7 Acknowledgements

The authors wish to thank W. Kahan for his detailed criticism and conments.

References

[1] E. Anderson. Robust triangul ar sol ves for use in conditionestimtion. Conputer Science
Technical Report (S-91-142, University of Tennessee, Knoxville, 1991. (LAPACK Wrki ng
Note #36).

[2]E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Iongarra, J. Du Croz, A Greenbaum S. Ham
nmarling, A Mckenney, S. Ostrouchov, and D Sorensen. LAPACK Users ’ Guide , Re le as e 1.0
SIAM Phi | adel phi a, 1992. 235 pages.

[3] ANSI /TEEE, New York. IFEFE Standard for Binary Fl oating Poi piStdribd-ht985 i ¢
edi tion, 1985.

[4) ANSI /TEEE, New York. [FEFEF Standard for RadixzIndependent Floating Poin
Std 854- 1987 edi tion, 1987.

[5]J. Demmel . Specifications for robust parallel prefix operations. Technical report, Thir
Michi nes Corp., 1992.

[6]J. Dongarra, J. Du Croz, I. Duff, and S. Hammarling. Aset of level 3 Basic Linear Al gebra
Subprograns. ACM Trans. Math. Soft., 16(1):1-17, March 1990.

[7]J. Dongarra, J. Du Croz, S. Hanmarling, and Richard J. Hanson. An extended set of fortran
basic linear algebra subroutines. ACMTrans. Math. Soft ., 14(1):1-17, Mrch 1988,

[8]Richard L. Sites (editor). Al pha Architecture Reference Manual. Digital Pres

[9]G Goluband C. Van Loan. Mat rixz Comput at i ons. Johns Hopkins University Press, Balt
M), 2nd edition, 1989.

[10]W W Hager. Conditionestimators. STAMJ. Sci. Stat. Comput., 5:311-316, 1984.

[11]N. J. Hgham A gorithm674: FORIRAN codes for estinating the one-normof a real or
conpl ex natrix, with applications to conditionestimtion. ACMTrans. Math. Soft.
396, 1988.

[12]SPARCInternational Inc. The SPARCArchitecture Manual : Version 8 Prenticel
wood iffs, NewJersey 07632, 1992.

[13]Gerry Kane. MI PS Risc Architecture. Prentice Hall, Englewood (iffs, NJ 07632, 19

[14]C. Lawson, R Hanson, D K ncaid, and F. Krogh. Basic Linear Al gebra Subprogranms for
Fortran usage. ACMTrans. Mat h. Soft., 5:308-323, 1979.

15

triangul ar sol ver CTRSV in the BLAS. CLATRS is a conpl ex counterpart of SLATRS as discussed i
Section 3, using Algorithm2. In nost common cases, however, the scaling unnecessarily introd
overhead. W reinplenented the part of CTREVC containing the triangular solve. Wen sol vit
each equation (3), we first call CTRSV and test the exception flags. If exceptions occur, then
back to call CLATRS.

To study the effici ency of the nodified CTREVC, we ran the ol d code and our newone on random
upper triangul ar matrices of various sizes. W observed the speedups of froml.49 to 1.65 on
DEGstation 5000, and froml.38 to 1.46 on the Sun 4/260. In the case of overflow, each triangul:
sol ve is invoked twice, first using CTRSV yet throwi ng away the sol utions, and second usi ng CLA
Since CTRSVis about twice as fast as CLATRS (see Section 3), the performance loss is no nore t
50% when a (rare) exception occurs.

To see howthe performance attained fromCTREVC al one effects the perfornmance of the whole
process of conputing eigenvectors of general conplex natrices, we timed CTREVC in the conte
of CGEEV. It turns out that CTREVC anounts to about 20%of the total execution time of CGEEV.
Therefore, we expect that the speed of the whole process can be increased by about 8%

6 Lessons for SystemArchitects

The nost i nportant l essonis that well-designed exception handling pernits the nost conmon case
where no exceptions occur, to be inplenented nuch nore quickly. This al one makes exceptior
handling worthinpl ementing well.

Atrickier questionis howfast exception handling nmist be i npl enented. There are three spe
at issue: the speed of NaNand infinity arithnetic, the speed of testing sticky flags, and the s
of trap handling. In principle, thereis noreason NaNand infinity arithnetic shoul d not be as
as conventional arithnetic. The exanples insection4.2showedthat aslowdownin NaNarithnet
by a factor of 80 fromconventional arithnetic slows down condition estimation by a factor o
to 30.

Since exceptions are reasonably rare, these slowdowns generally affect only the worst case
havior of the algorithm Ikpending on the application, this nay or nmay not be inportant.
the worst case is inmportant, it is inportant that systemdesigners provide sone nethod of |
exception handling, either NaNand infinity arithmetic, testing the sticky flags, or trap han
Mking all three very slowwill force users to code to avoid all exceptions in the first pl ac
ori gi nal unpleasant situation exception handling was designed to avoid.

