
UNIVERSITY OF MANCHESTER

Perturbation Theory and Backward Error

for AX �XB = C

N.J. Higham

Numerical Analysis Report No. 211

April 1992

University of Manchester/UMIST

Joint Numerical Analysis Reports

DEPARTMENT OF MATHEMATICS

Department of Mathematics

University of Manchester

Manchester M13 9PL

England

Perturbation Theory and Backward Error

for AX �XB = C
�

Nicholas J. Higham y

April 14, 1992

Abstract

Because of the special structure of the equations AX �XB = C the usual

relation for linear equations \backward error = relative residual" does not hold,

and application of the standard perturbation result for Ax = b yields a pertur-

bation bound involving sep(A;B)�1 that is not always attainable. An expres-

sion is derived for the backward error of an approximate solution Y ; it shows

that the backward error can exceed the relative residual by an arbitrary factor.

A sharp perturbation bound is derived and it is shown that the condition num-

ber it de�nes can be arbitrarily smaller than the sep(A;B)�1-based quantity

that is usually used to measure sensitivity. For practical error estimation using

the residual of a computed solution an \LAPACK-style" bound is shown to be

e�ciently computable and potentially much smaller than a sep-based bound.

A Fortran 77 code has been written that solves the Sylvester equation and

computes this bound, making use of LAPACK routines.

Key words. Sylvester equation, Lyapunov equation, backward error,

perturbation bound, condition number, error estimate, LAPACK.

AMS(MOS) subject classi�cations. primary 65F05, 65G05

�This paper and the accompanying Fortran code are available by anonymous FTP from the

machine at Internet address 130.88.16.10, in directory pub/higham.
yNu�eld Science Research Fellow. Department of Mathematics, University of Manchester,

Manchester, M13 9PL, England (na.nhigham@na-net.ornl.gov). This work was carried out while

the author was a visitor at the Institute for Mathematics and its Applications, University of Min-

nesota.

1

1 Introduction

The matrix equation

AX �XB = C; (1:1)

where A 2 Cm�m, B 2 Cn�n, and C 2 Cm�n, arises in various mathematical settings.

Linear equations arising from �nite di�erence discretization of a separable elliptic

boundary value problem on a rectangular domain can be written in this form, where

A and B represent application of a di�erence operator in the `y' and `x' directions,

respectively [26]. The discretized equations are more commonly written in the form

(In
A�BT
 Im)vec(X) = vec(C); (1:2)

which is equivalent to (1.1). Here, A
 B � (aijB) is a Kronecker product and the

vec operator stacks the columns of a matrix into one long vector. (See [21, Ch. 4]

for properties of the Kronecker product and the vec operator.) This \big", standard

linear system has a coe�cient matrix of order mn with very special structure.

The equation (1.1) plays an important role in the eigenproblem. In particular, the

equation often has to be solved in algorithms that manipulate a real Schur decom-

position. Examples of such algorithms include an algorithm for block diagonalizing

a matrix described in [10, sec. 7.6.3], the algorithm used in LAPACK for re-ordering

the eigenvalues in the quasi-triangular form [3], and an algorithm for computing real

square roots of a real matrix [17]. In the latter two applications m;n 2 f1; 2g, so the

system (1.2) has order 1, 2 or 4. Related to (1.1) is the separation of A and B,

sep(A;B) = min
X 6=0

kAX �XBkF
kXkF

; (1:3)

which is an important tool in measuring invariant subspace sensitivity [10, sec. 7.2.5],

[27, 28]. Here, we are using the Frobenius norm, kAkF = (
P

i;j jaijj
2)1=2. It is easy to

see that sep(A;B) 6= 0 if and only if (1.1) has a unique solution for each C, or that,

equivalently, A and B do not have a common eigenvalue.

Equation (1.1) is known as the Sylvester equation (see [4] for a historical reference

that justi�es this terminology). The special case with B = �A� is the Lyapunov

equation AX +XA� = C, which has many applications in control theory [14, 20].

The main purposes of this work are to evaluate the backward error of an approxi-

mate solution Y to (1.1) and to determine the sensitivity of (1.1) to perturbations in

2

the data. In doing so we necessarily take full account of the structure of the Sylvester

equation. Expressions for the backward error and condition number can be obtained

from the work in [15], which applies to linear systems Ax = b in which A depends

linearly on a set of parameters. However, in the particular case of the Sylvester equa-

tion it is easy to derive even simpler expressions directly, and the main contribution

of this work is to analyse these expressions and explain their implications.

Backward error measures how much the data A, B and C must be perturbed in

order for an approximate solution Y to (1.1) to be the exact solution of the perturbed

system. An important point explained in section 3 is that a small value for the residual

R = C � (AY � Y B) does not imply a small backward error, unlike for a standard

linear system Ax = b. Although this point may not be widely appreciated, it is not

surprising, because in the particular case where m = n, B = 0 and C = I, we have

AX = I, and it is well-known that an approximate matrix inverse does not necessarily

have a small backward error, even if it has a small residual (see [8, 16], for example).

In section 2 we derive an explicit expression for the normwise relative backward error

of an approximate solution Y , and determine under what conditions it can greatly

exceed the relative residual. This analysis answers the open question raised in [5] of

whether the Bartels-Stewart method for solving the Sylvester equation is backwards

stable (indeed it answers the same question for any method for solving the Sylvester

equation, including the method of Golub, Nash and Van Loan [9]).

