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Abstract

This paper presents the conjugate gradient and Lanczos methods in a matrix

framework, focusing mostly on orthogonality properties of the various vector

sequences generated. Various aspects of the methods, such as choice of inner

product, preconditioning, and relations to other iterative methods will be con-

sidered. Minimization properties of the methods and the fact that they can

compute successive approximations to the solution of a linear system will be

proved as corollary.
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1 Introduction

Many articles have already been written about the conjugate gradient method
and the Lanczos algorithm. Some of these focus on preconditioners, some treat
di�erent variants of the basic method, and others derive error or convergence
speed properties of the methods (for the history of the conjugate gradient and
Lanczos methods and an extensive bibliography we refer to [9]). In this article we
will give a uni�ed presentation of the conjugate gradient method and the Lanc-
zos algorithm, and derive properties regarding orthogonality and equivalence of
various formulations. We will stress showing what the minimal assumptions are
for various properties.

In general we will only be concerned with qualitative properties of the methods,
leaving all quantitative results, such as convergence speed, aside. The conjugate
gradient and Lanczos methods will here be derived as orthogonalizationmethods
for Krylov sequences, and minimization properties will be derived from this
orthogonality. Also, the fact that such methods can be used for the iterative
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solution of linear systems will be presented as a corollary rather than as a
starting point of the discussion.

Additionally, the presentation here will di�er from most others in the literature
(with the exception of [12]) in that it is given in terms of matrices instead
of vector sequences. Although an occasional part of the discussion may feel
somewhat forced by this, in general the presentation is very concise.

2 Tools: sequences as matrices

Most of the analysis in this paper will talk about matrices, instead of vector
sequences. The matrix corresponding to a sequence has the elements of that se-
quence as its columns. For instance, a matrixX will have the vectors x1, x2, : : :
as its columns. Subscripted uppercase letters will indicate initial parts of se-
quences: Xn is the matrix with columns x1 : : :xn. Doubly subscripted lowercase
characters denote elements of matrices: hij is the i-th element of hj or the (i; j)
element of H.

Combinations of the elements of a sequence can be expressed by upper triangular
matrices: if X and Y are sequences and U is upper triangular, then X = Y U
expresses the fact xi =

Pi

k=1 ykuki.

In addition to the identity matrix I, we will often need the unit lower subdiag-
onal matrix

J = (�i;j+1):

Right multiplication by J shifts a matrix left one column, so X = Y J corre-
sponds to the relation xi = yi+1 between sequences. An update relation

xi+1 � xi = yi

can be expressed as X(J � I) = Y .

Lemma 1 An update relation xi+1 � xi =
Pi

k=1 ykuki, or

X(J � I) = Y U

with U upper triangular can be rewritten as xi+1 = x1 +
Pi

k=1 yivki, or

X(J �E1) = Y V

with V upper triangular and E1 = (�i1).
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Proof: the sequences can be rewritten by algebraic manipulation. Here is a proof
using matrix analysis. Let EN be the square N � N matrix (�iN ), then (J �
E1)�1 = J t�EN . Suppose X(J�I) = Y U , then using J�E1 = (J�I)(I�J t)�1

we get

X(J �E1) = Y U (J � I)(J � E1)
�1

= Y U (I � J t)�1:

Again V = U (I � J t)�1 is an upper triangular matrix. �

3 Krylov sequences and Hessenberg matrices

In this section we will look at Krylov sequences, that is, vector sequences de-
rived from successive application of a matrix product. Linear combinations of
subsequences of a Krylov sequence can be associated with an upper Hessenberg
matrix and with matrix polynomials in the generating matrix of the sequence.
It is important to note that all of the properties derived here are independent
of any concept of orthogonality.

Consider the Krylov sequence xi+1 = Axi. This sequence can be written in
matrix form as

AX = XJ: (1)

Identities such as xi+2 = A2xi follow from

AkX = Ak�1XJ = � � � = XJk:

Taking linear combinations of Krylov vectors gives rise to Hessenberg matrices.

Lemma 2 If AR = RH and r1 k x1 (that is, r1 = �x1 for some � 6= 0),
then H is an irreducible upper Hessenberg matrix i� R = XU with X the
Krylov sequence (1) and U a nonsingular upper triangular matrix satisfying
H = U�1JU .

Proof: If U is a nonsingular upper triangular matrix and R = XU , then

AR = RU�1JU

where U�1JU is of irreducible upper Hessenberg shape, so the ri vectors satisfy
a recurrence
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hi+1;iri+1 = Ari �
iX

j=1

hjirj :

Conversely, if H is an upper Hessenberg matrix and AR = RH, then an upper
triangular matrix U can be determined such that R = XU , namely U has to
satisfy

UH = JU

and this can be solved recursively. For instance, noting that the �rst row of JU
is zero (and picking u11 arbitrarily):

u11h11 + u12h21 = 0) u12 = : : :

u11h12 + u12h22 + u13h32 = 0) u13 = : : :

Then for the second row

u11 = u22h21) u22 = : : :

u12 = u22h22 + u23h32) u23 = : : :

We see that U can be solved if all hi+1;i 6= 0, that is, if H is irreducible. Now

ARU�1 = RU�1(UHU�1) = RU�1J

so if r1 = �x1, then R = X(�U ). �

For future reference we prove a lemma on Hessenberg matrices.

Lemma 3 Let H be a Hessenberg matrix that can be factored without pivoting,
then the column sums of H are zero i� the factorization is H = (I � J)V with
V upper triangular.

Proof: Let et = (1; : : :). In general, H can be factored as H = (I � L)V . Now
et(I�L) = (1�`21; 1�`32; : : :), so if the column sums are zero, ` � 1. Conversely,
if H = (I � J)V , then from et(I � J) = 0t the column sums of H are zero. �

A combination of Krylov vectors can be expressed as a matrix polynomial times
the initial vector.

Theorem 1 If AX = XJ and r1 k x1, then R = XU with U upper triangular,
if and only if

rn+1 = Pn(A)x1
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where Pn is an n-th degree polynomial with coe�cients in the n + 1-st column
of U .

Proof: Suppose R = XU , and consider the splitting of the upper triangular
matrix U as

U =
NX
k=0

(J t)kU (k); U (k) = diag(0; : : : ; 0; u1k; : : : ; uN�k+1;N)

where U (k) has k initial zeros. For the columns of R (which are the vectors rk)
we �nd

r�;n+1 =
nX

k=0

x�;n+1�k(J
t)kU

(k)
n+1;n+1

=
nX

k=0

x�;n+1�kJ
n�k(J t)n�k(J t)kun+1�k;n+1

=

(
nX

k=0

An�kx�;1un+1�k;n+1

)
(J t)n

where we use AkX = XJk and the fact that Jk(J t)k is the identity matrix apart
from the �rst k diagonal elements, which are zero. For the inverse assertion, read
the above proof backwards. �

In the context of iterative methods for linear systems, where these ri vectors
will turn out to be residuals, the measure of success of the method depends on
how closely the polynomials approximate the zero function. Results regarding
this can be found for instance in [1], [22]; in this paper we will not pay any
attention to this matter.

