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sl ow to be useful . The LAPACK2 proj ect wi l l produce codes assumi ng

reasonabl y e�ci ent excepti on handl i ng, si nce thi s i s the most common ki nd

of i mpl ementati on [ 4 ] .
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preci si on, and e�ci ent excepti on handl i ng. The IEEE
oati ng poi nt stan-

dard [ 5] , e�ci ent l y impl emented, i s a good model . We emphasi ze the ef -

�ci ency of i mpl ementati on because i f i t i s very expensi ve to exerci se the

f eatures we need, i t def eats the purpose of usi ng themto accel erate compu-

tati on.

Accurate roundi ng attenuates or el i mi nates roundo� accumul ati on i n

l ong sums as descri bed i n secti on 1. 1 It al so permi ts us to simul ate hi gher

preci si on cheapl y, whi ch of ten makes i t easi er to desi gn stabl e al gori thms

qui ckl y (even though a stabl e al gori thmwhi ch does not rel y on hi gher pre-

ci si on may exi st, i t may take a whi l e to di scover). Thi s was the case f or

Cuppen' s method (secti on 2. 4), and al so for many of the routi nes f or 2-by-2

and 4-by-4 matri x probl ems i n the i nner l oops of vari ous LAPACKrouti nes,

suchas sl asv2, whi chcomputes the SVDof a 2-by-2 tri angul ar matri x [ 3 , 29] .

Hi gher preci si on al so makes i t possi bl e to extend the l i f e of codes desi gned

to work on smal l er probl ems, as they are scal ed to work on l arger ones wi th

l arger condi ti on numbers (secti on 1. 2), or wi th more randomi nstabi l i ti es

(secti on 1. 3). It i s i mportant that the extra preci si on be as accurate as

the basi c preci si on, because otherwi se promoti ng a code to hi gher preci -

si on can i ntroduce bugs where none were before. Asimpl e exampl e i s that

arccos(x=(x2 + y2)1=2) can fai l because the argument of arccos can exceed

1 i f roundi ng i s i naccurate i n di vi si on or square root [ 15] . Extra range and

preci si on are very useful , si nce they permi t us us to forego some testi ng and

scal i ng to avoi d over/under
owi n common computati ons such as

qP
i x

2
i .

E�ci ent excepti on handl i ng permi ts us to run fast \ri sky" al gori thms

whi ch usual l y work, wi thout f ear of havi ng programexecuti on termi nated.

Indeed, i n some cases such as condi ti on estimati on, over
owpermi ts us to

�ni sh earl y (i n thi s case over
owimpl i es that 0 i s an excel l ent approximate

reci procal condi ti on number). In parti cul ar, i t l ets us use optimi zed BLAS,

thereby taki ng advantage of the manufacturer' s e�ort i n wri ti ng them(see

secti on 2. 5). In anal ogy to the argument for usi ng RISC(\reduced i nstruc-

ti on set computers"), we want al gori thms where the most common case |

no excepti ons |runs as qui ckl y as possi bl e.

Thi s i s not useful i f the pri ce of excepti on handl i ng i s too hi gh; we

need to be abl e to run wi th 1 and NaN(Not a Number) ari thmeti c at

nearl y ful l 
oati ng poi nt speed. The reason i s that once created, an 1
or NaNpropagates through the computati on, creati ng many more 1' s or

NaN' s. Thi s means, f or exampl e, that the DEC� i mpl ementati on of thi s

ari thmeti c, whi ch uses traps to the operati ng system, i s too unacceptabl y
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Thi s method can fai l i f the i terati on fai l s to converge to an accurate

enough approximati on of s(A). Thi s wi l l happen i f some ei genval ue of A i s

too cl ose to the imagi nary axi s (al ong whi ch the i terati on behaves chaot-

i cal l y). Asymptomof thi s may be an i ntermedi ate A i whi ch i s very i l l -

condi ti oned, so that A�1i is veryinaccurate. It mayrequire user input to

helpselect thecorrectspectral dividingline. It canmonitor itsownaccuracy

bykeepingtrackof thenormof the (2,1) blockof QAQ T
; since themethod

only applies orthogonal transformations toA, it will be stable if this (2,1)

blockis small.

We close with some comments on�nding eigenvectors, given accurate

approximate eigenvalues; this is done if onlyafeweigenvectors are desired.

The standardmethod is inverse iteration, or solving (A � � )x i+1 = �ixi
until x i converges toaneigenvector; � i is chosentokeepkx i+1 k =1. This
involves triangular systemsolving with a very ill-conditioned matrix, the

more sotothe extent that� is anaccurate eigenvalue. This ill-conditioning

makesover
owareasonablepossibility, eventhoughweonlywantthescaled

unit vectorat theend. Thismeans thecodeis tocomputetheanswerdespite

possible over
ow, since this over
owdoes not meanthat the eigenvector is

ill-posed or even ill-conditioned. To do this portably currently requires a

\paranoid" coding style, with testing and scaling in the inner loop of the

triangular solve [2 ], making it impossible touse machine optimizedBLAS.

