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Ater setting Agy =0 then the mesires of heckvad stelility are £ o =23adF 4 =L 8

; anReak 1 dfter Feaem2 ve 1igt vary thet a hge ||.X || patimsp (A1, Az2)
ald caze naicd imstdility  Ibeer tle fdloing eage illwtraes bowin patice a
sl sepmationd A 11 ad A 9o s it eessaily lead toimtdility Tet

1 —10-9
A = 1 1 ) A=A 11+ Veml,

then tle sqaraﬁnmd A 11 ad A 99 18 tlI]}f7 thet is Sep (A117 42) =2 Hex10 “4 Tt A 12 ke
dosen swch thet o (Aq2) is the ldt siglar et K aarespadig to the silest sirglar
W o pin(K), sothet the omd tle sdtion X o the Shvester equation A 1nX —X A9 =4 1,

reactes its yper bod (22), thet is

A
HXHF: H 12HF -3 X0 13
P

(A11, 4)
adk(X)=10 6. Hure tle estiraed boad o the ondf residd Vs
en(Aville HA 22l X[ =2 ROx0 7

Wbeer in practice, the dserved residd ram||Y” || F =3 2Bx0 0. Ater swypig it tums
at tht
|Agi|lr =7 X0 M < ey||Allr = Srxi0 16,

S the swppirg is perfectly stalie!

5 Conclusions

Inthis pyer, ve lme dsd qped ad rect svaping d g thodi ch reardrs the 6 g s anthe
degrd  amrixinred Shr famly pefaring an atherd sl aity trasfarstion A
arpete st  KRRNsuratites hs been dvd ged ad ivd wbd in the TAXKl i brary

[1]. Te dgrithmis gaateed to ke nrericdly stdle lecase ve eqlidtly test far imstaility
ad brd reardy tle d gandes if this wldle ustdle this cnaly bagenif tle d gand s
aesodoe & tole maiclyindstingistale. Waturtd y there is 1o raf o the hdsard
sthlityd the dgrithmithot this exdidt test, eventhoph ve ke it seen anesale viere
imstahility wald o Te dtaled errar ardysis ad noeri el esarpes stowtond ] it dedls
wthill-cad tiaed cses, eres the d termati e stalle d g thmEX Gy occsi Ly fal

to aarerge.
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Me 2 armisond dgrithn S8Cad BIIG

JAXC BAIG

-
1 | Ay =0 DOOOE 401+ iQ TNGLE @ Ay =0 TOBWE 40147 0 IBARE R
A =0 TOHE 401+ 0 DREE 42 A =0 OBEBE 40147 0 AROOE R
0 | X\ =0 DODE 401+i 0 TRGOE 4@ Ay =0 TIRE 014+ 0 IBBE H2
A =0 TWORE 40147 0 JFERE R A =0 OOOE 40147 0 DBUE R
0 | Xy =0 THHE 40l4+i 0 DAL 42 1ot asergt
A =0 TOHE 401+ 0 DREE 42 dter D QRstes

On the upper bound of [|E 51]||2: lmly intle itterest o tleaeticd adysis, v dscss the

sterpress f tle bard an || E 21||2, Widicatrds tle maicd stdility d dgrithnHAC In
wst  the test eaes, w see thet the bord (2) || £ 21(|2 is very pssitistic. Mwner, we
d fird sam exapes ind catirg thet the bord in (20) canragly te attdred let 6 casidy
tle fdloing eage 2
2 2 1 (0E #D -1 0F 2 1 SE 01 1 0OE 4@
A_Q(AH A12)_ 1 (00E —(@ LOOE 4@ L ODE 4@ L KOE 40
2\ 0 Ay 0 0 1 OE +0 -1 00F —@ ’
1 00OF 4@ 1 ODE D

V]Hesq) (A117 42) =2x10 6. T A 12 Hokd A is C]E‘Slg(HiSOﬂHt

vo (1 OE4D 2 (0E 4
T\ L ODE40 L O0F 40

is tle sddion o tle Stwester eqation Nte thet o 1(X)=In 0L, o 2(X)=0 PR Wi
MIBto capte te dfferert qatities in the hord (Were radire pedsian is dubled

enyp =2 2DEx10 6 Hist tle momd tle residd mnix Y far capted sduian X dte
Shester eqeticn is

