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6 Conclusions

In this paper, we have devel oped a di rect swappi ng al gori t hmwhi ch reorders the ei genval ues on the

di agonal of amatrix in real Schur formby performng an orthogonal sinilarity transfornation. A
conpl ete set of FORIRANsubroutines has been devel oped and i ncl uded i n the LAPACKI i brary

[9. The al gorithmis guaranteed to be nunerically stable because we explicitly test for instability
and do not reorder the eigenval ues if this woul d be unstable; this can only happenif the eigenval ues
are so close as to be indistinguishable. Unfortunately there is no proof of the backwardstability of
the al gori thmwi thout this explicit test, even though we have not seen an exanpl e where instability
could occur. The detailed error analysis and numerical exanples showhowwell it deals with
ill-conditioned cases, whereas the al ternative stable al gori thm FEXCHNGnay occasionally fail to
converge.
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is the solution of the Syl vester equation. Note tlfaX o~ 200.01, g(X) =0. 99498. W used
MKILAB to conpute the different quantities in the bound (where nachine precision is doubled
epm =2. 2204 x 10716). First the normof the residual matrix Y for conputed sol uf¥ af the
Syl vester equationis

IV [F =||4 12 — A X + X Ago||p =4. 0272 x10712,
whi ch al nost reaches the estinated bound (16) of Y :
env([[ A ||p A 22|r) [| X [l =8. 8830 x107'2.
Furthernore, the observed normof (2,1) bl ocky; after swappi ng:
| Agllz =1. 2973 x10712,

whichis also roughly attained to the bound (26) ofy||k:

1
E < IV [F=2. 0237 x10712
1Bl < 4 lY Ik x10712,

Note that for this exanple, the al gorithmis still backward stable, since
| Agr|lz =1. 2973 10712 <¢ p|| Al =4. 4189 x10712.

Ater setting?lgl =0, then the neasures of backwardstability are E2. 2922 and £y =1. 8205.

;HromRemark 1 after Theorem?2, we mght worry that a huge || X|| r or tiny sepd;r, 4)
coul d cause nunerical instability. However the following exanple illustrates howin practice a
snall separation of ¢fland A9, does not necessarily lead toinstability. Let

1 -0 -8
A = 1 1 ) A=A+ Veml,

then the separation of 14l and Agg is tiny; that is éelpy, 4o) =2. 9802 x107M. Tet A, be

chosen such that cdlA;p) is the left singular vector of K corresponding to the smallest singul ar
val ue dnin( K'), so that the normof the solution X of the Syl vester equatijofi AX A 22 =A 1

reaches its upper bound (28), that is

| A12]|F
sep( An, 42)

and cond( X) =10°. Hence the estinated bound of the normof residual Y is

I1X|lF = =3. 3554 x10"?

e (lalle +[A 22llp) [|X [l =2. 5810 x1072.

However in practice, the observed residual norm|fy33. 7253 x10=9. After swapping, it turns
out that
| Ag1|lr =7. 3985 x1072* < epf||Allp =5. 8747 x10716.

So the swapping is perfectly stable!
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Tabl e 2: conparison of al gorithns SLAEXCand EXCHNG

T SLAEXC EXCHNG
1 | Xy =0. 7010001E 401 + i0. 2085661F +02 Xy =0. 7026377E 401 +i
A1 =0. 7000999F +01 47 0. 2085665F 402 Ay =0. 6984615F +01 +i

2085408 F +02
2085919 F +07

oo O

10 | Ay =0. 7010000£ 401 £z 0. 2085660L 402 Ay =0. 7063053 L +01 £ 2086175F +01
Ay =0. 7000999F +01 4 0. 2085665F +02 Ay =0. 6947970F +01 i 0. 2085144 F 402
100 | Ay =0. 7009999F 401 +i 0. 2085660L 402 not convergent
A1 =0. 7000999F +01 £i 0. 2085665 402 after 30 QRsteps

whi ch has ei genval ues

Ay =0. 7026377E +01 4i 0. 2085408 F 402
A1 =0. 6984615F +01 44 0. 2085919F 402

for &, it still has two decimal digits correct, buf, fall »ignificant digits have been lost. By
the way, after standardizationdf it becones

0. 70263767E +01 0. 86978951F 402 0. 39378300F +02 0. 22319088F 402
0. 49999757F 401 0. 70263767F +01 0. 12174266F 402 0. 35997513F 402
0. 00000000F£ +00 0. 00000000E£ 400 0. 69846153F +01 0. 11755766F 402
0. 00000000E +00 0. 00000000F 400 -0. 37012115F +02 0. 69846153F +01

Y
[l

Table 2 shows the nunerical results with di flerent choices of paraneter 7 , where when 7 =10,
it takes 17 Riterations to convergence. It clearly shows the superiority of al gorithmSLAFXC
In particular, we note that al gori thmEXCHNGis nonconvergent when 7 =100. It neans that
the ei genval ues are not abl e to be exchanged by al gori thmEXCHNG But the al gori t hmSLAFXC
has no difficul ty. This convergence diffeul ty nay reflect recent work of Battersén fsho has
di scovered cl asses of nonsymetric natrices where QRiteration does fail to converge, or converges
qui te slowly.