In section 4 we give a perturbation result for the Sylvester equation; this yields

a condition number that re
ects the structure of the problem. We show that this

condition number can be arbitrarily smaller than the quantity involving sep(A;B)�1

that has previously been employed in perturbation bounds in the literature. Of

particular practical interest is how to obtain, in terms of the residual, a forward error

bound for a computed solution cX to (1.1). We explain in section 5 how to compute

e�ciently an \LAPACK-style" bound that is potentially much smaller than the usual

sep-based bound.

We have written a Fortran 77 subroutine dggsvx that solves the Sylvester equation

and, optionally, estimates our suggested forward error bound and sep(A;B). dggsvx

makes use of LAPACK routines [1] and is in the style of an LAPACK driver (release

1.0 of LAPACK does not include a driver for the Sylvester equation). The leading

comment lines are listed in the appendix.

3

2 Solving AX �XB = C

In this section we brie
y review methods for solving the Sylvester equation and ex-

amine what can be said about the residual of the computed solution cX . Knowledge

of the residual is useful in the following sections.

Bartels and Stewart [5] showed how to solve (1.1) with the aid of Schur decom-

positions of A and B. Suppose A and B are real and have real Schur decompositions

A = URUT , B = V SV T , where U and V are orthogonal and R and S are upper

quasi-triangular, that is, block triangular with 1 � 1 or 2 � 2 diagonal blocks, and

with any 2�2 diagonal blocks having complex conjugate eigenvalues. (If A and B are

complex, the triangular Schur form is used and the following discussion is simpli�ed.)

Then the equation transforms to UTAU �UTXV �UTXV �V TBV = UTCV , that is,

RZ � ZS = D, or equivalently Pz = d, where P = In
 R � ST
 Im, z = vec(Z)

and d = vec(D).

If R and S are both triangular then so is P , up to row and column permuta-

tions. Therefore z can be obtained by back substitution, and standard backward

error analysis [10, sec. 3.1] shows that1

(P +�P)bz = d; j�P j � cm;nujP j; (2:1)

where cm;n is a modest constant that depends on the dimensionsm and n, and u is the

unit roundo�. Here, inequalities and absolute values are interpreted componentwise.

Thus jd� P bzj � cm;nujP jjbzj, which implies the weaker inequality

jD � (R bZ � bZS)j � cm;nu(jRjj bZj+ j bZjjSj): (2:2)

IfR or S is quasi-triangular then the computation of bZ involves the solution of systems

of dimension 2 or 4 by Gaussian elimination with pivoting. If iterative re�nement

is used for each of these systems `Pz = d', and if for each system P is not too ill-

conditioned and the vector jP jjzj is not too badly scaled, then (2.1) and (2.2) remain

valid [25]. Otherwise, we have only a normwise bound

kD � (R bZ � bZS)kF � c0m;nu(kRkF + kSkF)k bZkF :
1In fact, this result holds only for the usual \with guard digit" model of
oating point arithmetic,

namely fl(x op y) = (x opy)(1+�), j�j � u, op = �; =;+;�. If the model is weakened to fl(x � y) =

x(1 + �)� y(1 + �), j�j; j�j � u, as is necessary for machines that lack a guard digit, then (2.1) is

vitiated by the rounding errors in forming P , but (2.2) is still valid.

4

Because the transformation of a matrix to Schur form is a stable process, it is true

overall that

kC � (AcX � cXB)kF � c00m;nu(kAkF + kBkF)kcXkF : (2:3)

Thus the relative residual is guaranteed to be bounded by a modest multiple of the

unit roundo� u, as was noted in [5].

Golub, Nash and Van Loan [9] suggested a modi�cation of the Bartels-Stewart

algorithm in which A is reduced only to upper Hessenberg form: A = UHUT . The

reduced system HZ � ZS = D can be solved by solving n upper Hessenberg sys-

tems. As shown in [9], the Hessenberg-Schur algorithm can be more e�cient than the

Bartels-Stewart algorithm, depending on the problem dimensions, and the computed

solution cX again satis�es (2.3).

The use of iterative methods to solve (1.1) has attracted attention recently for

applications where A and B are large and sparse [22, 26, 29]. The iterations are

usually terminated when an inequality of the form (2.3) holds, so here the size of the

relative residual is known a priori (assuming the method converges).

3 Backward Error

The normwise backward error of an approximate solution Y to (1.1) is de�ned by

�(Y) = minf� : (A+ E)Y � Y (B + F) = C +G; kEkF � ��;

kFkF � ��; kGkF � �
g: (3.1)

The tolerances �, � and
 provide some freedom in how we measure the perturbations.

