elseif «; - x;41 + B; - B™i+1 overflows, then
v = xig1/B+ B - BT (car e f ul 1 y!)
m; = m;y — 1

elseidfr;g +5;,-B™+1 underflows, then
vi=a; vy B+ g - B (carefully!)
m; = mipn +1

endi f

endfor

The true val weasrefgat ten f romt he coampd t7e dh e s a me waiysdgot ten
frodmyand mas described above ;ifssloameszt han 1 in magnitude, mul tiply i
Band emadd 1 totrhen subtract theflraorgeblt oof themso the largest is no
zero, and t hen c;htaom g .

I have not debugged this pseudocode, but I thinkit is basically co

Al an Edel man points out that these can all be blockedinstraigthfc

6. Compute y=gfor all ¢in one parallel operation.

To protect against over /underflow, one can modify this scheme in o
The easiest way is to clompasterheogor the momen®0)althgnd eg
Z;leogi using an add-scan, andefiral bpdl d®ege; ;1. Led = maxl og;
and =maxl og. Repl acd;byg slg—dand repl aeeblyolgeg—e. Exponentiate
the newliognd | ;86 0 get scal ed valamasdolieel argest of each of whichis 1
Nowperformsteps (4) through (6) of the above algorithm.

This has the added cost of alogarithmand exponent, andloses alitt
of themtoo. But it will not overflow and al most certainly not unden
(There are ot her elhmidd thaotf mi ght be marginally safer against underflo
signs of thaenfbe accumul ated and applied with a multiply scan operat
only £1's.

Abetter way to protect against overflowis to modify the mul tiply-
follows. Instead ofic:c)ﬂ?@:g‘gfii,n(gnaé computdpanad i ntegesrumh that

di cannot over/underﬂio:WgZiB”ﬁid where Bis a big power of the radix near
overflowthreshold. Here is a code, whichcanobviousld; bred“scanned”f«

m;:

do=1;m=0
for j=1,n
ifl; 1 -fineither overflows nor underflows then
di=diy- fi
m; = M1

elseif-fiwould overflowthen
di=d;i_y-f;/B(computed carefully!)
m; = mi—1 +1

elseif-fiwould underflowthen
di=d;i_1-f;-B(computed carefully!)
m; = m;_1 —1

endif

endfor

If Bis close tooverflow, at this poi nd lomsssthloand d akmaghl t ude,
mul tiply themby Bandsubtract I fromt heiWhear tr ke pe mdiarid abl e,
the largest one can be subtracted fromall of them (so the largest i
di=d;B™ computed wi thout fear of overflow.

The thirdapproachis torun the(yebewprar)e/mpe=eagr,u + 08,5 equen-
tially, scalingif necessary as one goes. The code i gtsd tnhkar inits
last code above:

Tp=0n; m=0
for 2 =n - downto 1
if ar;y +5;-B™+tneither over /under flows,
Ti =g Tipg + B - BT
m; = Mm;p

3 Exploiting extra rage

If we have extra exponent range available, we can greatly di minish
spent testing and scaling. If the datais in IEEEsingle precision,

(normalized!) numbers can be computed wi thout over /underflowin I EEE
and products of 128in I EEEextended. If the datais [EEEdouble then p
be computed in IEEEextended. Thus, any scaling tests would only hav
8, 16 or 128 products.

4 HBasias

Of course, it would be nice if the user could supply his or her own da
tive operator, and have the systemperformparallel prefix. Given th
handling as described above, it would be nice tohave these basic floa
be done automatically, rather than expecting the user to handle then

Apmdix Canmats mn Iwvease teratian an the VI-2 1

The task at hand is tosolve B =y where Bis an n by n upper bidiagon
x and y are n-vectomgs.., hodte ¢ he di agonal entries,of,. Bandeb

the superdiagonal entries. The us walyse gpgy pfm=ce k51 & i,

for i =ndownto¢ =1, =0idthdbygy =0. [can think of three ways to sol ve
this, with various kinds of i mmunity against overflow. I have not anal
all these (they are not all equivalent toevaluating the recurrence
nearly perfect backward error), but I don’t see any obvious dangers
the scan operation to the extent possible, assuming only scans for f
floating-point multiply (although the best solution would involve n
scan).