Qur final comment concerns the tradeoff between the speed of NaNand infini ty ari thnetic and
the granul arity of testing for exceptions. Qur current approach uses a verylarge granul arit
we test for exceptions only after a conplete call to STRSV. For this approach to be fast, NaN
infinity ari thnetic nust be fast. On the other hand, a very snall grained approach would test
exceptions inside the inner loop, and so avoi d doi ng usel ess NaNand i nfini ty ari thnetic. Howe
such frequent testing is clearly too expensive. Aconprise would be to test for exceptions
one or several conplete iterations of the inner loopin STRSV. This would require re-inpleme
STRSV. This nedi umgrained approachis less sensitive tothe speed of NaNand i nfini ty arithnet
The effect of granul arity on performance is worth explorationin the future.

The sof tware described in this report is available fromthe authors.

14

argunents, whereas the slow DE(station conputes correctly but 80 times slower. The foll owi
tabl e gi ves the speeds for both Di(stations:

Exanple 1 | Exanple 2 | Exanple 3 ‘
“fast” DEC5000 speedup 2.15 2.32 2.00 ‘
“sl ow” DEC5000 slowdown 11.67 13.49 9.00 |

In other words, the sl owIHC5000 goes 18 to 30 tines slower than the fast DEC5000.
On sone exanpl es, where only infinities but no NaNs occurred, the speedups ranged from3.5
to 6 on both nachines.

5 Eigaweta Caputatian

W now consider another opportunity to exploit IEEE exception handling. The problemis tc
conpute eigenvectors of general conpl ex matrices.

Let A be an n-by-nconplex natrix. If non-zero vectors vand u, and ascalar Asatisfy Av =,
and w*A=Au * (* denotes conjugate transpose), then Ais called an eigenval ue, dndre and u
called the right and left eigenvectors associated with the ei genval ue A, respectively. In L
the task of conputing eigenval ues and the associated eigenvectors is performed in the foll
stages (as in the routine CGEEV):

1. Ais reduced to upper Hessenberg formH, which is zero bel owthe first subdi agonal. Th
reduction can be written HZA)wi th Qunitary [P.

2. His reduced to Schur form7. The reduction can be writterf lS=5Shere T is an upper
triangul ar natrix and S is unitaryTh® eigenval ues are on the di agonal of T.

3. CTREVC conputes the eigenvectors of T. let V be the natri x whose col unms are the right
eigenvectors of T. Then S -V are the right eigenvectors of I and -S5-V are the righ
eigenvectors of A Sinilarly, we can conpute the left eigenvectors of Afromthose of T.

Let us first exanine the i mportant stage of cal cul ati ng the ei genvectors of an upper tri ang
matri x 7. The ei genval ues of T andsb, . ., .4, Tofind aright ei genvector v associated wi th the
ei genval ug;f we need to sol ve the honmogeneous equation {I)wt=0, which can be partitioned
into the block form

Ty~ i d Thg T3 o
0 0 T23 . (%] =0 (2)
0 0 T33- ;d U3

By backward substitution, we haye=®, v, =1 and vy satisfying the equation
(B~ sd)y =4 12 (3)

Therefore, the problemis reduced to sol ving an upper triangul ar system(3) of dinension (-
by- (¢ —1). 1o find all the n eigenvectors we need to solve triangular system(3) foon.i =2, ..
Since any scalar miltiple of v is also an eigenvector of 7, we al ways expect to obtain an an
by scaling the sol ution vector no natter howill-conditioned or badly scal ed the triangul ar
(3) is. For this purpose, CTREVC calls the triangular solve routine CLATRS i nstead of calli

13

| Mchine | Mtrixsize 100 | 200 | 300 | 400 | 500
DEC'5000 SCBCON 1.57 1.46] 1.55] 1.56] 1.67
SGECON 2.00 1.52 1.46) 1.44 1.43

SPOCON 2.83/ 1.92| 1.71) 1.55 1.52

STRCON 3.33/ 1.78/ 1.60) 1.54 1.52

Sun 4/260 || SGBCON 2.00] 2.20] 2.11] 2.77] 2.71
SGECON 3.02 2.14] 1.88/ 1.63 1.62

SPOCON 5.00] 2.56] 2.27| 2.22| 2.17

STRCON 1.50] 2.00] 2.30] 2.17| 2. 18

DEC Al pha SGBCON 2.67] 2.63] 2.78) 2.89] 3.23
SGECON 2.66] 2.01) 1.85 1.78| 1.66

SPOCON 2.25 2.46] 2.52 2.42 2.35

STRCON 3.00] 2.33] 2.28 2.18| 2.07

CRAY- (90 SGECON 4.21] 3.48] 3.05] 2. 76| 2.55

Table 2: Speedups on DEC5000/Sun 4-260/DEC Al pha/CRAY- (90. No exceptions nor scaling

occur.

invocation of the scalings inside Algorithm2, as well as exceptional executions. The unexce;
inputs tell us the speedupin the most common case, and on nachines 1ike the CRAY neasure the
performance lost for lack of any exception handling.