Of most interest is the choice � = kAkF , � = kBkF ,
 = kCkF , which yields the

normwise relative backward error. The equation (A+E)Y �Y (B+F) = C+G may

be written

EY � Y F �G = R; (3:2)

where the residual R = C � (AY � Y B). For a standard linear system Ax = b a

small relative residual is equivalent to a small backward error. Speci�cally, it can be

shown [24] that

minf� : (A+ E)y = b+ f; kEk2 � ��; kfk2 � ��g = krk2
�kyk2 + �

; (3:3)

5

where k � k2 denotes the vector 2-norm, kxk2 = (xTx)1=2, and the corresponding

subordinate matrix norm. For the Sylvester equation a small backward error implies

a small relative residual since, using the optimal perturbations from (3.1) in (3.2), we

have

kRkF = kEY � Y F �GkF � ((�+ �)kY kF +
)�(Y): (3:4)

However, the reverse implication does not always hold. To see this we write (3.2) in

the form

(Y T
 Im)vec(E)� (In
 Y)vec(F)� vec(G) = vec(R);

that is,

[�(Y T
 Im); ��(In
 Y); �
Imn]

266666664

vec(E)

�
vec(F)

�

vec(G)

377777775
= vec(R): (3:5)

This is an underdetermined system of the form Hz = r, where H is mn � (m2 +

n2 +mn), and H is certainly of full rank if
 6= 0. There are many solutions to this

system, but there is a unique one of minimum 2-norm, given by z = H+r, where H+

is the pseudo-inverse of H. It follows that

1p
3
kH+rk2 � �(Y) � kH+rk2: (3:6)

Since kH+rk2 � kH+k2krk2, with equality for suitable r, we see that the maximum

size of the backward error relative to the residual is dependent on kH+k2. We now

derive an expression for kH+k2. In view of the general formula kA+k2 = �min(A)
�1 for

full rank A, where �min denotes the smallest singular value, our task is to determine

the smallest singular value of H.

If Y has the singular value decomposition Y = U�V � then H is unitarily equiva-

lent to the matrix

fH = (V T
 U�) � H � diag(U
 U; V
 V; V
 U)

= [�(�T
 Im); ��(In
�); �
Imn] : (3.7)

Therefore H has the same singular values as fH , and these are the square roots of the

eigenvalues of the diagonal matrix

fHfH� = �2(�T�
 Im) + �2(In
��T) +
2Imn:

6

It follows that the singular values of H are given by

�ij = (�2�2j + �2�2i +
2)1=2; 1 � i � m; 1 � j � n;

where �1 � �2 � � � � � �min(m;n) � 0 are the singular values of Y and we de�ne

�min(m;n)+1 = � � � = �max(m;n) = 0. Hence, assuming that H has full rank,

kH+k2 = (�2�2n + �2�2m +
2)�1=2:

Combining this result with (3.6) we obtain

�(Y) � �
kRkF

(�+ �)kY kF +

; (3:8)

where

� =
(�+ �)kY kF +

(�2�2n + �2�2m +
2)1=2
: (3:9)

The scalar � � 1 is an ampli�cation factor that measures by how much, at worst,

the backward error can exceed the relative residual. We now examine � more closely,

concentrating on the normwise relative backward error, for which � = kAkF , � =

kBkF and
 = kCkF .
First, note that if n = 1 and B = 0, so that the Sylvester equation reduces to a

linear system Ay = c, then �1 = kyk2 and �k = 0 for k > 1, so � = (kAkFkyk2 +
kck2)=(kAk2Fkyk22+kck22)1=2. Since 1 � � �

p
2, we recover the result (3.3) from (3.4)

and (3.8), to within a factor
p
2.

If m = n then

� =
(kAkF + kBkF)kY kF + kCkF

((kAk2F + kBk2F)�min(Y)2 + kCk2F)1=2
: (3:10)

We see that � is large only when

kY kF � �min(Y) and kY kF �
kCkF

kAkF + kBkF
; (3:11)

that is, when Y is ill-conditioned and Y is a large-normed solution to the Sylvester

equation. In the general case, with m 6= n, one of �2m and �2n is always zero and hence

� can be large for a third reason: A (if m < n) or B (if m > n) greatly exceeds

the rest of the data in norm; in these cases the Sylvester equation is badly scaled.

However, if we set � = � = kAkF + kBkF , which corresponds to regarding A and B

as comprising a single set of data, then bad scaling does not a�ect �.

7

If we allow only A and B to be perturbed in (3.1) (as may be desirable if the

right-hand side C is known exactly), then
 = 0 and (3.10) and (3.11) remain valid

with kCkF replaced by zero. In this case � � kY kFkY +k2 � �2(Y) (for any m and

n), so � is large whenever Y is ill-conditioned (and included in this case is matrix

inversion). Conditions involving controllability which guarantee that the solution

to the Sylvester equation with m = n is nonsingular are given in [12], while in [7] a

determinantal condition for nonsingularity is given. It appears to be an open problem

to derive conditions for the Sylvester equation to have a well-conditioned solution.

The following numerical example illustrates the above analysis. This particular

example was carefully chosen so that the entries of A and B are of a simple form, but

equally e�ective examples are easily generated using random, ill-conditioned A and

B of dimension m;n � 2. Let

A =

"
1 �1
1 �1

#
; B = A� �

"
1 + � 0

0 1

#
:

De�ne C by the property that vec(C) is the singular vector corresponding to the

smallest singular value of In
A�BT
 Im. With � = 10�6, we solved the Sylvester

equation in Matlab by the Bartels-Stewart algorithm and found that the computedcX satis�es

kRkF
(kAkF + kBkF)kcXkF + kCkF

= 2:82 � 10�17; �(cX) = f2� 1018; 5� 105g;

�(cX) � kH+rk2 = 2:21 � 10�8; � = 5:66 � 1012:

Matlab has unit roundo� u � 1:1 � 10�16, so although cX has a very acceptable

residual (as it must in view of (2.3)), its backward error is eight orders of magnitude

larger than is necessary to achieve backward stability. We solved the same Sylvester

equation using Gaussian elimination with partial pivoting on the system (1.2). The

relative residual was again less than u, but the backward error was appreciably larger:

�(cX) � 1:53� 10�5.

