps; this is called GMRES(m). A slightly simpli�ed version of GMRES(m)
with preconditioning K is as follows (for details, see Saad and Schultz (1985)):

Algorithm 27 GMRES(m)

x0 is an initial guess; r = b� Ax0;
for j = 1; 2; ::::

Solve for w in Kw = r;
v1 = w=kwk2;
for i = 1; 2; :::;m

Solve for w in Kw = Avi;
for k = 1; :::; i orthogonalization of w

hk;i = (w; vk); against vs, by modi�ed
w = w � hk;ivk; Gram{Schmidt process

end k;
hi+1;i = kwk2;
vi+1 = w=hi+1;i;

end i;
Compute xm using the hk;i and vi;
r = b�Axm;
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if residual r is small enough then quit
else (x0 := xm;);

end j;

Another scheme for GMRES, based upon Householder orthogonalization in-
stead of modi�ed Gram{Schmidt, has been proposed inWalker (1988). For some
applications the additional computation required by Householder orthogonaliza-
tion is compensated by improved numerical properties: the better orthogonality
saves iteration steps. In van der Vorst and Vuik (1991) a variant of GMRES is
proposed in which the preconditioner itself may be an iterative process, which
may help to increase parallel e�ciency.

Similar to CG and other iterative schemes, the major computations are
matrix{vector computations (with A and K), inner products and vector up-
dates. All of these operations are easily parallellizable, although on distributed
memory machines the inner products in the orthogonalization act as synchro-
nization points. In this part of the algorithm, one new vector, K�1Avj , is
orthogonalized against the previously built orthogonal set v1, v2, ... , vj . In Al-
gorithm 27, this is done using Level 1 BLAS, which may be quite ine�cient. To
incorporate Level 2 BLAS we can do either Householder orthogonalization or
classical Gram{Schmidt twice (which mitigates classical Gram{Schmidt's po-
tential instability (Saad, 1988)). Both approaches signi�cantly increase the
computational work and do not remove the synchronization and data-locality
problems completely. Note that we cannot, as in CG, overlap the inner prod-
uct computation with updating the approximate solution, since in GMRES this
updating can be done only after completing a cycle ofm orthogonalization steps.

The obvious way to extract more parallellism and data locality is to generate
a basis v1, Av1, ..., A

mv1 for the Krylov subspace �rst, and to orthogonalize
this set afterwards; this is called m-step GMRES(m) (Chronopoulos and Kim,
1990). This approach does not increase the computational work and, in contrast
to CG, the numerical instability due to generating a possibly near-dependent
set is not necessarily a drawback. One reason is that error cannot build up as in
CG, because the method is restarted every m steps. In any case, the resulting
set, after orthogonalization, is the basis of some subspace, and the residual is
then minimized over that subspace. If, however, one wants to mimic standard
GMRES(m) as closely as possible, one could generate a better (more indepen-
dent) starting set of basis vectors v1, y2 = p1(A)v1, ..., ym+1 = pm(A)v1, where
the pj are suitable degree j polynomials. Newton polynomials are suggested in
Bai, Hu and Reichel (1991), and Chebychev polynomials in de Sturler (1991).

After generating a suitable starting set, we still have to orthogonalize it. In
de Sturler (1991) modi�ed Gram{Schmidt is used while avoiding communication
times that cannot be overlapped. We outline this approach, since it may be
of value for other orthogonalization methods. Given a basis for the Krylov
subspace, we orthogonalize by

for k = 2; :::;m+ 1 :
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/* orthogonalize yk; :::; ym+1 w.r.t. vk�1 */
for j = k; :::;m+ 1

yj = yj � (yj ; vk�1)vk�1
vk = yk=kykk2

In order to overlap the communication costs of the inner products, we split
the j-loop into two parts. Then for each k we proceed as follows.

1. compute in parallel the local parts of the inner products for
the �rst group

2. assemble the local inner products to global inner products
3. compute in parallel the local parts of the inner products for

the second group
4. update yk; compute the local inner products required for kykk2
5. assemble the local inner products of the second group to global

inner products
6. update the vectors yk+1; :::; ym+1

7. compute vk = yk=kykk2
From this scheme it is obvious that if the length of the vector segments

per processor are not too small, in principle all communication time can be
overlapped by useful computations.

For a 150 processor MEIKO system, con�gured as a 15�10 torus, de Sturler
(1991) reports speedups of about 120 for typical discretized PDE systems with
60; 000 unknowns (i.e. 400 unknowns per processor). For larger systems, the
speedup increases to 150 (or more if more processors are involved) as expected.
Calvetti et al. (1991) report results for an implementation of m-step GMRES,
using BLAS2 Householder orthogonalization, for a four-processor IBM 6000
distributed memory system. For larger linear systems, they observed speedups
close to 2:5.