First, we ran Algorithns 3 and 4 on a suite of well-conditioned randomnatrices where n
exceptions occur, and noscalingis necessaryin the triangul ar sol ve Al gorithm2. This is by
nost common case in practice. The experinents were carried out on a DEXstation 5000, a SUN
4/260, a DEC Al pha, and a single processor CRAY-(90. The perfornance results are presentedin
Table 2. The nunbers in the table are the ratios of the tine spent by the ol d LAPACKrouti nes
using Al gorithm3 to the tine spent by the newroutines using Al gori thm4. These ratios measus
the speedups attained vi a exception handling. The estimated condition nunbers output by the tw
al gorithng are al ways the sane.

Second, we conpared Al gorithns 3 and 4 on several intentionallyill-scaled linear systen
whi ch some of the scalings inside Algorithm?2 have to be invoked, but whose condition nunbe:
are still finite. For SGECON al one wi th natrices of sizes 100 to 500, we obtained speedups fron
to 3.33 on the DI(station 5000, and from1.89 to 2.67 on the DEC Al pha.

Third, to study the behavior and performance of the two al gorithns when exceptions do oc
cur, we generated a suite of ill-conditioned natrices that cause all possible exceptional
Al gorithm4 to be executed. Both Algorithns 3 and 4 consistently deliver zero as the recipr
condi tion nunber. For Algorithm4, inside the triangul ar sol ve, the conputation invol ves
nunbers as NaNand +oo. Indeed, after an overflowproduces Hothe nost common situation
is tosubtract twoinfinities shortly thereafter, resulting in a NaNwhich then propagates th
all succeeding operations. In other words, if there is one exceptional operation, the nost ¢
situationis to have along succession of operations with NaNs. W conpared the perfornance
the “fast” and “slow’ DE(5tation 5000 on a set of such problens, of dinension n =500. Recall
that the fast DEXstation does NaNarithnetic (incorrectly) at the sane speed as wi th conventio

12

Algorithm 5: This algorithmestinates the reciprocal (PATIHY, where Ais
symmetric positive definite.

Let a=||4];
ROONDis the estimated reciprocal of condition nugbel} k
(all exceptionreset()
Choose z with ||zf|=1 (e.g., @ (_l’%’ljr)
Repeat
sol ve Lw =z -« by cal li ng STRSV
if (except()) then RCOND=0; quit /* { 4) >/ OV */
else solvel'fy=wby calling STRSV
if (except()) then RCOND=0; quit /*1k4) >0V */
if |lzlk <272 then
RCOND = =1/}
qui t
else 2 :=¢ where |z =||2]|

Lemma 2. If Agorithmd stops early because of an exception, then the “true rounded” reciprocal
of the condition munber satisfies ROND <1/v/OV.

Proof: In the algorithmthere are two pl aces where exceptions nmay occur. W will anal yze t

two cases as follows. W need to use the fact that ||A]|>=|Ndfe that = is chosen such that
el =1.

1. An exception occurs when conputi ng' k.
Since A=LLT, ' =LTA7 this inplies

OV < |[L7 ||y < |7 [ledlally < [[LT] - ||A7 o= Va- ki (4) .
Therefore, A Z% > +OV (since a <Oy, i.e., ROONKX 1/VOV.

2. An exception occurs when conputi ng’IL™ ax.
It is clear that4) >0V, and hence RCOND < 1/0V.

Conbi ni ng the above two cases, we showthat RCOND 1/vOV.
|
Inpractice, ROONIX 1/4/OV nerel yindicates that the condition nunber is enornous, beyond
1/€e. There is noloss of informationin stopping early witkERIOND

4.2 Numerical Resul ts

To conpare the effci enci es of Algorithns 3 and 4, we rewrote several condition estinationrouti
in LAPACK using Al gori thm4, including SGECON for general dense matrices, SPOCON for dense
symmetric positive definite matrices, SGBCON for general band matrices, and STRCON for triang
matrices, all in IEEE single precision. 7Tb conpare the speed and the robustness of algori
3 and 4, we generated various input natrices yielding unexceptional executions with or wit

11

Since A=LU, ' =UA, this inplies

Ul

OV < ||L7 ally < |UIRLIIAT [1ull2]ls = Al

AL AT [=p - ka(A)

Therefore, £4) >0V /p, i.e., RCONX p/OV.

2. An exception occurs when conputi ng{aL =z with a < 1.
Then
OV < ||UH aL™ afly < [|A7 [Lallz|li =k (4)

so k(A4 >0V, i.e., ROONIX 1/0OV.
oV

a

3. An exception occurs when conputi ngleL = 2 with o> 1 and ||EF z||; <
Then
OV < [[UT aL™ afly < [[A7 [iof[z][y =k (4)

so k(A4 >0V, i.e., ROONIX 1/0OV.

4. An exception occurs when conputing L2 with a > 1.
Then OV < ||UZ L2 2|y < ||A7 |1 < k1(A4), so ROOND < 1/0V.

5. An exception occurs when conputing L™z with a> 1.
Then OV < ||aU L7 2||; < k1(A), so ROOND < 1/0V.

6. An exception occurs when conputi ng’lo.
Since A=UTLT, U7 =LTAT so

OV < ||l az|ly < [[LT[WIAT el le |l =1L Tk (A) <n-da(A)
Therefore, £4) >0V /n, i.e., RCONIX n/OV.

