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Iterative refinemert — loss of accuracy. The expert drivers for sol ving linear systens

in LAPACK do single precision iterative refinenent to i nprove the sol uti gn§(t. 'This
refinenent will under certain technical assunptions guarantee a tiny conponentwi se rel ati ve
backward error. In contrast, the earlier conventional w sdomhad held that conputing
residual s in double precision was needed to justify the procedure, in which case one coul d
guarantee a tiny forward error provi ded the probl emwas not truly badly condi tioned. So
doubl e precision residual accumil ation has defini te advantages, but is not available tous if
we eschewmni xed precision. (X course, being able touse simil ated doubl e nakes it avail abl e
again, as vwell as an array of other iterative refinenent schenes based on doubl e precision
iterative refinenent. Since the cost of the double precision part of the calculation (for
dense problens) is O(%) in contrast to the renaini ng H)npart, the marginal cost of this
refinenent is small, and soit is well worth doing.
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the overall speed. (ertainly a factor of 10 sl owdown over single woul d not be too bad.

There are three ways to get access to double precision. (he is sinply to declare sone
doubl e precision variables, but this violates our ban on mxed ari thnetic. (he could also
simil ate double using integer arithnetic, but the known nethods for doing this portably
[12 7 are quite slowindeed for double precision, although they are useful for very high
precision. This leaves one with sinul ati ng doubl e precision using single precisionoperations,
for which nany effci ent techni ques are known [ 7717 72 . But these techniques require
suffti entl y accurate floating point arithnetic, in particular guard digits.

If we knew arithnetic were correctly rounded, and if we knew how nany digits of
accuracy there were, then we coul d simil ate doubl e precision using single perhaps only 5 or
6 tines nore slowy than just using single alone. W will use this techni que for the divide
and conquer al gori thmfor the symetric tridiagonal eigenproblem

Parallel bisection for the symmtric tridiagoml eigenproblem— loss of speed

Let T be a synmetric tridiagonal matrix with di agonal entrijes a, g and off di agonal
entriesdi . ..h-1. A statedina previous section the Sturmsequence=d( @, — 0 )d; _1—
b?_,d; _5can be used to count the nunber of eigenval ues of 7' less than . W may eval uate

this recurrence in O(Lmg) tine using parallel prefix with the operation of 2-by-2 matrix
b}
0
the entries of products of; Matrices growor shrink essentially as fast as determinants
of submatrices of I and so are very prone to over /underflow. Onhe could scale within the
inner loop, but this would be slowfor the sane reason condition estimation is currently
slow. Again, an overflowand an underflowflag woul d be qui te hel pful. In fact, the wrapped
exponent feature of IEEE arithnetic would be particul arly hel pful, because it returns the
true val ue of an underfloved or overfloved quantity wi th the exponent bi ased up or down

by a known anount to keep the returned result inrange [3 This can be used to good effect

to speed up the cal cul ation 22

mil tiplication with matrices of the form;M[ @i 1_ T - The diffeulty is that

2 hy 2 and other subproblem — loss of accuracy and software productivity, In

LAPACK much effort was expended on building highly reliable routines for the small (2

by 2 and sonewhat larger) linear systens and eigenproblens that must be sol ved within
larger sol vers. These small routines need to be highly reliable since they formthe kernels
of the larger problem It nay seemsurprising that such snall problens were so diffeul t

to solve well, but this experience is corroborated by the experience of other devel opers
of linear algebra software. If, on the other hand, we had been able to assunme (simulated)
doubl e preci si on when necessary, vast sinplificati ons woul d have been possible. For exanpl e,
subroutine SLAS2 conputes the eigenval ues of a 2-by-2 triangul ar matrix, and gets them
accuratel y no matter their val ues on virtually any nachi ne we knowof. It is 33 (nontrivial)
lines of Fortranlong. In contrast, a code using simul ated double could in principal be 3
(nontrivial ) lines long, depending on howmuch syntactic sugar was available to access the
simil ated doubl e. The sane conments apply to many other routines as well. In the first
public release of LAPACK we did not include routines for the generalized nonsymetric
eigenproblemA — A B, partly because the correspondi ng 2 by 2 routines were so difleult to
write. For the next LAPACKrel ease, we plan to write these assunm ng siml ated double is
avail abl e.
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Schur form

T tia Tis
T = 0 A to3
0 0 Ts3

and sol ve a triangul ar system{{I~ A\ [)x =—1t;5 to find the right eigenvector’z 1] of A
explicitly, or el se reduce just to Hessenberg formH and do inverseiteration (Hr=A[ )z
z; using an LUfactorization of H — AT |51

Thus, it appears that one could just use the Level 2 BLAS routine,[33 for sol ving
triangul ar systens in all these cases. Unfortunately, we can not, because in all cases we
anticipate solving ill-conditioned systems which could lead to overflow In the case of
condi tion estination, we want a condition estinate as a warning of potential problens in
solving Az =b, and in particul ar we woul d want a warning if overflowis possible, since
overflowis generally fatal and to be avoided. If we are conputing eigenvectors by sol ving
(i1 — A1 )z =—, thenif X is (nearly) an eigenval ugfdb, the systemwill be very
ill-conditioned and overflowwill be possible. Wen solving (H - A Fw; the nore
accurate A is, the nore singular H — AT will be and the nore likely overflowwill be. In
both these cases overflowis not a warni ng signal to the user, but rather aninternal event
of nointerest to the user.

