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relativel y primitive and cunbersona parallel T/O facilities currently available. Even
tually the al gorithmwe have devel oped will be integrated into an overall distributed
parallel software environmant, such as a structural anal ysis package, so that the prob-
lemcan be generated and sol ved 1n pl ace on the parallel machine, with probl emsize
limated onl y by the total nemery available on the entire enserble of processors. Qi
prelimnary results wth nuch smller problem encourage us to expect the CND

al gorithmto be very effective in such an envi ronmant.

8. Future Work. We are encouraged by our results to date, but a considerable
anount of work renains to be done al ong these lines. More extensi ve experinentation
1s needed, bothinsol vingmchl arger and nare di verse probl ems and i n conpari ng the
resul ts wth other conpeting al gorithns. The ordering al gorithmeoul d be extended
inseveral vays. For exanple, 1t nay conpute a separator that is unnecessarily large,
and 1t vould be desirable to reduce the separator to one of mnimal size. Wvoul d
alsolike to experimant wth randommsanpl 1 ng techni ques to reduce the conputational
cost of the algorithm Another area for further research is the use of rotations, con
fornal nappings, or other transfornations of the input graph that mght enhance the
effectiveness of the Cartesian nested dissection al gorithm The al gorithmcoul d al so
be generalized to handle problems in three di nansions.

W are currently engaged in using the notion of Cartesian separators to design
an al gorithmfor directly computing a suitable ordering for a nonsymmatric sparse
natrix A wthout first conputing the structure of A TA. O course, the ultinate goal
1s to solve large sparse systems of linear equations, so devel opmant of conpl eman-
tary al gorithma for the subsequent munerical phases of the corputation mst also
be completed. Hnally, the entire suite of algorithm needs to be integrated into a
usabl e sof tware library fornat, and al so integrated into sof t vare packages for specific
applications areas, such as finite el enent structural anal ysis.

9. Acknowledgement. W wish to thank John Gilbert and Enend Ng for
hel pful corments that inproved the presentation of this paper.
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TABLE 6
Teme in secords for orderirg raular grids.

P G100 G200 G300 G400\
1 2.4 12.3 36.7 \
2 2.1 83 24.9 \
4 1.1 5.1 12.022.\8
8 0.6 2.6 6.9 11.\2
16 0.4 1.6 3.6 5$
372 0.3 1.0 2.0 3.

64 0.3 0.7 1.3 2.?
128 0.3 0.5 0.9 1.4

TABLE 7

Teme t:n seconds for ordering L-shaped graphs.

CND- bal CND- opt
P | L3 L6 L12| L3 L6e L12
119.1 20.0
215.914.6 10.119.8
414.0 8.915.2 6.913.225.7
812.1 4.4 8.5 4.4 8.719.1
16/ 1.3 2.5 4.7 3.0 5.5 11.
3210.9 1.6 3.0 2.3 3.7 8.
64/0.7 1.1 2.0 1.8 2.8 6.2
128/ 0.6 0.9 1. 1.5 2.4 5.0
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TABLE 3
Millios  flatirgint qerdios to copde L.

Probl emCND- bal CND-opt AND MMD

L3 22 14 24 13
L6 49 35 55 27
L12 278 120 219 66

using agivenordering. Bothneasures arerather pessimstic, however, inthat the:
not take into account all of the available sources of parallelism nor do they acc
for differences 1n the ability to exploit dense matrix kernels in the computatioc
Nevertheless, we see that CND-opt produces shorter elimnationtrees than ANDor
MMD, and the critical cost for CND-opt is also very competitive with the other

orderings. V¢ expect the elimnation trees produced by CND-bal to be very well

bal anced, but the larger separators incurred cancause the total height of the tree
the critical cost tobe significantly higher than those for the other three orderiu

TABLE 4
Elimrdiontree hadi.
Probl emCND- bal CND-opt AND MMD
L3 632 441 581 580
L6 672 668 675 915
L12 1626 995 1444 1397
TABLE 5

Wak day aitiad pth

Probl emCND- bal CND-opt AND MMD

L3 11 2.7 11 3.0
L6 13 6.8 21 4.6
L12 134 31.0 77 13.(

Tables 6 and 7 show the ordering tines for the CNDalgorithmusing various
numbers of processors Ponani PSC/860 hypercube mul ticomputer. The blankentries
in the tables indicate cases that were not run because the problemwould not fit 11
menory for that nunber of processors. W cannot give conmparative results for AND
and MMD, since they are not parallel algorithns. In Table 6 we showresults only
for CND-bal, since it already produces ideal orderings for square grids, and he:
there 1s no need to use the optimal criterion. As expected for any fixed problen
size, we see a dimnishing gain as nore processors are used. Yet, in light of o
previous experience withsparse matrix al gorithns onsuch parallel machines, we fi
1t encouraging that we continue to see any speedup at all as we reach as many as
128 processors. Inparticular, these results suggest that communication costs ar
growing unreasonably as the number of processors increases.

It should be noted that all of these test problens are relativelysmall, as even
largest problens still fit ononlyfour processors. The size of our test probl ens was
ited by the logistic difficulties of generating large problens, transferring them:
national networks, and getting theminto and out of the parallel machines throught
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TABLE 1

Descrigtion o test problem.
Problem N M
G100 10,000 19,0000
G200 40,000 79,000
G300 90,000179, 400
G400 160,000319, 200
L3 12,864 37, 983
L6 25,728 76,086
L12 42,880127,170

of «a=1/3. The latter choice for awis heuristic;it is simply intended to give t!
al gorithmsone freedomtoreduce the separator size, yet not allowthe splitting of
graph to become too skewed. V¥ note that this value has also sonmetines been used
intheoretical work on graph skp@NBtbak foes not require estimationor
optim zation of the separator size, and hence 1s less costly to conmpute than CNL
opt. CND-bal should produce well balanced subgraphs but may suffer a great deal
of fill. CND-opt, onthe other hand, incurs muchless fill but may not maintain good
bal ance. As nmentioned earlier, we have also inplenented a hybrid al gorithmthat
uses CND-opt for the highest levels of nested dissectioninorder tokeepthose cri
separators small, then switches over tothe cheaper CND-bal for the remainingleve
of dissection. V¥ do not provide results for this hybrid approach, however, as tl
simply fall between those for pure CND-opt and CND-bal, mim cking one or the
other mopre closel y depending onthe crossover point chosenfor switchingcriteria.
comparison with CND-bal and CND-opt, we alsogiveresults for twowell knownserial
ordering al gorithns, Automatic Nested Disdeaxrtd dul(AND) £ M ni num
Degree (MMD) 10

Tables 2 and 3 conpare the orderings with respect to sparsity preservation by
considering the resulting nunber of nonzeros in the Cholesky factor Land the tot
nunber of floating-point operations required to compute L. There is no need for
a sparsity comparison for the regular grids, since CND-bal produces theoretica
1deal orderings for such problens. For the L-shaped problens, we see that CND- bal
compares well with AND, and that CND-opt conpares reasonably well with MMD,
whichis usually considered the best heuristic knownfor irregul ar problens.

TABLE 2
Fasak f roeeros in Chdesky factor L.