1Y [ =lA 12 —A 11X + XAgpllp =t @Rx10 ~'2
whi ch st reectes the estireted bord (1) Y
em(|Anlle HA 2llp)IX]|r =8 SOx0  ~H
Tirthernre, the dserved rormdf (21) Hodk Ay dter sagiigis
| Aotz =L DBx10  ~12,

Wich dsoraglly atds tle bud (20) far || £ 21|2:

1
HE21H2 < 71+0_ 2 HY “b =2 @I x10 —127

5(X)
Nte tht far this exayle, tle dgrithmis still hadwadstale, sie

|Agi|lz =L DBx10  ~1 <e p||Allp =t 4Dx10 T2

2For brevity, only five digits are displayed for all the data in this section though we did runin doul e precision
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He L mrericd tests d dgrithmJAXC

Bt THTIX sfAd 11, 4) | Eo FEy | denduws dter sying

—87 —20000 10000
2 —20000 —10000 ) 3 337>< ]0 -1 0 260 0 197 0.1000001E + 01 4 :0.2017424 E402

0 1 —11 0.2000000E401 + ¢0.2085665E402
0 37 1

DN —
PN
o NO O TGN

inNy
——Jcorr|ocorr

0 1.001 -3 0.1000000£401 + ¢0.1732051 E401
0 1.001 1.001

-3 3576 4888
1 —88 —1440 ) 8442 X 10—4 0 625 0 423 0.1001000E401 £ ¢0.1732917E401

—100 400 —1000

0.0 1 1200 —10 -7 0.1000996 E401 £ ¢0.1000360E401

3 ( 0 1.001 —0.01 ) 2000 X 10 0 417 0 001 0.1000003 E401 + ¢0.9995396 E400
0 100 1.001

3 2

9 0 0.9999987E+00 + ¢0.1732051 E401
1 -3 ) o 0 687 0 241 0.1000002E401 + ¢0.1732051 E401
1

and sep( Aj1, Azz) =0.0024. Wen 7=1, the output matrix of the al gori thmSLAEXCis

0.70100012F401  —0.86993660F+02  —0.39390938 402  —0.22241005 F402
0.50003409 F4-01 0.70100012 F4-01 0.12191071 02 —0.35999401 £4-02
0.00000000£4-00 0.00000000£400 0.70009995F401  —0.11755549 F4-02
0.00000000£4-00 0.00000000£400 0.37003792 F+02 0.70009995 401

a><
(

The ei genval ues after swapping are

Ay = 0.7010001E+01 £ 10.2085661 F+02,
Ay = 0.7000999 501 + i0.2085665 402,

whi ch are accurate to machine precision. However, the output of al gori thmEXCHNGafter 8 (R

iterationstis

0.28140299F402  —0.81122643F+02  —0.39849255 402  —0.15834051 F402
0.10856283F4-02  —0.14087547F+02  —0.23942078 EA4-02 0.32877380F+02
0.00000000£4-00 0.00000000£400 0.19211971 F402 0.21227583 402
0.00000000£4-00 0.00000000£400  —0.27540298 402  —0.52427406 F4-01

a><
(

whi ch has ei genval ues

Ay =0.7026377 BH01 £ i0.2085408 F+02
A1 =0.6984615BH01 4 10.2085919 F+02

They onl y have tvwo decinmal digits correct.

Tabl e 2 shows the nunerical results with di flerent choi ces of paraneter 7, where when 7=10,
it takes 17 QRiterations to converge. It clearly shows the superiority of algorithmSLAEXC In
particul ar, we note that al gorithmEX(YINGis nonconvergent when 7=100. It neans that the
eigenval ues are not able to be exchanged by al gorithm EXCHNG But the al gorithm SLAEXC
has no difficul ty. This convergence difficul ty may reflect recent work of Batterdgnwhd has
di scovered classes of nonsymmetric matrices where QRiteration fails to converge, or converges
qui te slowly.

lwhere the stopping criterion usedin QRiterationis eps=12x10
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eigenval ue problemis potentially ill-conditioned. Hovever, for reasonably conditioned matrices,
the changes in the eigenval ues do neasure the accuracy of a swapping al gorithm For this reason,
in the foll owi ng nunerical exanples, we also conpare the eigenval ues before and after swapping,
besides checking quantitieg &nd £ 4.