To deal with potential overflow, we had to write newversions of all the triangul ar sol vers
in LAPACK whi ch scaled in the i nnernost loop to avoi d overflow. b see that we can not
sinply scale T and b to solve T'e =b consider an n-by-n upper bidiagonal T with ones
on the superdiagonal and ¢'s on the diagonal; thefi'Zhas an entry of size™® which
can be much l arger than the overflowthreshol d. To see howconplicated this may be, the
LAPACKsubrouti ne SLAIRS (whi ch deals both with Tz =b and T Ta =b) is 300 lines of
Iortran (not counting comments ).

If we were only interestedin condi tion estination, as in subroutine SUON an over-
flow woul d signal extrene ill-conditioning and in fact let us stop i medi atel y, returning
RCOND (estinated reciprocal condition nunber) equal to zero. Wth the sticky overflow
flag of TFEE arithnetic, this woul d be possible by sinply calling the Level 2 BLAS trian-
gul ar sol ver and testing the overflowflag on return. This lets the code go at its top possible
Level 2 BLAS speed, and still be robust.

For ei genvector conputations, we currently see no way to avoi d sophisticated scalingin
sone cases, but for the majority of cases where overflowdoes not occur, we could again
run at the top speed of Level 2 BLAS and not pay the i nsurance prem umof scalingin the
inner 1 oop unless required. This speed-up can be significant on sone nachi nes.

Divi de and conquer al gori thnfor the symmtri c tridiagoml ei genprohl em-1oss

of functiomlity. The al gori thmproposed in [14 and further devel oped in [[3Bs a fast
parallel nmethod for the symmetric tridi agonal eigenproblem and can be mich faster than

the ol der QRnethod even on serial nachines. However, it is not stable unless great careis
takenin sol ving the secul ar equation, arational equation whose roots are the ei genval ues at
each step nerging the sol utions of two subproblens. Infact, {1 8% shown that double
precision sol ution of the secul ar equation (double in the input precision, whatever that is)
is in fact necessaryin order to have a stable algorithm The anount of double precision
needed is small, and so evenif double is sinmul ated sonewhat ineffciently it will not affect
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whereas in others certain details of IFEE exception handling are inportant. In particul ar,
a large part of the potential benefit is attainable with an effeiently inpl enentabl e subset
of the possible exception handling nechani smsuggested by the IFFE standard [ 23hi s

is inportant because full TFEE conpliance in supplying precise interrupts is likely to be
ineffei ent on the heavily pipelined architectures common even in m croprocessors.

Here we will discuss the penalties paid for portability, and how I FEE conformnce
alleviates them Since virtuallyall nachines being built or onthe drawi ng boards conf or mat
least partially tolEEEari thnetic, we believe the tine has cone to write software specialized
to IFFE arithnetic (or at least sone features of TEEE). OQtherwise, the great investnent
in hardware nade by manufacturers will not pay offin faster, nmore accurate, nore reliable
and nore speedily written software, which was the entire notivation of the standard.

Cormiti ng mchi ne corstants —l oss of softvare productivity. Subroutine SLAMH

in LAPACK conputes basic nachine constants like the nachine precision ¢, underflow
threshol d, overflowthreshol d, the base, rounding style, and soon. It is 339 1ines of Fortran
long (not counting comments), and was quite diffcult to wite. It can be thought of as a
sinplified version of prograns 1ike Paranoia][68ver 2300 lines of lortran without com
nents) which attenpt to characterize the details of nachine arithnetic (as seen through a
high level language). Mst al gorithns need only reasonabl y accurate val ues of the nachine
precision, over and underflowthreshol d in order to work correctly, and for these SLAMCH

is adequate. However, for the nore subtle al gorithns di scussed belowit is difleul t or i npos-
sible toreliably discover at run tine whether the arithnetic, conpiler, and nathenatical
libraries have the necessary properties for the al gorithns to work. For exanple, siml ating
doubl e precision requires the basic roundi ng to be accurate enougli 7774 and al t hough

this can be tested at runtine it is very tine consum ng and not fool propf [B6erni ni ng
howunderflowi s handl ed (or even findi ng the exact overflowt hreshol d) requires causing an
overflow, and this may be fatal. Muny nore exanpl es can be cited.

There are two approach to this problem In the short run we will sinply be assuni ng
IEEEari thnetic, inwhichall these features are well defined (evenif the softwareinterface to
exception handlingis not). Inthelong run people are, for better or worse, likely to continue
inventing newstyles of floating point, as well as languages and conpilers providing new
interfaces, expression evaluation nechanisns, paraneter passing nechanisns, and other
features inpacting the floating point environnent as perceived by the programer [49
62, 63 66 76 . These devel opnents are guaranteed to repeatedly nake any programli ke
SLAMH obsolete. It would be nice to have a standard set of environnental enquiries
describing all possibly relevant details of the arithnetic, which could be supplied by the
conpiler inplenentor. Bat itis diffeult toinagine aterse but conplete set of suchenquiries
at the nonent, and tentative steps in this direction have not succeeded7fj62

Gndition estimtion and el genvector commitation — loss of speed. Both these

conput ations invol ve sol ving triangul ar systens of equation. o estinatd]||bdne can
use an LU factorization of A to repeatedly solve either Az =0lor=% for certain
cleverly chosen b [534 56 55 57. o conpute eigenvectors one can either reduce to
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5 Exploiting Good Floating Point Arithmetic

Agreat deal of effort went i nto trying to nake LAPACKportabl y correct despite the vari a-
tions in floati ng poi nt arithnetics, conpiler optimzations, and ability to handl e exceptions.
Qur goal was towrite “mil order software” that woul d wvork correctly evenif passed around
insource formfromnachi ne to machine, since that is the nodel of software devel opnent
supported by systens like netlib. W did not attenpt to get equally portable high perfor-
nance, since the BLAS are nachine dependent, as well as the optimal block sizes used by
each subrouti ne.