If one coulddefer the handling of over
owexceptions, it wouldbe possible

to runthe fast BLAS, andonly redo the computationwithrelatively slow

scaling whennecessary. This is an example of the paradigmof the intro-

duction. IEEEstandard
oating point arithmetic [5 ] provides this facility

inprinciple. However, if exceptionhandlingis tooexpensive (ontheDEC�

chip, 1arithmetic requires atrapintothe operatingsystem, whichis quite
slow), over
owcancause aslowdownof several orders of magnitude.

For the generalizednonsymmetric eigenproblemA��B wedonot even

knowhowtoperformgeneralizedHessenbergreductionusingmore thanthe

Level 1BLAS. The sign-functionandrelatedtechniques [60 , 7] promise to

be helpful here.

3 Re c o mme n d at io n s f o r Fl o a t i n g Po i n t Ar i t hme

Wesummarize the recommendations wehavemade inprevious sections re-

garding
oatingpoint arithmetic support tomitigate the tradeo�between

parallelism(or speed) andstability: accurate rounding, support for higher
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Jacobi's method canbe implementedwith orthogonal transformations

only, maintaining numerical stability at the cost of linear convergence, or

use nonorthogonal transformations whichretainasymptotic quadratic con-

vergencebut canbe arbitrarilyill-conditioned, andsopossiblysacri�ce sta-

bility. Orthogonal Jacobi couldplaythe role of aslowbut stable algorithm,

but linear convergence makes it quite slow. The condition number of the

transformation in nonorthogonal Jacobi could be monitored, and another

scheme usedif it is toolarge.

Divide and conquer using Newtonor homotopymethods is applied to

aHessenbergmatrix, setting the middle subdiagonal entrytozero, solving

the two independent subproblems in parallel, andmerging the answers of

the subproblems usingeither Newtonor ahomotopy. There is parallelismin

solvingthe independent subproblems, andinsolvingfor the separate eigen-

values; these are the same sources of parallelismas inCuppen's method.

These methods can fail to be stable for the following reasons. Newton's

method can fail to converge. BothNewtonandhomotopymayappear to

converge to several copies of the same root without anyeasywaytotell if

a root has beenmissed, or if the root really is multiple. To try to avoid

this withhomotopymethods requires communicationtoidentifyhomotopy

curves that are close together, andsmaller step sizes to followthemmore

accurately. The subproblems producedbydivide andconquer maypoten-

tiallybemore ill-conditionedthanthe original problem. See [52 ] for further

discussion.

Divide and conquer using the matrix sign function (or a similar func-

tion) computes anorthogonal matrixQ =[Q 1; Q2] whereQ 1 spans a right

invariantsubspaceof A, andthendivides thespectrumbyformingQAQ T
="

A11 A12

0 A21

#
. Toattainreasonable e�ciency, Q 1 shouldhave close ton= 2

columns, wheren is the dimension, or if the user onlywants some eigenval-

ues, it shouldspanthe corresponding, or slightlylarger, invariant subspace.

OnewaytoformQ is viatheQRdecompositionof the identitymatrixplus

the matrix sign function s (A) of A, a functionwhich leaves the eigenvec-

tors alone but maps left half plane eigenvalues to�1 andright half plane
eigenvalues to+1. Agloballyandasymptoticallyquadratically convergent

iterationtocomputes (A) isA i+1 =:5(A i+A
�1
i ). This divides thespectrum

into the left andright half planes; byapplying this functiontoA ��I or

(A�� I )2 or e i�A�� I , the spectrumcanbe separatedalongother lines.
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2.5 The nonsymmetric ei genproblem

Fivekinds of parallel methods for thenonsymmetriceigenproblemhavebeen

investigated:

1. HessenbergQRiteration[6 , 79 , 78 , 21 , 45 , 37 , 82 , 81 , 75 ],

2. Reductiontononsymmetric tridiagonal form[46 , 32 , 43 , 44 ],

3. Jacobi's method[38 , 39 , 74 , 61 , 69 , 65 , 80 ],

4. Divide andconquer basedonNewton's methodor homotopycontinu-

ation[16 , 17 , 83 , 57 , 58 , 34 ]

5. Divide andconquer basedonthematrixsign-function[59 , 7, 60 ]

Incontrast tothe symmetricproblemorSVD, noguaranteedstableand

highly parallel algorithmfor the nonsymmetric problemexists. Reduction

to Hessenberg form(the prerequisite to methods (1) and (4) above) can

be done e�ciently [33 , 36 ], but HessenbergQRis hardto parallelize, and

the other approaches are not guaranteedtoconvergeand/or produce stable

results. We summarize the tradeo�s amongthesemethods here; for amore

detailedsurvey, see [26 ].

HessenbergQRis the serial methodof choice for densematrices. There

have been a number of attempts to parallelize it, all of which maintain

numerical stability since they continue to apply only orthogonal transfor-

mations to the original matrix. They insteadsacri�ce convergence rate or

performmore 
ops inorder to introduce higher level BLASor parallelism.

So far the parallelismhas been toomodest or too �ne-grained to be very

advantageous. Inthe paradigmdescribedinthe introduction, wherewe fall

backonaslower but more stable algorithmif the fast one fails, Hessenberg

QRcanplaythe role of the stable algorithm.