The analysis above makes no assumption on the structure of the matricesA and B.

If A and B are (quasi-) triangular then one may wish to restrict the perturbations E

and F in (3.1) to have the same structure. This requirement can be met by removing

those elements of vec(E) and vec(F) in (3.5) that correspond to the \zero triangles"

of A and B, and deleting the corresponding columns of the matrix H. If Hi denotes

8

H with column i removed then �min(Hi) � �min(H), so one would expect forcing

preservation of triangularity to make the backward error no smaller and potentially

much bigger.

For the Lyapunov equation, in which B = �A�, we need to modify the de�nition

(3.1) of backward error so that F = �E�, in order to make a single perturbation to

the matrix A. Clearly, the modi�ed backward error is no smaller than (3.1). The

analogue of (3.2) is EY + Y E� �G = R. Assuming that the data is real this can be

written as

[�
�
(Y T
 In) + (In
 Y)�T

�
; �
In2]

2664
vec(E)

�
vec(G)

3775 = vec(R);

where vec(ET) = �Tvec(E), and where � is a permutation matrix known as the

vec-permutation matrix [13]. Unlike for the general Sylvester equation, no explicit

formula is available for the norm of the pseudo-inverse of the coe�cient matrix. Thus

the added structure of the Lyapunov equation makes the backward error much less

analytically tractable.

To summarise, the backward error of an approximate solution to the Sylvester

equation can be arbitrarily larger than its relative residual. The key quantity is the

ampli�cation factor � in (3.9), which bounds the ratio of relative residual to backward

error.

In [5], Bartels and Stewart state that they were unable to show that the computed

solution cX from their algorithm has a small backward error, although they could

show that it has a small normwise relative residual, as in (2.3). Our analysis, and

the numerical example, make it clear that cX will not always have a small backward

error|for kH+rk2 � kH+k2krk2 holds for some rounding errors (for example, if

there is just a single rounding error, so that r = �ek, where the kth column of H+

has maximal norm), and then (3.8) is an approximate equality, with � possibly large.

4 Perturbation Result

To derive a perturbation result we consider the perturbed Sylvester equation

(A+�A)(X +�X) � (X +�X)(B +�B) = C +�C;

9

which, on dropping second order terms, becomes

A�X ��XB = �C ��AX +X�B:

This system may be written in the form

P vec(�X) = � [XT
 Im; �In
X; �Imn]

2664
vec(�A)

vec(�B)

vec(�C)

3775 ; (4:1)

where P = In
A�BT
 Im. If we measure the perturbations normwise by

� = maxfk�AkF
�

;
k�BkF

�
;
k�CkF

g;

where �, � and
 are tolerances as in (3.1), then

k�XkF
kXkF

�
p
3	� (4:2)

is a sharp bound (to �rst order in �), where

	 = kP�1 [�(XT
 Im); ��(In
X); �
Imn] k2=kXkF (4:3)

is the corresponding condition number for the Sylvester equation. The bound (4.2)

can be weakened to
k�XkF
kXkF

�
p
3��; (4:4)

where

� = kP�1k2
(� + �)kXkF +

kXkF
:

If kP�1k2(� + �)� < 1=2 then twice the upper bound in (4.4) can be shown to be a

strict bound for the error. The perturbation bound (4.4) with � = kAkF , � = kBkF
and
 = kCkF is the one that is usually quoted for the Sylvester equation (see [9, 14],

for example); it can also be obtained by applying standard perturbation theory for

Ax = b to (1.2). Note that the term kP�1k2 is equal to the reciprocal of sep(A;B)

in (1.3).

For the real Lyapunov equation, a similar derivation to the one above shows that

the condition number is

k(In
A+A
 In)
�1 [�

�
(XT
 In) + (In
X)�T

�
; �
In2] k2=kXkF ;

10

where � is the vec-permutation matrix.

How much can the bounds (4.2) and (4.4) di�er? The answer is by an arbitrary

factor. To show this we consider the case where B is normal (or equivalently, A is

normal if we transpose the Sylvester equation). We can assume B is in Schur form,

thus B = diag(�j) (with the �j possibly complex). Then P = diag(A � �jjIm)
�1,

and it is straightforward to show that if X = [x1; . . . ; xn], and if we approximate the

2-norms in the de�nitions of 	 and � by Frobenius norms, then

	2 �
�
�2

nX
j=1

kxjk22k(A� �jjIm)
�1k2F + �2

nX
j=1

k(A� �jjIm)
�1Xk2F

+
2
nX
j=1

k(A� �jjIm)
�1k2F

�
=kXk2F ;

while

�2 �
nX
j=1

k(A� �jjIm)
�1k2F

�
(� + �) +
=kXkF

�2
:

These formulas show that in general 	 and � will be of similar magnitude, and we

know that 	 � � from the de�nitions. However, 	 can be much smaller than �. For

example, suppose that
 = 0 and

k(A� �nnIm)
�1kF � max

j 6=n
k(A� �jjIm)

�1kF :

Then if

kxnk2
kXkF

� 1 and
k(A� �nnIm)

�1XkF
kXkF

� k(A� �nnIm)
�1kF ;

we have 	 � �. Such examples are easily constructed. To illustrate, let A =

diag(2; 2; . . . ; 2; 1) and B = diag(1=2; 1=2; . . . ; 1=2; 1 � �), with � > 0, so that A �
�nnIm = diag(1 + �; 1 + �; . . . ; 1 + �; �), and let X = (A � �nnIm)Y , where Y =

[y; y; . . . ; y; 0] with k(A��nnIm)yk2 = kA��nnImk2 and kyk2 = 1. Then, if
 = O(�),

	 = O(�2 + �2); � � ��1(�2 + �2):

To summarise, the \traditional" perturbation bound (4.4) for the Sylvester equa-

tion can severely overestimate the e�ect of a perturbation on the data when only A

and B are perturbed, because it does not take account of the special structure of

the problem. In contrast, the perturbation bound (4.2) does respect the Kronecker

structure, and consequently is attainable for any given A, B and C.