Al nunerical experinents were carried out ona SUNsparc station 14+ The arithneticis [FFEE
standard single precision, wth machine precisjor2 =23 ~ 1.192 x 107"

W have done extensive testing on natrices wth various mxtures of the bl ock sizes, scal es and
closeness anong ei genval ues. Mre specifically, we showthe al gori thmSLAEXC on the fol l owi ng
four types of natrices:

Test Mitrix 1: good separation of ; and Aoy, the ei genval ues before swappi ng are

A1 =0.2000000£4-01 +£ :0.2085666 F402,
A2 =0.1000000£4-01 £ :0.2017424 F402,

Test Mitrix 2: noderate separationseparation of; And Agg, the ei genval ues before swappi ng
are:

A1 =0.1000000£4-01 £ :0.1732051 F401,
A2 =0.1001000£4-01 £ 70.1732916 F+01.

Test Mitrix 3: close ei genval ues, the correspondi ng the Syl vester equationis veryill-conditioned,
the ei genval ues before swappi ng are

A1 =0.1000000£4-01 +£ :0.1000000 £#401,
A2 =0.1001000£4-01 £ 70.1000000 £+01.

Test Mitrix 4: the extrene case, where the eigenval ues gfi #nd A,y are the sane, and
theoretically, the Syl vester equation solutionis infinite. This natrixis used to test the robustnes
of our software against overflow,

A1 =0.1000000£4-01 £ :0.1732051 F401,
A2 =0.1000000£4-01 £ 70.1732051 F4+01.

Table 1 summarizes the results of algorithmSLAEXC, where sepdiq, Az2) is conputed by
MAILAB, and incl uded here for the sake of theoretical analysis. FHomTable 1, we see that both
the backward stability and accuracy of the al gori thmSLAEXCare satisfactory.

Conparison with Stewart’s al gorithm EXCHNG: W have done nunerical conparisons
between the direct swapping al gori thm SLAEXC and Stewart’s swapping al gori t hm EXCHNG

[19, which uses QRiteration. Both algorithns performwell in nost cases, but in certain cases,
the al gori thmEX(HNGi s inferior to al gori thmSLAFXC. For exanple, 1et

7.001 —-87  39.4r 22.27

A7) = 5 7.001 -—-12.27 36.07
0 0 7.01 —11.7567 |’

0 0 37 7.01

where 7is a paraneter. The matrix A7) has the sane ei genval ues for all =

A1 = 0.7001000£4-01 £ 20.2085666 F+4-02,
Az = 0.7010000£4-01 £ 20.2085660 F4-02,
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Remark 3. 'The factot X/(140 2(N) that affects || K|z and || Fa2]2 is interesting, since

it warns that large and ill-condi tioned Xmay endanger accuracy, because of (11) and

oy _ Y
l+o (N oo( ¥ 40 7Y(F

where K ¥ =0 (X /o2 N. lowK N, sep (A1, As2), and the accuracy of the swapped ei genval -

ues are related in practice needs further i nvestigation.

4 Software Devel opment and Numerical Experi ments

Inthis section, we first discuss the devel opnent of software for the swappi ng al gorit hmSLAEXC
Then we discuss nunerical experinents to showthe capability of our software to deal with ill-
condi tioned cases, conpare with Stewart’s swappi ng al gori thmEXCHNG and final | y denonstrate

the sharpness of our perturbation bounds.

4.1 Software development

Aset of FORIRANsubroutines has been devel oped to inpl enent the direct swapping al gorithm
described in Section 3. It is part of LAPACKproject.[ 1A with other LAPACKroutines, this
al gori thmwas designed for accuracy, robustness and portability.

The nain subroutine is called STREXC. STREXC noves a given 1 X 1 or 2 x 2 di agonal block
of areal quasi-triangul ar matrix to a user specified position. (h return, paraneter INFO reports
whet her the gi ven bl ock has noved to the desirted position, or whether there are bl ocks too close to
swap, and what is the current position of the gi ven bl ock. The subrouti ne STREXC is supported by
subroutine SLAEXC, whi ch exchanges adjacent bl ocks. The subrouti ne SLAEXCis aninpl enentation
of the al gori thmSLAFXC described in Section 3, where the subproblemof sol ving the Syl vester
equation (8) by Ghussian elimnation with conplete pivotingis inplenentedin subroutine SLASY2,
and the subprobl emof standardizing a 2 x 2 blockis inplenented in subroutine SLANV2.

Intheinterest of sinplicity, we also used sone other subrouti nes fromlLAPACKand the BLAS
to performsone basic linear al gebra operations, such as generating Househol der transformnations,
conputing the 2-normof a vector and so on.