9 Iterative methods for eigenproblems

The oldest iterative scheme for determining a few dominant eigenvalues and
corresponding eigenvectors of a matrix A is the power method (Parlett, 1980):

Algorithm 28 Power method

select x0 with kx0k2 = 1
k = 0
repeat

k = k + 1
yk = Axk�1
� = kykk2
xk = yk=�

until xk converges
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If the eigenvalue of A of maximummodulus is well separated from the oth-
ers, then xk converges to the corresponding eigenvector and � converges to the
modulus of the eigenvalue. The power method has been superseded by more
e�cient techniques. However, the method is still used in the form of inverse
iteration for the rapid improvement of eigenvalue and eigenvector approxima-
tions obtained by other schemes. In inverse iteration, the line `yk = Axk�1'
is replaced by `Solve for yk in Ayk = xk�1'. Most of the computational e�ort
will be required by this operation, whose (iterative) solution we discussed in
Section 8.

All operations in the power method are easily parallellizable, except pos-
sibly for the convergence test. There is only one synchronization point: xk
can be computed only after the reduction operation for � has completed. This
synchronization could be avoided by changing the operation yk = Axk�1 to
yk = Ayk�1 (assuming y0 = x0). This means � would change every iteration by
a factor which converges to the maximummodulus of the eigenvalues of A, and
so risks over
ow or under
ow after enough steps.

The power method constructs basis vectors xk for the Krylov subspace deter-
mined by x0 and A. It is faster and more accurate to keep all these vectors and
then determine stationary points of the Rayleigh quotient over the Krylov sub-
space. In order to minimize work and improve numerical stability, we compute
an orthonormal basis for the Krylov subspace. This can be done by either short
recurrences or long recurrences. The short (three-term) recurrence is known
as the Lanczos method. When A is symmetric this leads to an algorithm with
can e�ciently compute many, if not all, eigenvalues and eigenvectors (Parlett,
1980).

In fact, the CG method (and Bi-CG) can be viewed as a solution process
on top of Lanczos. The long recursion process is known as Arnoldi's method
(Arnoldi, 1951), which we have seen already as the underlying orthogonalization
procedure for GMRES. Not surprisingly, a short discussion on parallellizing the
Lanczos and Arnoldi methods would have much in common with our earlier
discussions of CG and GMRES.

9.1 The Lanczos method

The Lanczos algorithm is described by the following scheme (Parlett (1980)):

Algorithm 29 Lanczos method

select r0 6= 0; q0 = 0
k = 0
repeat

k = k + 1
�k�1 = krk�1k2
qk = rk�1=�k�1
uk = Aqk
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sk = uk � �k�1qk�1
�k = (qk; sk)
rk = sk � �kqk

until the eigenvalues of Tk converge (see below)

The qks can be saved in secondary storage (they are required for backtrans-
formation of the so-called Ritz vectors below).

The �m and �m, for m = 1; 2; :::; k, form a tridiagonal matrix Tk:

Tk =

0
BBBB@

�1 �1
�1 �2 �2

�2 � �
� � �k�1

�k�1 �k

1
CCCCA :

The eigenvalues and eigenvectors of Tk are called the Ritz values and Ritz vec-

tors, respectively, of A with respect to the Krylov subspace of dimension k. The
Ritz values converge to eigenvalues of A as k increases, and after backtransfor-
mation with the qms, the corresponding Ritz vectors approximate eigenvectors
of A. For improving these approximations one might consider inverse iteration.

The parallel properties of the Lanczos scheme are similar to those of CG.
On distributed memory machines there are two synchronization points caused
by the reduction operations for �k�1 and �k. The �rst synchronization point
can, at the cost of n additional 
ops, be removed by delaying the normalization
of the n-vector rk�1. This would lead to the following sequence of statements:

uk = Ark�1; qk = rk�1=�k�1; sk = uk=�k�1 � �k�1qk�1 :

In this approach, the reduction operation for �k�1 can be overlapped with com-
puting Ark�1. Much in the same spirit as the approach suggested for CG by
Chronopoulos and Gear (see algorithm 25), the synchronization point caused by
the reduction operation for �k can be removed by computing Ask right after,
and in overlap with, this operation. In that case we reconstruct Ark�1 from
recurrence relations for rk�1. This increases the operation count by another
n 
ops, and, even more serious, leads to a numerically less stable algorithm.
The Ritz values and Ritz vectors can be computed in parallel by techniques
discussed in Section 6. For small k there will not be much to do in parallel,
but we also need not compute the eigensystem of Tk for each k, nor check con-
vergence for each k. An elegant scheme for tracking convergence of the Ritz

values is discussed in Parlett and Reid (1981). If the Ritz value �
(k)
j , i.e. the