7. An exception occurs when conputi ng/ I/ au.
Then OV < ||[LT U7 az||; < ki (A4), so RCOND < 1/0V.

Conbi ni ng the above seven cases, we have shown that RCONDmax (n, p) /OVWhen an
exception occurs.]

In practice, any ROONDX € signals a systemso ill-conditioned as to nake the error bound
in (1) as large as the solution itself or larger; this means the conputed sol ution has no
guaranteed correct. Since(mxp)/OM ¢ unless either nor pis enornous (both of which also
nean the error bound in (1) is enornous), there is no loss of information in stopping early
RCOND =0.

Algorithm4 and Lemmn 1 are applicable to any linear systems for which we do partial or
conpl ete pivoting during Gaussian elimnation, for exanple, LAPACKroutines SGECON, SGBCON
and STRCON (see Section 4.2 for the descriptions of these routines), and their conplex counter

For synmetric positive definite natrices, where no pivoting is necessary, the al gorithm/
SPOCON) andits anal ysis are gi venin Al gorithmb and Lenmma 2, respectively. Wwrite the Chol es|
factorization A=Flor A=UTU.

10

Algorithm4: This al gorithmestinates the reciprogal)of kAl 1]]A7 ;.

Let a=||Al,
ROONDis the estimated reciprocal of condition nugbel} k
(all exceptionreset()
Choose z with ||z} =1 (e.g., @ (:1’17’17’1?)
Repeat
sol ve Lw=xa by cal ling STRSV
if (except()) then ROOND=0; quit /*1£A4) >0V /p*/
if (a>1) thengoto (1)
else w:=w-a
sol ve Uy =w by cal ling STRSV
if (except()) then RCOND=0; quit /*1k4) >0V */
else goto (3)
(1): if (|[»>OV /a) then go to (2)
else w:=w-a
sol ve Uy =w by cal ling STRSV
if (except()) then ROOND=0; quit /*;£4) >0V */
else goto (3)
(2): solve Uy =wby calling STRSV
if (except()) then RCOND=0; quit /*1£4) >0V */
else y:=y -«
if (except()) then RCOND=0; quit /*1kA4) >0V */
(3): formf:=sigp)
y:i=y o
sol ve 'w=y by calling STRSV
if (except()) then RCOND=0; quit /*1kA4) >0V /n */
else solvelZ =wby calling STRSV
if (except()) then RCOND=0; quit /*1kA4) >0V */
if ||z}l <27z then
ROOND = =1/][y i
quit
else 2 :=¢ where |z =||2]|

The behavior of Algorithm4 is described by the follow ng:
Lenma 1. If Agorithm4 stops early because of an exception, then the “true rounded” reciprocal
of the condition mumber satisfies ROND < maz (n, p)/OV where p =]|_||£A|E]J| is the pivot growth
factor.
Proof: In the al gori thmthere are seven pl aces where exceptions may occur. W will anal yze th
one by one. Note that in the al gorithmthe vector « is chosen suchythit ||z]|

1. An exception occurs when conputi ng' k.

||#]|cc =maz ;|z;|. Then the usual error bound |9

||$computed —r trus”l < kl(A) p(n) € pe ||lw7’u4|1 (1)

where p(n) is aslowly growing function of n (usually about n), ¢ is the nachine(phecision, .
is the condition runber of A, and pis the pivol growth factor. The condition nunber is defined

as k(A =|[A]1-]]A7 |1, where ||Blf = mazi<j<nd f—1|bif. Since conputing™ costs more

than sol ving Ar =b, we prefer to esti mat?|||A nexpensively fromA's LUfactorization; thisis
called conditionestination. Since ||4||is easy to conpute, we focus on estinatifglj|A The

pi vot growth may be defined aH%H (other definitions are possible). This is close to unity exce
for pathol ogical cases.

In the LAPACKli brary [2 aset of routines have been devel oped to estinate the reciprocal
the condi tion nunbern (k4). W estimate the reciprocal(f) & which we call ROOND to avoid
overflowin g(A). The inputs to these routines include the factors Land U fromthe factorizat
A=LU and ||4] ;. H ghanis nodification [1df Hager’s method [10s used to esti mated||}i.

The al gorithmis derived froma convex optinization approach, and is based on the observati
that the maximal val ue of the function f(z) =|fBz| equals ||Bj|and is attained at one of
the vectors;efor j =1, -;-n, wherejeis the jth col unm of the n-by-nidentity matrix.

Algorithm3 [1(: This al gori thmconputes a lower bound v far||{A

Choose z with ||z} =1 (e.g., @ (:1’17’17’1?)
Repeat
solve Ay =z (by solving Lw=2 and Uy =wusing Al gorithm?2)
formé:=sighy)
sol ve Az =¢ (by sol ving Tww=¢ and L T2 =wusing Al gori thm?2)
if ||z}l <27z then
v =llylh
qui t
else 2 :=¢ for that j where;|=||z]|

The al gorithminvol ves repeatedly sol ving upper or lower triangul ar systens until a ce:
stoppingcriterionis nmet. Due tothe possibilities of overflow, di vision byzero, andinvalide:
caused by the ill-conditioning or bad scaling of the linear systens, the LAPACKrouti ne SGE
uses Algorithm?2 instead of Algorithml to solve triangul ar systens like Lw=uz, as discusse
Section 3.