Finally, atest subroutine has been writtento automatically test the subroutine SLAEXC: There
are nested loops over diflerent bl ock sizes, di flerent nunerical scales, and di flerent condi ti oni ngs of
the probl em

4.2 Numerical experiments

Backward stabil ity test: 1o neasure the backward stability of a swapping al gorithm we need
totest (I) howclose the matrikis to an orthogonal matrix, and (I1) howcl dQT is to the
original matrix A whered is the conputed A. In other words, we need to test whether the two
quantities
QTR A QAQT,
Q= ) 4=
eM emll A1
are around 1, where g7 is nachine precision. T check the changes anong eigenval ues is not
requirted to judge the correctness of an algorithm since we knowthat there must have at least
an order of O(gr|| 4 ) perturbation to the original matrix after swapping, and the nonsymetric
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Sinmilarly, forydy from[1], we have || FRY||p < 2|| Gi||2]] #] 7, therefore
" o1 "
I Ballz < | Ghll2 | Yle | B ]2 21| Azslla]] FR e < W(;?XH e +4[| Aall2l| o]l B e
2

Finally, forofi we have
1
Bl < Rly=—— .
Il Baallz < || Callz | Yl (] 2112 T+0 (¥ I Ye

Hence we have the fol lowi ng theorem

Theorem?2. Let Y=A 15— A1 X + X Ay, where X =X+Fis t he conputed sol uti on of t he
Syl vester equation (6), assune that the error natrix Fis nonsi ngul ar, I et the QR factorization of

(=XT, DT sati sfies
X .| R
=)

%122 %12 E22 E12
0 Ay Fy En |7

t hen
Qo= |
where Ay issinilar to.Adi=1,2, and up to the first order perturbation O(})H

o1( ¥

Il < oG (19
I Ball: < e M+l Al Gl e (20
I Bille < gy 1Y (21)

I+ 3(Y

Three renarks are in order:

Remark 1. Fomthe theorem we see that the departurg||p £romupper block-triangul ar
form(the neasure of nunerical instability) is bounded byd/¥l|+o2(X). It is easy tosee that

| Azllr
SGP(AlhAzz)7

where the equality is attained when ¢dlz) is aleft singular vector of Kcorresponding to the
smallest singul ar val ugg( ¥ =sep (A1, Azz). Conbining (22), (11) and (21), we have

pen (|| Arllr +[ Azzllr) || Azllr
(1+03(X)sep( A, Ag2)

Logically, the above bound indicates that the nunerical instability will occur if we have small
sep( A11, Az22). But in practice, nunerical experinents showthat this upper bound is very pes-
simstic. Small slef1, Azz) does not inplyinstability. Wwill discuss this further in the following
section.

| M p < (22)

| B21]]2 <

Remark 2. Iterative refinenent applied to the Syl vester equation will inprove the accuracy of
conputed X, (unless the Syl vester equationis tooclose tosingular), but it need not i nprove || ]|
at least when Ghussian elimnation with conplete pivotingis used tosolve the Syl vester equati on.
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W see that Fqy, Fpo and Foy are essentially related to the residual vector Y of the Syl vester
equation sol ver, R and the subbl ockgitand Q12 of Q. Firthernore, rewiting (7) as

Al

Qa1 =R 7!

we see that

and

RTR=1+x Tx

Let &  denote the set of singular values of matrix ¢ and X(J denote the set of eigenval ues of
mtrix ¢ then

o (R) =XRTIR) =XT+X ¥ =14+XX ¥ =140 % X.

Therefore ) )
=l R~ = — 18
Il Qallz =1 R = o = sy 72 (18)
where o1(X > 0 o(X > 0. Nowto estinate the normof the blocks @ of @, we use the following
(S deconposition of a partitioned orthogonal natrix, which was introduced by Stewar}.[ 18

proof of the existence of the deconposition can be found ijn[18

CS Deconposition: Let the orthogonal matrix Q éfR?* be partitioned in the form
k k
Q= EfQu G2
E\Qzn Q)
Then t here are orthogonal natrices U =dillg Us) and V =diad Vi, Vy) with [, V; € IRFXF

such that
kK

o k{C S
vev=,1_g ¢

C=diag (ci,c3,. . ,c;) >0, S =diags,ss,..,5) >0, C*+52=1L

wher e

By the (S deconposition of ¢ and (18), we have

o1( ¥

H Qﬂ”z = W

and
| Gallz =1l Qaull2s || Gall2 =[| Quall2;
Thus, for Ky, we have

I ke < 1 Ghll Y0 0 1l @l = 7o Y
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so that
Zn = —IHR-Q L B(R+F) 7',
Zy = —QLER+F) 1,
and up to the first order perturbations, we have
Zyy = —QLR T'— FRT, (15)
Zyy = —QLm . (16)

