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Abstract

Recently Demmel and Veselic showed that Jacobi's method has a tighter relative

error bound for the computed eigenvalues of a symmetric positive de�nite matrix than

does QR iteration. Here we show the weaker error bound of QR as implemented in

LAPACK's SSTEQR or EISPACK's IMTQL is unavoidable. We do this by presenting

a particular symmetric positive de�nite tridiagonal matrix for which QR must fail, given

any reasonable shift strategy.

1 Introduction

Let T be an n by n symmetric positive de�nite matrix. Write T = DAD where D =

diag (T
1=2
11

; :::; T
1=2
nn ) and A is symmetric positive de�nite with unit diagonal. Let cond(T ) =

kTk2 �kT�1k2 denote the condition number of T , and � denote the machine precision (which

we take to be appropriate for IEEE double precision arithmetic: 2�52 � 2 � 10�16 [1]).

Demmel and Veselic [5] showed that relative perturbations of size � in the entries of T

can cause relative perturbations of size at most about � � cond(A) in its eigenvalues. They

also showed it is possible to use Jacobi's method with an appropriate stopping criterion

to compute the eigenvalues of T with this relative accuracy. In contrast, the conventional

error analysis of either Jacobi or tridiagonalization followed by QR provides an error bound

of only O(�)cond(T ). If D has diagonal entries of widely varying magnitudes, then cond(A)

can be a great deal smaller than cond(T ) (and never much larger in any event), so the new

relative error bound for Jacobi can be much better than the conventional one.

Here we show that the worse error bound for tridiagonal QR iteration is unavoidable.

We do this by considering a particular 3 by 3 symmetric positive de�nite tridiagonal matrix

T
0

=

2
64

1 1:5 � 10�16 0

1:5 � 10�16 10�32 1:5 � 10�16
0 1:5 � 10�16 1

3
75 (1.1)
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= D0A0D0 = diag (1; 10�16; 1) �

2
64

1 :15 0

:15 1 :15

0 :15 1

3
75 � diag (1; 10�16; 1)

The eigenvalues of T0 are 1, 1, and :955 � 10�32 to 16 digits of accuracy. We will show that

no matter what reasonable choice of shifts one uses, QR will (in the absence of rounding

coincidences) fail to compute the smallest eigenvalue with high relative accuracy. In con-

trast, since cond(A0) < 1:6, all the eigenvalues are determined to high relative accuracy by

the data and will be computed to nearly full machine precision by Jacobi.

Our example and proof work only for the implicit QR algorithm as implemented in

LAPACK subroutine SSTEQR [2] or EISPACK subroutines IMTQL1 and IMTQL2 [7]. A

di�erent proof would be needed for the the root-free QR algorithm in EISPACK (TQLRAT)

or LAPACK (SSTERF).

Indeed, provided one interprets \tridiagonal QR" su�ciently liberally, one can �nd a

very accurate version for positive de�nite matrices. In [3], it was pointed out that the three

step algorithm

1. Cholesky factorize T = LLT .

2. Compute the singular values �i(L) using the bidiagonal QR algorithm in [4].

3. Form �i(T ) = �2i (L).

computes the eigenvalues of T with relative accuracy O(�)cond(A). Thus, one cannot

expect a general result of the form \Jacobi is more accurate than QR" independent of

the implementation of QR.

2 Main Result

The algorithm we will analyze is in Figure 1.

Even though our proof is for the speci�c matrix T0, it will be obvious from the proof

that it works for a neighborhood of T0, and indeed for many other matrices. Thus T0 is not

an isolated example. Also, since T0 is symmetric from top-left to bottom-right, it does not

matter whether one performs QR or QL; we will use QR.

To explain the idea of the proof, we contrast QR's behavior with Jacobi. Both QR and

Jacobi begin with a matrix T0 and produce a sequence of orthogonally similar matrices Ti
converging to diagonal form. We may write each Ti as DiAiDi with Di diagonal and Ai of

unit diagonal as above. Assuming there are no \rounding coincidences", the accuracy of the

computed eigenvalues will be � times maxi cond(Ai). Since the sensitivity of the eigenvalues

of the original problem T0 is cond(A0), the algorithm will succeed in computing eigenvalues

to their inherent accuracy only if maxi cond(Ai) is not too much larger than cond(A0).

The di�erence between QR and Jacobi is that with Jacobi maxi cond(Ai) is apparently

never much larger cond(A0) [5] (we have extensive numerical evidence of this, although no

proof), whereas we may construct examples for QR where maxi cond(Ai) exceeds cond(A0)

by 1=�, an enormous factor. The T0 in equation (1.1) is such an example, as we will show.

We will also assume only \reasonable" shift strategies. This means we will use shifts

equal or close to 0, a diagonal entry, an eigenvalue of a 2 by 2 submatrix, or an eigenvalue
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Figure 1: Implicit tridiagonal QR with shift.