Qur goal is to avoid the slower Algorithm2 by using exception handling to deal with the
ill-conditioned or badly scaled natrices. Our algorithmonly calls the BLAS routine STRSV,
has the property that overflowoccurs only if the matrixis extrenelyill-conditioned. In thi
whi ch we detect using the stickyexception flags, we canimmedi atel y terni nate wi th a well-deser
estinate RCOND=0). The al gorithmis as follows. Comments indicate the guaranteed l ower bound
on k(A if an exceptionleads toearly ternination.

Al gorithm2: Solve alower triangul ar systemZLz =sbwith scale factor 0 < s|<1.

(Conpute g and ¢y, .. .,qc as descri bed above
if (¢ >UN) then
call the BLAS routine STRSV
else
s=1
z(1:n) =b(1: n)
Tmax =IBX 1<i <plz(2)]
for¢ =1ton
if (UN|L(i,4)|<1land]z(e)]>]L(¢, ¢)] tO¥n
scale =1/]z ()|
s=s-scale; z(1: n) =z(1: n) - scalemag =% max - scale
elseif (0<|L(¢,)] <abidNJz(¢)|>|L(¢, 7)]-O¥hen
seale =((|L(i, i)]- O¥le(i)])/ mid,
s=s-scale; z(1: n) =z(1: n) - scalemag =% max - scale
elseif (L(i, ¢)=0) then... conpute anull vector z: Lz =0
s =0
2(1: n) =0; (i) =Lk =0
endif
x(i) =a(i)/L(i, 1)
if (Je(e)|>1and (i) > (@Viax) /]z(7)]|) then
scale =1/(2 -]z (1))
s=s-scale; z(1: n) =z(1: n) -scale

elseif (|e(7)]<1and |z(i)| -c(i) >(QX)) then

scale =1/2
s=s-scale; z(1: n) =z(1: n) -scale
endi f

z(i+1:n)=a(i+1:n) =(i) Lt +1:mn,1)
Tmax =1IBX § <5 §n|$(])|
endf or

endif

4 Condition Estimation

In this section we discuss how [EEE exception handling can be used to design a faster condit
estinmation al gorithm W conpare first theoretically and thenin practice the old al gorithm
in LAPACKwi th our newal gorithm

4.1 Algorithms

Wien sol ving the n-by-nlinear systemAr =b, we wish toconpute a bound on the eror &
Tirye W Wl neasure the error using either the one- ngr=m ¥l |z;|, or the infinity norm

where ¢ =107'°, overflows in IEEE single precision, even though each rowand col umm of L has
largest entry 1 in nagnitude, and no terribly snall entries. Sini(larbe,thetadal ogous
n-by-n matrix with 0 < ¢ < 1in the second through n —1-st elenents al ong the nnin di agonal .
This neans that (J(c¢)7' [1, 0, .. 701, &, &2, .. 257, é™]T.

The second al gori thmscales carefully to avoid overflowin Algorithml. The al gorithmwor
by choosing a scale factor 0 < s < 1 and solving Lz =sbinstead of L& =b. Avalue s < 1is
chosen whenever the sol ution z woul d overflow. In case z woul d overflowevenif s were the snall es
posi tive floating poi nt nunber, sis set tozero (for exanple, s¢ph6fdewi £Lh [FFE singl e
precision in the above exanple). If sonme L(i, 1) =0 exactly, so that Lis singular, the al g
will set s =0 and conpute a nonzero vector z satisfying Lz =0 instead.

Here is a brief outline of the scaling algorithmfosedefdils. Cbarse bounds on the
solution size are conputed as follows. The algorithmbegins by anpiltEﬁgy$1|Lij|,

Go=1/mnx ;[b;|, a lower bound Gon the val ues of g through #' after stepi of Algorithml:

ST
Gi=Goll 775"
]1_:[1 1L+ ¢
and final 1y a 1 ower bound ¢ on the reciprocal of the largest i nternedi ate or final val ues conpu
anywhere in Al gorithml:

(Gb7 G—I'Hin(lv |L(i7 Z)|))

9= lnglzngn
Lower bounds on 99_1 are conputed instead of upper bounds gnte avoid the possibility of
overflowin the upper bounds.

Let UN=1/0V be smallest floati ng poi nt nunber that cansafely be inverted. JflgsUN
neans the sol ution can be conputed wi thout danger of overflow, so we can sinply call the BLAS.
Otherwise, the al gori thmnakes a conplicated series of tests and scalings as in Al gori thm?2.