In particul ar, we had to nake worst case assunptions about the floati ng point environ-
nents:

1. Roundingis sloppy, done wi thout guard digits, sothat for anyoperation® € {+, —, x, +},
one can say onl y that the rounded val ue of @ Gb is

flla ©b) =(a(149) @ (b (1+))

where |61 and |2f are both bounded by sone tiny €. ¢ need not be as snall as the
rel ative di flerence between adjacent floati ng poi nt nunbers.

2. Al exceptions except underfloware possibly fatal and to be avoided as mich as is
reasonabl e, in particul ar when the final result consists of arepresentabl e floati ng poi nt
nunber.

3. It is possible for conplex division and the Level 1 BLAS routine xNRM |[ 6%r
conputing the Fuclidean length of a vector to nal function when sone of the data
exceeds the square root of overflow, or is nonzero but all less than the square root of
under flow.

4. No mxed precision is permtted, since a single precision code using sone double
precision can not be sinply translated to a double precision code since quadruple
precisionis not generally available.

W also, out of exasperation, nade several assunptions which are actually violated by
exi sting nachines, because they only nade a fewtest cases fail and because taking them
into account woul d have signi ficantl y conplicated or sl owed down the sof t ware:

1. It is safe to compute z /y if 0 < & < y without fear of exception. However, this
operation can overflowon nachi nes like (rays which actually conpute 2 *(1/y).

2. The underflowthreshold is significantly smaller thdn éhis is not true in Vax D
format, and causes failures we still do not conpletel y understandin sone badly scal ed
test cases.

Hovever, the price paid for this portable correctness was high, with penalties in speed,
functionality, accuracy and software productivity. In contrast, if we had been able to
assune a uni formfloating poi nt envi ronnent w th I EEE floati ng poi nt arithneti¢,| 3hese
probl ens woul d have been avoi ded. Not all features of IEEE ari thnetic are needed to avoid
each problem in sone cases any reasonabl y carefully rounded arithnetic woul d have done,
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W nake this rather vague conjecture nore precise inthe case of 1inear equation sol vi ng:
conputing an estimate of || A|| in any normw th any guaranteed accuracy at all is as
di fleul t as conputing A itself. In particular, to conpute!| A th any accuracy, we
clearly need to decide whether A is singular, so condition estination is at least as hard
as deciding singularity. W outline a proof that deciding whetherylet0 is as hard
as conputing A~! in the following very sinple (and nonrealistic) nodel of conputation:
W suppose the entries of A are conpl ex nunbers, run a straight-1ine programwhich can
performany of the four basic operations + —, X and + but whichis not allowed to divide
by zero for any input A, and conpare the resul ting rational function f(A) of the entries
of A tozero. 'The function f (A) must clearly be an integer power k 0fjletsi nce the
determnant is anirreducible pol ynomal, and the presence of any other pol ynom al factor
inf(A)wuldforsone Aeither lead toanincorrect decisionthat Ais singular (if it appears
in the nunerator of A), or to division by zero (if it appears in the denomnator). Nownote
that by Craner’s rule, each entry of "M may be witten (0f (A)/ a4/ (k- f(A)). Bya
result in [0 there exists a straightline code that conputes all the 0 f; {4 tBrde
tines the nunber of nontrivial nultiplies and divides needed to conpute f (A). Then all
the (0 f(A)/ @M (j- f(A)) can be conputed ikl nore steps, whichless than doubles
the operation count so far by a fan-in argunent.

Mre practically, wve woul dlike toassess thereliability of aparticul ar estination schene,
or to be able to conpare two schenes. For exanple, in [[65he authors conpare two esti-
mators for || AY|for an n-by-n symetric positive definite matrix A, where oneis permtted
only tomiltiply A by an arbitrary vector. This could in principal be used to estimnate
the snallest singular value of a general matrix G simgd @) = || (GGT)_le_l/Q, and
mul tiplying by (G&)~' can be done cheaply given the LU factorization of G. The au-
thors conpare k steps of the power nethod and £ steps of Lanczos applied to this problem
with a randomstarting vector ¢ They showthat the probability that the relative er-
ror in the estinate of ||Adxceeds e is at nosty/n(1 — e} for the power nethod, and
at nost /nexp(—/e(2k — 1)) for Lanczos. Thus, for small e, Lanczos has a nuch lower
probability of its relative inaccuracy exceeding e than the power nethod; this is another
way to express the fact that Lanczos extracts the maxi muminfornation fromthe Kyl ov
basis [ Ay, Azg, . ..Axo] whereas the pover nethod does not. Another probabilistic
anal ysis of the power nethod appears in [|28

Adiflferent probabilistic approach for conparing methods is as follows. It is notivated
by the approachin[18 19, where ill-conditioningis associated wi th nearness toa particul ar
al gebraic variety, and then the chance that a randomproblemlies close to that varietyis
estimated using just the degree and codinension of the variety. In the case of condition
estination one woul dtry to showthat the esti nator worked well unless the matrixlayclose
to a particul ar variety (or perhaps sem al gebraic set), and then estinate the chance that
a randomprobl eml ay close to that variety. This approach woul d not distinguish between
the power nethod and Lanczos, since they both use the sane basic i nformation about the
mtrix (its projection on a Krylov subspace) but mght be able to distinguish anong the
plethora of other estimtors schenes which have been proposed.
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have nearly the sanme real part (such as a skewsymetric matrix, all of whose eigenval ues
are pure inaginary), then no splitting is possible, and one nmight consider squaring the
matrix torotate the spectrum If the eigenval ues lie very close together on one di nensi onal
curves, as is the case in nmany applications, then no shifting or squaring schene will leave a
gap around the inaginary axis, whichis needed for fast convergence to the sign function.
Still, the nethod has attractions, such as being able to use basic building blocks such as
matrix mul tiplications, inversion, (Rdeconposition (to conputér@mthe col umms of

sigfA) — 1), and so on. In addition, the fact that it al ways acts on the original data by
mul tiplication by orthogonal matrices neans it is nunerically stable, provided we iterate
until 4, is suffeiently small.