In the following d(1 : n) is a vector of diagonal entries of the input n by n

tridiagonal matrix, e(1 : n � 1) is the vector of its superdiagonal entries, and

� is the shift. On output d and e have been set equal to the diagonal and

superdiagonal of the transformed matrix T1, resp. [c; s; r] = ROT(g; f) returns

r =
p
g2 + f2, c = g=r and s = f=r. All the values c, s and r are computed

to high relative accuracy; the details of their computation (which may involve

tests to avoid over/under
ow) are unimportant.

g = d(1)� �

s = 1, c = 1, p = 0

for i = 1, n� 1

f = s � e(i)
b = c � e(i)
[c; s; r] = ROT (g; f)

if i 6= 1 then e(i� 1) = r, endif

g = d(i)� p

r = (d(i+ 1)� g) � s+ 2 � c � b
p = s � r
d(i) = g + p

g = c � r � b

end

d(n) = d(n)� p

e(n � 1) = g

of the whole matrix. Using an exact eigenvalue as a shift corresponds to the \perfect shift"

strategy discussed in [6]. I believe the result to be true for quite arbitrary shifts strategies

as well.

Let T1 denote the matrix after one QR step.

The proof has three steps:

1. Let T be any 3 by 3 symmetric tridiagonal matrix with two eigenvalues very near 1

and one much smaller, like T
0
. Let T = DAD as above. We will show that cond(A) is

small only if the diagonal of T is nearly a permutation of its eigenvalues. This means

that among the set of all T similar to T
0
, there are three disconnected \stability

islands" where cond(A) is small, each one corresponding to a permutation. Hence

any acceptable shift strategy is only allowed to produce matrices within these islands.

Furthermore, the only \reasonable" shifts for matrices T with small cond(A) are near

0 or near 1.

2. We show that shifts near 0 necessarily either compute an inde�nite T1 (and so with
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a totally inaccurate tiny eigenvalue), or else with cond(A1) near 10
15, and so with

eigenvalues so sensitive as to be completely untrustworthy.

3. We show that shifts near 1 have the same property as shifts near 0.

Lemma 1 : Let the 3 by 3 symmetric positive de�nite tridiagonal matrix T = DAD have

two eigenvalues between 1� � and 1+ �, and one less than �. We consider � small; � = :01

is adequate. Then cond(A) � mini Tii=(8�min(T )), and \reasonable" shifts are either less

than 8�min(T )cond(A) or in the range from 1� 8�min(T )cond(A)� 3� to 1 + �.

Let the two superdiagonal entries of A be a12 and a23, and let v =
q
a2
12
+ a2

23
. Then

cond(A) =
1 + v

1� v
� 1

1� v2
=

1

detA
=

Q
i Tii

det(T )
�

Q
i Tii

�min(T )(1 + �)2
� mini Tii

8 � �min(T )
(2:2)

The other two inequalities follow from 2 � 2� � tr(T ) � 2 + 3�, 0 < Tii � 1 + �, and the

Cauchy interlace theorem.

Lemma 2 If T = DAD is similar to T0 and cond(A) is small then the only \reasonable"

shifts are near 0 and near 1. In particular, shifts near 0 are at most 3 � 10�20cond(A), and
shifts near 1 are at least 1� 3 � 10�20cond(A).

Proof. From Lemma 1 we see T has diagonal entries near 1, 1 and 0. Since its

Frobenius norm is near
p
2 we see its o�diagonal entries are near 0. So by our de�nition of

\reasonable" we see all the shifts are near 0 or near 1.

Lemma 3 If we use a \reasonable" shift near 0 on T0 then we will either compute an

inde�nite T1 (and so with a totally inaccurate tiny eigenvalue), or else cond(A) � 1015,

indicating we expect to lose nearly all �gures in an eigenvalue.

Proof. We need to examine the inner loop of the implicit QR algorithm. >From the

�rst line of the algorithm, we see that any shift � < � � d(1) yields g = d(1) after roundo�.

Since d(1) is near 1, any � less than � � 2 � 10�16 behaves the same as � = 0, in particular

any of our \reasonable" shifts. Now we simply trace through the algorithm to see that the

�nal entry d(n) is computed as a di�erence d(n)� p. For us, d(n) is near 1 and d(n)� p is

near 0, so there is massive cancellation. The result can only be zero or a integer multiple

of �. If it is nonpositive, we have lost positive de�niteness. If it is a positive multiple of �,

Lemma 1 tells us

� � 8�min(T )cond(A)

so if �min(T ) is accurate (near 10
�32), then cond(A) is at least �=(8�min(T ) � 1015.

Lemma 4 If we use a \reasonable" shift near 1 on T0 then we will either compute T1 with

a totally inaccuracy tiny eigenvalue, or else cond(A) � 1015, indicating we expect to lose

nearly all �gures in an eigenvalue.

Proof. As in Lemma 3, we see the new d(1) is computed as g + p = d(1) + p, where

p is near �1 since the new d(1) is near 0. As before, we either get d(1) � 0, losing positive

de�niteness, or d(1) a small positive integer multiple of �, making cond(A) at least 1015 as

before.
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