Probl emCND- bal CND-opt AND MMD

L3 462 401 458 381
L6 957 858 949 779
L12 2444 1819 2112 1476

Tables 4 and b compare the orderings withrespect totwotheoretical neasures of
parallelism nanely the height of the elim jafoomtdefen{seon))ldnd
the work, measured in mmllions of floating point operations, along the critical p
inthe elimnationtree (essentially tree height weighted by the nunber of floati
point operations at each node). These neasures have commonly been used to give
a rough idea of the potential running tine of parallel sparse Cholesky factoriza

20



that each processor holds at nmost ¢N/Pvertices and eM/Pedges, where ¢is asmall
constant. In the remainder of this section, the letter ¢ 1s used to denote a suit
constant.

VW estimate the communicationconplexityintéhemafibér of nmes-
sages communi cated by each processor. Commnicationis limtedto the distribute
phase conmprising Dlevels of nested dissectio0bR) vdued ¢ Dsva sgnl |
constant. At eachlevel of distributednesteddissection, afewaccumul ation, casc
and gl obal aggregation operations are perfornmed. Each of these operations invol
logP nessages per processor. Over Dlevels, this afpynisssagis(log
per processor. Since redistributionis sinmply a variant of pairwise accunmul atic
alsorequire® hegsages. Accordingly,

Nisgs SC(IQQD)2~

To estimate the computational complexity, we observe that the cost of a single
level of nested dissectionis proportional tothe maxi numnumber of edges on a pro.
cessor, excluding the overhead associated with pairwise accumul ation, cascading
global aggregationoperations. The one-time cost of redistributionmust also be t
into account. But for these exceptions, the cost of nested dissection would anot
to c(MP)1L,dg The overhead associated with cascading and global aggregation
operations is proportional tothe anpunt of informationcommnicated. For these oj
erations, the lists communicated containafewvalues for each graph at that level
nested dissection. The communi cation vol une i gR§[tther fecarcrhel leovg 1
[. Sincel|@oubles for eachsuccessive level of nested dissection, the communicatio
volune i1s given by

c(log@P){l +24+4+8 4+ -4+t P} Qct P(lok).

Fromthis result it can be seen that the associaRedUsong nscaPlog

mul ation (without explicit nerging at eachstage) results in O(1) overhead for ez
pairwise communicationstep. At tdReseucdhosft Epg, each procmsstor «

merge count infornationover va)ueReicmL{ 7t hat t he getverl{ chosen

so that each contains approximately N/P vertices. Therefore, the cost of nmergin
is proportional to N/JP. Likewise, there is only a constant overhead associated wi
the redistributionoperation, since a processor sinplyforwards a portionof arec
message. Followingredistribution, newdata structures must be set up on each pr«
cessor for use in further processing, but this work is perfectly parallel and s
nmore or less evenly across the processors. Thus, the parallel arithmetic conpl exi
O (M P)1od).

7. Test Resdts. In this section we present sone enmpirical test results for the
parallel Cartesian nested dissection algorithm In Table 1 we showthe nunber o
vertices and edges for two types of test problemns. The first type, labeled Gxxx, a
regul ar square grids of the givensize; for example, G100is a100x100square grid.
second type, labeled Lx, are L-shaped finite el enent problens generated by ANSYS,
which is astandard commercial software package for finite elenent anal ysis. Thes
L-shaped graphs are quite irregul ar.

VE give test results for the Cartesian Nested Dissection (CND) al gorithmusing
t wo di fferent options. By CND-bal we neanthe CNDal gorithmusingonlythe “exact”
balance criterion e« =1/2, and by CND-opt we mean the CNDal gorithmusing the
approximatel y optimal separator size within the balance range permtted by a val

,
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the original graph G, to produce a complete nested dissection ordering in at nos
log([V]) steps. In a distributed parallel setting, however, it nay be advantageon
not tofollowthis process all the way tothe end, since eachsteprequires asignif
ampunt of conmmunication. Instead, the dissection process can be stopped as soon a
alevel has beenreached at which there are at least as many subgraphs as processor
The data can then be reorganized to place whole subgraphs oneachprocessor, sotha
a serial ordering al gorithmcan be applied to the remaining subgraphs on each pro
cessor fromthat point on, withnofurther communicationrequired. VW nowdescribe
such a t wo- phase, hybrid approachin greater detail.

The first phase of the hybridalgorithmconsists of carrying out the first Dlevel
of Cartesiannested dissection as describedearlier, where Dis the first level at
the number of subgraphs is at least ¢ P, with ¢ > 1 a paraneter specified by the
user. The choice t =1 yields less overall commnication, since it shifts nore
the work to the second, communication-free phase. However, a choice of ¢t > 1, by
producing nmore subgraphs than the nunber of processors, may allownore flexibility
in achieving a good l oad bal ance across processors during the second phase. Thus
there is aproblem dependent trade-offinchoosinga value for ¢t. Wiatever the choi
for t, after Dsteps the Cartesian nested dissection process is stopped, and we m
then redistribute the problemdata so that each subgraphis assignedinits entir
toonlyone processor. This redistributionsteprequires asignificant ampunt of gl
communi cation, which nmust be taken into account 1n assessing the total cost of th
hybridal gorithm

The necessary redistribution of problemdata can be acconmplished by a variant of
the pairwise accumul ation al gorithmdescribed earlier. In our earlier use of pai
accumul ation, we used the blocks of coordinatelfadluty, 46 B)yeans
of organizing the accumul ation so that at each step of dinmensional exchange the
computation would be shared anong processors and the resulting data would be
assigned to processors in asystematic way. For purposes of redistributing probl
data between the global and local phases of the hybridordering al gorithm nuneric
accumul ationis not required, but we canstill use the sanme organization as pairw
accumul ationto direct the lowof data to the necessary destinations. Specifically
let the list of subgraphs to be redistributed play the sanme role that the coordir
blocks played previously.

Let @ ={G1, . . G}tbe the set of subgraphs after level Dof nested dissec-
tion. V¥ partitgomt®dh P subsets of graphs given b §6)).. ¥
use the symbol list (g k)) to denote information (Cartesian labels of vertices an
edge lists) pertaining to all graphs in the set k). The structure of list(gk)
of the formkG----- > 0L, G < > . ], where &hd G are in g k)
and ¢ < j. Merging of any two such lists takes time proportional to the sumof
their sizes since the informationis inincreasing order of graph-ids. Concatenat
list(G0)),list(GP—-1)) yields list@GR+).). .Redistribution of ver-
tex information can thus be accomplished by using the above lists in the pairwis
accumul ation al gorithmwith@BH ) instead of L(OY( P-). Once
the redistributionstep has been conmpleted, thenamazxhppiyoxeesonlr
al gorithmto order each subgraphin k) without any further commnicationanong
processors.

6.1. Pardld Caplexity. W now provide estimates of the communication
and computational complexity of the parallel Cartesian nested dissection al gori
for agraph G=(V, F) with Nvertices and Medges using Pprocessors. V¥ assune
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dinate values satisfying the balance condition. V¥ canthenuse asimlar three-s:
process toconpute avaluefor eachsubgraphthat medfi ni zeshH) Let &

the collection of edge sets of the subgraphs at this level of nested dissection. T}
to be accumul ated are initially of thenf)gripconupr(c e sjs oAtat he

end of pairwise accurnul ation phasesswngm&(k)). Recall that the aim

is tocompute #(7), the nunmber of edges that straddle 7;] msbmg subgraph G

the equation k(i) =x(i —1) +8(¢ —1) —=(d)m-1).ebbert he 1 argest value in

L(m_1) for sone graple Gi. Processprequires the val ug gfk{rto

compute k(i) foré € L(k). The cumul ative count ligtcdnsispsoxfethor =

nunber of edges that cross its largest valueineachsubgraph. These cumul ati ve cou
lists are cascaded as before. After cascading is conmpdetputesch processor 7

the estimate n for each value in L( k) and selects the one with a mi ni numval ue as
the local mnimum A global mnimmis conmputed over all local minina by using
the same aggregation process as before, except that nowthe operationfor conbini:
informationis selecting the mi ni mumval ue rather than taking the set union.