The derse norsymmatri ¢ el genprobl enmr- Jacohi. Jacobi ’s nethod has been general -

ized toapply todense nonsymetric matrices [40L 75 78 79 83 87 8. The parallelism
arises inthe ability to apply rotations todisjoint pairs of rows or col unms in parallel. Sone
authors [4] 83 consider only orthogonal (or unitary) transfornations, and try to converge
to the Schur form thers [7578 79 use nonuni tary transfornations as well, and try to
converge to diagonal form provided the matrix is diagonalizable. The unitary nethods
guarantee nunerical stability, but appear to only be asynptotically linearly convergent.
The nonuni tary nethods can be nade to be asynptotically quadratically convergent, but
cannot guarantee backwardstability. Still, these nethods tends to nove the original matrix
closer to a nornal natrix, which has well-conditioned eigenval ues, and so in practice the
errors do not seemnuch worse than the condition nunber warrants. (bnvergence tends

to slowdown the farther fromnornal the matrixis. Mst questions about this class of
nethods are open: global convergence, retaining real arithnetic if the original matrixis
real [7887 8§, and avoiding instability and simil taneously sl owdown of convergence for

hi ghl y nonnormal natrices.

The gereralized morsymmatric eigenproblem Al of the above al gori thms and chal -

lenges appl y even nore to the generalized regul ar ei genval ue problemA — A B. Regul arity
neans A — A B is square and has a determ nant whichis not identically zero. Such A — A B
have n finite or infinite eigenvalues; for the nore general case se8G[ 4% 84 . The
standard serial algorithm]8&first reduces A to upper Hessenberg formand B to upper
triangul ar form we do not even have a bl ock al gori thmbased on natri x- vector or matri x-
natrix operations for performng this reduction. The extension of the other techniques
nentioned above has not yet been attenpted.

4 The Conplexity of Condition Fstination

Fast estimators of condition nunbers are ubiqui tous in nunerical linear al gebra, because
they provi de i nexpensi ve error bounds, and are quite reliabld [33till, counterexanples

are known for all existing estinators, i.e. matrices for which the estimators underesti nate
the true condition nunbers by arbitrary anounts. Thus, research continues on naking
estimators yet nore reliable while retaining their lowconplexity. Based onthis experience,
we nake the following

Gnjecture: The conpl exity of estimating a condition nunber with a guaranteed error
bound is as large as sol ving the original problem



predicts using Fuler’s nethod and corrects using Newton. Che woul d usually try alarge
stepsize first, such as going all the way to the final solutionin one step (in which case this
nethodis verysinilar tothe previous one), and only taking snaller steps if necessary. This
method is also hard to stabilize, since if the curves becone very close very tiny step sizes
are needed to distinguish them or else stability can be llast [ 70

The derse nmorsymmtri ¢ el genprobl em- divide and conquer. Instead of initially

reduci ng the dense matrix A to a condensed formlike Hessenberg or tridiagonal , one can
instead work directly on A [|71 These approaches try to divide and conquer the problem
by conputing an orthogonal matrix U =[{, ] where the col umms of & (approximately)

span an i nvariant subspace of A, so that

Al A
UTAU — — 11 12
UTAU, UL AU,

=[]
is nearly block upper triangular, i.g.isdAnearly zero. If;As small enough, one can
just find the eigenval ues offAand A),, perhaps recursively. So hownight one find such
an orthogonal U7? The ideais to find a sinple rational map f which naps one subset &
of the conplex plane to (or near) one point s, and (the interior of ) its conpl en¢ot S
another point 5 Then f(A) will (approximtely) have tvo eigenval ues s 4Andusd so
f(A) —'d will have eigenval ues s’-amd 0. Then, provided there are no 2-by-2 or larger
Jordan bl ocks associated wi th ei genval ue 0, the col umms of f ("A)wikl span the i nvariant
subspace associated with all eigenval ues inside region §.

One choice of f is the sign function ign=1if Rz > 0, sifgn) =0if Rz =0, and
sigiz) =—1if Rz < 0. This may be extended to a function of natrices in the usual way,
provi ded there are no pure i magi nary ei genval ues. Thus if

Ul AU, UL AU, ] _

A=[X,, X][Jél J‘;]m, w7’

is the Jordan canonical formof A, where[Y]" =[ X;, X]~!, the eigenval ues ofjJare
in the open left half pl ane and the ei genval ues;pf n/the open right hal f pl ane, then

sigiA) =[x, X][_OI ”[H I

Thus sign(A) — I =-2XY, and its col urm space spans the invariant subspace of A
associated with eigenval ues in the left half plane.