1o express g, again from(13),

s[5 a3 ][] [ 1] 0[]

By canceling (=X, )T fromboth sides of the equation, and premil tiplying by, @Ge obtain
T| X F | F T| F

Byinserting #Q =Iinthe left side of the above equation and noting that V=—Q TW =—-2,

we have
0 QLE 0 QL E
Thus the “bottont equationis
ZnR— ZnQl F= 7 55Q1,F=—Q LE
by (16) and assuni ng that error matrix Fis nonsingul ar, we get
Zy ==7ZnQ1Q1n =Q 1, T'QHQn (17)
;Fromexpressions (15), (16) and (17) 014715 and Z33, the Ky, Fzp and Egp are recast as
B = QLAnQL QLR T'QLQT — QLR 'L 0L Q14105
1 IR ~N(~RA»R™' Q1O +Q {1An0Q5")
= QL(AnE- B ) R'QNLQL
= —QLYR T'QNLQ,

and
Ey = —RAuRY QLM ' +FR™Y) H(Q IR ' +FR ") RA»pR™!
—(—RA»RT'QLQT +Q 1, 41Q%N) QLR !
= QL(—AnFHEY )R — Ay FR™V4+FR 7' Ay,
= QLYR ' — Ay FR™' +FR 1Ay,
and

Ey = —Q1T2A11Q1_2TQ1T21R 1 4Q 1T2E% “'RA»R™!
= —Q1T2(—A11E-|-l% 22) R71
QYR .
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factor v =1. Including these rounding errors does not change the conclusion of the anal ysis, but
makes the exposition appear nore conplicated.

Let X be the conputed sol ution of the Syl vester equation, wh&re=X+F£ Xis the exact
solution, and Fis an error matrix. By the argunent of (12), and a result of Stewaftonlfhe
perturbation of the QRfactorization, we knowthat under mild conditions (suchhff||dr < 1),
the QRfactorization of (X7, )T can be witten as

-X -F -F A7
where W and F are the perturbations of the orthogonal natrix ) and the triangul ar matrix R,
respectively, aid =Q +W is orthogonal . || Wifj and || F|f are essentially bounded by the terns

of order ||y || #l . (From(Q+W)T(Q+W) =I, up tothe first order, we have W =—W TQ.
Wen Q =Q +W transfornms A ignoring the second order perturbations we have

QTAQ = (Q+W)'4Q+W)
= Q'Q+W TQ+Q TAV+W W
= AW IQ-Q'Q+Q TH-Q W
= A+ AQ™W —QTWA.

(13)

0

(Q +W) [“F ]

Defining Z =Q TW and partitioning it conformally widlin the form

Z:lZn Zu]’

Zo1 Lo
we have B B
. . A A Ey FE
TAD = 22 A1z | 22 12 | 14
@ 4Q [0 Azz] lEn En] (14)
where
Evy = Ay Zag — ZagAyy — Zo1 Avg,
Eoy = AyZin — Z11Ax + A12701,
FEor = AnZo — ZaAgg.

F1q and Fog perturb the ei genval ues directly and do not affect stabilitys & interest because it
neasures the nuneri cal stability of swappings ils the error in the blodk,. Tt is not of interest

since it neither affects the nunerical stability of the al gori thmnor perturbs the eigenval ues. 'The
taskis to give bounds on the norns of 44 Fop and Eyy. 1o do so, let us first express; Zn terns

of the blocks € of @, £ F and R. Fom(13), we have

o | R+F | 1] -X +[-E] _[R ~QhLE
(14 W)[ o [Tl [T o [Tl |t —QLE |
Postmul ti pl yi ng by (R +F7T! on both sides of the above equation, and noting that Z L%, we
get

n 4] [l o
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In the next section, we will showthat in sone pathol ogical cases, the normof the (2,1) (block)
entry of QT AQ may be larger than O(as|| 4 ), i.e., it may be backward unstable if we are forced
to treatQT AQ as bl ock upper triangul ar by setting the (2,1) entry to zero. Therefore we propose
to performadjacent bl ocks swapping tentatively; if the normof the (2,1) (block) e@iftA(pf
is less than or equal to Qfjf 4 ), we swap the blocks, otherwise we return without performng
the swap. This gi ves an absol ute guarantee of backward stability. W can fail to swaponlyif the
eigenval ues A and Ay are so close that a small perturbation of the matrix coul d nake them
identical. If p =g =1, then swapping will al ways succeed.