The process of obtaining aset of separating values owen all subgraphs in @G
given coordinate dinensionis nowconplete. Asimlar process is used to conmpute :
separating level for each subgraphinthe other coordinate dimension. Each proces
can then determ ne the final separating value for each subgraph by naking a local
comparison of the computed separating values in each coordinate dinension. W
denote the set of separating values for thbysabgaphs sh G

5.2. Castrutilg Sgaatas inPadld. Havi ng determi ned a separating
val ug swe must nowconstruct asepafrart encth subgraph & Recalling
our earlier discussion, this requires that we obnmpauttei the,;satGU
with coordinptdéhe set, 6f edges imntliat straddle the ;yadmd she
correction getWing its vertex lists and group trees, & gianen processor w
compute the subset®)y E(m), €¢(®), and; ¥ =) =0, (®) UG,(®), but
communi cation woul d be required to compute the conplete sets. Such non-disjoint
set unions could be computed by a di nensional exchange process anal ogous to those
we have already seen, but we can avoid some of the overhead that would be required
by taking a different approach in which the processors cooperate to nunmber their
portions of each separator without ever forming the set unionexplicitly.
Since the nunbering of vertices withinasingle separator is arbitrary, we ado
the convention that the vegpfimearienninbered after thobg_ih V
for 0 <k < P. To determ ne the range of nunmbers to use for 1its portion, each
processorngeds to knowthe total size of the suhsenspob cesslois
T, - 4 %—1. This can be acconplished using the previous cascade al gorithm with
Vii(m) |, - |¥.(m)|as the set of values to be cascadedratAprioke endr =
of the cascade step, processors nunber the vertices intheir portions of eachsepar
The fact that the uni;ohggfolRer all processors is not explicitlyconstructed
mayresult inaseparator that is sonewhat larger thanstrictlynecessary. Inthe s
case the correctigpnsetoputed based;,om kz_olEs,(ﬁc), whereas inthe
parallel case each processor, (gnphascsdCon,Fr). Consider an edge
(u, v) €;A7) and another edge (u,,)mE.EIn the serial case, the commwn
vertex ucould be selected to cover both edges, but inthe distributed case a differ
vertex may be selected fromeach edge, thereby increasing the size of the separatc

6 Padld CatsisnNestadDissedian The al gorithmgi venin the previ-
ous section conmputes a set of separators for all of the subgraphs at a givenlevel
nested dissection. Thus, the algorithmcould be applied repeatedly, beginning w
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Computationof the required cumul ative counts is anexample of a parallel prefix
computation, which can be inmplenented in a nunber of ways, with the best choice
dependent on the interconnection network anmpng the processors. Once again, we
illustrate withaninplenentation, whichwe refer to as cascading, that i s appropri at
for a hypercube network using a formof dinmensional exchange. Each processor «
initially holds its cumulative cowunt (W5(tkykm During the successive
steps of the cascading process, eachprocessor maintains twolists of cumml ative co
one list to be kept and the other to be propagated further to other processors. Tl
list to beretained contains cumul ative counts corresponding to blocks of coordi
values smaller than L( k) for each subgraph, and hence is initiallyenpty. The list
be propagated differs fromthe retainedlist inthat it includes cumul ative counts
all blocks of coordinate values that the processor has seen thus far, and hence 1 ni
consists of cowmnt (VL(k)).

The cascading process requiglstdepdogln the first step of dinensional
exchange, pairs of processors whose processor nunbers differ inthe least significan
exchange their propagated cumml ative count lists and merge the informationreceiv
intothe twolists to be kept and propagated. This first set of exchanges takes pla
within 1-dinensional subcubes between consecutively nunmbgred processors, say =
and f_1, where £k is odd. After the first exchange, the retained list on the lower
nunbered processor in eachparemarns enpty, while that on the higher
numbered processgorheaones cuvwunt (VL(k —1)). The propagated list on
both processors beconesuntgVL( k 1), L(k)). At the next step, exchanges
take place withinsubcubes of dimension 2. gaxdhpmegessistosr cumul ati ve
list tobe propagated with pei2ghbokgan n, tipatke bre t he hi gher nunbered
processor of the pair, so that the othegrsprbressesgimsemel ves a
list of the formeunh(VL(k3), L(k-2)), sothat, after nerging, its retained
list is updated to becomumtlgpL(k 3), L(k-2)), L(k—)) and the list to
be propagated beconesoamur(VL(k 3), L(k2), L(k 1), L(k)). The lower
nunbered processor of the pair need update onlyits propagatedlist, which becone
the same as that of the hi gher nunmbered processor, since both have seen the sane
blocks at this point.

This exchange process continues over subcubes of successively higher dimensio
After i steps progesmsutrarns a propagatedlist of theund gMEuin—
204y, ., L(k4)) andaretainedlist of t hedwtr@ifrk21), . , L(k)).

The process term nates after dsteps, at which point every processor has aretain
list of the formaunb(VL(0),, L(.k —1)), whichis the desired result. The
cascading process just describedR equmascladgon steps and?Plog

messages. An alternate inmplenentation of parallel prefix can reduce the nunber of
messages required, but 1t does not reduce the number of steps and requires non-
neighbor commmnicationina hypercube.

Once cumul ative counts have been cascaded, each processor can nowdeterm ne,
for each subgraph, the set of values withinblock L(k) that satisfy the balance cor
tion. These sets of val ues must then be aggregated over all processors toarrive at
full set of values satisfying the balance conditionfor eachsubgraph. This aggreg
of sets can again be computed by a dinensional exchange process having dsteps,
at step ¢ of whicheach processor exchanges informationwithits neighbor inthe ¢
dinmension and the informationreceivedis conmbinedwithprevious informationbyse
union.

For eachsubgraph itthg above t hree-stage process determ nes a block of coor-
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forablockof coordinate values. Let Ldenote the set of coordinate values along a gi
dinmensionover all subgrnamedilet/ L be partitionedinto Pcontiguous blocks

of values, L(0Q)L(.P.-1), such that each block covers about the same nunber of
vertices (whichis al ways possible for reasonably well behaved graphs). Processo
will be responsible for accumul ating the counts for eachvalueinblock L(k) for all
Let ¥={1, ., ¥} Initially, a given ptooasaonsrcouttg)y L), and

we want it toendup with¢olipk). Inother words, eachprocessor initiallyhas
counts over all the coordinate values, but only for its own portion of each subgra
whereas we want it to contain the counts over each entire subgraph, but only for it
assigned block of coordinate val ues.