The polynomials derived above satisfy a simply recurrence.

Lemma 4 Denoting the polynomials from the previous lemma �n and de�ning
H = U�1JU , the polynomials satisfy

hn+1n�n+1(t) = (t� hnn)�n(t) �
n�1X
k=1

hkn�k(t)

Proof: From the relation UH = JU relating the upper Hessenberg matrix and
the upper triangular matrix corresponding to certain spans of Krylov spaces we
see that U can be solved one column at a time. Suppose the n-th column u�n
has been solved, then
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uin+1hn+1n = ui�1n �
nX

k=1

uikhkn for i = 1; : : : ; n+ 1. (2)

This relation implies the recurrence for the polynomials �n. �

4 Orthogonalization

The conjugate gradient algorithm and the Lanczos method can be derived by
imposing various orthogonality conditions on the sequence R derived in the
previous section. Equivalently, they correspond to a certain construction for the
Hessenberg matrix H.

4.1 Simple orthogonalization: the Galerkin condition

A sequence R de�ned by AR = RH can be chosen semi-orthogonal to another
sequence S by suitable construction of the Hessenberg matrix H.

Algorithm 1 Let r1 and any sequence S be given, and suppose inductively
that St

nRn is nonsingular. Solve the n� 1 vector hn from

St
nArn = St

nRnhn: (3)

Then pick a value for hn+1;n, for instance 1 or 1=kArn�Rnhnk, and de�ne rn+1
from

rn+1hn+1;n = Arn �Rnhn: (4)

(In section 6.1 we shall see factors that dictate certain choices of hi+i;i.)

Lemma 5 Algorithm 1 constructs a sequence R that is semi-orthogonal to S
in the sense that stirj = 0 for j > i; the algorithm is well-de�ned if Rn is not
an invariant subspace of A, and if the breakdown condition stn+1rn+1 = 0 does
not occur.
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Proof: Suppose inductively that St
nRn is lower triangular and nonsingular. Un-

less Rn is an invariant subspace of A, the vector rn+1 will be nonnull. Fur-
thermore, St

nrn+1 = 0 so, St
n+1Rn+1 is again a lower triangular matrix. It is

nonsingular depending on whether stn+1rn+1 is zero. �

The condition that ri is orthogonal to the i � 1-dimensional space spanned by
Si�1 is often called a `Galerkin condition', or perhaps more correctly, a `Petrov-
Galerkin condition' [19].

The classical conjugate gradient method stems from the choice S = R.

Lemma 6 The conjugate gradient method corresponds to a transformation
of A to upper Hessenberg form. If A is symmetric this is a tridiagonalization; if
A is positive de�nite the breakdown condition will not occur.

Proof: If S = R, then the lower triangular matrix StR is diagonal, and StAR =
RtAR = RtRH is a transformation of A to Hessenberg form. If A is symmetric,
then RtRH = HtRtR, so H is of both upper and lower Hessenberg form, hence
tridiagonal. �

Lemma 7 Normalizing the ri vectors in the conjugate gradient method for a
symmetric matrix A leads to a symmetric Hessenberg matrix H.

Proof: This follows immediately from RtAR = RtRH = H. �

The question whether for unsymmetric matrices A the upper Hessenberg matrix
can take on a banded form with a small bandwidth is of practical importance,
since such a form limits the length of the recurrence for the ri vectors in (4).
This question was answered largely negatively by [25] and more generally by [6]:
the conjugate gradient algorithm gives a tridiagonal matrix if the spectrum of A
lies on a line in the complex plane; for other matrices the bandwidth is a large
fraction of the matrix size.

4.2 Bi-orthogonalization

If the sequence fsng is based on a Krylov recurrence with At, that is,
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AtS = SK or KtSt = StA

with K of upper Hessenberg shape, the columns of K can be solved in a similar
manner to those of H. Assume St

nRn is diagonal and non-singular. Solve kn
from

stnARn = ktnS
t
nRn

so that sn+1 de�ned from

kn+1;nsn+1 = Atsn � Snkn

satis�es stn+1Rn = 0, so that St
n+1Rn+1 is again diagonal, but maybe singular.

Obviously, if r1 = s1 and A is symmetric, then Sn = Rn for all n, and St
n+1Rn+1

is singular i� rn+1 = 0. Choosing r1 and s1 independently corresponds to the
Lanczos method.

Theorem 2 The Lanczos method generates Hessenberg matricesH andK that
are of tridiagonal form; under some normalization of the R and S sequences they
are equal. The matrix StAR is tridiagonal and it is symmetric (independent of
the symmetry of A) if H = K.

Proof: We have that StR is a diagonal matrix, so for StAR we �nd

StAR = StRH = KtStR

that is, it is both equal to an upper and to a lower Hessenberg matrix. Therefore
it is tridiagonal. Note that, unlike above, this conclusion does not depend on
symmetry, or equality of the sequences R and S.

Inspecting the elements of StAR, we �nd from the (n; n) position that

stnArn = stnrnhnn = knns
t
nrn ) hnn = knn =

stnArn
stnrn

and similarly

(n+ 1; n) : knn+1s
t
nrn = stn+1rn+1hn+1n

and

(n; n+ 1) : kn+1ns
t
n+1rn+1 = stnrnhnn+1:

The matrices H and K are related by

H = 
�1Kt


where 
 is the diagonal matrix StR. We see again that hnn = knn for any
scaling of R and S; if we choose hn+1n = kn+1n, then
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hnn+1 = knn+1 =
stn+1rn+1

stnrn
hn+1n

so H = K. In general, any scaling of the R or S sequence that makes 
 = I
causes H and K to be equal.

If H and K are equal, we can combine the equalities StAR = KtStR = HtStR
and (StAR)t = (StRH)t = HtRtS = HtStR to �nd that StAR is symmetric. �

4.3 Di�erent choice of inner product and the symmetrizable case

If we don't orthogonalize R and S directly, but make StMR diagonal for some
matrixM (if this matrix is symmetric positive de�nite it induces an inner prod-
uct, however this fact will not be used in the following derivation), the above
formulas alter slightly. First of all, if we still generate R from AR = RH, then
hn is to be solved from

St
nMArn = St

nMRnhn

so that St
nMrn+1 = 0 if we de�ne

rn+1hn+1n = Arn � Rnhn:

For the conjugate gradient method, the upper Hessenberg matrix is usually only
tridiagonal if A is symmetric (see the remark in section 4.1). However, if MA is
symmetric, then it is clear from

RtMAR = RtMRH (5)

that under M -orthogonalization the upper Hessenberg matrix H is again tridi-
agonal.