If the two bl ocks are exchanged, then an orthogonal simlarity transformationis perforned on
the 2 X 2 blocks (if any exist) toreturn themto standard form

Finally, since the nonsymetric eigenval ue problemis anill-conditioned problem a snall per-
turbation to a 2 x 2 block (conplex conjugate eigenpair) could cause a large perturbation of its
eigenval ues. In the extrene case, a 2 X 2 block could split intotw 1 x 1 blocks if its conplex
conjugate ei genval ues becone real . Carefully designed standardizationsteps will detect and report
such phenonena. Al above considerations are surmed up in the followi ng al gori thm

Direct Swapping A gorit hmSLAEXC

R AT AT | A A |,
1. Copy AtoT: T = [ 0 T22‘|HA_ [ 0 Azz]’

2. Use Gaussi an el i ni nation wi th conplete pivoting to sol ve
T X=X" 22 =7T12,

where v is a scaling factor to prevent overflow. If thereis a snnll di agonal el enent during
Gaussi an el i ni nation, set it to roughly nachi ne precision (tines the normof the natri x).

3. Conpute the QR factorization G =(=X~yI)T =QR by Househol der transfornations.

4. Performswappi ng tentatively: if the normof the (2,1) (bl ock) entry"@J)is | ess t han
O(eml| Tm). go to the next step, and ot herwi se exi t;

5. If the swap is accepted, repl aced Aby J &) and set the (2,1) (block) entry of QA4) to

zer o.

6. Standardize 2 X 2 di agonal block(s)if any exi st.

In our inplenentation of SLAEXCin LAPACK we have chosen 10e || 4 v as the stability
criterionin step 4, where [\pfEmax ;;la;;|. Fnally, we note that we also provide a subroutine
STREXCi n LAPACKwhi ch calls SLAFXCto reorder all the eigenval ues into a user sel ected order.

In particul ar, the user nay sel ect any subset of the spectrumwhich will be reordered to appear at
the topleft of the natrix using the fewest possible calls to SLAEXC

3 Error Analysis

In this section, we give an error anal ysis of the direct swapping al gorithmSLAEXC described in
the last section. W assune that p =¢ =2, i.e., we only consider swapping tvwo 2 x 2 bl ocks,
the hardest case of the problem In addition, for the sake of exposition, we also assune that the
conput ati on of (Rfactorizationandthesinilaritytransformti'of)@re exact, and the scaling
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where A is simlar togd i =1,2, so that the ei genval ues are invariant, but their positions are
exchanged. Furthernore, we have the followi ng theoremto specify such orthogonal transfornation:

Theoreml (Ng and Parlett [11)). An orthogonal (p+q) X (p+q) natrix @ swapsidand
Agg ifandonlyif
| X | _| R

for sone invertible ¢ X ¢ natrix R where Xis defined in (6).

In the presence of rounding errors, the biggest concernis sol ving the Syl vester equation (6). It
coul d possibly be ill-condi tionedq find Ay have close eigenval ues. In the extrene case,1if A
and A,o have the sane ei genval ues, the Syl vester equation is singular and the sol uti on Xnay be
infinite. To prevent possible overflow, we instead sol ve the equation

ApnX—M 5 I’VA 12 (8)

or the correspondi ng linear system

I =~b (9)

where v is a scaling factor (7 < 1), and K55 Ay; — A, ® I,, @ is the Konecker product,

x =col (X, b =col (A3). colW) denotes the colum vector forned by taking col umms of W

and stacki ng thematop one another fromleft to right. Possible overflowof Xis taken care of by
choosing asmall scaling factor v. Inthe extrene case, whemml Ao have the sane ei genval ues,

we choose v =0. Because the linear system(9) canonly be 1 x1, 2x 2o0r 4 x4, it does not cost

too much to use CGhussian elinmination with conplete pivoting to solve it with better nunerical
properties (in particular, the pivots are within a nodest factor of the singular values of the 4 by
4 matrix, so setting tiny pi vots to a chosen tiny val ue controls the conditioning of the systemand
normof the solution). Applying standard results from[20strai ghtforward anal ysis shows that

for the conputed sol uti oX of the Syl vester equation:

[ # e o pearCll Adlle +| Azzllr)
| Xr~ sep( Ar1, Agg) ’

where F=X- X, pis asmll constant of order O(h},is nachine precision, and defyq, Az2) =
omn( H is called the separation of the natricqs ahd Ass.