Reductiontononsymmetrictridiagonal form(followedbythetridiagonal

LRalgorithm) requires nonorthogonal transformations. The algorithmcan

breakdown, requiring restartingwithdi�erent initial conditions [62 ]. Even

if it does not breakdown, the nonorthogonal transformations requiredcan

be arbitrarily ill-conditioned, so sacri�cing stability. By monitoring the

condition number and restarting if it exceeds a threshold, some stability

canbemaintainedat the cost of randomrunning time. Themore stability

is demanded, the longer the running time maybe, and there is no upper

bound.
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cases [63 ]. Onthe other hand, bisectioncaneasilybe parallelizedbyhaving

di�erent processors re�ne disjoint intervals, evaluating the Sturmsequence

in the standardserial way. This involves muchless communication, andis

preferable inmost circumstances, unless there is special support for parallel

pre�x.

Havingusedbisection to compute eigenvalues, we must use inverse it-

eration to compute eigenvectors. Simple inverse iteration is also easy to

parallelize, with eachprocessor independently computing the eigenvectors

of the eigenvalues it owns. However, there is no guarantee of orthogonal-

ityof the computedeigenvectors, in contrast toQRiterationor Cuppen's

method[53 ]. Inparticular, toachievereasonableorthogonalityonemust re-

orthogonalizeeigenvectorsagainst thoseof nearbyeigenvalues. This requires

communicationtoidentifynearbyeigenvalues, andtotransfer the eigenvec-

tors [51 ]. In the serial implementation in [53 ], eachiterate during inverse

iteration is orthogonalized against previously computed eigenvectors; this

is not parallelizable. The parallel version in [51 ] completes all the inverse

iterations in parallel, and thenuses modi�edGram-Schmidt in a pipeline

toperformthe orthogonalization. To loadbalance, vector j was storedon

processor j mod p (p is the number of processors), andas aresult reorthog-

onalizationtookaverysmall fractionof the total time; however, this may

onlyhavebeene�ective because of the relativelyslow
oatingpoint onthe

machine used(iPSC-1). Inanyevent, the price of guaranteedorthogonality

amongthe eigenvectors is reducedparallelism.

Cuppen's methodhas beenanalyzedbymanypeople [19 , 35 , 73 , 51 , 54 ,

10 , 48 ]. At thecenter of thealgorithmis the solutionof the secular equation

f(� ) =0, where f is a rational function in� whose zeros are eigenvalues.

This algorithm, while simple andattractive, provedhardtoimplement sta-

bly. The trouble was that to guarantee the computed eigenvectors were

orthogonal, it appearedthat the roots of f (� ) =0hadtobe computed in

double the input precision [10 , 73 ]. When the input is already in double

precision (or whatever is the largest precision supportedbythe machine),

thenquadruple wouldbeneeded, whichmaybe simulatedusingdouble pro-

vided double is accurate enough [22 , 64 ]. So the availability of Cuppen's

algorithmhinged on having su�ciently accurate 
oating point arithmetic

[73 , 10 ]. Recently, however, GuandEisenstat [48 ] have foundanewwayto

implement this algorithmwhichmakes extra precisionunnecessary. Thus,

eventhoughcarefullyrounded
oatingpoint turnedout not tobe necessary

touseCuppen's algorithm, it tookseveral years of researchtodiscover this,

sothepricepaidforpoorlyrounded
oatingpointwasseveral yearsof delay.
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2. 4 The s ymmet r i c ei genval ue probl emand s i ngul ar val ue

decompos i t i on

The basic parallel methods available for dense matrices are summarizedas

follows. Weassumethe reader is acquaintedwithmethods discussedin[47 ].

1. Jacobi, whichoperates onthe original (dense) matrix.

2. Reductionfromdense totridiagonal (or bidiagonal) form, followedby

(a) Bisection(possiblyaccelerated), followedbyinverse iterationfor

eigenvectors (if desired).

(b) Cuppen's divide andconquer method.

(c) QRiteration(andvariations).

Jacobi has been shownto be more stable than the other methods on

the list, provided it is properly implemented, andonly onsome classes of

matrices (essentially, thosewhose symmetricpositivede�nite polar factorH

canbe diagonallyscaledasD �H � D tobewell-conditioned[30 , 71 ]; for the

SVDweusethesquareof thepolar factor). Inparticular, Jacobi is capableof

computingtinyeigenvalues or singular values withhigher relative accuracy

thanmethods relyingontridiagonalization. Sofartheerroranalyses of these

proper implementations havedepended ontheir use of 2-by-2rotations, as

used inconventional Jacobi. Therefore, the inner loopof these algorithms

performoperations on pairs of rows or columns, i.e. Level 1 BLAS [56 ].

Onmanymachines, it is more e�cient todomatrix-matrixoperations like

level 3 BLAS [31 ], so one is motivated to use block Jacobi instead, where

groups of Jacobi rotations are accumulatedinto a single larger orthogonal

matrix, andappliedtothematrixwithasinglematrix-matrixmultiplication

[67 , 68 , 70 ]. It is unknownwhether this blockingdestroys the subtler error

analyses in [30 , 71 ]; it is easy to showthat the conventional norm-based

backwardstabilityanalysis of Jacobi is not changedbyblocking.