4.4 Di�erent choice of inner product in the Lanczos method

Consider a generalization of the Lanczos method with a matrixM inducing the
inner product with respect to which the sequences S and R are orthogonalized.
We want to be able to write StMRH = KtStMR. Since StMAR = StMRH,
we have to solve kn from

ktnS
t
nMRn = stnMARn

and de�ne

stn+1kn+1n = stnMAM�1 � ktnS
t
n

10



so that stn+1MRn = 0. Apparently, S is no longer generated from a Krylov
sequence of At, but from one of (MAM�1)t.

Another (more symmetric) way of looking at this is to diagonalize StMR, and
let R and S be generated from

AR = RH; BtS = SK:

We conclude that

StMAR = StMRH; StBMR = KtStMR;

so in order to conclude the tridiagonality characteristic of the Lanczos recur-
rence, we need that MA = BM , that is,

B = MAM�1:

In practice, this limitsM to powers of A or powers of A�1.

5 Minimization

The choice of orthogonal sequences for R and S in the Lanczos method (or R
orthogonal to itself for the conjugate gradient method) leads to some minimiza-
tion properties. Additionally, minimization properties can be imposed by taking
vector sequences that consist of linear combinations of the R sequence.

5.1 Lanczos' Minimized iterations

Theorem 3 Choosing the sequences R and S to be orthogonal minimizes the
inner products stiri (modulo some normalization of the sequences).

Proof: Let X, Y be the Krylov sequences following from AX = XJ and AtY =
Y J , and assume that r1 k x1, s1 k y1, and AR = RH, AtS = SH for some
upper Hessenberg matrix H, such that RtS is diagonal with positive diagonal
elements.

Let further ~r1 = r1, ~s1 = s1 and A ~R = ~R ~H, At ~S = ~S ~H for some upper
Hessenberg matrix ~H. From lemma 2 we �nd that there are upper triangular
matrices U , ~U such that R = XU , S = Y U , ~R = X ~U , ~S = Y ~U . Making the
substitutions H  HU�1, ~H  ~H ~U�1, we �nd AX = RH = ~R ~H, AtY =
SH = ~S ~H. Assuming that the sequences have been normalized such that H, ~H
can be written as H = J + V , ~H = J + ~V for some upper triangular matrices
V , ~V , we �nd
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~RJ = RJ +XV̂ ; ~SJ = SJ + Y V̂ ;

where V̂ is the upper triangular matrix ~U ~V � UV .

We now get

J t ~St ~RJ = J tStRJ + J tStXV̂ + V̂ tY tRJ + V̂ tY tXV̂

in which the second and third term are strictly upper and lower triangular
respectively. (Here we use for instance that StX = StRU�1 is upper triangular;
furthermore, Y tX = U�tStRU�1.) Therefore, ~stn~rn � stnrn, with equality only
in the case that V̂ = 0, that is, if ~R = R, ~S = S. �

For the symmetric case of A = At, S = R, this says that the orthogonalizing
algorithm minimizes the length of the rn vectors in each iteration. For the gen-
eral Lanczos method it gives the minimization of the inner product stiri, but
this implies no minimization for either the ri or the si vectors. This minimiza-
tion property led Lanczos [13, 14] to name this method `minimized iterations'.
Another name is the `biconjugate gradient method' [7].

5.2 Symmetric CG: Minimization in the A�1 norm

In addition to theorem 3 we can prove a further minimization property for the
conjugate gradient method for spd systems.

Theorem 4 Orthogonalizing the residuals ri for the conjugate gradient method
applied to symmetric positive de�nite systems A minimizes their lengths in the
A�1-norm (modulo some normalization condition).

Proof: Assume that AR = RH, A ~R = ~R ~H and r1 k ~r1 k x1, then there are
upper triangular matrices U , ~U such that R = XU , ~R = X ~U . Suppose the
sequences have been normalized such that H, ~H admits a factorization H =
(I � J)V , ~H = (I � J) ~V with V , ~V upper triangular (in section 6.1 we shall
see that this can be achieved by scaling the R sequence, and this is in fact the
conventional conjugate gradient method); we �nd that R(J � I) = �ARV �1,
~R(J � I) = �A ~R ~V �1, and using (J � I)(I � J t)�1 = J � E1 with the matrix
E1 from section 2

R(J �E1) = AXW; ~R(J �E1) = AX ~W

where W = �UV �1(I � J t)�1, ~W = � ~U ~V �1(I � J t)�1 are upper triangular
matrices.
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Taking the di�erence we �nd ~RJ = RJ + AXŴ with Ŵ = ~W �W , so (using
the symmetry of A)

J t ~RtA�1 ~RJ = J tRtA�1RJ + J tRtA�1AXŴ + Ŵ tXtAtA�1RJ

+Ŵ tXtAtA�1AXŴ

= J tRtA�1RJ + J tRtXŴ + Ŵ tXtRJ + Ŵ tXtAXŴ ;

in which the second and third term are strictly upper and lower triangular
because of the upper triangularity of RtX = RtRU�1. Thus ~rtiA

�1~ri � rtiA
�1ri

with equality only if Ŵ = 0, that is if ~R = R. �

It is easy to see that orthogonalizing the R sequence under the Ak inner product
will similarly lead to minimization in the Ak�1 norm. For the case of k = 1 this
even holds for the nonsymmetric case, as will be shown in the next section.

5.3 Minimization in nonsymmetric conjugate gradient methods

Neither of the two preceding sections stated a minimization property for non-
symmetric conjugate gradient methods, that is, for the choice S = R with A
not a symmetric matrix. We can derive a minimization property for this case if
R is orthogonalized under the A-inner product.

Theorem 5 The sequence R = XU (where X is the Krylov sequence satisfying
AX = XJ) is A-orthogonal if and only if the norms of the rn vectors are
minimized (see also [19, theorem 1]).

Proof: As in the proof of theorem 4 we derive that any choice ~R in the same
Krylov space as R is related to R by ~RJ = RJ +AXW , so we �nd that

J t ~RtRJ = J tRtRJ + J tRtAXW +W tXtAtRJ +W tXtAtAXW:

From diagonality of RtAR we �nd that RtAX = RtARU�1 is upper triangular,
so the second and third term in the above right hand side are strictly upper and
lower triangular respectively. Therefore ~rtn~rn � rtnrn with equality only if AtA
is semi-de�nite or if W = 0.