It turns out that thereis a verysinple globally convergent and asynptotically quadrat-
ically convergent iteration for conputing(sifn Ay =. 5(4+A7"). (hce 4 is close
enough toits limt the following schene is al so quadratically convergent, and avoids inver-
sion: Ay =. BA(31 — A). Qther higher order schenes are known too, but they are nore
expensi ve to eval uate, and round off tends to obscure the small eigenval ues of powers of a
matrix, soit is not clear that these schenes hel p.

There are certainly open problens associated with this schene. In order to divide the
spectrumnearly in half each tine, one mght try to choose a shift ¢ so close to half the
spectrumof A— ol isintheleft half plane and half in the right. If nost of the eigenval ues



The al gorithns currently under investigationillustrate the paradi gmof the introduction:
since they can be unstable, their use requires the abilityto quickly determne their stability,
perhaps a posteriori, and to reconpute the answer stably if required.

The romsymmtri ¢ tridiagoml eigemval ve problem Here the approachis to reduce

a dense nonsymmetric nmatrix to tridi agonal formvia nonorthogonal transfornations, and

then sol ve the resul ti ng nonsymetric tridiagonal eigenprobl emd346 47 . The main

diffeul tyis that the simlarity whichreduces amtrixtotridiagonal formcan be arbitrarily
ill-conditioned, andin fact one need not exist at all. The advantage is that it is cheaper to
find the ei genval ues of a nonsymetric tridi agonal matrix than a Hessenberg one.

The Hessenberg ei gemval ve problem As stated above, there are good bl ock al gori t hns

for reduci ng a dense nonsymetric natri x to upper Hessenberg form and several al gorithns
begin with this form The standard serial algorithmfor this problemis the Fancis (R
al gorithm[5]l, which produces a sequence Jbf orthogonally sinilar Hessenberg natrices
whi ch converge to Schur form o conpute If; 3 fromf;, one perforns rowand col umm
operations starting fromone end of the natrix and worki ng towards the other. This process
is called “chasing the bul ge” since at any i nternedi ate point there is a bul ge, or triangle of
nonzero entries | yi ng bel owthe subdi agonal e¢faildl spoilingits Hessenbergstructure. By
increasing the size of this bul ge, one can performnatrix-vector (Level 2 BLAS) operations
instead of vector-vector operations (lLevel 1 BLAS) but the speed up available is nodest
6 39.

There are two other techni ques to reduce the Hessenberg problemto a series of sinpler
problens: tearing and honotopy. Tearing [ B nvol ves setting asubdi agonal entryof H near
the niddle to zero, thus formng tvo i ndependent upper Hessenberg ei genprobl ens whi ch
can be sol ved in parallel. @ ven the solutions to these problens, they mist be nerged to
vield the sol ution of the entire natrix; clearly this approach may be applied recursively to
the snal l er subprobl ens encountered. This approach has been applied wi th great success to
the symmetric tridi agonal eigenproblem where the nerging process yields a scal ar secul ar
equationto sol ve, a sinple rational function whose roots are the eigenval ues, and for which
nonotoni call y and gl obal | y quadrati cally convergent Newton based iterative nethods exist
[14 38 8. The nethod even provides disjoint intervals in which the function whose zero
we desite is monotonic and guaranteed to have a single uni que sol ution.

The Hessenberg probl emi s significantl y harder. First, the eigenval ues are conplex, and
there is no guaranteed convergent iteration or even a sinple way to localize the desired
roots. The eigenvectors as well as the eigenval ues must be conputed, and all these may
be veryill-condi tioned, and sonetimes not evenexist. Evenif the initial problemhas well-
condi tioned ei genval ues and ei genvectors, snaller internedi ate probl ens may be very badl y
condi tioned. If tvwoor nore diflerent Newton iterati ons seemto converge to the same root,
itis hardtotell if the root is really multiple or if another root is not beifg found [ 59

The homotopy nethod can be though of as variant of the above schene, where one
(or nore) subdi agonal s are set to zero, the resul ting sinpler subproblens sol ved (perhaps
recursively), and then the sol utions nerged by graduall y i ncreasing the zero subdi agonal s to
their original val ues and fol l owi ng the curves of eigenval ues (and possibly eigenvectors) from
their original val ues as eigenval ues of subproblens to eigenval ues of the original problem
This curve following can be done in nany ways, such as predictor corrector where one



nagni tude. (Che can showthat a normuse perturbation in H of size n <« 1 can cause

rel ati ve changes in the eigenvalues of at nost about 7 k(H), but that a componentuise
relative perturbationin H of size n can cause rel ative changes in the ei genval ues of at nost
nk(A), which can be much smaller. Furthernore, one step of Jacobi can also only change
the eigenval ues by a relative anount of size nx(A), so that the errors introduced by one
step of Jacobi are no worse than tiny conponentwise relative error in the original data.

(I course, Jacobi does not converge in one step. let H g&HD gAgDp be the initial
natrix and its factorization as above. Lgtbélthe matrix after the ¢-th Jacobi rotation,
and let H =D ;A;D; be its anal ogous factorization. Eventuallaphioaches a di agonal
matrix A of eigenval ues,; Bpproaches A2 and A; approaches the i dentity matrix I . The
relative error in the eigenvalues cause by the ¢ -th Jacobi step is bounded by (e )x (A
so the overall error of the algorithmis bounded by O(e jmbx). Since the m nimm
possible error bound, due to small relative changes in the initial data, ig)Q(€hps (A
ultimate accuracy of Jacobi depends on howmnuch larger myx (4) can be than x(4).

Note that since Aeventually approachs I, k{ Approaches 1, and soit is the transient
rather than the asynptotic behavior of k;)Ahat is of interest.