The best 1mplementation of such a global information exchange operation de-
pends on the interconnection network anong the processors. Here we will illustre
one possible implenentation, which we termpairwise accumulation, that 1s suitable
for a hypercube network (or any network that contains a hypercube or can enul ate a
hypercube effciently). The al gorithmis based on di mensional exchange. For simpli
ity, assume that Pis apower of t wo, apnH.| &é tdwrel g fboy; (Ir) , 1 < <,
denote the processor whose processor nunber diffega nf tdm thdit of =
least significant bit. The algorithmhas dsteps. In the first step, each process
7, 0 <k < P/2, sends cound(P/2),,.L(.P-1)) to neighbpytyr. Con-
versely, each progesB/ox <k < P, sends couyptl(V), , L(P/2 —-1)) to
nei ghborgmd). In other words, the processors in the lower and upper halves of
the hypercube exchange counts for the upper and lower hal ves of blocks, so that th
lower blocks end up on the lower processors, and the upper blocks end up on the
upper processors. Each processor nerges incomnginformationintoits subgraphl
corresponding to the appropriate set of coordinate values. This process is appl
recursively to the two subcubes of dinensiond-1, and so on, so that after dsteps
each processor has the desired information, npanentyyi psotclees sonmt s
over all subgraphs for the kth block of coordinate val ues.

Inorder that a processor cannerge lists intine proportional tothe sumof thei
sizes, we structure the ;i dd asunt (V

[{, <G, count > , <G, count >, , 4, <G, count > , <G, count > 1. ,. .

whereilis the smallest value in L, followed by alist of <graph—4d, count >pairs.
The graph-1d, count pairs are listedinincreasing order of graph-idnunmbers. Sin
informationis listed for t heimekt dedreb bn.

The pairwise accumml ation process described above effectively spreads the wor]
of accumul ating counts for the coordinate values across all of the processors, bu
mist still traverse the resulting count lists and compute the cumul ative vertexco
in order to determ ne a separating value for each subgraph. The set of coordinat
values spanned by an individual smbgraphrGect nore than one block of
values L(k), and hence the corresponding count lists may be spread over nml tipl
processors. Thus, the necessary list traversals and cumml ative vertex counts
require further interprocessor communication. For,algitydn subgraph G
4i, ., ¥tbe the ordered set of coordinate valueg saqadhed( by ¥
LinLik) =4(m), ..5(m)} In order to determmne if a separating value lies
wit hin;(/k), procesgarequires a cumulative count of wveotdresl lin G
previous coordinate;valyes)l —1. V€ denote this cunmulative count by
cumcount (VL(0), , Lh(k-)). Procesgoeguires cumml ative counts over all

subgraphs i,nwhich we denote by the lasunt ¢WL(0), . L(k-1)).
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The data distribution described aboveresults ineachprocessor’s having verti
and edges at al nost all coordinate values, but not having all of the vertices and ed
associated with any one coordinate value. As a consequence, in determning a sep
arating value, vertex and edge count lists must be accumul ated over all processo
and traversedinincreasing order of coordinate values toi1dentify a separating
satisfying a bal ance condition and/or minimzing n, and finally this computed sep:
rating val ue nust be dissem nated to all processors. Obviously, these steps req
several phases of interprocessor communication, as well as a significant anount
computation. For effective parallelization, we will distribute lower order costs
as computing separating values over subgraphs at a givenlevel of nested dissecti
as well higher order costs, such as constructing the vertex and edge count lists, a
all of the processors, andwill alsotry tomnimze conmunicationcosts.

In dealing with distributed data structures, we will adopt the notation that t
portion of agivenentity that resides wir prheecensdorated by appending
(®) tothe usual notationfor the global object in questiop.gThus, for exanple, V
denotes the portionof vertices jtmhsautbigasiphe(én progeddast(@k))
denotes the portionof the givenlist resid] mgdmsproacessor «

5.1 Captirg Sqaatiig Vdws inPadld. V¢ now describe the pro-
cess of computing separating values inparallel. As we will soonsee, this comput at
requires the sanme gl obal communi cationpattern for eachsubgraph at a givenlevel «
nested dissection. For many distributed nenory parallel conputers, the start-upc
for communicationis relatively high, and therefore it pays tomnim ze the nunber
messages requiredtosendagivenvolune of data. For thisreason, we will concatena
together all of the data to be exchanged anpng processors over all of the subgrapl
at agivenlevel of nested dissection, sothat asingle set of communications will s
for conputing all of the separating values. Grouping commnications inthis nanne
represents asubstantial savingover conmputingthe separating value for eachsubgr
individually, which wouldincur aseparate round of commmnicationfor each. This i
one reason we chose not to use anexplicitly recursive formmlation of the algorit
since a depth first approach woul d not perm t us to handle anentire set of subgraph:
at agivenlevel at once.

As we have seen, the determ nationof appropriate separating valuesrequires no
counts for each of a series of coordinate values. In a parallel setting, the nece
count informationis distributed over all of the processors. Thus, for each coord
value, the counts must be accumul ated across the processors, theresultingsepara
values computed, and this informtion must then be made available to all of the
processors. These three steps are required for=#th sub@gtaphing
agivenlevel [ of nested dissection, and eachsteprequires global communication
reduce the nunber of nessages, and hence the total communicationstart-upoverhead
we will combine all of the relevant data for all of the subgraphs at a givenlevel
each communi cationstep. Of course, for good parallel effciency, we nust also shar
the computational work anong all of the processors as well.

V¢ first consider the process of accumul ating count i nformationacross all proce
sors. For each coordinate value j and eac( 3ufgdrapli e given level,
we need to compute

P-1

count (Vi) {: count (Vg), )

k=0
VW will allocate this work anong the processors bymakingeachprocessor responsi bl
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whichis muchsmaller glhalhf/cost of separafisnigh€@refore of the form
¢s|Fil, where ts a small constant. The cost of separating all subgraphs at level [ of
nested dissectionis therefore given by

¢ Y B < M
G.€G

It remains toestinate the costs of formng workinglists and grouptrees for ea
resulting subgraph. Each kauntefier I( be deconmposedintotwolists, one for
eachresultingsubgraph, intine proportional tothe lengthof thelist. Thisis po
since it can be decided which subgraph an entity belongs to by asinple comparison
of the appropriate coordinate value with the separating value. Such a deconpositi
will yield lists that are still 1inincreasing order of the respective coordinat
since the original sorted order is not affected by deletions. Accordingly, this ¢
O(|E]). Agroup tree foannGbe deconposed into group trees for each of the
resulting subgraphs. FEach interval in a greupxbhmeaefdor Ki can be
easily determinedif the intgronlGl byscomp@ringit withthe separating
value. The interval can then be added to the appropriate group tree. Including tl
overhead of allocating and initializing groups, the cgstOvermproportional to |E
all subgraphg,itth@ total cost of updatinglists and groupdMees is therefore ¢
whereyls asmall constant.

,Fromthe above paragraphs it follows that the cost of one level of nested dis
section JM where gi1s a constant. Thus, a single initialization step followed
by at most Ldglevels of nested dissectionresults inaserial tine complexity of

O( Ml ogN).
5. CaptigSgaaasinPadld. VW nowadapt t he Cartesianseparator

al gorithmfor use on a distributed memory parallel computer. Our goal will be to
distribute the computationevenlyacross the processors while keeping the vol une -
frequency of interprocessor communicationlow. For theresulting parallel al gorit
be scalable, both hi gher andlower order costs should be shared anopng all processo
and all data structures should be distributed across all nenories. The distribu
parallel algorithmwi ll have the same general formas the serial algorithm but t
work of formmnglists and counting andsearchingwill be sharedbyall of the process
Ineffect, eachprocessor will own a portionof the data andwill be responsible for
countingor searchinginvolvingthat portion. Coordinatingsuch joint activities a
the processors and reporting the results will obviously require sone interproce
communi cation, but we trytolimt this for goodefficiency.