Conversely, for any nonsingular upper triangular matrixW the function f(�) =
kRJ + �ARWk is minimized for � = 0. Di�erentiating and substituting � = 0
gives (RtARW )nn = 0, that is, R is A-orthogonal. �
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5.4 Minimal residual methods: GMRES and QMR

Two methods have been proposed that generate a vector sequence satisfying
a minimization property by �rst generating the sequence R in the usual way,
and subsequently taking combination of this sequence. This procedure can be
applied both to the Lanczos method and the conjugate gradient method.

Let then R satisfy AR = RH, and construct a sequence G by taking combina-
tions, speci�cally, G = RV1 with V1 upper triangular with column sums equal
to 1. Then V1(J � E1) is a Hessenberg matrix with zero column sums, so by
lemma 3 it can be written as V1(J�E1) = (I�J)V2. Therefore, for some upper
triangular V3 and V4:

G(J �E1) = RV2(J �E1) = R(I � J)V2 = RHV3 = �ARV4:

Thus we arrive at the following formulation for these combining methods:

G(J �E1) = �ARV; g1 = r1

where V is an upper triangular matrix.

Lemma 8 The elements of the sequence G are linear combinations of the same
Krylov sequence that underlies R.

Proof: Let R = XU where is U is upper triangular and X is a Krylov sequence
(see lemma 2), then G(J�E1) = �ARV = �AXUV = �XJUV . Since GE1 =
RE1 = XE1, we �nd

GJ = X(E1 � JUV )) GJJ t = X(E1 � JUV )J t:

In this equation, JJ t is the identity matrix except for a zero (1; 1) element, and
(E1 � JUV )J t is an upper triangular matrix with a zero (1; 1) element. Thus
we can augment the �rst column of this matrix equation to �nd G = XW with
W = E1 � JUV J t, which is a nonsingular upper triangular matrix. �

From the choice g1 = r1 we �nd that GJ = R(E1 �HV ), and the columns vn
of V can be derived by solving the least squares problem

minkHnvn � e
(n+1)
1 k2:

If R is constructed by the conjugate gradient method this method is called
GMRES (Generalized Minimal Residual [20]), and since R is orthogonal this
minimizes the gn vectors (which will turn out to be residuals) in the 2-norm.
For a matrix R constructed by the Lanczos process this method is called QMR
(Quasi Minimal Residual [8]; the authors propose basing QMR on a block-
Lanczos process called `look-ahead Lanczos', but that is not relevant for the
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current discussion), and it does not directly minimize the residual, only the
coe�cient vector.

Lemma 9 The GMRES method is equivalent to the conjugate gradient method
under the A-inner product.

Proof: This follows immediately from theorem 5 and lemma 8, using the fact
that the method minimizes the norms of the residual vectors gn. �

The least squares solution to HV = E1 can for instance be found by making a
QR decomposition H = QU with Q orthonormal and U upper triangular. For
the QMR method this will result in U being upper tridiagonal. We �nd that
V = U�1 ~Qt, where ~Q is formed from Q as

~Qt =

0
BB@
q11 q11 � � � q11

q12 � � � q12

;
. . .

...
q1n

1
CCA :

The residuals are then computed as

G(J �E1) = �AP ~Qt where P = RU�1:

For an updating formula for G we �nd the even simpler formula

G(J � I) = �AP diag(q1i):

The elements of P can be easily updated from the rn vectors, in the case of
QMRwith a three-term recurrence. In GMRES updating pn requires all previous
such vectors to be stored. Hence, people have considered truncated or restarted
versions of the method.

6 The iterative formulation of the conjugate gradient
and Lanczos methods

The matrix equation AR = RH implies in cases where H is tridiagonal a three-
term recurrence

rn+1hn+1n + rnhnn + rn�1hn�1n = Arn:

Traditionally this was the way Lanczos [13] derived his bi-orthogonalization
method. The conjugate gradient method, however, was presented by its dis-
coverers Hestenes and Stiefel [11] as two coupled two-term recurrences. Such a
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formulation was later given by Fletcher [7] for the Lanczos method, who called
it the `biconjugate gradient method'.

In this section we will show how the two formulations are equivalent, and how
the view as coupled two-term recurrences arises from factoring the Hessenberg
matrix.

6.1 Search directions and the solution of linear systems

The generating recurrence AR = RH can be split into two coupled recurrences.
Factor H as H = (I � L)D�1(I � U ) where L is a strictly lower diagonal
matrix, and U is strictly upper triangular (single upper diagonal for symmetric
conjugate gradients or the Lanczos method). Introducing P = R(I � U )�1 we
get the coupled recurrences

APD = R(I � L); R = P (I � U ):

The elements of the sequence P are usually called `search directions'.

If vectors rn are replaced by scalar multiples cnrn of themselves, this corresponds
to a transformed recurrence for the sequence RC (where C = diag(ci))

ARC = (RC)(C�1HC)

of the original form. In particular, for H = (I � L)D�1(I � U ) we can de�ne a
scalar recurrence

c1 = 1; ci+1 = Li+1ici

so that

C�1(I � L)C = I � J:

As a result,

C�1HC = (I � J)C�1D�1C(I � C�1UC) = (I � J)D�1(I � C�1UC)

is a factorization of the Hessenberg matrix of the transformed recurrence for RC.
Note that the matrix D is invariant under scalings of the R sequence.

Table 1 gives orthogonality properties for the gradients and search directions
thus derived.

For the transformed recurrence, now simply denoted R, we thus get coupled
formulas as above:

APD = R(I � J); R = P (I � U ): (6)
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Equation / Shape Relation Valid for
RtR diagonal rtirj = 0 i 6= j
RtAR = RtRH

upper Hessenberg rtiArj = 0 i > j + 1
symm: tridiagonal rtiArj = 0 ji� jj > 1

P tAP = (I � U )�tRtR(I � J)D�1

lower triangular ptiApj = 0 j > i
symm: diagonal ptiApj = 0 i 6= j

P tR = (I � U )�tRtR ptiri = rtiri
lower triangular ptirj = 0 j > i

RtAP = RtR(I � J)D�1

lower bidiagonal rtiApj = 0 j > i, i > j + 1
RtAP = (I � U )tP tAP rtiApi = ptiApi

Table 1: Orthogonality properties of the conjugate gradient algorithm.