(10)

In the following error analysis of the algorithm we will see that the nunerical stability is
essentially governed by the residual Y AA 1 X+ XAy =—A 1 BHEA 99, Applying standard
error anal ysis of Gaussian elininatidn @ have

[ Yle =Il A1z = An X + X Agllr < penr(l] Aallp +I| Azzlle) [| Fe. (11)

Note that the bound does not invol ve sdplyy, Asz).
Next we formthe QR factorization of the matrix (¥T,4I)T by tbusehol der el enentary re-

flectors, so that
~x]_,[r
BRI (12)

vhere Q =Q +6Q, || 6Q|| = en, G'Q =1 Inother words, the conputed mattix() is orthogonal
to machi ne precision [R0
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This neans that its di agonal entries are equal and its off di agonal s nonzero and of opposite sign:
a
[7 a], py <0. (4)

For any 2 x 2 block with conpl ex conjugate eigenval ues, we can easily conpute an orthogonal
simlarity transformati on to standardize the bl ock.

2 Direct Swapping Algorithm

As we described in the introduction, the crux of reordering the diagonal blocks is to interchange
the consecutive di agonal bl ockgidnd Aoy in the following bl ock natrix

- A Agg
A ] .

where Ay1is pXp, is ¢gxq, p,g=1o0r 2. Throughout this paper, we assune that;dand Ay
have no ei genval ue in common, otherwise, they need not be exchanged. It is seen that the block
mutrix (5) can be bl ock di agonalized as

All A12 . Ip -X All 0 Ip X
0 Ap | | 0 I 0 Ao 0 I, |’
where Xis the sol ution of the Syl vester equation
ApnX=M 2 =A1,. (6)

Since it is assumed that A and A,y have no ei genval ue in common, the sol ution Xexists and is
uni que. If we choose an orthogonal nmatrix ¢ such that

| X | _| R
¢ [ I, | | O
and conformally partition ¢) in the form

_ Qll QIQ
Q B l QQI Q22 ] ’

then

Iy 0 0 Qf
Since both matrices on the left are invertible so are R fnd Qus
A A I, -X A 0 I, X
T 11 A1 _ T | 1p 11 P
A R R M | A | KA
(R QL | [ 42 0[] R —RQhQY
0 QF 0 Ay 0 Qit
_ [ RAnRT —RARRTQNLQY 1+ Ti4uQy
0 QHLANQT
Ap 412
0 Ap

o )12 )
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and hence ()1 gives an orthonornal basis for the invariant subspace of Acorresponding to the
ei genval ues contained in{l’

Unfortunatel y, the {I' gi ven by the (R algorithmwill not generally contain the eigenval ues
in which we are interested. W mist therefore performsone further orthogonal simlarities that
preserve bl ock triangul ar formbut reorder the desired ei genval ues of Ato the upper left corner of
the Schur form7. The crux of such a reorderingis to swap two adjacent 1 x 1 or 2 x 2 di agonal
bl ocks by an orthogonal transformation. Fornally, lethd a px pmatrix, 4; be a ¢ X g matrix,
p,q =1 or 2; we want to conpute an orthogonal (p+q) x (p+q) matrix @ such that

T All Al? _ 14122 14112
o[t e las [ i) 0

where A;; is similar tozd i =1,2, so that the eigenval ues are unchanged but their positions are
exchanged al ong the (bl ock) di agonal .

Tothis end, Stewart [ ]5has described aniterative al gorithmfor swappi ng consecutive 1x1 and
2 x 2 bl ocks of a quasi-triangul ar natrix, which we refer to as al gori thmEXCHNG In his nethod,
the first blockis usedtodetermine aninplicit QRshift. Anarbitrary (Rstepis performed on both
bl ocks to create a dense (p+¢) X (p+¢) matrix. Then a sequence of (Rsteps using the previously
determned shift is performed. Theoretically, after one step of (Riteration, the ei genval ues of the
first block will energe in the lower part. But in practice, twoor even more QRiterations maystill
fail toreorder the eigenval ues for sone hard probl ens. This use of (Riteration has been extended
by Van Iboren [19] to reordering the eigenval ues of a generalized eigenval ue probl emusing (¥
iteration.