Let the number of processors be P. W assune that the set of vertices V of
the original graph is distributed anobng the processors so that each processor b
approximately |[V|/Pvertices. The set of edges Fis distributed anong the processor
so that each edge 1s assigned to a processor holding one of the two vertices at 1
endpoints. This may not result inanevendistributionof edges for all graphs, but
most graphs arisinginpractice, suchas finite el ement graphs, the nunber of edges
each processor will be at mpst a constant times |F|/P. Inmapping the problemdata
to processor nenories, we nake no assumptionthat localityis preserved, nor do we
assume any correl ation between the topology of the graph and the topology of the
processor interconnection network. Indeed, the parallel al gorithmwe propose te
to performbest with arandomdata distribution, since such a distribution tends
bal ance the computational loadinformng andsearching the various lists require
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discuss the distributed parallel 1mplenentation below. Thus, rather than a typi
depth-first approachresulting fromexplicit recursion, we instead take a breadth-
approach, dealing withall of the subgraphs at a givenlevel of dissectionbefore no
on tothe next level .

W introduce sonme notation here that we will find useful later oninformulating
the parallel algorithm For any givenlevel [ of the nested dissection process, v
Gr denote the set of subgraphs of the initial graph at level [. V¥ begin at level
with = {G}, where G =(V, F) is the graph of the given sparse matrix to be
ordered. The vertices and edges of G are scanned to construct the working verte:
and edge lists, list(V, x), list(V,y, list(FE, ), andlist(F, y), and these lists a
inturn to generate the corresponding count lists. Aseparating coordinate valu
and Cartesian separattertWen conmputed for GG as described previously, which
vields two subgraphnddz. The vertices 1n the separatwenbered
V| =V s +1 through |[V|, conpleting level 0 of the dissection process. At level
1, we apply the Cartesian separator al gorithmto each of tthe= t wo subgraphs in g
G, G} Wrkinglists are constructed for eachsubgraph, andseparating coordinat
valueg and s and corresponding Cartesi an s, pada¥oaselconputed.

The vertices in the two separators are nunbered and the four remaining subgraphs
are then simlarly processed at level 2, and so on. This process continues until
vertices inthe original graph have been nunbg(r]¥{). | Atvebs tof agsted

dissection are required to nunber all of the vertices, sinde the [thlevel result
subgraphs.

4.1 Said Capeity W now estimate the serial time complexity of the
foregoing Cartesian nested dissection algorithm Consider a Cartesianlabeled g
G=(V, F) with Nvertices and Medges. W assune that any subgraph of G has
at least as many edges as vertices. To compute the cost of ordering G we conmpute
bounds for the cost of initialization and the cost of eachlevel of dissection.

In the initializationstep, vertices are sorted inincreasing order of both z
y coordinate values. The conplexity of this, Nfepmingdicblpogort.
These sorted lists are used to construct the working lists [dist(V, ) and [ist(}V
which requires time proportional to N, the length of the lists. The sorted list
vertex coordinates are alsoused toconstruct the edge lists list(FE, ) andlist(F,
time proportional to M Agrouptree is constructed for each dinmensionby mapping
edges tointervals. FEach group tree can have at nost Ngroups. Entering aninterva
intoagroup tree takes time propost oflad dosltogl form ng group trees
is therefore proportiongWN.tJIWH ogerall cost of the initializationstep is
therefore O( MNpg

The cost of separating a sybgrWph)G s gi ven by the sumof the costs of
conmputing aseparating val ue andthen constructing and nunberingthe correspondi ng
separator. Conmputing a separating value that satisfies the balance conditionrequi
the formationandtraversal of the vertex coutahidsamsuad @ ( The
cost of form ngthese lists is prolpofitd onal bbb ffaversing themdepends
on the nunber of actual coordinate valuesinthe graph, whichlis obviouslyat nost |V
Computing the estimate n for the separator size requires the formation and travers:
of the edge count lists ajuad Eount, (), resultingincost proportional to
|E;|. Computingthe set of edges that straddle the separating value invol ves searchi
one of the group trees and deleting edges selected. This can be accomplishedin ti
proportional $(oM ognd t he nunber of edges found. Conputing and nunbering
the actual separator canbe performedintine proportional tothe size of the separa
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integers gand r define a,groWp goul d, for exanmpl e dyaowe gg 56 but

not gag. The group,gconsists of intervals that have left endpoints greater than

or equal to ¢, right endpoints less than r, and straddle the mi dpoint m=(q+r)/2;

i.e., theleft endpoint is at nbst mand the ri ght endpoint is at least m. The inter

withiggare arrangedinalist that isthreadedintwodirections bytwoindependent

linkedlists. One of the linkedlists is in increasingorder of the leftendpoints andth

other is in decreasing or der of the rghtendpoints of,inbackad dual ¢

threading is required to enable effcient searching as described bel ow.
Agrouptreeis aconplete binarytree whose vertices areinterval groups. Consi d

aninterval [a, ] such that aand bare consecutive multiples of a power of two. The

group tree GT[a, b] for the interval [a, b] is defined rggptie dievielley by taking g

root, and givena vgrteksgleft chjddisandits right chihdps. g

Given a group tree GT[a, b], it is easy to find nembers that cross a given point s.

The searchis started at the root ,wi tthgrbablpwing actions are applied

recursively at eachyypmthos ¢ mi dpoint is m=(g¢g+7r) /2.

eees =m: All intervals inthe grotipagldle s. Furthermore, intervals in
descendants,ofcgnnot contain any intervals of interest, and thus the recursion
term nates.

ees < m: Bachinterval gmnwhose left endpoint is not larger than s nmst
straddle s. Suchintervals can be foundintinme linear in the nunber of matches, a
the intervals are threadedinincreasing order of left endpoints. The left childc
nanel y t he grompyg)2, must then also be searched.

ees >m: Bachinterval goowhose right endpoint is not smaller thans nmst
straddle s. Suchintervals can be foundintinme linear in the nunber of matches, a
the intervals are threaded in decreasing order of right endpoints. The right chi
gqr, namely the groupyg,, nust then also be searched.

The ti1ime complexity of the above search process can be estimated by noting that
the height of the group t,tbea)s $og hat at nosfbl-ap groups need be
searched. Wthineach group, the time spent is linear in the nunber of matches, du
to the dual threading. Hence, the cost of a single f(dawy ks at nmost log
where k1s the actual nunber of matches.

The grouptree searchtechni que outlined aboveis inmmedi ately applicable to com
puting the se6fFedges that straddle the separating value s: we sinmply associate
eachedge inthe subgraph withthe interval whose endpoints are the coordinate val u
inthe given dinensionof the corresponding pair of vertices. The tworesulting gr
trees (one for each coordinate dinension) are formedinitiallyfor the entire graj
and thereafter can be nodified easily for use 1n the searches at successive level
nested dissection. Not counting this initializationcost, the cost of finding the
dle edges for a given supgsapl & group tree searchis then proportional to
log|Vi| pl us the nunmber of edges found. This is asubstantial inmprovenent over the
cost of the simpler al gorithmdescribed earliery/ . whichis linear in |E

4. CatsimNetalDissatin Having described an al gorithmfor comput -
ing a Cartesian separator for a given graph, we can use the algorithmrepeatedl:
to derive an al gorithmfor Cartesianmnested dissection to order asparse matrix. '
most natural waytoinplenent such anal gorithmis toinvoke the separator al gorithi
recursivel yonsuccessivelysmaller subgraphs of theinitial graph. W do not take
anexplicitlyrecursive approach, however, for reasons that will becone clear whe:
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a label 1indicating the graph to which the informtientherdaumts and ¢
of vertices in Gwith coordinate value ¢, etc. The vertex count list count(V, )
traversedinincreasing order and the cumul ative count of vertices increnented u
the first value 1s found, say a, that satisfies the balance condition. Traversal of
list then continues until a value i1s found at which the bal ance conditionis nolor
satisfied; we denote bybthelast val ue at whichthe bal ance conditionwas still satis
Alternatively, depending on which would give the smallest expected running tine,
could instead be found by traversing the vertex count list in decreasing order f1
the top. Ineither case, we will have i dentified the block [a, b] of potential separ:
values, all of whichsatisfy the balance condition.