11

To obtain an a posteriori error bound for a computed solution cX � X + �X we

can set �A = 0, �B = 0 and �C = AcX � cXB � C = R in (4.1), which leads to

kX � cXkF
kXkF

� kP�1k2
kRkF
kXkF

: (4:5)

A similar but potentially much smaller bound is described in the next section.

5 Practical Error Bounds

For an approximate solution bx to a linear system Ax = b of order n, we have for

r = b�Abx,
kx� bxk1 = kA�1rk1 � k jA�1jjrj k1;

and this bound is optimal if we are prepared to ignore signs in the elements of A�1

and r. To obtain a strict computed bound it is necessary to add a term that takes

account of any rounding errors in forming r. The overall bound is

kx� bxk1
kbxk1 � k jA�1j(jrj+ (n+ 1)u(jAjjxj+ jbj)) k1

kbxk1 : (5:1)

The numerator in the bound is of the form k jA�1jd k1, and as in [2] we have

k jA�1jd k1 = k jA�1jDe k1 = k jA�1Dje k1
= k jA�1Dj k1 = kA�1D k1;

where D = diag(d) and e = (1; 1; . . . ; 1)T . Hence k jA�1jd k1 can be estimated using

the norm estimator of [11, 18, 19], which estimates kBk1 at the cost of forming a few

matrix-vector products involving B and BT . With B = (A�1D)T we need to solve

a few linear systems involving A and AT . The bound (5.1) is the one returned by

the linear equation solvers in the Fortran linear algebra library LAPACK [1]; it is

estimated in the way described above.

For the Sylvester equation we can use the same approach if we identify Ax = b

with (1.2). For the computed residual we have

bR = fl(C � (AcX � cXB)) = R+�R;

j�Rj � u
�
3jCj+ (m+ 3)jAjjcXj+ (n+ 3)jcXjjBj� � Ru:

12

Therefore the bound is

kX � cXkM
kcXkM � k jP�1j(jvec(bR)j+ vec(Ru)) kM

kcXkM ; (5:2)

where kXkM = maxi;j jxijj. Using the technique described above, this bound can

be estimated at the cost of solving a few linear systems with coe�cient matrices

In
A�BT
Im and its transpose|in other words, solving a few Sylvester equations

AX � XB = C and ATX � XBT = D. If the Bartels-Stewart algorithm is used,

these solutions can be computed with the aid of the previously computed Schur

decompositions of A and B. The condition number 	 in (4.3) and sep(A;B) =

kP�1k�12 can both be estimated in much the same way. Alternative algorithms for

e�ciently estimating sep(A;B) given Schur decompositions of A and B are given

in [6, 23].

The attraction of (5.2) is that large elements in the jth column of P�1 may be

countered by a small jth element of vec(bR)+vec(Ru), making the bound much smaller

than (4.5). In this sense (5.2) has better scaling properties than (4.5), although (5.2)

is not actually invariant under diagonal scalings of the Sylvester equation.

We give a numerical example to illustrate the advantage of (5.2) over (4.5). Let

A = J3(0); B = J3(10
�3); cij � 1;

where Jn(�) denotes a Jordan block of size n with eigenvalue �. Solving the Sylvester

equation by the Bartels-Stewart algorithm we found that the bounds are

(4:5) : 8:00 � 10�3; (5:2) : 6:36 � 10�15

(where in evaluating (4.5) we replaced R by j bRj+Ru, as in (5.2)). Here, sep(A;B) =

1:67�10�16, and the bound (5.2) is small because relatively large elements of jvec(bR)j+
vec(Ru) are nulli�ed by relatively small columns of P�1. For this example, with

� = kAkF , � = kBkF ,
 = kCkF , we have

	 = 7:00 � 109; � = 1:70 � 1016;

con�rming that the usual perturbation bound (4.4) for the Sylvester equation can be

very pessimistic. Furthermore,

kRkF
(kAkF + kBkF)kcXkF + kCkF

= 7:02 � 10�24;

13

�(cX) = f6 � 1015; 5� 104; 3� 102g;

�(cX) � kH+rk2 = 1:00 � 10�19; � = 2:26 � 1013;

so we have an example where the backward error is small despite a large-normed H+,

since kH+rk2 � kH+k2krk2.
Finally, we mention that the backward error of a computed solution cX can be

bounded by estimating �min(cX) and then evaluating the bound in (3.8). If a QR

factorization cX = QR is computed then any available condition estimator can be

used to estimate �min(R) = �min(cX). Note that the backward error can be computed

\exactly" as kH+rk2 (see (3.6)) using only the SVD of cX, since the SVD of H is

given in terms of that of cX as described in (3.7).