The first t wo, and most parallel, methods invol ve the fiell owing fac
B-Dy, whergalhd Pare di agonal, and Fis bidiagonal with1onthe diagona
Dy=diaghd. , d1) is givenbt dand=d[[i5(qg/8). D=diagde , g1)
is given;byld (;dy). One can al so veirs fuppgler triangular with all ones .
and above the di agonal. Thus, cdmpul,Fn'gDyr= Bvol ves the following:

1.Compute =1, ;~a/bfor all ¢ inone parallel step.
2.C0mput(—;;:d]_[§:0fifor all ¢ using a multiply-scanoperation.
3. Compute=1,,e=1/(diyg) for all ¢ intwo parallel steps.
4.Comput gz Diz for all ¢ inone parallel operation.

5. Compute % F~lyy for all ¢ using an add-scan operation (whichis all
by Elis).

!These are some early notes written for J.-P. Brunet.

Additi on/Subt racti on: compute z Fr=(x -*) H y 7). Statenents in braces are un-
necessary on nuchines that returned wrapped results on over/underflow It assunes there
are sticky overflow and underflow flags as in IEEF arithnetic. Multiplications and divi-
stons by r can be done by nodifying the exponent directly. It assumes round to nearest
node and flush to zero underflow (i.e. not gradual underflow), although the changes to
account for other assumptions are sinple. Besides r the nuchine constant t = under-
flow threshol d/nuchineepsilon will be used. I have arranged the “if” tests in decreasing
order of likelihood of their being executed.

if
(overflow) then

IEZ =(z/r) Hy/r)}
(underflow) then

vor) Hy-r)}

el
el

n+1) then
r

i
elseif

x
n

elseif (n<m-1) then
Y
m

T

endi f

It wouldbeinterestingtobenchmarkthis parallel prefixoperation
the protectionagainst over /underflowl propose here, tosee howmuch
us .

Safe Limits for Exponentiation
I EEE Singll e r =2 7 =329
f =22 b =16 255 49150
b =321.67-T03.22 90
f =21 b =16 260 49930
b =321.70-103.27 0
f =219 b =16 219 42223
b =321.44-102.76 -0
I EEE Doubl|l e r =2 7 =236
f =202 b =16 31 49150
b =322.09603.22 90
f o= 21022 b =16 32 49246
b =322.10503.22 90
f =t b =16 30 46775
b =321.99603.06 70

Jromthis table, we see the limiting case is taking power of the s
number. Whenbdb =16 we must clearlytakethelarger of the twor values t
large safe exponent, and even thenit is less than 50000. Choosing b
reasonable. Should we choose r =1 or larger 71 believe the larger
because of thelarger parallel prefixoperations it allows, and becaus
toimplement, since therepresentationof anumber is almost unique:
ways tostore anonzero number i"n the formf -r

Inorder toimplement our twooperations it suffices toexplainhowt
mul tiplication of numbers inthis scaled format.

Mil tiplication: conpute zF-= (x -%) x(y ™) . Statenents in braces are unnecessary
on nuchines that returned urapped results on over/underflow It assunes there are sticky
overflow and underflow flags as in [EEFE arithnetic. Mltiplications and divisions/by

can be done by nodi fying the exponent directly.

z=x-y
E=m+n
if (overflow) then

(

=Cayr) ()}

=k +1
if

el se (underflow) then
=Cayr) (y/r)}
k=Fk -

endi f

recurrences are enough to do 2 termrecurrences). At this time, howe
any evidence that we frequently need tosolve 3 or more termrecurren
This leads us to propose the following building blocks for paralle

1.Scalar multiply parallel prefix withscaling to avoidover /underf

2.2 by 2matrix multiply parallel prefix withscaling to avoidover/

2 Speifictias far Padld Prdix

Basically, each floating powiht bhembeplaced by a) pawhe (;d sf a
floating point numhemamd eger, with the pair;represaeminheggfer
power of 2. The first problemis tochoose r and thesmuanbéo afl bows to st
for easyimplementationand the ability todo verylarge parallel pre
fear of over /underflow. So given r, the number of ;nista diigmevdhi ch to s
integer, and the largest and smallest positive possible values of afl
will ask howhigh a power of thelargest and smallest floating point nu
without over /funderflowi;nrtihe form f

W will onlyconsider IEEEsingle anddouble precisionformats. The
numbers are gi veninthe following table:

I EEE Singl EEE Doubl|l e
Approxi mate overflowt hres hd1¥d 21024‘
Underflowthrelshol 2712 21022
Smallest subnormal numiei 2—1074

Reasonable val ues f &% froarleEEE2i ngle preciPP¥ifon,IEEE doubl e
precision. The source for these last two values is the wrapped expo:
arithmetic: If overflowis trapped, the floating point unit is suppos
answer timP%ih single precisionandthe tT¥W¢¥ ansdweurbl &1mperse?i sion.
Simlary, if underflowis trapped the value retur n'@doirsPupposed to b
times the true val ue.

