
LAPACK working n o te 50

Di st r i but e d Spar s e Da t a S t r u ct u r e s

fo r L i n e a r Alg e b r a Op e r a t i o n s�

Victor Eijkhout

Department of Computer Science

University of Tennessee, Knoxville

eijkhout@cs.utk.edu

September 15, 1992

Abstract

Distributed data structures for matrices andvectors representing sparse data,

both structured and unstructured, are described. For unstructured data it is

describedhow processors canderive communicationinformation fromthe data

structure.

1 Introduction

On distributedmemory computers data structures are more complicatedthan

on shared memory computers. Ideally, every processor handles a certain set

of variables and needs only the data pertaining to those variables. However,

since operations suchas thematrix-vectorproduct involvecombiningdatafrom

variables that maybelong to di�erent processors, the data structures need to

be extendedwithconnectivityinformation.

This paper will describe extendeddata structures for bothproblems onstruc-

tured and unstructured grids. Rather than talking about processors directly,

thediscussionherewill describe the datastructures pertainingtoregions inthe

physical domain. Multiple suchregions maybe assignedtoasingle processor.

Distributedstorageof sparsematrices was consideredin[4], where it was shown

that `integritypreserving' randomassignments of nonzeros to processors have

ahighprobabilityof generatinganevendistributionfor matrices withlimited

numbers of nonzeros per row/column.

�. This work was s upp o r ted by DARPA unde r co n t r a c t numbe r DAAL03-91- C- 0 0 47

1

2 Regular gridproblems

Ongrids that are (topologically) aCartesianproduct of intervals bothvectors

andmatrices canbe representedsimplyinterms of Fortranarrays. The easiest

waytoselect aregionfromsuchagridis to let it be aproduct of subintervals,

sothat avector x canbe allocatedas

real x(ipts,jpts)

Sparseproblems typicallycomefromdi�erence equations, suchas the �vepoint

central di�erence stencil, where the matrix-vector multiplicationy = Ax ona

point (i; j) of the gridtakes the form

yij =a ijxij � bijxij+1 � cijxij�1 � dijxi+1j � eijxi�1j:

Indistributed computation, for some value of i andj one or more of the neigh-

bouring elements of x will be part of another region.

It is obvious that some data will have to be moved fromthe owning region of

the input data to the region storing the �nal result. Less clear is whichof the

two should do the computation involving the input data. Suppose that we are

computing b ijxij+1 and that x ij+1 is owned by a neighbouring region. In the

usual regime the region that contains location (i ; j 1) will send x ij+1 to the

region that has (i ; j), and there the multiplicationwill be performed. This is

called`owner computes', but `writer computes' wouldbe amore accurate term,

re
ecting that a regiondoes all of the computationthat will be written in it.

lternatively, followinga`reader computes' rule, the owner of (i ; j 1) candoall

of the computationusing its dataas input, inthis case performingthe multipli-

cationb ijxij+1 andsending the completedresult to the owner of location(i ; j).

Since the matrix of a �ve-point stencil is structurally the Cartesian product

of two tridiagonal matrices, we consider the multiplicationwith a tridiagonal

matrixas atomic for the moment. This corresponds to anoperation

yi =a ixi � bixi�1 � cixi+1 ;

and let us assume for the moment that we are considering computing this for

the range i =1; . . . ; n.

In the `writer computes' regime additional input elements x 0 and x n+1 are

needed, so if we allocate

real x(0:n+1)

the above three-termaveraging can be performed for all elements 1: : n without

exceptional conditions on the boundary. It corresponds to amatrixmultiplica-

tion y = x if the coe cients a i, bi, ci are stored in a tridiagonal matrix

as

i;i =a i; i;i�1 =�b i; i;i+1 =�c i:

2

ote that we require that the matrix includes nonstandard element 1;0 and

n;n+1 . Storing this matrix inaFortranarray can be done byallocating

real (n,-1:1)

withthe conversionconvention

(i; j)= i;i+j :

This allocates the three nonzero diagonals of the matrix in contiguous storage,

so that the matrix-vector multiplication can be performed by diagonals [3].

llocating the matrixas

real (-1:1,n)

puts the rows of the matrix in consecutive storage, and requires a conversion

convention

(i; j)= i+j;j :

Figure 1: Diagonal and rowstorage for `writer computes' rule.

ote that, whereas the input vector requires twoadditional elements, the output

vector can simplybe allocatedwith the elements 1: : n.