Reductionfromdense totridiagonal formis eminentlyparallelizable too.

Havingreducedtotridiagonal form, we have several parallel methods from

whichto choose. Bisection andQRiterationcanbothbe reformulatedas

three-termlinear recurrences, and so implemented using parallel pre�x in

O(log 2 n ) time as describedinsection2.2The stabilityis unproven. Exper-

iments withbisection [76 ] are encouraging, but the onlypublishedanalysis

[20 ] is verypessimistic. Initial results onthe dqds algorithmfor the bidiag-

onal SVD, onthe other hand, indicate stabilitymaybe preservedin some
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Pivoting Pivot Worst Average

Method Search Pivot Pivot

Cost (serial) Growth Growth

Complete n2 O(n 1+x
) n1=2

Partial n 2
n�1 n2=3

Pairwise 1 4
n�1 O(n )

Parallel 1 2
n�1 en=4 log n

Table 2: Stabilityof various pivotingschemes inLUdecomposition

parallel pivoting are all unstable, but on average only parallel pivoting is

unstable. This is whywe canusing partial pivoting in practice: its worst

case is veryrare, but parallel pivotingis sooftenunstable as tobe unusable.

Wenote that analternatekindof parallel pivotingdiscussedin[42 ] appears

more stable, apparentlybecause it eliminates entries indi�erent columns as

well as rows simultaneously. A�nal analysis of this problemremains tobe

done. We alsonote that, onmanymachines, the cost of partial pivoting is

asymptoticallynegligible comparedto the overall computation; the bene�t

of faster pivotingis solving smaller linear systems more e�ciently.

We close bydescribing the fastest knownparallel algorithmfor solving

Ax =b [18 ]. It is also so numericallyunstable as tobe useless inpractice.

There are four steps:

1) Compute the powers of A (A 2
, A3

, ... , An�1
) byrepeated

squaring(log 2 n matrixmultiplies of log 2 n steps each).

2) Compute the traces s i =tr (A i
) of the powers inlog 2 n steps.

3)SolvetheNewtonidentities forthecoe�cientsa i of thecharac-

teristicpolynomial; this is atriangular systemof linear equations

whosematrixentries andrighthandside areknownintegers and

the s i (wecandothis inlog
2
2 n steps as describedabove).

4)ComputetheinverseusingCayley-HamiltonTheorem(inabout

log 2 n steps).

Thealgorithmis sounstable as toloseall precisionininverting3I indouble

precision, where I is the identitymatrixof size 60or larger.

ti�cati on, and some are purely empi ri cal . Alan Edelman bel i eves the n 2=3 average case

pivot growth for parti al pivoting should real l y be n 1=2.
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andnumerical stabilitytrade o�.

ParallelisminLUdecomposition(andothers) is oftenattainedbyblock-

ing. For example, if A is symmetric and positive de�nite, its Cholesky

factorizationA =
T

maybe dividedintothree blocks as follows:

A =
T

=
6 T

11 0 0

T
12

T
22 0

T
13

T
23

T
33

7
�
6 11 12 13

0 22 23

0 0 33

7

LAPACKuses the Level 3BLASwhichperformmatrixmultiplicationand

triangular systemsolving in its implementation of this algorithm[3 ]. On

somemachines, solvingtriangular systems is rather less e�cient thanmatrix

multiplication, sothat analternative algorithmusingonlymatrixmultipli-

cation is preferred. This can be done providedwe compute the following

blockdecompositioninsteadof standardCholesky:

A = =
6 I 0 0

21 I 0

31 32 I

7
�
6 11 12 13

0 22 23

0 0 33

7

In[28 ] it is shownthat using this blockLUtosolve the symmetric positive

de�nite systemAx =b yields a solution ^ x satisfying (A + A)^ x =b , with

k Ak =O( )(�(A)) 1=2kAk, where � (A) =kAk � kA �1k is the condition

number. This contrasts with the standard backwardstability analysis of

Cholesky which yields k Ak =O( )kAk. So the �nal error bound from

blockLUis O( )(� (A)) 3=2
, muchbigger thanO( )� (A) for Cholesky. This

is the price paidinstabilityfor speedup.

Another tradeo�occurs inthechoiceof pivotingstrategy[77 ]. Thestan-

dardpivot strategies are complete pivoting(wherewesearchfor the largest

entryinthe remainingsubmatrix), partial pivoting(theusual choice, where

we only searchthe current columnfor the largest entry), pairwise pivoting

[72 ] (where onlyrowsn andn �1engage inpivotingandelimination, then
rowsn�1andn�2andsoonuptothetop)andparallel pivoting(wherethe
remainingrowsaregroupedinpairs, andengageinpivotingandelimination

simultaneously). Neither pairwise nor parallel pivotingrequire pivot search

outside of tworows, but pairwise pivotingis inherentlysequential inits ac-

cess to rows, whereas parallel pivoting (as its name indicates) parallelizes

easily. Table 2summarizes the analysis in[77 ] of the speedandstabilityof

these methods
1
. The point is that in the worst case partial, pairwise and

1Some tabl e entri es have been proven, some are empi ri cal wi th some theoreti cal us-
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Compute i =b i= pi inparallel