Reasonable val ues for b, the number of bjtarienl ¢hancdh Idb.store n

The following table enumerates the approxi mate hi ghest powers to wl
number f can be safely raisedusing the scaled format as a function of

So we need to compute N =@PahPrefichere gdshad by 2 matrix, and -is
matrix multiply. Alternatively, we could use the following, equi val

J =Par Préfix-)
g=7/f (componentwise vector di vision)
h=Par Prefyx +)

t=h-f (componentwise vector multiplication)

Unfortunately, this is very nonrobust because f frequently over
Evenin IEEE double precision, wi'®h atrdoage né6tlfake many consecuti ve
floating point multiplies toget anumber out of range. This can be part
logarithms ghtcdhdoi ng a Paxf Pogfix) operation, but thisis not asatisf
solutionbecause it is slower andless accurate (see the appendi x).

Let TThe an n by nsymmetric tridiagonal matrixwithgdnadgonal entri
offdi agonal entrj 5.0 In order to findits eigenval ues, we need to solx
termrecurrence

w; = (q-0) wi_g b I wi_y . (2)

(The number of sign changes in tfie eqaadsctechefnwmber of ei genval ues o
less thano.) This may be writteninterms of parallel prefix as foll o

w; T Wit | _p | Wi-1 | _ p _ p. 1 1
[wi—ll_[1 0]‘[wi_zlzprlwi—z = bbb 0 0

So we need to compute Q:(P’B;[’Br,eéig(ainaQby2matrixmultlplyparallel
This recurrence suffers fromthe same sensitivity to over /underfl
w;is the determi nant of the leading ¢ by ¢ submatrix of T —oI, and s
over /Junderfloweven for matrices of modest normand modest di mensi o
there is no known way to express its solution using scalar multiply
parallel prefix as building blocks. In fact, we strongly suspect t1
exists, although welack as yet a formal proof.
Furthermore, thereis a theoremby H. T. Kung=whish)siaysathat if z
recurrence rel ati;éons whecalarisnafrati onal function, thd¢n z = [z
can be evaluatedinfaster than Q(n) timeif andonlyif it canbe eval
matrix multiply parallel prefix. It turns out t;lhat tofetdiel fyoparal leli

~~

a;xi—1 + B

fi 5-1) T i £ 6

which can be parallelized pzvwhpnphéiag 2

uip | | o B Wit | o | %ie1 | o x
EIRER R E E RN

Thus, 2 by 2 matrix multiply parallel prefixis sufficient (and we bel
parallelize all parallelizable scalar recurrence relations. On the
itis adequate for 3 or more termrecurrences (for the same reason I d

DRAFT
A Specification for Floating Point Parallel Prefix

James Demmel
Mathematics Department and Computer Science Division
Uni versity of Caliform a

Berkel ey, CA 94720

July 3, 1992

Abstract

Parallel prefix is a useful operation for various linear algebra operations, includ-
ing solving bidiagonal systems of equations and finding the eigenvalues of a symmetric
tridiagonal matrix. However, the simplest implementations of parallel prefix for the
operations of scalar floating point add and scalar floating point multiply are inade-
quate to solve these important problems. This is because they are too susceptible to
over/underflow, and because they apparently cannot solve the general two term recur-
rence needed to find eigenvalues. In this note we propose a specification for parallel
prefix operations overcoming these drawbacks.

1 Mivdim

Our notation for parallel prefix will be as flohhdws=[lset s} =] r
denote nvectors of data objects, which could be scalars or more comp
@ be an associative operator defined on these olfjre). cblhmpmtsesPar Prefi:

S =@ -Qr; .

The most basic numerical parallel prefix operations onpeaadul d support
¥, and ® being floating point addition or floating point multiplicati
floating point operations are not truly associative, and the i mpact ¢
numerical anal ysis we will not pursue here.

Let Bbe an n by n bidiagonal matrix with,diagandlsahtdiage-s
nal entryges, 1. To solve the linear systemBx =y, we need to sol ve t

recurrence
€ -1

x; =

K3

$i—1‘|‘%577i$i—1‘|‘7'i (1)

This may be done in two mathematically equivalent ways using paralle
we have

e L e Jrme o 2] 2]