6 Software

The computations discussed above can all be done using the LAPACK software [1].

The Bartels-Stewart algorithm can be implemented by calling xGEES2 to compute

the Schur decomposition, using the level 3 BLAS routine xGEMM to transform the

right-hand side C, calling xTRSYL to solve the (quasi-) triangular Sylvester equation,

and using xGEMM to transform back to the solution X. The error bound (5.2) can

be estimated using xLACON (which implements the estimator of [11, 18, 19]) in

conjunction with the above routines. We have written a Fortran 77 code dggsvx that

follows the above outline. It is in the style of an LAPACK driver and follows the

LAPACK naming conventions. Its leading comment lines together with an example

program are listed in the appendix.

Acknowledgements

I thank Zhaojun Bai for bringing the question of backward error for the Sylvester

equation to my attention, and Bai and Jim Demmel for fruitful discussions on this

work and for their comments on the manuscript.

2The leading `x' stands for S, C, D, or Z, which indicates the data type: single precision, complex,

double precision or complex double precision.

14

Appendix: Listings of Fortran 77 Routines

The following routine dggsvx solves the Sylvester equation and, optionally, estimates

a forward error bound and sep(A;B), making use of LAPACK routines [1].

DGGSVX

SUBROUTINE DGGSVX(TRANA, TRANB, SENSE, ISGN, M, N, A, LDA, B,

$ LDB, C, LDC, FERR, RELRES, SEP, SCALE, WORK,

$ LWORK, IWORK, INFO)

*

* By Nick Higham, University of Manchester.

* March 27, 1992.

*

* .. Scalar Arguments ..

DOUBLE PRECISION FERR, RELRES, SCALE, SEP

INTEGER INFO, ISGN, LDA, LDB, LDC, LWORK, M, N

CHARACTER SENSE, TRANA, TRANB

* ..

* .. Array Arguments ..

DOUBLE PRECISION A(LDA, *), B(LDB, *), C(LDC, *),

$ WORK(*)

INTEGER IWORK(*)

* ..

*

* Purpose

* =======

*

* DGGSVX solves the real Sylvester matrix equation

*

* op(A)*X + X*op(B) = scale*C or

* op(A)*X - X*op(B) = scale*C,

*

* where op(A) = A or A**T.

* A is m-by-m and B is n-by-n. The right hand side C and

* the solution X are m-by-n. Scale is an output scale factor

* which is set <= 1 to avoid overflow in X.

*

* Reference

* =========

*

* [1] N.J. Higham, Perturbation theory and backward error for AX-XB=C,

15

* Numerical Analysis Report No. 211, University of Manchester, England,

* April 1992.

*

* Arguments

* =========

*

* TRANA (input) CHARACTER*1

* Specifies the option op(A):

* = 'N': op(A) = A (No transpose)

* = 'T': op(A) = A**T (Transpose)

* = 'C': op(A) = A**T (Conjugate transpose = Transpose)

*

* TRANB (input) CHARACTER*1

* Specifies the option op(B):

* = 'N': op(B) = B (No transpose)

* = 'T': op(B) = B**T (Transpose)

* = 'C': op(B) = B**T (Conjugate transpose = Transpose)

*

* SENSE (input) CHARACTER*1

* Determines which of sep(A,B) and the forward error bound is

* computed.

* = 'N': Neither is computed.

* = 'F': Forward error bound is computed.

* = 'S': sep(A,B) is computed.

* = 'B': Both are computed.

* If SENSE = 'F', 'S' or 'B', RELRES is computed.

*

* ISGN (input) INTEGER

* Specifies the sign in the equation:

* = +1: solve op(A)*X + X*op(B) = scale*C

* = -1: solve op(A)*X - X*op(B) = scale*C

*

* M (input) INTEGER

* The number of rows and columns of the input matrix A. M >= 0.

*

* N (input) INTEGER

* The number of rows and columns of the input matrix B. N >= 0.

*

* A (input/output) DOUBLE PRECISION array, dimension (LDA,M).

* On input, A is the m-by-m coefficient matrix.

* On output, A has been overwritten by its Schur form.

*

16

* LDA (input) INTEGER

* The leading dimension of the array A. LDA >= max(1,M).

*

* B (input/output) DOUBLE PRECISION array, dimension (LDB,M).

* On input, B is the n-by-n coefficient matrix.

* On output, B has been overwritten by its Schur form.

*

* LDB (input) INTEGER

* The leading dimension of the array B. LDB >= max(1,N).

*

* C (input/output) DOUBLE PRECISION array, dimension (LDC,N).

* On input, C is the m-by-n right-hand side coefficient matrix.

* On output, C has been overwritten by the solution matrix X.

*

* LDC (input) INTEGER

* The leading dimension of the array C. LDC >= max(1,M).

*

* WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK).

* On exit, WORK(1) contains the optimal workspace size LWORK

* for high performance.

*

* LWORK (input) INTEGER

* The dimension of the array WORK.

* LWORK >= 2*(M*M + N*N) + 3*M*N + 5*max(M,N).

* For good performance, LWORK must generally be larger.

* The optimum value of LWORK for high performance is

* returned in WORK(1).

*

* IWORK (workspace) INTEGER array, dimension (M*N).

*

* FERR (output) DOUBLE PRECISION

* On exit, if SENSE = 'F' or 'B',

* an estimated forward error bound for the solution X.