Compute s i = 0 +� � � + i�1 usingparallel pre�xaddition

Compute z i =s i � pi�1 inparallel

Thisapproachextends ton termlinear recurrencesz i+1 =
Pn�2

j=0 ai;jzi�j+

bi, but the associative operationbecomes n �1byn �1matrixmultiplica-
tion. Basic linear algebra operations whichcanbe solvedthis wayinclude

tridiagonal Gaussianelimination(athree termrecurrence), solvingbidiago-

nal linear systems(twoterms), Sturmsequenceevaluationfor thesymmetric

tridiagonal eigenproblem(three terms), andthe bidiagonal dqds algorithm

for singular values (three terms) [63 ].

Thenumerical stabilityof thesealgorithms is notcompletelyunderstood.

Forsomeapplications, it is easytoseetheerrorbounds areratherworsethan

the those of the sequential implementation[20 ]. For others, suchas Sturm

sequence evaluation[76 ], empirical evidence suggests it is stable enoughto

use inpractice.

Anothersourceof instabilitybesides roundo�is susceptibilitytoover/under
ow,

because of the need to compute extendedproducts (suchas p i =a 0 � � �ai
above). These over/under
ows are often unessential because the output

will eventuallybe the solution scaled to have unit norm(inverse iteration

for eigenvectors). But to use parallel pre�x, one must either scale before

multiplication, or deal with over/under
owafter it occurs; the latter re-

quires reasonable exceptionhandling[25 ]. Inthe best case, auser-level trap

handler wouldbe called to deal with scaling after over/under
ow, requir-

ingnooverheadif noexceptions occur. Next best is anexception
agthat

couldbe tested, providedthis canalsobe done quickly. Theworst situation

occurs whenall exceptions require atrapintooperatingsystemcode, which

is thenhundreds or thousands of times slower thana single 
oating point

operation; this is the case on the DEC� chip, for example. In this case

it is probably better to code defensively byscaling every stepto avoidall

possibilityof over/under
ow. This is unfortunatebecause it makesportable

code sohardtowrite: what is fastest ononemachine maybe veryslowon

another, eventhoughbothformally implement IEEEarithmetic.

2. i near e uat i on s ol vi ng

In subsection 2.1, we discussed the impact of implementing LUdecompo-

sitionusingBLASbasedonStrassen's method. In this sectionwe discuss

other variations onlinear equationsolvingwhere parallelism(or just speed)
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Figure 1: Parallel Pre�xon16DataItems

0 1 2 3 4 5 6 7 8 9 a b c d e f

0:1 2:3 4:5 6:7 8:9 a:b c:d e:f

0:3 4:7 8:b c:f

0:7 8:f

0:f

0:b

0:5 0:9 0:d

0:2 0:4 0:6 0:8 0:a 0:c 0:e

2. 2 ar al l el pr e

This parallel operation, also called scan, maybe described as follows. Let

x0; : : : xn be data items, and � any associative operation. Then the scan

of these n data items yields another n data items de�ned by y 0 =x 0,

y1 =x 0 � x1, ... , yi =x 0 � x1 � � �xi; thus y i is the reductionof x 0 through

xi. The attractionof this operation, other thanits usefulness, is its ease of

implementationusing asimple tree of processors. We illustrate in�gure 1

for n =15, or f in hexadecimal notation; in the �gure we abbreviate x i

by and x i � � �xj by : j . Eachrowindicates the values held by the 16

processors; after the �rst rowonlythe datathat changes is indicated. Each

updated entry combines its current value with one a �xed distance to its

left.

Parallel pre�x may be used to solve linear recurrence relations. For

example, to evaluate z i+1 =a izi +b i, 0, z 0 =0, we do the following

operations:

Compute p i =a 0 � � �ai usingparallel pre�xmultiplication

9



triangular systemsolvingwithmanyright handsides [49 ], as well as many

methods besides Strassen's [11 ].

These bounds di�er whenthere is signi�cant di�erence inthe scalingof

A andB. For example, changingA toAD andB toD �1B where D is

diagonal does not change the error bound for conventional multiplication,

but canmake Strassen's arbitrarily large. Also, if A =jAj andB =jBj ,
thenthe conventional boundsays eachcomponent of A � B is computedto

highrelative accuracy; Strassen's cannot guarantee this.

On the other hand, most error analyses of Gaussian elimination and

other matrixroutines basedonBLASdonot dependonthis di�erence, and

remainmostly the same when Strassen basedBLAS are used [27 ]. Only

when the matrix or matrices are strongly graded (the diagonal matrixD

aboveis ill-conditioned) will the relative instabilityof Strassen's be noticed.

Strictly speaking, the tradeo�of speed and stability between conven-

tional andStrassen's matrixmultiplicationdoes not dependonparallelism,

but onthe desire toexploit memoryhierarchies inmodernmachines. The

next algorithm, a parallel algorithmfor solving triangular systems, could

only be of interest in a parallel context because it uses signi�cantlymore


ops thanthe conventional algorithm.