In the `reader computes' regime we need no additional input elements, but we

performthe extra computations b n+1 xn and c 0x1, to be sent to the right and

left neighbouring region respectively. Storing the a i, bi, ci coe cients again in

a tridiagonal matrix , we nowneednonstandardelements �1;1 and n+1;n .

Suchamatrixcan be stored ina Fortranarraydeclared as

real (n,-1:1)

(storing diagonals contiguously) witha conversionconvention

(i; j)= i+j;i ;

or (storing columns contiguously) as

3

real (-1:1,n)

witha conversionconvention

(i; j)= i+j;j :

Figure 2: Diagonal and column(Linpack) storage for `reader computes' rule.

This latter storage mode is the bandstorage used inLinpack[2] andLapack[1].

eneralizing the above storage modes to multidimensional problems implies

that vectors mayhave to be stored as

real x(0:ipts+1,0:jpts+1, ...)

and that the o�-diagonals of the matrix have to contain some nonstandard

elements.

Irregular grid problems

If the physical domainnolonger has asimpleproduct topologyit becomes harder

to knowwhich variables border on a certain region. Thus, in addition to the

real arraystoringvalues of variables anumber of integer arrays withinformation

about the domain, its partitioning into regions, and the connectivity of those

regions, will have to be declared.

. ss s

In a distributed computing environment it is not only a question howcon-

nectivity is arranged, but also howcommunicating regions get to knowthis

4

information. The discussion in this sectionwill assume that amatrixhas been

centrallyconstructed, andthat processors receive some part of it andconstruct

the connectivity informationthemselves based onwhat informationabout the

matrixthey receive.

`writer computes' mode of computationis assumed.

. s

Since for irregular grids the concept of dimensionof the physical domain dis-

appears, we have to store variables in a linear array. s in the case of regular

grids above, we store for a region both the ownedvariables and the bordering

variables the information of which is needed to compute values of the owned

variables.

venunder the assumptionthat the global numberingof variables is such that

every region has variables that are numbered consecutively, the numbers of

bordering variables need not obey anypattern (for the regular grids they came

insequences withconstant stride). Thus, skips innumberingbetweenbordering

variables andlocal variables canbe arbitrarily large, andsince we want to keep

local storage to a size proportional to the number of local values, we have to

remapthe global numberingintoa local numberingthat is contiguous. e need

1
7

12

15

31
32

33

47

53
2

3

4 5

6

Figure 3: xample domain, with owned and bordering variables of a certain

region indicated.

one real array for the data, and an integer array of the same size with the

renumbering information:

real x(n_ ars)

inte er l al_n (n_ ars)

In order to distinguish between owned and bordering variables it is necessary

to have another integer array:

4 5 6

327 12 15 31 33 47 53
n_vars = 8
global_num(n_vars)

x(n_vars)

n_owned_vars = 3
owned(n_owned_vars)

Figure 4: Remappedinput vector andinformationonwhichindexes are owned.

inte er ne (n_ ne _ ars)

Computationthenwill take the form

i=1,n_ ne _ ars

x(ne (i)) = ...

en

nder the simplifyingassumptionthat all ownedvariables ina regionare num-

bered consecutivelywe can reduce this to a single integer storage

inte er ne _l

withthe computationtaking the form

i= ne _l , ne _l +n_ ne _ ars-1

x(i) = ...

en

.

For the bordering variables it is necessary to knowto what bordering region

they belong, or rather, for each region sending bordering values it is necessary

to knowwhere these have to be stored in the not-ownedportionof the vector.

To this endwe need twointeger arrays

inte er in_l cs(n_in_ ars)

inte er in_re i ns(n_in_re i ns+1)

suchthat if region i sends incomingdata, the number of items is

in l cs(i 1)� in l cs(i)

andthey have be stored inx(in l cs()) for

=in re i ns(i); . . .; inre i ns(i 1)� 1:

n_in_regions=3
1 2 4

in_region_nums(n_in_regions)
1 3 6

7 12 15 31 32 33 47 53

1 2 3 7 8

in_regions(n_in_regions)

n_vars = 8

global_num(n_vars)

x(n_vars)

n_in_vars = 5

in_locs(n_in_vars)

Figure : ointer structure for incomingdata items.

nalogously, a pointer structure is needed for sending outgoing data items to

bordering regions.