Now we conpare the costs of Algorithns 1 and 2. Algorithml costs abfopsn(floating
poi nt operations), half additions and half nul tiplies. There are also n divisions which are
icant for large n. In the first step of Algorithm?2, conputicwg ttshd/2 + O(n) flops, hal f
as much as Algorithml. In sone of our applications, we expect tosolve several systens with-
sane coeffcient natrix, and so can reuse tthehi s anortizes the cost over several calls. In the
best case, when g >UN we then sinply call STRSV. This nakes the overall operation count about
1.57 (or #if we anortize). In the worst (and very rare) case, the inner loop of Algorithm?2 v
scal e at each step, increasing the operation count b¥ agwiut, if or a total of 2(6n 27
if we anortize). Updatinpgwcosts another?2 data accesses and conparisons, which may or
nay not be cheaper than the sane number of floati ng point operations.

Mbre inportant than these operation counts is that Algorithm2 has nany data dependent
branches, which nakes it harder to optimize on pipelined or parallel architectures than the
sinpler Algorithml. This will be born out by the results inlater sections.

Al gorithm2is avail abl e as LAPACKsubrouti ne SLATRS. This code handl es upper and [ower tri-
angul ar natrices, pernits solving with the input matrixor its transpose, and handl es either g
or uni t triangular natrices. It is 300 1ines long excluding conments. The Fortran i npl enenta
of the BLAS routine STRSV, which handles the sane input options, is 159 lines long, exclud
comments. For more details on SLATRS, sde [1

the sticky bits are never cleared as a side-effect of any floating point operation; they can be c
only by writing a newval ue into the Control /Status register. The nonsticky exception bits n
be used in other applications requiring finer grained exception handling, such as parallel pr

Inthe al gorithne devel opedin this paper for conditionestinationandeigenvector conput af
we need only nani pul ate the trap enable bits (set themto zero to disable software traps) and
sticky bits. Procedure exceptionreset() clears the sticky flags associated wi th overflow, di
by zero and invalid operations, and suppresses the exceptions accordingly. Function exce
returns trueif any or all of the overflow, division by zero and i nvalid sticky flags are raised

3 Triangular SystemSol ving

W discuss two al gorithns for sol ving triangul ar systens of equations. The first one is the si-
and faster of the two, and disregards the possibility of over /underflow. The second scal es car
to avoi d over /underflow, and is the one currently used i n LAPACKfor condi tion estinmation anc
ei genvector computatioh.[1

W will solve Lo =b, where Lis a lower triangular n-by-n matrix. W use the notation
L(i : j, k: 1) toindicate the submatrix of Llying in rows ¢ through j and col unns £k through !
L. Similarly, L(i, k:1)is thesane as L(i : ¢, k: [). The followi ng al gorithmaccesses L by cc

Al gorithml: Solve alower triangular system/lLz =b.

z(1:n) =b(1:n)
fori =1ton
() =z(i)/L(v, 1)
z(i4+1:n)=2(i+1:n) =(i) Lt +1:mn,1)

endf or

This is such a common operation that it has been standardi zed as subroutine STRSV, one o
the BLAS, along with nany other common linear algebra operations like natrix multiplicati
[6 7 14. The purpose of this standardization has been to encourage nachine manufacturers
provide highly optinized versions of these BLAS for their architectures, so that programers
use themportably. Indeed, one goal of the LAPACKproject was to exploit the optinized BLAS
by reformul ati ng linear al gebra operations, 1ike Gaussian elinination, as a sequence of call
BLAS. This leads to significant speedups on many hi ghl y pi pelined and parallel Jnndhines [2
clearly inour interest to use the BLAS whenever possible.

Al gorithml can easily overfloweven when the matrix Lis well-scaled, i.e. all rows and col u
are of equal and noderate length. For exanple,

"1 0 0 0 0 0 17 [1 7
4 ¢ 0 0 0 0 0 e
0 4 ¢ 0 0 0 0 2

A _

v=LTb=1 0 5 4 . 0 o ol | e3 |
0 0 0 4 ¢ 0 0 ot
0 0 0 0 4 1] o] [et]

Bit# 16 15 14 13 12

Nonsticky
V| iz|o|U|I Exception
Bits
Bit# 10 9 8 7
TrapEnable
V| Z o U | Bits | — Inexact
U — Underflow
Bit# 6 5 4 3 2 O — Overflow
Sticky Z — Division by zero
vV |z | O0jU | I Bits V — Invaid

Figure 1: MPS Control /Status Register Exception/Sticky/TrapEnable Bits.

very expensive. Fven though no branching is strictly needed, merely testing sticky flags ma
sonmewhat expensive, since pipelining nayrequire asynchronizationeventinorder toupdate t
Thus it appears fastest to use sticky flags instead of traps, and to test sticky flags as seld
possible. On the other hand, infrequent testing of the sticky flags means possibly long stre
of arithmetic with or NaNas argunents. If default IEEE arithnmetic with themis too slow
conpared to arithnetic wi th normalized floati ng point nunbers, thenit is clearly inadvisabl
wait toolong between tests of the sticky flags to decide whether al ternate conputations shoul
performed. In summary, the fastest al gorithmdepends on the rel ative speeds of

conventional , unexceptional floati ng point arithnetic,
arithmetic wi th NaNs and +as argunents,

testing sticky flags, and

trap handling.