The algorithmmaybe described as follows. Let be aunit lower tri-

angular matrix (a nonunit diagonal can easily be scaled to be unit). For

each from1 ton �1, let i equal the identitymatrixexcept for column

where it matches . Thenit is simple toverify = 1 2 � � � n�1 andso

�1
=

�1
n�1 � � � �12

�1
1 . One canalso easily see that

�1
i equals the iden-

tityexcept for the subdiagonal of column , where it is the negative of i.

Thus
�1
i comes free, andthe worktobe done is to compute the product

�1
n�1 � � � �11 in 2n parallel steps usingatree. Eachparallel stepinvolves

multiplying n byn matrices (whichare initially quite sparse, but �ll up),

andsotakesabout 2n parallel substeps, for atotal of
2
2n . Error analy-

sis of this algorithm[66 ] yields anerror boundproportional to� ( )
3

where

� ( )=k k � k �1k is the conditionnumber and is machineprecision; this

is in contrast to the error bound� ( ) for the usual algorithm. The error

bound for the parallel algorithmmaybe pessimistic |the worst example

wehavefoundhas anerror growinglike� ( )
1:5

|but shows that there is

atradeo�betweenparallelismandstability.
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the probabilitygoes downwith . The reasonis that the time tosolve an

1=2
by

1=2
matrixgrows like

3=2
, so that the bigger the memory, the

fewer suchproblems we cansolve per second.

Another consequence of this formula is that randomtesting intended

to discover instabilities in a programis more e�ective when done at low

precision.

r a d i n g me r i c a l Ac c r a c a n d Pa r a l -

l e l i s m i n e w Al g o r i t h ms

2. as t

The BLAS, or Basic Linear Algebra Subroutines, are building blocks for

many linear algebra codes, and so they should be as e�cient as possible.

We describe twoways of accelerating themthat sacri�ce some numerical

stability to speed. The stability losses are not dramatic, anda reasonable

BLASimplementationmight consider using them.

Strassen's methodis afast wayof doingmatrixmultiplicationbasedon

multiplying2-by-2matrices using7multiplies and15or18additions instead

of 8multiplies and4 additions [1 ]. Strassenreduces n byn matrixmulti-

plicationton= 2byn= 2matrixmultiplicationandaddition, andrecursively

ton= 2k byn= 2k
. Its overall complexity is therefore O(n l og2 7) O(n 2:81

)

instead of O(n 3
). The constant in the O(� ) is, however, much larger for

Strassen's thanfor straightforwardmatrixmultiplication, andsoStrassen's

is only faster for large matrices. Inpractice once is large enoughso the

n= 2k byn= 2k
submatrices �t infast memory, conventional matrixmultiply

maybeused. Adrawbackof Strassen'smethodis theneedfor extrastorage

for intermediate results. It has beenimplementedonthe Cray2 [9 , 8] and

IBM3090[50 ].

The conventional error boundfor matrixmultiplicationis as follows:

j f onv(A � B)�A � Bj n � � jAj � jBj

where the absolute values of matrices andthe inequalityaremeant compo-

nentwise. The boundfor Strassen's [13 , 14 , 49 ] is

kf Strassen(A � B)�A � Bk f (n ) � � kAk � kBk +O( 2
)

where k � k denotes the largest component inabsolute value, andf (n ) =

O(n l og2 12) O(n 3:
). This canbe extendedtoall the other BLAS, suchas

7



variety?Wemaychoose tocorrespondtoanaccuracythreshold, problems

lying outside distance being guaranteedto be solvedaccurately enough,

andthosewithin beingsusceptible tosigni�cant inaccuracy. For example,

we maychoose =10 (where is the machine precision) if we wish to

guarantee at least signi�cant decimal digits inthe answer.

It turns out that for agivenvariety, wecanwritedownasimple formula

that estimates this probability as a function of several simple parameters

[24 , 41 ]: the probabilityper second of beingwithin of aninstability is

[55 ]

= � k � �

where and are problem-dependent constants, is the memorysize in

words, and is themachine speedin
ops per second.

Forexample, consider anSIMDmachinewhereweassigneachprocessor

the jobof LUdecompositionof anindependent randomreal matrixof �xed

size n , and repeat this. We choose LUwithout pivoting in order to best

matchtheSIMDarchitectureof themachine. Weassumethateachprocessor

has anequal amountof memory, sothat is proportional tothenumberof

processors =p � p. From[41 ], weusethefactthattheprobabilitythata

randomn byn real matrixhas aconditionnumber kAk kA�1k2 exceeding
1= is asymptotic to n 3=2

. Finally, suppose that we want to compute

the answer with decimal digits of accuracy, so that we pick =10 .

Combiningthis information, we get that the probabilityper secondthat an

instabilityoccurs (because amatrixhas conditionnumber exceeding1= ) is

at least about

=p
2
3
n3

n3=2 10 =
3

2n 3=2
p
� � � 10 �

The important features of this formula is that is grows withincreasing

memorysize , withincreasingmachine speed , anddesiredaccuracy ,

all of whichare guaranteedtogrow. Wecanlower theprobability, however,

byshrinking , i.e. byusingmore accurate arithmetic.