In many thousands of nunerical experinents on randommatrices, the ratio
mx ;K (4)/ k(d) never exceeded 1.82. This neans the error bound attained by Jacobi is
nearly as good as the best possible one. Further work by Mscarenhas] [fidund a fam 1y
of exanples where max;k(4)/ x () can be as large as n /2, but this is not bad since there
are factors of n or nore in the O(e ) factor anyway. Aso ]nwp24hoved that tridiag-
onal (Riteration can fail to compute eigenval ues to high relative accuracy because there
are cases where max;kx(4)/ k(4) is as large as 1/ ¢ . Thus, the factoy méxt)/ k(4
plays a central role in predicting the accuracy with which we can conpute ei genval ues and
understandi ng when it is small is of interest.

Gereral Structured Backvard Error. The real goal of a user of a nunerical al gorithm

my not so much be tiny conponentwise relative backward error in the solution of the
nuneri cal nodel, but rather tiny backward error in the original physical problem For
exanpl e, one mght want to sol ve a diflerential equation with tiny backward error, and
this may or may not be inplied by sol ving the correspondi ng di scretized probl emwi th tiny
backward error. Ikpending on howthe parameters of the physical problemappear in the
discrete nodel, it may be quite hard to even conpute the backward error. If there are
nore out put parameters than i nput paraneters, it will generally be inpossible to achieve
tiny backward error for di nensional reasons. Fven the sinple problemof solving Az =b,
A =AT, with tiny conponentw se relative symetric backward error turns into a high
di nensi onal sparse underdeterninedleast squares (or | gaspriobl emy with no apparently
sinple sol ution [5Y .

3 Parallel Algorithm

Inthis sectionwelist probl ens where we still need good parallel al gorithns, evenones stable
in the conventional normwise sense. There is of course a trenendous anount of activity
inthis area, sowe will limt ourselves to problens that have arisen in the course of work
on LAPACK In particular, we will limt ourselves todirect al gorithns for dense problens.



6 A, where | § A <n|;fA. Then to first order the perturbation § A in A is giver by [48
)G Aal_ |G dal_ 1Bl - 1Al |

AT [ A Gz [ G4z =TT FAe]

a quantity ve easily tosee be at least i, and exceeding 1 to the extent we have cancellation
in the evaluation of Tyl . Thus this provides a condition nunber with which we can
conpute rel ative error bounds for conputed ei genval ues.

Stability of Pwrallel Refix Operation Suppose x 1, - ».% are data itens, and &

is an associative operator acting on them W wish to conpute,y. ..y where y; =

1@ - P a;. It turns out all the gan be conputed on O(logy,n) tine using a single

tree of processors; this operationis called parallel pré [168 13 . Al arge nunber of
inportant conputations can be reformil ated as parallel prefix operations, andin fact King

has shown that all rational scal ar recurrenceg & f;(2;) where fis arational function of

the scal ar @ which can be parallelized at all using rational operations can be parallelized
using parallel prefix where the associative operationis 2-by-2 matrix multiplication [67
For exanple, the eigenval ues of a symetric tridiagonal matrix T wth di agonal entries
ai, . ..¢ and offdi agonal entries;d . . .h_1 can be found using the Sturmsequence

di=(a;—0c)d_1—b?_d; o

where d;is the determnant of theleading -by-¢ principal submatrixof T'—o I . By Syl vester’s
theoremthe nunber of sign changes in the sequence of’d is the nunber of ei genval ues of

T less than o. This can be used to count the nunber of eigenval ues in any inteyyag][ o

and so find al 1 the ei genval ues of T by bisectiop [Blis schene is verystable nunerically

if evaluated seriallyin O(n) tine. It can be eval uated i;nQ(dsigng parallel prefix by
rewitingit as

di . a;, — o _b22—1 dZ -1 _ ) dz -1 _ . do
ld¢—1]_[ 1 0 ]‘ldi—Q]:MZ[di—2 =M Moy M d—

This technique, or ones like it, have been suggested in84d where good nunerical

resul ts have been attained. But so far no one has succeeded in proving it is stable, and
it appears diffeult to do so. Aso, the paradi gmwe proposed earlier for using possibly
unstable al gorithns, checking quickly for instability and reconputing if necessary, is hard
to apply because we knowof no faster way to confirmthe accuracy of an ei genval ue than

runni ng this parallel prefix operation. So studying the nunerical stability of parallel prefix
is aninportant open probl em

Accuracy of Jacohi’s Method In[27 | it was shownthat Jacobi’s nethod (withasuitable
stoppi ng condi tion) for findi ng the ei genval ues of asymetric positive definite matrix could
be much nore accurate than other nethods based on tridi agonalization fol l owed by sol vi ng
the tridi agonal eigenproblem simlar results were obtained for the SVID The reasonfor this
is as follows: Let H be the symmetric positive definite natrix whose ei genval ues ve desire.
Wite H =DAD, vwhere D =di ag (H111/2, - .f%?), and 4;=1. (One can showthat this

di agonal scaling of H results in A having a condition nunber x (A) &= |||4 |2 never

much larger than x ( H) and potentially much snaller, especially if; therfgreatlyin



Instead of bounding 6 H byits norm|| § H||l, one muyinstead use the neasune(vell) =
mx ;| 6 H /|;H, the largest relative change in any entry (we use the notatpotor el
indicate the dependence on H). This neasure respects sparsity, sincenistbe zeroif
H;;is zero, and al so grading, since every entryis perturbed by an anount snall conpared
to its nagni tude. For exanple, in the case of diagonal linear equation sol ving, one can
easily see that a perturbation 6 H of sizg(é H) in the matrix can only change the
solution relatively byg(élH) in each conponent, and that the algorithmis backward
stable with rg(é6 H) < ¢. 'hus, the new perturbation theory and error anal ysis wth
respect tor g(é H) accuratel y predi ct that each conponent of the solutionis conputed to
full relative accuracy.