In this we recognize the classical formulation of the conjugate gradient method:
if xn are iterates1, and pn is a search direction, then scalars dnn are chosen such
that

xn+1 = xn � dnnpn; (7)

with for the gradients rn = Axn � f :

rn+1 = rn � dnnApn;

which is the �rst half of the coupled recurrence. In order to ensure consistency,
we do have to choose explicitly r1 = Ax1 � f . Since the residuals ri are orthog-
onal, for some value n we will have rn = 0. For that n, xn is the solution of the
linear system Ax = f . Note that this is the theoretical exact convergence of the
conjugate gradient method, discovered by [11]; in practice the method usually
converges to a given tolerance in far fewer iterations. This `speed of convergence'
depends mostly on the eigenvalues of the matrix; see for instance [1] or [22].

6.2 The scalars in the CG algorithm

If the Hessenberg matrix is factored H = (I � J)D�1(I � U ) with U strictly
upper triangular, then for the conjugate gradient method there are only two
sets of scalars that we need to know: the quantities dii and ui�k;i (k > 0; for
symmetric problems only k = 1 is needed).

1. In section 3 we used xn to denote elements of a Krylov sequence; from now on xn will

denote solely the n-th iterate.

17



Algorithm 2 (Conjugate Gradient Method) In order to solve Ax = f , choose
x1 arbitrarily. Choose p1 = r1 = Ax1 � f . Then perform the following steps for
i = 1; : : ::

compute dii (8)

Update the iterate

xi+1 = xi � pidii (9)

and the residual

ri+1 = ri � Apidii (10)

compute uki+1 for k = 1::i (11)

Update the search direction

pi+1 = ri+1 +
iX

k=1

pkuki+1 (12)

If Ari is computed, Api can be derived recursively from

Api+1 = Ari+1 +
iX

k=1

Apkuki+1 (13)

where we note that Ap1 = Ar1.

The scalars dii, ui�k;i follow in various ways from the orthogonality conditions.

From the relation APD = R(I�J) we get, using the fact that rtipj = 0 for i > j:

ptiApidii = ptiri � p
t
iri+1 ) dii =

ptiri
ptiApi

=
rtiri
ptiApi

(14)

and also

rtiApidii = rtiri � r
t
iri+1 ) dii =

rtiri
rtiApi

Comparing elements in the left and right hand side of RtAR = RtRH, we �nd
from the lower diagonal

rti+1Ari = rti+1ri+1hi+1;i = �r
t
i+1ri+1d

�1
ii ) dii = �

rti+1ri+1

rti+1Ari

(which is not a useful formula because dii is needed to compute ri+1) and from
the upper triangle we �nd for k > 0

rti�kAri = �r
t
i�kri�kd

�1
i�k;i�kui�ki) ui�ki = �

rti�kAri

rti�kri�k

di�k;i�k:

If A is symmetric we �nd from rti�1Ari = rtiAri�1 that
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ui;i+1 =
rti+1ri+1

rtiri
: (15)

For nonsymmetric problems the elements of U can be computed by recursion
in each column. Observing that P tAP is lower triangular we �nd from P tAP
(I � U ) = P tAR that for i < j

�
iX

k=1

ptiApkukj = ptiArj : (16)

Another way of computing U follows from the equation D�1(I � J)tRtR =
P tAtR = P tAtP (I � U ). We �nd for the columns of U0

BBB@
0
...
0

rt
n+1rn+1

rt
n
rn

1
CCCA =

1

ptnApn

0
B@
pt1A

tp1 : : : pt1A
tpn

. . .
...

ptnA
tpn

1
CA
0
B@
u1n+1

...
unn+1

1
CA (17)

which reduces immediately to (15) for symmetric systems.

6.3 Iterative formulation of the Lanczos method: Bi-CG

Most authors present the Lanczos method as a three-term recurrence (see also
section 9.2), and reserve the name `biconjugate gradients' for the mathematically
equivalent form involving two coupled two-term recurrences.

In order to let the presentation be as far as possible analogous to that of the
conjugate gradient method, we will take the latter approach. That is, we arrive at
an iterative formulation for the Lanczos method by introducing search directions
corresponding to the left Krylov vectors. To this purpose we split the relation
AtS = SH into

AtQD = S(I � J); Q = S(I � U ):

Algorithm 3 (Lanczos Method) In order to solve Ax = f , choose x1 arbi-
trarily. Choose p1 = r1 = Ax1 � f and q1 = s1 arbitrarily. Then perform the
following steps for i = 1; : : ::

compute dii (18)

Update the iterate

xi+1 = xi � pidii (19)

and the left and right residuals
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ri+1 = ri � Apidii; si+1 = si � Atqidii; (20)

compute uii+1 (21)

Update left and right search directions

pi+1 = ri+1 + piuii+1; qi+1 = si+1 + qiuii+1 (22)

The resulting orthogonality relations for the two sequences of iterates and search
directions are in table 2.

Equation / Shape Relation Valid for
StR diagonal stirj = 0 i 6= j
StAR = StRH = HtStR

tridiagonal stiArj = 0 ji� jj > 1
QtAP = (I � U )�tStR(I � J)D�1

= D�1(I � J)tStR(I � U )�1

diagonal qtiApj = 0 i 6= j
QtR = (I � U )�tStR qtiri = stiri

lower triangular qtirj = 0 j > i
StP = StR(I � U )�1 stipi = stiri

upper triangular stipj = 0 i > j
StAP = StR(I � J)D�1

lower bidiagonal stiApj = 0 j > i, i > j + 1
QtAR = D�1(I � J)tStR

upper bidiagonal qtiArj = 0 i > j, j > i+ 1
StAP = (I � U )tQtAP stiApi = qtiApi
QtAR = QtAP (I � U ) qtiAri = qtiApi

Table 2: Orthogonality properties of the Lanczos method.

The scalar sequences dii and uii+1 now can be derived as follows. Taking the
inner product of Q with APD = R(I � J) we �nd that

dii =
stiri
qtiApi

; (23)

from StAR = StR(I � J)D�1(I � U ) we �nd that

sti+1Ari = �s
t
i+1ri+1d

�1
ii ; stiAri+1 = �s

t
irid

�1
ii uii+1

which, with the symmetry of StAR (see theorem 2) gives

uii+1 =
sti+1ri+1

stiri
: (24)
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7 Preconditioning

The idea of preconditioning is usually simply presented as replacing an iteration
on the system Au = f by one on MAu = Mf . However, for conjugate gradient
methods it is relevant whether the iteration matrix is symmetric or not. Hence
we do not want to iterate directly with MA, which usually is an unsymmetric
system, even if A and M are symmetric.

In this section we will derive how the formulas for the conjugate gradient and
Lanczos methods have to be altered to incorporate a preconditioner. The actual
construction of the preconditioner will be left undiscussed, this being a whole
�eld of science in itself.