* If XTRUE is the true solution, FERR bounds the magnitude

* of the largest entry in (X - XTRUE) divided by the magnitude

* of the largest entry in X.

*

* RELRES (output) DOUBLE PRECISION

* On exit, if SENSE = 'F', 'S' or 'B',

* the relative residual for the computed solution, measured

* in the Frobenius norm,

* norm(R) / ((norm(A)+norm(B))*norm(X) + norm(C)).

17

* Note: This is a lower bound for the backward error.

* See [1] for further details.

*

* SEP (output) DOUBLE PRECISION

* On exit, if SENSE = 'S' or 'B',

* this is an estimate of

* sep(A,B) = min norm(AX-XB-C)/norm(X)

* where norm(X) is the magnitude of the largest entry of X.

* The estimate is computed with a condition estimator.

* sep(A,B) is the standard measure of how ill-conditioned the

* Sylvester equation is: the smaller sep, the greater the

* ill-conditioning. See [1] for a full explanation.

*

* SCALE (output) DOUBLE PRECISION

* The scale factor, scale, set <= 1 to avoid overflow in X.

*

* INFO (output) INTEGER

* = 0: successful exit.

* > 0: not all the eigenvalues of A and/or B were successfully

* computed by DGEES, which is called by this routine.

* < 0: if INFO = -k, the k-th argument had an illegal value.

*

* ===

SYLEX

PROGRAM SYLEX

*

* By Nick Higham, University of Manchester.

* March 27, 1992.

*

* Purpose

* =======

*

* SYLEX is an example program that shows how to use SUBROUTINE DGGSVX

* to solve the real Sylvester equation op(A)*X + isgn*X*op(B) = C.

*

* ===

*

* .. Parameters ..

INTEGER M, N, LDA, LDB, LDC, LWORK

PARAMETER (M = 3, N = 3, LDA = M+2, LDB = N+3, LDC = M+1,

18

$ LWORK = 3*M*N+5*(M+N)+2*(M*M+N*N)+500)

* ..

* .. Local Scalars ..

DOUBLE PRECISION FERR, RELRES, SCALE, SEP

INTEGER I, INFO, J

* ..

* .. Local Arrays ..

DOUBLE PRECISION A(LDA, M), B(LDB, N), C(LDC, N),

$ WORK(LWORK)

INTEGER IWORK(M*N)

* ..

* .. External Subroutines ..

EXTERNAL MATPRT, DGGSVX

* ..

* .. Executable Statements ..

DO 20 J = 1, M

DO 10 I = 1, M

A(I, J) = 0.0D0

10 CONTINUE

IF(J.GT.1)

$ A(J-1, J) = 1.0D0

20 CONTINUE

*

DO 40 J = 1, N

DO 30 I = 1, N

B(I, J) = 0.0D0

30 CONTINUE

IF(J.GT.1)

$ B(J-1, J) = 1.0D0

B(J, J) = 1.0D-3

40 CONTINUE

*

DO 60 J = 1, N

DO 50 I = 1, M

C(I, J) = 1.0d+0

50 CONTINUE

60 CONTINUE

*

WRITE(*, FMT = *)'Matrix A:'

CALL MATPRT(M, M, A, LDA)

WRITE(*, FMT = *)'Matrix B:'

CALL MATPRT(N, N, B, LDB)

19

WRITE(*, FMT = *)'Matrix C:'

CALL MATPRT(M, N, C, LDC)

*

CALL DGGSVX('N', 'N', 'B', -1, M, N, A, LDA, B, LDB, C, LDC,

$ FERR, RELRES, SEP, SCALE, WORK, LWORK, IWORK, INFO)

*

WRITE(*, FMT = *)'Solution X:'

DO 70 I = 1, M

WRITE(*, FMT = 9999)(C(I, J), J = 1, N)

70 CONTINUE

*

WRITE(*, FMT = *)'Info = ', INFO

WRITE(*, FMT = *)'Ferr = ', FERR

WRITE(*, FMT = *)'Relres = ', RELRES

WRITE(*, FMT = *)'Sep = ', SEP

WRITE(*, FMT = *)'Scale = ', SCALE

WRITE(*, FMT = *)'Lwork = ', LWORK, ' optimal = ', WORK(1)

*

* End of SYLEX

*

9999 FORMAT(8D16.6)

END

The subroutine matprt, which is not listed here, simply prints the array passed
as the third argument.

Example Output

When run on an HP Apollo Series 400 machine, with unit roundo� u � 1:1 � 10�16,

sylex produces the following output. Note that this is the numerical example dis-

cussed in section 5; the computations there were done in Matlab, which accounts for
the slightly di�erent forward error estimate and relative residual.

Matrix A:

0.00E+00 0.10E+01 0.00E+00

0.00E+00 0.00E+00 0.10E+01

0.00E+00 0.00E+00 0.00E+00

Matrix B:

0.10E-02 0.10E+01 0.00E+00

0.00E+00 0.10E-02 0.10E+01

0.00E+00 0.00E+00 0.10E-02

Matrix C:

0.10E+01 0.10E+01 0.10E+01

20

0.10E+01 0.10E+01 0.10E+01

0.10E+01 0.10E+01 0.10E+01

Solution X:

-0.100100E+10 0.300100E+13 -0.600000E+16

-0.100100E+07 0.200000E+10 -0.299900E+13

-0.100000E+04 0.999000E+06 -0.999001E+09

Info = 0

Ferr = 6.2938913816701430E-15

Relres = 7.3616467753357400E-21

Sep = 1.6650005555554630E-16

Scale = 1.000000000000000

Lwork = 593 optimal = 166.0000000000000

21

References

[1] E. Anderson, Z. Bai, C.H. Bischof, J.W. Demmel, J.J. Dongarra, J.J. Du

Croz, A. Greenbaum, S.J. Hammarling, A. McKenney, S. Ostrouchov and D.C.