W have successfully devel oped newperturbation theory, al gori thns, and error anal ysis
for the neasure r ¢7{é H) for much of nunerical linear algebra. W cannot al ways guar-
antee to sol ve probl ens as though we had a snall 78 H), but the al gorithns canin all
cases noni tor their accuracy and produce useful error bounds. The al gori thns are usually
smal ]l variations on conventional algorithms, perhaps with a slightly diflerent stopping cri-
terion, although the bidi agonal SVDal gorithmhas a quite newconponent. Inall cases the
al gorithns run approxi natel y as fast as their conventional counterparts, sonetines alittle
slower and sonetines alittle faster. Since they are based on the conventional al gorithns,
all the techni ques using the Level 3 BLAS apply to them

Thi s approach has been applied tolinear equation sol vingl[inear 1east-squares prob-
lens [5 24 5§, the bidi agonal SVD[261€ ., the tridiagonal symetric eigenprobl em[&]
the dense symetric positive defini te ei genprobl enj],2ind the dense defini te generalized
eigenproblem[8 27. W have simlar but slightly weaker results for the dense SVDand
general ized SVD[2]. These al gorithns either will be included directly in LAPACKor can
be easily constructed by usi ng LAPACKsubroutines as “buil di ng bl ocks.”

Nowwe discuss various open problens that renain to be sol ved, al ong wi th sone indi -
cation of howhard we think they are.

High accuracy ei gernal ves of Hesserberg mtrices. The nonsymetric ei genprob-

lemhas proven to be one of the nore diffcult problens to either parallelize successfully,
or sol ve to high accuracy. Here we outline the building blocks that could be assenbled
into an al gori thmthat conputes the eigenval ues of an upper Hessenberg matrix with tiny
conponentwi se rel ati ve backward error. Hessenberg natrices are of interest because one
can reduce a dense nmatrix to Hessenberg formquite effectivel y using natrix mul tiply and
other BLAS [42, 34 .

The first tool is a way to eval nate the determ nant of an upper Hessenberg matrix H
with tiny conponentwise rel ative backward error. The nethod is due to Hyman, and is
discussed in [90p. 427], [B9 This nethod could be used in a Newton- based iterative
refinenent schene to i nprove ei genval ues conputed another way [J7, or it coul d be used
as the basis of a schene itself]][ 705 eval uate the accuracy of a conputed eigenval ue
or eigenvector pair, one can use an a posteriori estinate of the conponentwi se backward
error; a sinple expression for this error in giveninwhiléh is a sinple generalization
of aresult of ®ttli and Prager|[.741 nally, one needs a condition nunber. The sinplest
such expressionis given as follows. let A be an eigenval ue of A with unit right eigenvector
z (so Az =Xz ) and unit left eigenvecfofsp f A =XyT). Suppose we perturb A by



hi gh speed of LAPACKis not portable without fast i npl enentations of these kernels. Bat

we strived very hard to make sure the conputed answers are correct no matter howfast

they are conputed. As developers of putatively portable nunerical software know, this

is a hard problembecause of the diflerence in floating point arithnetics provided on dif-
ferent nachines, with different conpilers, and with different basic nathenatical function
libraries. Fortunately, there is an opportunity to change this diffcult situation, because of
the wi despread acceptance of TFEE floating point standard arithnetil. [ There are nu-

nerous al gorithns whi ch woul d be mich shorter and soneti nes michfaster if we were able

to use certain features of 1FFEE arithnetic, especially the good roundi ng and the “sticky”
exception flags. In section 5 we descri be sone of these al gorithns.

2 High-Accuracy Linear Algebra Algorithm

W begin by describing the approach used to design and anal yze the high accuracy al go-
rithns al ready designed for LAPACK and then discuss open problens.

Wlet H denote the probl emfor which we seek a sol ution for sone problem we denote
the solution by f (H). Tor exanple, f ( H) may denote the ei genval ues, eigenvectors, singul ar
val ues, or singular vectors of the matrix H. If H denotes the pair (A, b), then f(H) may
denote the solution of the linear systemAx =0, perhaps in a least-squares sense if A
is singular or not square. In general, f(H) cannot be conputed exactly and hence is
approxi mated by an al gorithmwhose output we denotef(H). W also let ¢ denote the
machi ne precision.

Anal yzing the accuracy of an algorithfnfor f consists of two parts. Hrst, we use
perturbationtheory, where we bound the difference f (H+6 H)— f (H)interns of § H. This
part depends only on f and not the al gori thmthat approxi mates it. Second, we use error
anal ysis, which attenpts to showthat the computed solutig‘i(H) is closeto f(H+é6 H)
for sone bounded § H. Showing thatf( H) =f (H +& H) for sone bounded § H is called
backuurd error analysis, but is by no neans the only way to proceed.