7.1 Preconditioned conjugate gradients

If M is symmetric and positive de�nite, we can split it (theoretically, not com-
putationally) as M = EEt, and we formulate the conjugate gradients method
as iterating on the system

EtAE(E�1x) = Etf;

that is, rn vectors are generated from the equation

EtAER = RH

where H is again factored as H = (I � J)D�1(I � U ).

The �rst of the coupled recurrences in section 6.1 is now replaced byEtAEPD =
R(I � J), and we get for the full method

A(EP )D = (E�tR)(I � J); E�tR = E�tE�1(EP )(I � U ):

Introducing transformed sequences ~R = E�tR and ~P = EP , we get the coupled
recurrences

A ~PD = ~R(I � J); M ~R = ~P (I � U ): (25)

Computationally, the algorithm is extended by a single step of forming the
product MR, and the splitting of M is never explicitly required.

In order to compute the scalar quantities of the algorithm we note that RtR =
~RtM ~R. Where the conjugate gradient algorithmuses ptiApi, we now get, because
of the transformed system, ptiE

tAEpi, which is equal to ~ptiA~pi. For the methods
in section 9.3 we further note that RtAR becomes in the transformed system
RtEtAER = ~RtM tAM ~R.

If we let ~x be the solution of EtAE~x = Etf , then in the end we are interested
in obtaining x = E~x. Noting that the updating formula ~X(J � I) = PD follows
from equation (25), we �nd that
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X(J � I) = E ~X(J � I) = ~PD; (26)

that is, using the transformed search directions we can actually update approx-
imations to the solution of the original system.

Also,

~R = E�tR = E�t(EtAE~x� Etf) = Ax� f;

that is, the transformed residuals are the residuals of the original system.

Summarizing, we get the following algorithm (where we now simply write ri for
the ~ri of the above theory).

Algorithm 4 (Preconditioned Conjugate Gradient method) Choose x1 arbi-
trarily, and let r1 = Ax1 � f and p1 = r̂1 = Mr1. Then perform the following
steps for i = 1; : : ::

compute dii = r̂tiri=p
t
iApi (27)

Update the iterate

xi+1 = xi � pidii (28)

and the residual

ri+1 = ri � Apidii: (29)

Apply the preconditioner

r̂i+1 = Mri+1; (30)

compute uii+1 = r̂ti+1ri+1=r̂
t
iri. (31)

Update the search direction

pi+1 = r̂i+1 + piuii+1: (32)

7.2 Preconditioning as a change of matrix and inner product

We started formulating the preconditioned iteration as arising from a Krylov
sequence with the matrix EtAE. However, the resulting sequence R satisfying
EtAER = RH is never formed. Instead we compute a sequence ~R = E�tR.
This sequence can be interpreted as arise from a Krylov sequence of another
system, orthogonalized under another inner product.
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Lemma 10 The sequence ~R consists of linear combinations of a Krylov se-
quence of the matrix AM , and it is orthogonal under the M -inner product.

Proof: The sequence ~R satis�es AM ~R = ~RH, that is, it arises from a Krylov
sequence of the matrixAM (see lemma 2). For a general symmetric choice forM
this matrix will be nonsymmetric, but noting that the scalars in the iterative
method are determined from the equation

~RtMAM ~R = ~RtM ~RH

we �nd by comparing to equation (5) that we have orthogonalized ~R under the
M inner product, which symmetrizes the matrix AM again. �

Although the discussion so far used a symmetric preconditioner M = EEt, it
is easy to see that taking M = FEt and iterating on a system with coe�cient
matrix EtAF will also lead to a formula M ~R = ~P (I � U ), that is, involving
only the unfactored preconditioner.

7.3 Preconditioned Lanczos

Preconditioning the Lanczos iteration is largely analogous to preconditioning
the conjugate gradient method as described above. (The only exposition of a
preconditioned Lanczos method in the literature that we are aware of is in [4];
apart from an implementational detail it is identical to the method derived
here.)

Since the Lanczos method can handle nonsymmetric matrices, assume that the
preconditioner is nonsymmetric too, and that we iterate on a system with matrix
EtAF . From

EtAFPD = R(I � J); F tAtEQD = S(I � J)

we �nd

A ~PD = ~R(I � J); At ~QD = ~S(I � J)

where

~R = E�tR; ~S = F�tS; ~P = FP; ~Q = EQ:

For the scalar quantities we �nd �rst of all that

StR = ~SM ~R

where M = FEt is the preconditioner. Furthermore, the quantity qtiApi in the
conjugate gradient method now becomes qtiE

tAFpi, which is equal to ~qtiA~pi.

The update relations R = P (I �U ) and S = Q(I �U ) for the search directions
become
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M ~R = ~P (I � U ); M t ~S = ~Q(I � U )

for the transformed sequences. We see that applications of both the precondi-
tioner and its transpose are necessary.

8 Polynomial squaring methods: CGS

It has been observed [21] that the Lanczos method computes both rn = �n(A)r1
and sn = �n(At)s1, where �n is an n � 1-st degree polynomial, and rn, sn are
the right and left residuals. Since presumably both residuals tend to zero, and

stnrn = (�n(A
t)s1)

t(�n(A)r1) = st1(�
2
n(A)r1)

it may seem like a good idea to compute to compute the sequence �2n(A)r1 since,
ideally, this sequence would have double the convergence speed of the original
sequence. Here is why computing this sequence is possible.

Let X be a Krylov sequence of A, that is, AX = XJ , and let R consist of linear
combinationof theX sequence: R = XU . From the foregoing discussion we know
that we have AR = RH with H = U�1JU . Suppose that H is tridiagonal, for
instance because R is generated with the Lanczos iteration. For the n-th residual
we have rn = �n(A)x1 where the polynomials �n are related by

�n+1(t)hn+1n + �n(t)hnn + �n�1(t)hn�1n = t�n(t); (33)

see lemma 4.

We now de�ne in each n-th step a new Krylov vector sequence Y (n) by

Y (n) = �n(A)X ) AY (n) = Y (n)J:

Using again the upper triangular matrix U to take linear combinations, this
time from Y (n), we de�ne S(n) by

S(n) = Y (n)U ) AS(n) = S(n)H: (34)

Note that the matrix H is the same as above, and in particular independent
of n.