Onemight object that abetter solutionis touseQRfactorizationwith

Givens rotations instead of LU, because this is guaranteed to be stable

without pivoting, andsois amenable toSIMDimplementation. However, it

costs three times as many
ops. Sowesee there is atradeo�betweenspeed

andstability.

If we instead�ll up the memorywith a single matrix of size
1=2

by

1=2
, thentheprobabilitychangesto =1: 5� �3=4 � � 10 � . Interestingly,
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oatingpoint fraction. This means the relative accuracyof the answer will

be about n 4
=2

�pn4. For this to be less thanor equal to10 �

, we need

2
�pn4 10

�

or p 4log 2 n +6log 2 10 4log 2 n +20. In IEEEdouble

precision, p =52sowemust haven 259, whichis fairlysmall.

Onemight object that for the biharmonic equation, Laplace's equation,

andothers frommathematical physics, if they have su�ciently regularity,

thenonecanusetechniques likemultigrid, domaindecompositionandFFTs

to get accurate solutions for larger n (for the biharmonic, use boundary

integral methods or [12 ]). This is because these methods workbest when

the right handside b andsolutionx are bothreasonablysmoothfunctions,

sothat themoreextremesingular values of thedi�erential operators arenot

excited, andthe badconditioning is not visible. One oftenexploits this in

practice. Sointhe longrun, clever algorithms maybecome available which

mitigate the ill-conditioning. In the short run, more accurate arithmetic

(a larger p ) would have permitted conventional algorithms to scale up to

larger problems without change andremainuseful longer. Wewill see this

phenomenonlater as well.

. ncr eas i ng probabi l i t y o r andomi ns t abi l i t i es

Some numerical instabilities onlyoccur whenexact or near cancellationoc-

curs inanumerical process. Inparticular, theresult of thecancellationmust

su�er a signi�cant loss of relative accuracy, andthenpropagate harmfully

through the rest of the algorithm. The best known example is Gaussian

elimination without pivoting, which is unstable precisely when a leading

principal submatrixis singular or nearlyso. The set of matrices where this

occurs is de�nedbyaset of polynomial equations: det (A r)=0, =1; : : : ; n ,

where A r is a leading by principal submatrix of the matrixA. More

generally, the set of problems on or near which cancellation occurs is an

algebraic variety in the space of the problem's parameters, i.e. de�ned by

a set of polynomial equations in the problem's parameters. Geometrically,

varieties are smoothsurfaces except for possible self intersections andcusps.

Other examples of suchvarieties include polynomials withmultiple roots,

matrices with multiple eigenvalues, matrices with given ranks, and so on

[23 , 24 , 40 , 41 ].

Since instabilityarises not just whenour problemlies onavariety, but

whenit is near one, wewant toknowhowmanyproblems lie near avariety.

One mayconvenientlyreformulate this as aprobabilistic question: givena

\random"problem, what is theprobabilitythat it lies withindistance of a
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Computer Bits Nominal Displacement

precision

Cray2 128 1.e-29 .447440341

Convex220 64 1.e-16 .447440339

IRIS 64 1.e-16 .447440339

IBM3090 64 1.e-17 .447440344

Cray2 64 4.e-15 .447440303

CrayY-MP 64 4.e-15 .447436106

Table 1: Sparse CholeskyResults

the other hand, the di�erence is always a little toobig. So the error accu-

mulates witheachsubtract, insteadof averagingout as ontheCray2. The

accumulatingerror is verysmall, andmakes little di�erence as longas there

arenot toomanyterms inthe sum. Butn =16146was�nallylargeenough

to cause anoticeable loss of 2 decimal places in the �nal answer. The �x

usedbyCarter was touse the single precision iterative re�nement routine

inLAPACK[3 ].

The lessons of this example are that instabilitymaybecome visible only

whenaproblem's dimensionbecomes largeenough, andthat accuratearith-

metic wouldhavemitigatedthe instability.

. 2 ncr eas i ng condi t i on number s

The last sectionshowedhowinstabilitycanarisewhenerrors accumulate in

the course of solving larger problems thanever attemptedbefore. Another

waythis canarise is whenthe conditionnumber of the problemgrows too

rapidlywithits size. This mayhappen, for example, whenwe increase the

meshdensitywithwhichwe discretize a particular PDE. Consider the bi-

harmonic equation xxxx + =f onann byn mesh, withboundary

conditions chosenso that it represents the displacement of a square sheet

�xedat the edges. The linear systemAx =b resulting fromthe discretiza-

tion has a condition number which grows like n 4
. Suppose that we want

to compute the solutioncorrect to 6decimal digits (a relative accuracy of

10
�

).

Generally one cansolve Ax =b with a backwarderror of order , the

machine precision. Write =2
�p
, where p is the number of bits in the
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oatingpoint arithmetic was accurate enoughtosimulate double the input

precision[19 , 35 , 73 , 10 ]. Just recently, anewformulationof the inner loop

was foundwhichmade this unnecessary [48 ]. The fact remains that for a

number of years, the onlyknownwaytouse this algorithmstablywas via

extraprecision. Soonecansaythat thepriceof insu�cientlyaccuratearith-

metic was not an inability to solve this problem, but several years of lost

productivitybecause amore straightforwardalgorithmcouldnot be used.