. s

In this section we will consider an extension of Compressed RowStorage to

distributed computation. Ordinary CRS is based on one real and two integer

arrays

real atrix_ele ents(n_n n er)

inte er c l n_n s(n_n n er)

inte er r _ irst_l cs(n_r s)

The nonzero elements of rowi are stored in locations

r irst l cs(i): : r irst l cs(i 1)� 1

of atrix_ele ents, where the corresponding element in c l n_n s gives

the columnnumber of the nonzero.

e nowconsider the case where aprocessor handlinga regionreceives the rows

correspondingtothe variables of that region. First of all we note that, because of

the remapping fromglobal to local variable numbering, the arrayc l n_n s

has to be updatedaccordingly.

Strictlyspeaking, a regionneeds onlythe rows corresponding to its ownedvari-

ables in the course of the computation. However, in addition arrays such as

in_re i ns are needed, and if possible we want to construct those in a dis-

tributedmanner. The followingtwoassumptions make that possible.

. c region no s e r i ioningo ri es o er e se o regions.

. c region s ro s o e g o ri e non ero coe -

cien a ij ere i or j is n o ne ri e.

connections among owned vars

connections to incoming data

connections to outgoing data

Figure : onzero structure needed for parallel matrixoperations.

Ine�ect, we require eachprocessor to have the nonzero variables inthe shaded

regions in�gure .

fewremarks about this.

� If the variables are numbered in such a way that each region ownes a

blockof consecutively numberedvariables, then the �rst assumptioncan

be satis�edwithfor eachregiononlytwointegers per regionextra storage.

� The rows a i� for whichi is anownedvariablewill be named`essential' since

theyare necessary for the computationof Ax under the `writer computes'

rule. Rows a i� for which i is not owned will be called `non-essential'.

However, we will see inthe next sectionthat theymake it possible that a

regioncan construct its ownconnectivity information.

� Including some non-essential rows gives each region those rows that are

necessary to compute the matrix-vector products with both A and A t.

The multiplication with A t involves some, but not all, elements in the

non-essential rows of A.

� The extra rows are those values of i for which there is a j such that

aij = and j is anownedvariable. Such i -values correspond to variables

borderingonthe region, andtheir number is usuallyof a lower order than

the number of variables in the region. Thus the amount of extra storage

needed is not prohibitive.

� Fromthe previous point it follows that the number of rows is n_ ars (see

section3.2), that the array l al_n describes what rows theyare, and

that the array ne gives the numbers of the rows that are needed for

the matrix-vector product withA.

a
7,:

a
12,:

a
15,:

a
31,:

a
32,:

a
33,:

a
47,:

a
53,:

essential matrix rowsnon−essential matrix rows

row_first_locs(nvars)

ownd(n_owned_vars)

Figure : Rowcompressedstorage of the essential andnon-essential matrixrows.

. s

ith the extended matrixdescribed above, it is easy for a region to construct

its connectivity information. Let r be a neighbouring region, then

� region r sends variable j as incoming data if j is not an owned variable

anda ij = for some i that is anownedvariable;

� region r is sent variable j as outgoing data if j is anownedvariable and

aij = for some i that is not anownedvariable.

ote that a regionknows what incomingdata to expect fromits essential rows,

but that it needs the non-essential rows to �gure out what outgoing data to

send. For the incoming data, the sending region determined the need for this

fromits non-essential rows.

In conclusion we can state that, under the assumption that the regions know

howthe variables are partitioned, it is enoughif eachregionhas copies of certain

matrixrows as described above, plus the array l al_n .

References

[1] . nderson, . ai, C. ischof, . Demmel, . Dongarra, . Du

Croz, . reenbaum, S. Hammarling, . Mc enney, S. Ostrouchov, and

D. Sorensen. sers' i e. SI M, 1 2.

[2] . . Dongarra, C. . Moler, .R. unch, and . . Stewart. sers'

i e. SI M, 1 .

[3] . . Madsen, .H. Rodrigue, and .I. arush. Matrix multiplication by

diagonals on a vector/parallel processor. nor . roc. e ers, :41{4 ,

1 .

[4] ndrewT. Ogielski and illiam iello. Sparse matrix algebra on parallel

processor arrays. Technical report, ell Communications Research, 1 1.

1