The justi�cation for these new sequences is that

y
(n)
1 = rn; s(n)n = �n(A)y

(n)
1 = �2n(A)r1

Naturally, we do not wish to build the whole sequence S(n) in the n-th step. It
turns out that of each S(n) we need only four elements. From (33) we �nd that

S(n+1)hn+1n + S(n)hnn + S(n�1)hn�1n = AS(n)
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and combining this with (34) we �nd the following computation:

s
(n+1)
n�1 hn+1n = As

(n)
n�1 � (s

(n)
n�1hnn + s

(n�1)
n�1 hn�1n)

s(n+1)n hn+1n = As(n)n � (s(n)n hnn + s(n�1)n hn�1n)

s
(n+1)
n+1 hn+1n = As(n+1)n � (s(n+1)n hnn + s

(n+1)
n�1 hn�1n)

s
(n+1)
n+2 hn+2n+1 = As

(n+1)
n+1 � (s

(n+1)
n+1 hn+1n+1 + s(n+1)n hnn+1)

Of each equation, the left hand side is the computed result. Additionally, in
the last two steps we perform a matrix-vector product; the results of these can
be reused in the �rst two steps of the next iteration. We see that this method
requires two matrix-vector products, but neither is with the transpose of the
matrix.

For the computation of the coe�cients of H we have to go back to the Lanczos
method. In section 6.3 we saw that we need the expressions (now denoting the
left sequence of residuals by ~rn)

~rtnArn (23); ~rtnrn (23) and (24):

From the above it is easy to see that

~rtnrn = ~rt1�
2
n(A)r1 = ~rt1s

(n)
n ; ~rtnArn = ~rt1A�

2
n(A)r1 = ~rt1As

(n)
n :

Thus the left sequence can be eliminated completely, and only its �rst element
is ever needed. Using the above two expression, the elements of H can be com-
puted, for instance as in equation (35).

There is in fact an unused degree of freedom in the above method: we can choose
a di�erent upper triangular matrix V to form the linear combinations S(n), so
that

S(n) = Y (n)V ) AS(n) = S(n)K

where K = V �1JV . We will not further pursue this approach here.

9 Other aspects of the iterative solution process

9.1 Iterative solution as solving reduced systems

In equation (7) we saw that the orthogonalization process of a Krylov sequence
can be used to compute iteratively approximations of the solution of a linear sys-
tem. Writing this vector recurrence again in block formX(I�J) = PD, we �nd
that the iterates can be computed iteratively or from an initial approximation
as
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X(I � J) = R(I � U )�1D or X(E1 � J) = RV

where V = (I � U )�1D(I � J t)�1 is an upper triangular matrix. Thus, every
iterate di�ers from the previous and from the initial one by a span of residuals.

For the columns vn of V we �nd after some elementary throwing around of
formulas that

RtARV = RtR(E1 � J)

so

Rt
nARnvn = kr1k

2e
(n)
1

where e
(n)
1 is the �rst length n unit vector. We see that each of the columns of V

follows from the solution of a reduced system that is derived from the previous
by the addition of a row and column.

9.2 Three-term recurrence for iterates

Some authors [5, 10], have considered a three-term recurrence for the iterands
in the conjugate gradient algorithm, corresponding to the three-term recurrence
for the residuals. Such a three-term recurrence is the usual mode of presentation
for the Lanczos method and the Chebyshev semi-iterative method [10].

From the splittingH = (I�J)D�1(I�U ) of the Hessenberg matrix inAR = RH
we get

�rn+1d
�1
nn + rn(d

�1
nn + d�1n�1n�1un�1n)� rn�1d

�1
n�1n�1un�1n = Arn: (35)

Since the sum of the weights of the residuals in equation (35) is zero, we can
extract the matrix A from this equation and derive for the iterates

xn+1 = (1 + un�1ndnn=dn�1n�1)xn � rn � un�1n(dnn=dn�1n�1)xn�1:

Conversely, a di�erent choice of H, or equivalently a di�erent scaling of the
rn sequence, will not have an analogous relation for updating iterates. Thus,
lemma 3 is seen to be a consistency condition for solving linear systems with H.
We will return to this matter in section 9.5.

A three-term recurrence can also directly be derived from the elements of the
Hessenberg matrix:

ri+1hi+1i + rihii + ri�1hi�1i = Ari (36)

where from orthogonalization properties we get the expressions

hii =
rtiAri
rtiri

; hii+1 =
rtiAri+1
rtiri

; hi+1i =
rti+1Ari

rti+1ri+1
: (37)
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Note that the hi+1i are arbitrary normalization factors.

If A is symmetric, the scalar hii+1 can be derived as

hii+1 =
rti+1ri+1

rtiri
hi+1i; (38)

which can be shown [16, 17] to be a more stable variant of the method.

The three-term form (36) is often written as two coupled two-term recurrences

ri+1hi+1i + rihii = ti where ti = Ari � ri�1hi�1i:

Although this splitting is of less mathematical signi�cance than the introduction
of search directions in (6), it does allow for a slight variant of the computation
by noting that rtiAri = rtiti, which is used in the computation of hii. This variant
is as stable as the original method [16].

9.3 Equivalent formulas for the scalar quantities

In a parallel implementation, the conjugate gradient algorithm as formulated
above has two synchronization points per iteration, located at the inner product
calculations. These synchronization points cannot be coalesced immediately: the
scalar dii needed to compute ri+1 needs an inner product with pi, and the scalar
uii+1 necessary to compute pi+1 requires an inner product with ri+1. Thus the
two inner products are interdependent. However, for the conjugate gradient
method for spd systems the scalars can be computed in ways that eliminate one
synchronization point, perhaps at the expense of some extra computation.

At the moment, two complementary approaches are known. One can either
eliminate the inner product rtiri and express it in terms of inner products with
the search directions, or one can try to eliminate the inner product ptiApi and
express it in terms of inner products involving gradients.

The former approach was discovered by Saad [18]. From the orthogonality of R,
the equation APD = R(I � J) leads to

rti+1ri+1 + rtiri = d2ii(Api)
t(Api); (39)

so the norms of ri can be computed recursively without the need for an inner
product. However, a simple analysis shows that this method is unstable, so extra
measures are necessary. Hence, Meurant [15] proposed computing rtiri explicitly,
together with (Api)t(Api). Thus, the rti+1ri+1 value serves only as a predictor; it
is later computed exactly. The resulting method takes three inner products per
iteration, and is as stable as the classical formulation of the conjugate gradient
method.

27



Recently, several methods based on elimination of computing ptiApi (which is
needed for dii = rtiri=p

t
iApi) have been discovered by the present author and [3].

First of all, combine RtAP = (I � U )tP tAP and RtAR = RtAP (I � U ) to

(I � U )tP tAP = RtAR+ RtAPU

and consider the diagonal of the left and right hand side. From

ptiApi = rtiAri + rtiApi�1ui�1i (40)

we see that ptiApi can be computed from rtiAri and r
t
iApi�1 = pti�1(Ari). Hence,

one extra inner product is needed, and Ari is computed instead of Api. This
latter vector can be computed recursively as in equation (13).