jth eigenvalue of Tk, is acceptable as an approximation to some eigenvalue of

A, then an approximation e
(k)
j to the corresponding eigenvector of A is given by

e
(k)
j = Qky

(k)
j ; (4)
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where y
(k)
j is the jth eigenvector of Tk, and Qk = [q1; q2; :::; qk]. This is easy to

parallellize.
As with CG, one may attempt to improve parallellism in Lanczos by com-

bining s steps in the orthogonalization step. However, the eigensystem of Tk is
very sensitive to loss of orthogonality in the qm vectors. For the standard Lanc-
zos method this loss of orthogonality goes hand in hand with the convergence of
Ritz values and leads to multiple eigenvalues of Tk (see Paige (1976) and Parlett
(1980)), and so can be accounted for, for instance, by selective reorthogonaliza-
tion, for which the converged Ritz vectors are required (Parlett, 1980). It is as
yet unknown how rounding errors will a�ect the s step approach, and whether
that may lead to inaccurate eigenvalue approximations.

9.2 The Arnoldi method

The Arnoldi algorithm is just the orthogonalization scheme we used before in
GMRES:

Algorithm 30 Arnoldi's method

w is an initial vector with kwk2 6= 0;
v1 = w=kwk2;
k = 0;
repeat

k = k + 1;
w = Avk;
for i = 1; :::; k orthogonalization of w

hi;k = (w; vi); against vs, by modi�ed
w = w � hi;kvi; Gram{Schmidt process

end i;
hk+1;k = kwk2;
vk+1 = w=hk+1;k;

until the eigenvalues of �Hk converge (see below)

The elements hi;j computed after k steps build an upper Hessenberg matrix
Hk of dimension (k + 1) � k. The eigenvalues and eigenvectors of the upper
k � k part �Hk of Hk are the Ritz values and Ritz vectors of A with respect to

the k dimensional Krylov subspace generated by A and w. The Ritz values �
(k)
j

of �Hk converge to eigenvalues of A, and the corresponding Ritz vectors y
(k)
j can

then be backtransformed to approximate eigenvectors of ej of A via

ej = Vky
(k)
j ;

where Vk = [v1; v2; :::; vk]. The parallel solution of the eigenproblem for a Hes-
senberg matrix is far from easy, for a discussion see Section 6. Normally it is
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assumed that the order n of A is much larger than the number of Arnoldi steps
k. In this case it may be acceptable to solve the eigenproblem for Hk on a single
processor. In order to limit k, it has been proposed to carry out the Arnoldi
process with a �xed small value for k (a few times larger than the desired num-
ber of dominant eigenvalues m), and to repeat the process, very much in the
same manner as GMRES(k). At each repetition of the process, it is started
with a w that is taken as a combination of the Ritz vectors corresponding to
the m dominant Ritz values of the previous cycle. Hopefully, the subspace of m
dominant Ritz vectors converges to an invariant subspace of dimension m. This
process is known as subspace iteration, a generalization of the power method,
for details see Saad (1980) and Saad (1985a). For a description, as well as a
discussion of its performance on the Connection Machine, see Petiton (1992).

A di�erent approach for computing an invariant subspace of order m, based
on Arnoldi's process, is discussed in Sorensen (1992). Here one starts with m

steps of Arnoldi to create an initial approximation of the invariant subspace of
dimension m corresponding to m desired eigenvalues, say the m largest eigen-
values in modulus. Then this subspace is repeatedly expanded by p new vectors,
using the Arnoldi process, so that the m + p vectors form a basis for a m + p

dimensional Krylov subspace. This information is compressed to the �rst m
vectors of the subset, by a QR algorithm that drives the residual in the pro-
jected operator to a small value using p shifts (usually the p unwanted Ritz
values of the projected operator). If this expansion and compression process is
repeated i times, then the computed m dimensional subspace will be a subset of
the m + i � p dimensional Krylov subspace one would get without compression.
The hope is that by compressing well, the intersection of the desired invariant
subspace with the �nal m dimensional subspace is close to the intersection with
the larger m + i � p dimensional subspace. The bene�t of this method is in
limiting storage and time spent on the projected Hessenberg eigenproblems to
depend on m+p rather than m+ i �p. An advantage over the previous approach
(subspace iteration) is in the implicit construction of a suitable starting vector
for the m+ p dimensional Krylov subspace. For a basis of this subspace only p
matrix vector products have to be evaluated for each iteration cycle. In these
approaches the eigendecomposition of the projected Hessenberg matrices is still
the hardest step to parallellize.

We do not know of successful attempts to combine s successive Krylov sub-
space vectors v, Av, A2v, ..., As�1v (as was proposed in combination with
GMRES). In the case of subspace iteration numerical instability may not be as
severe as for the Lanczos process.
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