V¥ must nowconpute the estimate n(i) for each value ¢ €[a, b]. Let (u, v) be
an edge in F, with #(u) <z(v). Such an edge can be thought of as beginning at
z(u) and ending at z(v). Let 8(i) and €(4) denote the nunmber of edges that begin
and end, respectively, at . Edges in F are maintained in an edge list, denoted by
list(F, ), inincreasing order of the # coordinates of their associated vertice
edge (u, v) is entered into the ordered edge list at positions givenby z(u) and z(
where z(u) <z(v), and marked respectively as a begin and an end entry. The edge
list is traversed to conpute an edge count list, denoted by count (F, ), of the form
[G, <i, B(i), e(i)<>g, B(j),e(j) >. V¥ nowlet (i) be the nunber of edges
that cross ¢. Observe that x(i) =x(id)+8(i-<d)—=<(¢). This fact isusedtoconpute
k(i) for each value in the block [a, ] by traversing the edge count list count (FE,
W note also that the size of the initial approxinntiqgh tcatlbeseparator, |U
computed for each coordinate value ¢ by scanning the vertex count list count (V, z)
Finally, we note that for each coordinate value i, our estimate for the final separ:
sizeis givenby n¢liPxEiy. Having conputed the value of n(i¢) for eachi €[ a, 6],
we select the coordinate value s with the mi ni numval ue of n(s) as the separating
value for that dimension. Aseparating value is simlarly computed for the othe
coordinate dinension, and the one yielding the smaller estimated separator size
selected as the separating value for conmputing a Cartesian separator.

3.2. CastrutiigaSgasta. Having chosen a separating value s in one of
the coordinate dinensions, we nowproceedtoconstruct a Cartesianseparator. Agai
for definiteness, assume that we have chosenthe zcoordinate dimension. Accordingt
our earlier definition, the desitad shpavnton df the initial approximte
separatqrabld t he correction skhte et ik easily computed using the vertex
list list(V, #). The construction of thereogmuiaetsi ohasetwe@ onpute the
set fof edges that straddle the separating value s. Asinple waytosearch for thes
straddle edges would be totraverse the edge list [ist(FE, z) inincreasing order u
value s. For each beginning edge (u, v), with z(u) <x(v), we add the edge to E
if 2(v) >s. Upon reaching value s intraversing {ist(F, ), we have completed the
conmputation of W initialize thésbe JJ then for each edge uah®
that neither of its endpoints s wt nagde npf one of t hose endpoints.

The choice of which endpoint to yraluble nadié arbitrarily, or the choice
can be governed by requiring that the bal ance condition be maintained.

In the worst case, the computational cost of this simple algorithmfor findi ng
straddle edges is proportional to the nunmber of edges in the subgraph. This cos
can be reduced by using the concept of a] groupitedaehGbl es more effici ent
searching forintervals that containagivenpoint s. Agrouptreeis basedonthe no:
of interval groups ina given coordinate dimension. Aninterval groupis specified
a pair of integers that are consecutive nmultiples of the sanme power of two; two su
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(assumingthat vertices are chosen appropriately fotdmiagraiectionset C

the initial balance). Deternmining the size of a Cartesian separator, on the ot
hand, 1s more difficult, since thegiofi tenlisceets Ghi th coordinates equal to

sis nmerely aninitial approximation that must be augnented by the correction set
Cs, whose size 1s not so easily determined. Inseeking a small separator we will,
efficiency, mrelyestimate the eventual separator size rather than conmpute it exacH
For a given coordinate value s, we define the quantity

n(s) =W+1E,

where the setasnld IJare as defined previously. Clearly, n(s) is anupper bound on
the separator size; it maybe anover estimate because asingle vertexmay “cover” no
than one straddle edgesiontMat||/ay be smaller than |[Nevertheless,
n(s) is sufficiently accurate for our purposes, and we will use it as anestimate for
separator size inseeking an approxinate m nimm

The desired bal ance bet ween the t wo subgraphs resulting fromasingle dissectic
is given by a user-specified quantity, o, 0 < a <1, whichis interpreted as alim
on the relative proportion between the sizes of the two subgraphs. Specifically,
require that the separating value s be chosenso that

alVI QU 4|, Bl (1 —) [V].

Avalue of «a=1/3, for example, means that one subgraph can be at most twice the
size of the other. There may be many potential separating values that satisfy th
bal ance condition, with sone values resulting insmaller separators than others.
choose the value s that minimzes the estimate n(s) for the separator size. W hand
the special case o« =1/2 separately, since it requires perfect balance (as close
possible) regardless of the resulting separator size, and hence the estimate (s
not be computed.

VW illustrate these concepts for the exanple of Figure 3, working with the =z
dimension. If «=1/3, then a separating value of either s =3 or s =4 satisfies the
balance criterion. Calculating the estimated separator size for each of these v
we get n(3) =3 and n(4) =2, so that we woul d choose s =4 as the best separating
value inthis case. If a=1/5instead, then any separating value in the interval [:
woul d satisfy the balance criterion, but the estimated separator sizes wouldstil
s =4 as the best choice.

W nowsketch an al gorithmfor computing a separating value that mnimzes
the approximte separator size subject to the specified balance constraint. This
ativelysinmple serial al gorithmserves tointroduce appropriate term nology, not.
and data structures, providingafranmnework for our subsequent devel opnment of a di s
tributed parallel algorithm For definiteness, assune that we are working with t
xcoordinate dinmension; simlar definitions and procedures are also applicable to
ydimension. In general, we process both dinmensions 1n the same fashion and use
whichever yields the smaller separator. Wien this procedure for conmputing separ
tors i1s used repeatedly innested dissection, a different coordinate dinension nma;
selected at each stage.

For a given graph G=(V, E), the vertices in V are maintained in a vertex list,
which we denote by list(V, ), inincreasing order of their #coordinate values. I
vertexlististraversedto compute a verter count list, denoted by count (V, ), of counts
of vertices inGat eachcoordinate value, inincreasing order inthe zdinension.
vertex count list has the formeount(V; ») =[ &, js&) ¢ where Gis
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choseninone of the two coordinate dinensions, say z. V¥ will refer tos as a “sepa
rating value” because 1t will be used to dissect the graph along the given coordin
dinmension. Legtld] and [/be the sets of all vertices whose x coordinate is less

than s, greater than s, and equal to s, respectively. This partitioning of the nc
in the graph does not necessarily give us a vertex separator, because there may st
be paths connecting vertnadslf nHowever, any such path nust contain an

edge that “straddles” the separating;vel thesselte6fFall such straddle

edges, 1.e.,

Es={u1, v) €eE:uely, welsl}

For each edge, () € F5, arbitrarily select one of its two associated vertices
for inclusioninthewhdtcll'we refer to as the “corrects oWsedw for V
define the following sets:

Vi=Ui\Cs, ¥W=U\C,, ¥=U,UC;.