Section1describes howalgorithms whichhavebeensuccessful onsmall

or mediumsizedproblems canfail whentheyare scaleduptorunonlarger

machines andproblems. Section 2describes parallel algorithms whichare

less stablethantheir serial counterparts. Thebene�t of better 
oatingpoint

arithmetic will be pointedout while discussing the relevant examples, and

overall recommendations for arithmetic summarizedinsection3

a r r i e r s t o c a l i n g l d Al g o r i t h ms

. par s e hol es y on t he r ay - and r ay 2

Wediscuss the experience of Russell Carter inportinganexisting code for

sparseCholeskyfactorizationtoaCrayY-MP[15 ]. Choleskyis averystable

algorithm, andthis code hadbeen inuse for some time. The CrayY-MP

was larger thanmachines previouslyavailable, andCarter ranit onalarge

linear systemAx =b froma structural model. A had dimension 16146.

Results are shownintable 1. The �rst columnis the computer withwhich

the problemis solved, the secondis the number of bits inthe 
oatingpoint

format, thethirdcolumnis theapproximaterelativeaccuracywithwhichthe


oatingpoint arithmetic canrepresent numbers (whichis not the accuracy

of computationon the Cray[55 ]), and the last column records one of the

solutioncomponents of interest. The topline, whichis done toabout twice

the accuracyof the others, is accurate inall the digits shown. Inthe other

results the incorrect digits are underlined.

It canbeseenthat theCrayY-MPloses twomoredigits thantheCray2,

even though both are using 64 bit words, and their 48-fraction-bit arith-

metics are quite similar. The reason for this discrepancy is that boththe

Cray 2 and Cray Y-MPsubtract incorrectly, but the Cray 2 does so in

an unbiasedmanner. In particular, the inner loop of Cholesky computes

aii �
Pi�1

j=1 a2ij , where a ii is positive and the �nal result is also positive.

Whenever theCray2subtracts ana 2
ij , the averageerror is 0; the computed

di�erence is too large as oftenas it is too small. On the CrayY-MP, on

3



Our purpose in this paper is to point out that designing satisfactorily

fast andstable parallel numerical algorithms is not soeasyas parallelizing

stable serial algorithms. We identifytwoobstacles:

1. An algorithmwhichwas adequate on small problems may fail once

they are large enough. This becomes evident when the algorithmis

usedona large parallel machine to solve larger problems thanpossi-

ble before. Reasons for this phenomenon include roundo�accumula-

tion, systematically increasing conditionnumbers, andsystematically

higher probabilityof \randominstability."

2. Afast parallel algorithmfor aproblemmaybe signi�cantlyless stable

thanafast serial algorithm. Inotherwords, there is atradeo�between

parallelismandstability.

Wealsodiscuss twotechniqueswhichsometimesremoveormitigatethese

obstacles. The �rst is good oating point arithmetic, which, depending on

thesituation, maymeancarefullyrounding, adequateexceptionhandling, or

the availabilityof extraprecisionwithout excessive slowdown. The second

technique is as follows:

1. Solve the problemusingafast method, providedit is rarelyunstable.

2. Quickly and reliably con�rmor deny the accuracy of the computed

solution. Withhighprobability, the answer just (quickly) computed

is accurate enoughtokeep.

3. Otherwise, recompute the desiredresult usingaslower but more reli-

able algorithm.

This paradigmlets us combineafast but occasionallyunstablemethodwith

a slower, more reliable one to get guaranteedreliability andusually quick

execution. One could also change the third step to just issue a warning,

whichwouldguaranteefast execution, guaranteenot toreturnanunreliable

answer, but occasionally fail toreturnananswer at all. Whichparadigmis

preferable is applicationdependent.

The bodyof the paper consists of aseries of examples drawnbothfrom

the literature and fromthe experience in the LAPACKproject [3 ]. As

our understanding of problems improves, the status of these tradeo�s will

change. For example, until recently it was possible to use a certainparal-

lel algorithmfor the symmetric tridiagonal eigenvalue problemonly if the
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ABSTRACT. The fastest parallel algorithmfor a problemmaybe signi�-

cantlyless stablenumericallythanthefastest serial algorithm. Weillustrate

this phenomenon bya series of examples drawnfromnumerical linear al-

gebra. We also showhowsome of these instabilities maybe mitigatedby

better 
oatingpoint arithmetic.
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n t r o d c t i o n

Themost natural waytodesignaparallel numerical algorithmis totakean

existing numerically stable algorithmandparallelize it. If the parallel ver-

sionperforms the same 
oatingpoint operations as the serial version, and

inthe same order, one expects it tobe equally stable numerically. Insome

cases, such as matrix operations, one expects that the parallel algorithm

may reorder some operations (such as computing sums) without sacri�c-

ing numerical stability. In other cases, reordering sums could undermine

stability, e.g. ODEs andPDEs.
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