Sorensen, LAPACK Users' Guide, Society for Industrial and Applied Mathemat-

ics, Philadelphia, 1992, to appear.

[2] M. Arioli, J.W. Demmel and I.S. Du�, Solving sparse linear systems with sparse

backward error, SIAM J. Matrix Anal. Appl., 10 (1989), pp. 165{190.

[3] Z. Bai and J.W. Demmel, On a direct algorithm for computing invariant sub-

spaces with speci�ed eigenvalues, LAPACKWorking Note #38, Technical Report

CS-91-139, Department of Computer Science, University of Tennessee, 1991.

[4] J.B. Barlow, M.M. Monahemi and D.P. O'Leary, Constrained matrix Sylvester

equations, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 1{9.

[5] R.H. Bartels and G.W. Stewart, Algorithm 432: Solution of the matrix equation

AX +XB = C, Comm. ACM, 15 (1972), pp. 820{826.

[6] R. Byers, A LINPACK-style condition estimator for the equation AX �XBT =

C, IEEE Trans. Automat. Control, AC-29 (1984), pp. 926{928.

[7] K. Datta, The matrix equation XA � BX = R and its applications, Linear

Algebra and Appl., 109 (1988), pp. 91{105.

[8] J.J. Du Croz and N.J. Higham, Stability of methods for matrix inversion, IMA

J. Numer. Anal., 12 (1992), pp. 1{19.

[9] G.H. Golub, S. Nash and C.F. Van Loan, A Hessenberg-Schur method for the

problem AX + XB = C, IEEE Trans. Automat. Control, AC-24 (1979), pp.

909{913.

[10] G.H. Golub and C.F. Van Loan, Matrix Computations, Second Edition, Johns

Hopkins University Press, Baltimore, Maryland, 1989.

[11] W.W. Hager, Condition estimates, SIAM J. Sci. Statist. Comput., 5 (1984), pp.

311{316.

22

[12] J.Z. Hearon, Nonsingular solutions of TA�BT = C, Linear Algebra and Appl.,

16 (1977), pp. 57{63.

[13] H.V. Henderson and S.R. Searle, The vec-permutation matrix, the vec operator

and Kronecker products: A review, Linear and Multilinear Algebra, 9 (1981),

pp. 271{288.

[14] G. Hewer and C. Kenney, The sensitivity of the stable Lyapunov equation, SIAM

J. Control and Optimization, 26 (1988), pp. 321{344.

[15] D.J. Higham and N.J. Higham, Backward error and condition of structured linear

systems, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 162{175.

[16] D.J. Higham and N.J. Higham, Componentwise perturbation theory for linear

systems with multiple right-hand sides, Numerical Analysis Report No. 200,

University of Manchester, 1991; to appear in Linear Algebra and Appl.

[17] N.J. Higham, Computing real square roots of a real matrix, Linear Algebra and

Appl., 88/89 (1987), pp. 405{430.

[18] N.J. Higham, FORTRAN codes for estimating the one-norm of a real or complex

matrix, with applications to condition estimation (Algorithm 674), ACM Trans.

Math. Soft., 14 (1988), pp. 381{396.

[19] N.J. Higham, Experience with a matrix norm estimator, SIAM J. Sci. Stat.

Comput., 11 (1990), pp. 804{809.

[20] A.S. Hodel, Recent applications of the Lyapunov equation in control theory,

Manuscript, Dept. of Electrical Engineering, Auburn University, 1991; to appear

in Proceedings of the IMACS International Symposium on Iterative Methods in

Linear Algebra.

[21] R.A. Horn and C.R. Johnson, Topics in Matrix Analysis, Cambridge University

Press, 1991.

[22] D.Y. Hu and L. Reichel, Krylov subspace methods for the Sylvester equation, to

appear in Linear Algebra and Appl.

23

[23] B. K�agstr�om and P. Poromaa, Distributed and shared memory block algorithms

for the triangular Sylvester equation with sep�1 estimators, SIAM J. Matrix

Anal. Appl., 13 (1992), pp. 90{101.

[24] J.L. Rigal and J. Gaches, On the compatibility of a given solution with the data

of a linear system, J. Assoc. Comput. Mach., 14 (1967), pp. 543{548.

[25] R.D. Skeel, Iterative re�nement implies numerical stability for Gaussian elimi-

nation, Math. Comp., 35 (1980), pp. 817{832.

[26] G. Starke and W. Niethammer, SOR for AX � XB = C, Linear Algebra and

Appl., 154{156 (1991), pp. 355{375.

[27] G.W. Stewart, Error and perturbation bounds for subspaces associated with

certain eigenvalue problems, SIAM Review, 15 (1973), pp. 727{764.

[28] J.M. Varah, On the separation of two matrices, SIAM J. Numer. Anal., 16 (1979),

pp. 216{222.

[29] E.L. Wachpress, Iterative solution of the Lyapunov matrix equation, Appl. Math.

Lett., 1 (1988), pp. 87{90.

24