Expanding RtAR one step further into (I � U )tP tAP (I � U ) gives

P tAP = RtAR+ P tAPU + U tP tAP � U tP tAPU:

Using the A-orthogonality of P and the fact that the second and third term in
the rhs are strictly upper and lower triangular respectively, we �nd that

ptiApi = rtiAri � u
2
i�1ip

t
i�1Api�1: (41)

For the resulting variant of the conjugate gradient method ([3]) Api is again
computed recursively from Ari, the inner products rtiri and r

t
iAri are computed

simultaneously, and the scalar ptiApi needed for dii = rtiri=p
t
iApi is computed

from the above recurrence.

There is a fairly strong argument for the stability of this last rearrangement:
using equations (37), (38) and (14) the recurrence for ptnApn can be derived
from the recurrence

d�1nn = hn+1n+1 � hn+1ndnnhnn+1

for pivot generation in the factorization of the Hessenberg matrix. For symmetric
positive de�nite systems this is a stable recurrence.

Another variant of this scheme results from considering the diagonal of

(I � U )tPAP = RtAP = RtAR(I � U )�1:

Since RtAR is tridiagonal the in�nite expansion of (I�U )�1 terminates quickly,
and we �nd that

ptiApi = rtiAri + rtiAri�1ui�1i:

However, in the presence of rounding errors this method, being based on an in�-
nite number of orthogonalities, becomes unstable in contrast to the two previous
methods which only use a single orthogonality relation.

Methods for removing a synchronization point generalize to the Lanczos method.
We �nd that

qti+1Api+1 = sti+1Ari+1 � stiApiuii+1
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from (I � U )tQtAP = StAR + StAPU ;

qti+1Api+1 = sti+1Ari+1 � u2ii+1q
t
iApi

using A-orthogonality of Q and P in

QtAP = StAR +QtAPU + U tQtAP � U tQtAPU;

and we get

sti+1ri+1 � s
t
iri = d2ii(A

tqi)
t(Api)

from the equations APD = R(I�J) and AtQD = S(I �J) using orthogonality
of S and R.

Another approach for a reduced synchronization overhead was proposed by [23]
and [2], based on computing a number of Krylov vectors and orthogonalizing
these as a block. However, this approach seems inadvisable from a point of
stability.

9.4 Stationary iteration and the steepest descent method

The matrix framework that was used throughout this paper can also be applied
to traditional stationary iterative methods and the steepest descent method (see
for instance [24] and [10]).

Stationary iterative methods in their most basic form update an iterate as

xn+1 = xn �Mrn (42)

where rn = Axn� f and M approximates A�1. The simplest method, Richard-
son iteration, results from choosing M = D a diagonal matrix with dii � d for
some scalar d. The updating formula can be written in matrix form as

X(I � J) = RD

from which we �nd R(I � J) = ARD, and thus

AR = R(I � J)D�1: (43)

Comparing this to the conjugate gradient method, we see that (43) can be
derived from (6) by taking P = R (or equivalently U = 0) and letting D be
constant.

We see that this method generates a Hessenberg matrixH = (I�J)D�1 of lower
bidiagonal form. From lemma 2 and theorem 1 we �nd that rn+1 = Pn(A)r1
where Pn is an n-th degree polynomial. (This fact could of course also have been
derived in a more classical way.)

A more general iterative method results from choosing an approximation M
to A�1, and iterating
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xn+1 = xn � dnnMrn (44)

where dnn � d gives a general stationary iterative method, and the steepest
descent method results from choosing dnn such that it minimizes krn+1k.Writing
this update equation as X(I � J) = MRD, we �nd that the residuals are
generated by

AMR = RH where H = (I � J)D�1:

We note the close resemblance between this formula and the generating formula
for the preconditioned conjugate gradient method in lemma 10.

In the case where dnn � d we can hide both D and M in a transformed system,
turning equation 42 into

xn+1 = xn � rn: (45)

Lemma 11 The residuals corresponding to the iterative method (45) are Kry-
lov vectors of the matrix I �A; the iterative method converges if �(I �A) < 1.

Proof: The residuals satisfy R(I � J) = AR, which can be rewritten as (I �
A)R = RJ , showing that they are a Krylov sequence of the matrix I �A. Since
krn+1k � �(I �A)krnk the iterative method will converge if the spectral radius
is less than 1. �

9.5 Polynomial acceleration

Methods such as conjugate gradients are sometimes considered to be an accel-
eration of a basic iterative method. Suppose iterates xn have been generated
by (45), then the idea behind acceleration is to take combinations

~xn =
nX

i=1

xiuin (46)

with the consistency condition

nX
i=1

uin = 1: (47)

Varga [24] calls (46) the semi-iterative method corresponding to the basic iter-
ative method. The residuals ~rn = A~xn � f are seen to satisfy ~R = RU (where
U is an upper triangular matrix containing the uin coe�cients) because of the
above consistency condition.
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Writing the basic iterative method as AR = R(I�J) we �nd for the accelerated
residuals A ~R = ~RH where H is the upper Hessenberg matrix I � U�1JU .

Lemma 12 The consistency condition (47) implies the consistency condition
of lemma 3 for H = I � U�1JU .

Proof: We can express equation (47) as etU = et. Since this implies etU�1 = et,
and since etJ = et, we �nd that etH = 0. �

These acceleration methods are also called `polynomial acceleration' methods
because of the following fact.

Lemma 13 The accelerated residuals are related to the original residuals as

~rn = Pn(I � A)r1

where Pn is an n�1-st degree polynomial with its coe�cients in the n-th column
of U , where U contains the uin coe�cients of equation (46).

Proof: Lemma 11 established that the residuals of the basic method are Krylov
vectors in a sequence with matrix I�A. It then follows from theorem 1 that the
combinations ~R are obtained by multiplying by a matrix polynomial as stated
above. �

10 Conclusion

We have presented the conjugate gradient-like methods in a matrix framework.
A clear separation between the Hessenberg matrix associated with Krylov se-
quences, orthogonalization under di�erent inner products, preconditioning, and
minimization properties was made. Facts normally taken for granted, such as
the three-term form of recurrences, or the fact that these methods can be used
for iterative solution of linear systems, were derived, not taken as a premise.
Additionally, we have shown how cg methods can be considered as polynomial
accelerations of basic stationary iterative method.

Using the matrix framework for talking about vector sequences, we have given
short derivations of the conjugate gradients method, both for symmetric and
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unsymmetric systems, the Lanczos algorithm and the equivalent biconjugate
gradient method, the least squares methods GMRES and QMR and the conju-
gate gradients squared method.
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