The set;Ws a vertex separator for the graph, since eachwveadteadi n V
only tovertice¢on mtther verticegsamad Fim larl y f¥ defer tosuch a
separator as a “Cartesianseparator;” henceforth, when we use the termseparator
will nean a Cartesian separator.

W illustrate these concepts for the exanmple of Figure 3. Using s =3 as a
separating value in the dinension, we get the initial sets

Ur=1{,2,6,8, 12,13, 44,04, 5, 7, 10, 1J: 00 15}

The set of straddle edges is the simgle2,od)detClhoosing one of the
endpoints of this edge, say node 2, we get the= @rfr fhtusgnt hetfigal
subgraphs and separator are given by

Vi={l,6,8,12, 13, 1A38V4, 5, 7,10, 1130V 9, 15}

It is not diffcult to devise graphs for which even the best Cartesian separato

is much larger than necessary. For example, a one-dinensional grid wound into a
spiral inthe plane will be cut many tines by any bisectingline, but can be separat
evenly by rempving asingle vertex. Simlarly, a planar graph consisting of nconc
tric squares whose corresponding corners are connected can be separated evenly |
rempving only four vertices, yet any bisecting line will cut 2n edges, giving a s
rator of size n. However, we have found Cartesian separators to be very effective f
separating graphs that arise 1n practice. In the next sections we proceed to dis
the t wo main subproblens in conmputing a Cartesian separator:

e Determ ning an appropriate choice for the separating val ue s,

e Determ ning the correctgionset C

3.1 Chasirg a Sqaating Vdwe As we observed earlier, the two main
criteriafor choosingaseparator are that the separator be small and that the resul
subgraphs be well balanced (i.e., about equal insize). These criteria are genera
conflict, so there is a tradeoff between them In choosing a separating value s fo
conmputing a Cartesianseparator ina givendimension, the balance between the size
of the resulting subgraphs is determ ned by the relative nunbers of vertices hav
coordinates less than s or greater than s in that dinmension. Thus, we can attai:
any desired degree of balance, 1ncluding optimal bal ance, simply by counting vert:
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especially beforethe graph has been partitioned so that data locality can be mai n-
tained (i.e., contiguous pieces are assigned to individual processors, and “ne
pieces assigned to “nearby” processors). Mre recent heuristics for computing gr
separators include spectral hptmadse[thods based on geonetric projec-
tions and mappingsl3l#2 1F7. These nmay have greater potential for parallel
implenentation, but this has yet to be denmonstrated in practice. Anexplicitly pe
allel implenentationof the Kernighan-Lin algorithmfor conmputing graphseparato
can be found in [6

Inthis paper we present another newapproachto conputingseparators, one that
is designed to be effectiveinadistributed parallel environnent. Its principal fe
are the use of Cartesian coordinates for the vertices, 1ts lack of dependence on i
data locality, and the control 1t provides over both the size of the separator and
bal ance of the resulting pieces. This technique is usedrecursivelytoproduce an
dissectionordering. Asonewhat simlar “recursive bisection” approach, based on
geographic locations of points or particles, has also been usedinother contexts
as domaindeconposi}iaoml[lbad bal ancing of parallel compagteadd@ps [ 2
However, these efforts have been concerned primarily with the nunerical balance o
the partitioning rather than the interconnectivity anong the points, 1f any, or
sizes of the separators used.

2.2. Cateimn Rgresatdian One notivation for our use of a Cartesian
representation of the graphis to make the data “self identifying.” This will bein
tant when we consider inplenenting the al gorithmon distributed nenory parallel
computers. In particular, the data can be scattered randomly across the local ner
ories of the processors, yet we canstill tell where (geographically) any given pi
datalies withinthe overall problem wi thout needing any communicationto establi
context. In effect, this approach makes the distributed nenory “content address
able,” thereby reducing much of the problemof conputing separators to relativel
simple counting and searching operations, which can be done very effectively in
distributed manner.

For eachvertexv €V we assune that we are gi vena pair of Cartesiancoordinates,
which we denote by z(v) and y(v), representing the horizontal and vertical coordina
directions, respectively, in the Euclidean plane. One mi ght wish to apply a rotat
tothe coordinate systemto pl ace the graphintosone nore advantageous orientati ol
we assumnme that this has already been done, if desired. One possible wayto determ n
a good orientation would be to conmpute the axis of minimuminertia of the vertices
as a collectionof points inthe plane.

As will be seen shortly, the effciency of our nethod depends on both the range
and the “occupancy rate” of the possible coordinate values ineach dinmension. Ther
fore, we “integerize” the original “natural” coordinate values by sorting themin
dinmension and then reassigning consecutive integer values todistinct coordinate
ues insequence. The basis for this strategyistotrytomnimze the range of val
while ensuring that all coordinate values are actually used, since unused val ues
waste space and time in our al gorithnms. Such an operation may significantly dis-
tort the original metric geometry of the graph, but it does not change 1ts topolog:
structure, thereby enhancing effciency while retaining the effecti veness of our
proachin finding good separators. Figure 3 shows our exanple graph with Cartesian
coordinates for the nodes.

3. CatsimaSgmatas. V& nowdescribe our strategy for computing a ver-
tex separator in a Cartesianlabeled graph G=(V, E). Let s be a coordinate val ue
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If the matrixi1s reordered so that the vertices within each subgraph are nunbere
contiguously and the vertices inthe separator are nunberedlast, then the matrixy
have the following bordered block di agonal form

A0S
A= 0 A S
St st A,

The significance of the above partitioningof the mtrixis twofold:first, thezero bl
are preserved in the factorization, thereby limting fill; second, factorizati o1
matricesg and 4 can proceed independently, thereby enabling parallel execution
on separate processors. This idea can be appliedrecursively, breaking each subgr
intosmaller and smmller pieces with successive separators, giving a nested sequ
of dissections of the graph that inhibit fill and promote concurrency at eachlevel

Figure 2 shows our original exanple reordered by nested dissection. In the subs
quent Cholesky factorization, the reordered matrix suffers considerably less fill
withthe original ordering, andalsoperm ts greater parallelism For exanple, col
1, 2, 3, 7, and 8 of the Cholesky factor depend on no prior columms, and hence can
be computed simul taneously, whereas in the original ordering every column of th
Cholesky factor depends on the immedi ately preceding col unmm.