In the extrene case, where everythi ng except conventional, unexceptional floating point a
neticis terriblyslow, we are forcedtotest andscale toavoidall exceptions. This is the unf
situation we were in before the i ntroducti on of exception handling, and it would be an unpl ez
ironyif exception handling were rendered unattracti ve by tooslowan inplenentation. In thi
per, we will design our al gorithns assuni ng that user-defined trap handl ers are not avail abl e,
testing sticky flags is expensive enough that it should be done infrequently, and that aritt!
wi th NaNand £s reasonably fast. Qur codes will in fact supply a way to neasure the benefit
one gets by nmaki ng NaNand oarithnetic fast.

Qur interface to the sticky flags is via subroutine calls, without special conpiler suppo
illustrate these interfaces briefly for one of our test nachines, the DE(ktation 5000 wi th the
R3000 chi pas CPU. On the DEGstation 5000, the R3010 Fl oati ng- Poi nt Accel erator (FPA) operates
as a coprocessor for the R3000 Processor chip, and extends the R3000’s instruction set to per
floating point arithnetic operations. The FPAcontains a 32-bit Control /Status register, FCI
that is designed for exception handling and can be read/written by i nstructions running in
Mbde. The bit pattern of FCR31 is depicted in Figure 1. The Nonsticky Fception bits are
appropriately set or cleared after every floati ng point operation. The FapFuable bi ts are used
enabl e a user level trap when an exception occurs. The Stickybits hold the accrued exception !
required by the I EEE standard for trap disabled operation. Unlike the nonsticky exception bit

Exception raisedefaul t val ue (Condi tion
overflow 5o € > €mar
underflow 0, R°emin or denormal s e < €4
division by zero | 2o /0, with finite o #0
inwal id NaN o (g0, 0 X 0o
0/0, ctoetec.
Inexact round(z) true result not representable

Table 1: The IEEE standard exceptions and the default val ues

In the rare case when exceptions did occur, the speed depended very strongly on whet he
the exception occurred early or late during the triangul ar sol ve, and on the speed of subse
arithmetic with NaN(Not-a- Nunber) argunents. On sone exanpl es the speedup was as high as
5.41 on the fast DEC5000, but up to 13 ti mes slower on the sl ow DEC5000.

The rest of this paper is organized as follows. Section 2 describes our nodel of exce;
handling in nore detail. Section 3 describes the algorithns for sol ving triangular systen
wi th and wi thout exception handling. Section 4 describes the condition estinntion algori
both wi th and wi thout exception handling, and gives tining results. Section 5 does the sane
ei genvector conputations. Section 6 draws | essons about the val ue of fast exception handli ng
fast arithmetic with NaNs and i nfini ty synbols.

2 Exception Handling

Inthissectionwe reviewhowl EEEstandardarithnetic handl es exceptions, discuss howthe rel a
speeds of its exception handling nechanisns affect al gorithmdesign, and state the assunpti ons
have nmade about these speeds in this paper. W also briefly describe our exception handli
interface on the DEXitation 5000.

The TFEEE standard cl assifies exceptions into five categories: overflow, wunderflow, division by
zero, tmwalidoperation, and inezact. Associated wi th eachexceptionis bothastatus flaganda trap.
Any of the five exceptions will be signal ed when detected. The signal entails setting astatu
taking a trap, or possibly doing both. All the flags are sticky, and can be tested, saved, res
or altered explicitly by software. By “sticky” we nean that, once raised, they remnin set
explicitly cleared. Atrapshould cone under user control in the sense that the user shoul d be
tospecify a handler for it, although this capabilityis sel dominpl emented on current system
defaul t response to these exceptions is to proceed wi thout a trap and deliver to the destinat
appropriate default val ue. The standard provides a clearl y-defined default result for each pe
exception. The default val ues and the conditions under which they are produced are sunmmari z
in Table 1.

According to the standard, the traps and sticky flags provide two diflerent exception handl
nechanisns. Their utility depends on how quickly and flexibly they pernit exceptions to |
handl ed. Since nodern nachines are heavily pipelined, it is typically very expensive or inpc
to precisely interrupt an exceptional operation, branch to execute sone other code, and
resune conputation. Even wi thout pi pelining, operatingsystemoverhead nay nake trap handli n

The success of this approach depends on there being alarge diflference in speed between the f
and sl owal gorithns, on being able to neasure the accuracy of the answer qui ckly and reliably,
nost inportant for us, on floati ng point exceptions not causing the unstable al gorithmto at
or run very slowly. This last requirenent neans the systemmust ei ther continue past excepti
and |l ater pernit the programto determi ne whether an exception occurred, or else support us
level trap handling. In this paper we will assune the first response to exceptions is availab
corresponds to the default behavior of [EEEstandard floating point arj thnetic [3

Qur nunerical nethods will be drawn fromthe LAPACKIibrary of nunerical linear algebra
routines for high performance conputérsii2particular, we will consider condition estinmatio
(error bounding) for linear systens as well as conputing eigenvectors of general conplex matr
Wiat these al gorithns have in commonis the need tosolve triangular systens of linear equati
whi ch are possibly veryill-conditioned. Triangular systemsolvingis one of the matrix ope:
found in the Basic Linear Al gebra Subroutines, or BLAS146. The BLAS, which incl ude re-
lated operations like dot product, matrix-vector nmultiplication, and matrix-natrix nul tipl
occur frequently in scientific conputing. This has led to their standardization and wides
inplementation. In particular, nost high performance nachi nes have hi ghly optinized i npl ens
tations of the BLAS, and a good way to write portable high performance code is to express one
al gorithmas a sequence of calls to the BLAS. This has been done systematically in LAPACKT o1
nost of nunerical 1inear al gebra.