Anot her al gorithmto be further devel opedinthis paper is the so-calleddirect swappi ng me
whi ch was ori gi nal | y noti vated by the work of Ruhe []l2and Ibngarra, Hammarl i ng and W1 ki nson
in 1983, although the paper was finished later (1991).[ ™Ng and Parlett [Jlalso devel oped a
programto inplenent the direct swapping al gorithm Asinilar idea has also been published by
Cao and Zhang [6] .

This previous vwork still does not sol ve the problemsatisfactorily. The iterative swapping al-
gorithmhas the advantage of guaranteed backward stability, since it just mmltiples the data by
orthogonal matrices. But it nay be inaccurate and even fail to reorder the eigenvalues inill-
condi tioned cases. (h the other hand, the direct swappi ng al gorithmis sinple and can better deal
withill-conditioned cases. But there are exanpl es where these inplenentations fail to be stable.

In this paper, we further i nprove the direct swapping al gorithm Various strategies have been
desi gned at each stage of the al gori thmtoinproveits accuracy and robustness. Adetail ed anal ysis
of the al gorithmshows that backward instability is possible only in veryill-conditioned cases, sc
ill-conditioned in fact that we have been unable to construct a case where it fails. Qur goal was
to have an absolute stability guarantee, however; we achieved this by directly and cheaply testing
for instability and rejecting a swapif it woul d have been unstable. This can occur only when the
eigenval ues are soill-conditioned as to be indistinguishableinacertainreasonable sense. Nunerica
experinents showthe superiorities of our direct swappi ng al gori thmover previ ous i npl enentati ons.
The rest of the paper is organized as foll o®sde§cribes the direct swapping al gorithm The
error anal ysis of the algorithmis carried ou8.ifllie software inpl enentati on and nuneri cal
expernents are reported ind§ $ draws conclusions. Al software including test software for the
al gorithns in this paper can be found in the LAPACK]i brary .1

W assune that any 2 x 2 di agonal blockin the quasi-triangul ar matrixis in standardized form



On Swapping Diagonal Blocks in Real Schur Form*

Zhaojun Baif and James W. Demmel?*

Abstract

We discuss a new version of an existing algorithm for reordering the eigenvalues on the
diagonal of a matrix in real Schur form by performing an orthogonal similarity transformation.
A detailed error analysis and software description are presented. Numerical examples show the
superiority of our algorithm over previous algorithms.

1 Introduction

The probl emof reordering the ei genval ues i nto a desired order al ong the (bl ock) di agonal of a quasi -
triangul ar real matrixarisesinseveral applications: conputing aninvariant subspace correspondi ng
to a given group of eigenval ues, estimating condition nunbers for a cluster of eigenval ues or their
associ ated i nvari ant subspace [ §8 conputing partial eigenval ues of alarge nonsymetric natrix

by the simul taneous iteration nethod [[l4conputing matrix functions,[41], sol ving the 1inear
quadratic control probleml[]l0 and so on. These problens can be sol ved in two phases: the first

is to conpute the Schur deconposition of the gi ven matrix, and the second is to reorder a group

of specified eigenval ues to appear at the upper left corner of the matrix. In this paper we describe
an algorithmand its inplenentation for this reordering problem 'The software is available in
LAPACK[1 ], apublic domain nunerial 1inear al gebralibrary.

Specifically, for a real matrix A there is a real orthogonal matrix ¢ such that
A=QTQ T, (1)

where T is a real upper quasi-triangular matrix, called the real Schur form 'This neans that
is block upper triangular with 1 x 1 and 2 x 2 blocks on the diagonal. The 1 x 1 blocks contain

the real eigenvalues of A 'The eigenval ues of the 2 x 2 di agonal bl ocks are the conpl ex conjugate
eigenval ues of A The real Schur formmnay be conputed using subrouti ne HQR fromF SPACK

[13 or subroutine SHSHQR fromLAPACK[1 ]). Here @ provides an orthonornal basis for the
invariant subspaces of certain subsets of eigenvalues of the matrix A If we partition ¢ and T
confornmal 1y as

Q:[leQQ]v T:[TSI ;;z‘|7

then from(1) we have

1@ IIQ lTll (2)
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