There is a great deal of choice in the neasures we choose to bound errors and neasure
distances. In conventional error analysis as developed by Wlkinson, we bound || f (H +
§ Hy — f(H)|| interns of || 6 H|, and sitk) = f (H +& H) where || 6 H|| < O(e )| H| .
Here, || - || denotes a norm like the one-normor Fobenius norm Typically one proves a
formila of the form| f(H+6 H) — f(H)|| < s(f, H)- ||6 H|| LO(WefH|x (H) is
called the condition nunber of H with respect to f. Inthis formilation, it is easy to see
that K (f, H) is sinply the normof the gradient of f at H: || Vf(H)|; other scalings are
possible. Thus, conbining the perturbation theory and error anal ysis, one can wite

I f(H+6 H) = f ()| <O(e)n(f, H)- || H| +0(e

provi ded the al gorithmis backward stable.

The drawback of this approachis that it does not respect the structure of the original
data. In particular, if the original datais sparse or graded (large in sone entries, small in
others), bounding § H only by normcan gi ve very pessimstic results. Atrivial exanple is
sol vi ng a di agonal systemof equations. Fach conponent of the solutionis computed to full
accuracy by a single di vide operation, but the conventional condition nunber is the ratio
of the largest tosnallest diagonal entries and nay be arbitrarily | arge.



In the course of the project, it was also discovered that many standard problems could
also be sol ved mich nmore accurately than before. This was done by discovering al go-
rithns whose backward error was significantly smaller than that of conventional al gori thms
[4 26 16 8 27. This permtted us, for exanple to conpute singul ar val ues of bi di agonal
natrices to high relative accuracy no matter howtiny they ar¢;[ 26 contrast, the stan-
dard al gori thm[ 5D nay conpute the tiny singul ar val ues wi thout any rel ative accuracy at
all.

As aresult of these successes, our vision of what linear al gebra software shoul d provide
has changed considerabl y: our expectations of accuracy have risen. In addition, there are
a great nany newproblens to sol ve (and newtechni ques to try) in order to expand these
results to nore al gorithns. Wwill discuss these open problens in section 2 bel ow

(h the other hand, there remain sone problens for whi ch no hi ghl y parallel al gorithns
exist that are nunerically stable eveninthe conventional sense. For sone problens insisting
on naxi nal parallelismneans nonunerically stable al gorithmis known at all; inother cases
there is a “smoother” tradeoff of parallelizability and stability. In these cases we propose
the foll owi ng paradi gmfor using unstable but fast al gorithns safel y:

1. Sol ve the probl em(quickly).
2. Test for instability.

3. If the answer is unsatisfactory, reconpute the answer using a sl ower but nore stable
al gorithm

This paradi gmwill be successful if the fast al gorithmin the first stepis onlyrarely unstable,
and if the instability test in the second stepis cheap. Anunber of problens can be sol ved
this way, and are discussed in section 3.

In LAPACK as well as in nany other packages we estinate condition nunbers using
fast approxi mation al gorithns rather than attenpting to conpute themexactly. W do
this because error bounds are approxinations anyway, and high accuracy is generally not
needed. Also, a user more interested in speed nmay not be willing to take mich nore
tine to compute an error bound on top of solving the original problem Hwvever, the
price of using estinators is that all of theminvented so far have counterezanples, i.e.
probl ens whose condi tion nunbers are arbitrarily msestinated (usually underestinated).
Fortunatel y, these counterexanples appear to be extremely rare. This leads us to the
following conjecture:

The conplexity of conputing a condition nunber with a certain guaranteed
accuracy is at least as large as the conplexity of the original problem

In particular, this would inply that any fast estinator woul d necessarily have a coun-
terexanple. W will sketch a proof of this in a very sinple (and nonrealistic) nodel of
conputationin section 4, and di scuss an approach for anal yzi ng howrare counterexanpl es
are.

(he of the goals of LAPACK was portability of correctness. Qur need for nachine
speci fic versions of kernels like matrix-matrix multiplication (the Basic Linear Al gebra Sub-
routines, or BLAS[3332 31, 30 ) inorder toget hi gh perfornance neans that the potential
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Abstract

The original goal of the LAPACK project was to design and implement a portable
linear algebra library that would be very efficient on high-performance machines. During
the project it became apparent we could also significantly improve the accuracy of
many standard algorithms in linear algebra, with little or no sacrifice of speed. This
work has led to new perturbation theory, new algorithms and new error analyses for
many problems, as well as many still unsolved problems. In this paper we survey some
of these new results, and discuss open problems in four related areas: high accuracy
algorithms, parallel algorithms, the complexity of condition estimation, and exploiting
IEEE standard floating point arithmetic.

1 Introduction

The Uni versity of Tennessee, the Courant Institute for Mathematical Sci
ical Algorithms Group, Ltd., Rice University, Argonne National Labora
National Laboratory, and the Uni versity of California at Berkeley have
portable linear algebralibrary in Fortran77. The libraryis intended t
set of subroutines tosolve the most commonlinear algebra problems and t
on a wide range of high-performance computers.

The LAPACKlibrary (shorthand for Linear Algebra Package) provides
solving systems of si multaneous linear equations, least-squares soluti
systems of equations, and ei genval ue problems. The associated matrix f:
Cholesky, QR, SVD, Schur) are also provided, as well as related comput
reordering of the factorizations. Dense and banded matrices are provi
general sparse matrices. In all areas, sim lar functionalityis provide
matrices. The softwareis inthe public domain and ip.aVar laathdeef romnet]l
complete survey of LAPACK] .see [ 2

The ori ginal goal of LAPACKwas simplytobefaster thanits,predecessor:
44 and LINPACK] 29%hich run inefficiently on machines with hierarchical
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matics and its Applications at the University of Minnesota. The author also acknowledges the support of
NSF grants ASC-9005933 and DCR-8552474, and DARPA grant DAAL03-91-C-0047 via a subcontract from
the University of Tennessee.