The effectiveness of nested dissectioninlimting fill depends on the size of t
separators that split the graph, with smaller separators obviously being better.
highly regul ar, planar problens (e.g., two-dinensional finite difference or finit
enent grids), suitably small separators can ysualldry preo I loamsd i 19
dinensions higher than two, or for highlyirregular problens withless localized
nectivity, nested dissection tends to be less effective, but so do nmost other orde
heuristics, whichexplains whyiterative mthods are often preferred over direct 1

ods 1n such circunstances. In this paper we will focus on problens for which an
embedding of the graph in the two-dinensional Euclidean plane is given, but whose
graph is not necessarily planar. Such a problemm ght result, for exanple, fro

two dimensional finite elenent structural analysis. Indeed, our test problens are
tained fromstandard commercial structural anal ysis packages, whichroutinel ysup
Cartesian coordinates for the vertices. QOur approach appears to generalize to tl
dinensions inareasonably straightforward manner, but such aninplenentation has
not yet been done, andits effecti veness insuchasettingremains tobe denonstrate

Inadditiontothe size of aseparator, therelativesizes of theresultingsubgr:
alsoimportant. Maxi numbenefit fromthe divide-and-conquer approachis obtained
when the remai ningsubgraphs are of about the same size; aneffecti ve nested dissecti
al gorithmshoul dnot permt anarbitrarilyskewedratiobetweenthe sizes of the pie
In a parallel setting, this criterion takes on additional significance in that it
determ nes the load balance of the computational subtasks assigned to individu
processors. Thus, the algorithns we develop will take into account both size ar
bal ance in choosing separators.

Nested dissection al gorithns differ primarily in the heuristics used for choos
separators. Atypical approach to automatic nested dissection for irregul ar gr:
[# involves first finding a “peripheral” vertex, generating alevel structure base
the connectivity of the graph, and then choosing a “mddle” level of vertices as
separator. Such an approachis difficult toi1mplenent effcientlyonadistributed par
allel computer for a nunber of reasons, including the necessary serialization of
of the steps, and the communicationrequired to assess the connectivity of the gra
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pronote concurrency inthe factorization.

Inthis paper we are concerned with the probl emof conmputingfill-reducingorder-
ings for symmetric positive definite sparse matrices that will enable effici ent Chol e
factorizationonlarge-scale, distributed-menoryparallel computers. Perhaps the
important considerationis that the orderingitself be computedinparallel onthe:
mul t1processor machine. Most previous work on parallel sparse matrix factorizat
has focused on the nore costly (and nore easily parallelized) nunmeric phases, a1
has simply assuned that an appropriate and effective ordering could be preconputed
on aserial machine](Bere §8urvey of this work). Such an approachis not scal-
able, however, as any such serial phase will eventually becone a bottleneck as t
problemsize and nunber of processors grow. W therefore seek adistributed parall
ordering al gorithmthat can be integrated on the sanme machine with the subsequent
parallel numeric computationand maintainreasonable efficiency over a wi de range of
parallel architectures and nunmber of processors. Additional 1ssues that will co:
us are the fill (and hence work and storage) that result froma given ordering, an
also the resulting concurrency, load bal ance, and communicationtraffc incomputin
the Cholesky factor on such a parallel conputer.

Designing an effcient, scalable, distributed ordering al gorithmfor sparse mat
ces presents a form dable challenge. The best serial ordering al gorithns have evo
over an extended period of tine and are extrenely effcient. Mich of this effciency
results fromsophisticated data structures and al gorithm c refinenments that are d
cult toextend to adistributed parallel setting. Mreover, many of these al gorit
involve inherentlyserial precedence constraints and haverelativelylittle comp:
over which to amortize the communication necessary in a parallel inplenentation
Perhaps nmost daunting of all, we seemto have a bootstrapping problemin that the
efficiency of mpst distributed parallel al gorithns depends on having a high degre
of data locality, but we do not knowhowto partition our problemand distribute
it across the processors until after we have an ordering. W therefore propose
ordering algorithmthat lends 1tself to a distributed parallel inplenentation w
effectiveness does not depend oninitial datalocality.

2. Badgard Throughout this paper we will assume famliarity withnuner-
ous basic concepts insparse matrix computations. Such background material can be
found, for example, inthe flexIhgpak { bcul ar, we will use the standard graph
model for sparse Gaussian elimnation, which we explain briefly here. The graph o
annxpsymetric matrix Ais an undirected graph having nvertices, with an edge
between t wo vertices ¢« and j if the corregpiomdiomgemdnpn ¢he matrix.
V€ use the notation G=(V, E) to denote the vertex and edge sets, respectively, of
a graph G. The structural effect of Gaussianelimnationon the matrixis easily de
scribedinterns of the corresponding graph. The fill introducedinto the matrix as
result of elimnatinga variable adds fill edges to the corresponding graph so that
neighbors of the elimnated vertex becone a clique. The elim nationor factorizat
process can thus be nodeled by a sequence of graphs, each having one less vertex
than the previous graph but possibly gaining edges, until only one vertex remains.
small exanple graph and corresponding matrix Aare shownin Figure 1. Alsoshown
is the fill inthe Cholesky factor Lof the example matrix, where A=LL

2.1 NetadDissatimm Nested dissectionis adivide-and-conquer strategy for
ordering sparse matrices, originally dud tolAlkaleGesegeof Jvertices
(calledaseparator) whose renoval, alongwithall edges j,ndisdent onverticesinV
connects the graphinto two remainingsablft aphandie'=(1, B).

2
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Abstract. This paper is concerned wi th the distributedparallel conputationof an orderingfor
a symetric positive defini te sparse matrix. The purpose of the orderingis tolimt fill and enhance
concurrency in the subsequent conputation of the Chol esky factorization of the matrix. W use
a geonetric approach to nested dissection based on a gi ven Cartesian enbeddi ng of the graph of
the matri x in Euclidean space. The resul ting al gorithmcan be inpl enented effici entl y on nassi vel y
parallel, distri buted nenory conputers. One unusual feature of the distributed al gori thmis that
its effecti veness does not depend strongly on datalocality, whichis critical inthis context, since an
appropriate partitioni ng of the probl emis not known until after the ordering has been determned.
The ordering al gorithmis the first conponent in a suite of scalable parallel algorithns currently
under devel opnent for sol vinglarge sparse linear systens on nassivel y parallel conputers.
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1 Imiaddian The ordering of the equations and unknowns in a sparse sys-
temof li1near equations can have a dramatic effect on the conmputational work and
storage required for solving the systemby direct methods. The reason is that nos
sparse systemns suffer fill during the factorization process, that is, matrixentrie
areinitiallyzero become nonzero during the computation, and the anpunt of such fil
depends strongly on the ordering of the rows and col unms of the matrix. Thus, or-
dering sparse matrices for effcient factorizationis aninportant stepinsolvingr
large-scale computational problens inscience and engineering, such as finite el e
structural analysis. In general, finding an ordering that mnimzes fill is a very
cult combinatorial problem(NP-conmplete). Practical sparse factorizationalgori
are therefore based on heuristically chosen orderings that are reasonably effecti
limting fill, but much less costly to compute than the true optimum Somnme of the
most conmnonl y used ordering heuristics are mnimumdegree, nested dissection, an
various schenmes for reducing the bandwi dth or profile of the matri x.

Inadditionto determiningfill, the ordering also affects the potential paralle
that can be exploitedinfactoring the matrix. These two considerations —reducing
and enhancing parallelism-arelargelycompatible, but by nomeans coincident objec
tives. Sparsity and parallelismare positivelycorrelated tosone extent, since s
inmplies a lack of interconnections anong matrix elenents that often translates 1
computational subtasks that can be executed independently on different processor
This relationshipis extremely conplicated, however, and parallel effciency depe
on many ot her considerations as well, such as load bal ance and commmnication traf.
fic. Thus, for exanple, mini numdegree is in many cases the nost effective heuristic
known for limting fill, but may produce orderings for which the natural load bal
ance 1s unevenin parallel factorization. As another exanple, band-oriented net he
however effective they may or may not be inlimtingfill, tend toinhibit rather tha
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