Hovever, the linear systens arising in condition estinnation and eigenvector conputation
often ill-conditioned, which means that over /underflowis not conpletely unlikely. Since th
distribution of LAPACKhad to be portabl e to as nany nachi nes as possible, includi ng those wher
all exceptions are fatal, it could not take advantage of the speed of the optimnized BLAS, in:
using tests and scalings ininner |l oops to avoid conputations that ni ght cause exceptions.

In this paper we present al gorithns for condition estination and ei genvector conputation
use the optinized BLAS, test flags to detect when exceptions occur, and recover when exceptio
occur. Wreport performance results on a “fast” DE(station 5000 and a “slow” DE(station 5000
(both have a M PS R3000 chi pas CPU[1]3), a Sun 4/260 (whi ch has a SPARCchi p as CPU[]1)2
a DEC Al pha [8] and a Cray- (90. The “slow’ DEC5000 correctly inplements [EEE arithnetic,
but does arithmetic with NaNs about 80 tines slower than normal arithnetic. The “fast” DEC
5000 i npl enents [EEE ari thnetic incorrectly, treati ng Nal\s as i nfini ty synbol s, but does so at
sane speed as nornal arithmetic. (therwise, the two DEC 5000 workstations are eqhally fast
The Cray does not have exception handling, but we canstill conpare speeds in the nost conmon
case where no exceptions occur to see what speedup there could be if exception handling w
avail able.

W neasure the speedupas the ratio of the tine spent by the ol d LAPACKroutine to the tine
spent by our newroutine. The speedups we obtained for conditionestinationin the nost conmor
case where no exceptions occur were as follows. The speedups ranged froml.43 to 3.33 on ei t]
DEC5000, froml.50to 5. 00 on the Sun, froml. 66 to 3.23 on the DECAl pha, and from2. 55 to 4. 21
on the Gray. Results were sinilar for conputing ei genvectors. These are quite attracti ve spee
They woul d be even hi gher on a nachi ne where the optinized BLAS had been parallelized but the
slower scaling code had not.

'Normally a buggy workstation would be annoying, but in this case it permitted us to run experiments where only
the speed of exception handling varied.

LAPACK Working Note 59, UT CS-93-192

Faster Numerical Algorithms via Exception Handling

James W. Demmel *
Xjaoye Lif

August 18, 1993

(1o appear at 11th I EEE Synposi umon Conputer Arithnetic)

Abstract

An attractive paradigm for building fast numerical algorithms is the following: (1) try a
fast but occasionally unstable algorithm, (2) test the accuracy of the computed answer, and
(3) recompute the answer slowly and accurately in the unlikely event it is necessary. This is
especially attractive on parallel machines where the fastest algorithms may be less stable than
the best serial algorithms. Since unstable algorithms can overflow or cause other exceptions,
exception handling is needed to implement this paradigm safely. To implement it efficiently,
exception handling cannot be too slow. We illustrate this paradigm with numerical linear
algebra algorithms from the LAPACK library.

1 Imtroduction

Awidely accepted desi gn paradi gmfor conputer hardware is to execute the nost commn i nstruc-
tions as quickly as possible, and repl ace rarer instructi ons by sequences of nore comon one;
this paper we explore the use of this paradigmin the design of nunerical algorithns. W exp
the fact that there are nunerical algorithns that run quickly and usually give the right ar
as well as other, slower, algorithns that are al ways right. By “right answer” we nean that
al gorithmis stable, or that it conputes the exact answer for a problemthat is aslight perturbe
of its input][&hisis all we canreasonably ask of nost al gorithns. 1o take advantage of the fas
but occasionally unstable al gorithne, we will use the follow ng paradi gm

(1) Use the fast al gorithmto conpute an answer; this will usually be done stably.

(2) Quickly and reliably assess the accuracy of the conputed answer.

(3) In the unlikely event the answer is not accurate enough, reconpute it slowy but
accuratel y.

*Computer Science Division and Mathematics Department, University of California, Berkeley CA 94720. Email:
demmel@cs. berkeley. edu. The author was supported by NSF grant ASC-9005933, DARPA contract DAALQ03-91-C-
0047 via a subcontract from the University of Tennessee (administered by ARO), and DARPA grant DM28E04120
via a subcontract from Argonne National Laboratory.

tComputer Science Division, University of California, Berkeley CA 94720. Email: xiaoye@cs. berkeley. edu. The
author was supported by the National Science Foundation under award number ASC-9005933, and by Subcontract
ORA4466. 02 to the University of Tennessee (Defense Advanced Research Projects Administration contract number
DAALO03-91-C-0047).