5.2.3 On the uppr boud (B) d [|F 22

Finally, in the interest of theoretical analysis, we discuss the sharpness of the basfld,on || £
whi ch control s the nunerical stability of al gori thmSLAEXC In nost of the test exanples, we see
that the bound (26) of ||&]|2 is very pessimstic. However, we do find sone exanpl es indicating
that the bound in (26) can roughly be attained. Let us consider the follow ng exhnple:

2 2 1. 0000F +00 —1. 0000FE 402 1. 9900F +04 1. 0201F 402
A - 2 (A A} | 1. 0000£ —02 1. 0000£ +00 1. 0000 402 —1. 9800L 400
200 Ag ) 0 0 1. 0100E 400 1. 0000E —02

0 1. 0000F 402 1. 0100F 400
where sep( Aj1, 4o) =2 x10 ~6. The Ay3 block of A is designed so that

¥ = 1. 0000F 400 —2. 0000F +02
~\ 1. 0000E£ 400 —L. 0000E +00

2For brevity, only five digits are displayed for all the data in this section though we did runin doul e precision
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Table 1: nunerical tests of al gorithmSLAEXC

Test mtrix sep( A1, 4) | FEo F4 ei genval ues after swappi n:

0 1 —11 0.2000000E +4 01 + 0.2085665F + 02
0 37 1

DN —
PN
o NO O TGN

inNy
——Jcorr|ocorr

—87 —20000 10000
2 —20000 —10000 ) 3 337 ><10_1 0 260 0 197 0.1000001E + 01 £ :0.2017424E 4 02

0 1.001 -3 0.1000000E + 01 +¢0.1732051F 4 01
0 1.001 1.001

-3 3576 4888
1 —88 —1440 ) 8 442 X10_4 0 625 0 423 0.1001000E + 01 +:0.1732917E 4 01

—100 400 —1000

0.0 1 1200 —10 7 0.1000996 E 4+ 01 £ ¢0.1000360E + 01

3 ( 0 1.001 —0.01 ) 2 000 Xlo_ 0 417 0 001 0.1000003E +4 01 + 0.9995396 E + 00
0 100 1.001

0.1000002E + 01 +¢0.1732051F 4 01

3 2
El) _g ) 00 0 687 0 241 0.9999987FE 4 00 £ :0.1732051FE 4 01
1

522 Canmnsawith Stewart’s algaithn EXCHNG

W have done nuneri cal conparisons between the direct swappi ng al gori thmSLAEXC and Stew
art’s swapping al gori thmEXCHNG[ 17 ], which uses QRiteration. Both algorithns performwell
inmost cases, but in certain cases, the al gori thmIXCHNGi s inferior to al gori thmSLAFXC For
exanple, let
7. 001 87 39. 47 22. 21

5 7. 001 —12. 27 36. 07

0 0 7. 01 —11. 7567 |°

0 0 37 7. 01

A7)

where 7 is a paraneter, the matrix A(7 ) has invariant eigenval ues

A1 = 0. 7001000£ +01 +: 0. 2085666 L +02
A2 = 0. 7010000£ +01 +: 0. 2085660L +02,

sep( A11, 42) =0. 0024. Wen 7 =1, the output matrix of the al gori thmSLAEXCi s

0. 70100012F +01 0. 86993660F +02 -0. 39390938E +02 0. 22241005F 402
50003409F +01 0. 70100012~ 401 0. 12191071F 402 -0. 35999401 F 402
00000000 +00 0. 00000000E 400 0. 70009995FE 401 0. 11755549F 402
00000000 400 0. 00000000E +00 0. 37003792E 402 0. 70009995E +01

Y
[l
e 2

The ei genval ues after swapping are

Ag 0. 7010001E 401 £2 0. 2085661 F 402,
A = 0. 7000999E +01 +i 0. 2085665 +02,

whi ch is accurate in machine precision. However, the output of al gorithmbEXCHNGafter 8 (R
iterationslis

0. 28140299F 402 —0. 81122643F +02 -0. 39849255 F 402 —0. 15834051 F +02
10856283 F 402 0. 14087547F +02 0. 23942078 F 402 0. 32877380F 402
00000000F +00 0. 00000000~ +00 0. 19211971F 402 0. 21227583 F +02 |’

00000000 +00 0. 00000000E +00 0. 27540298F +02 0. 52427406 F +01

Y
[l
e 2

vhere the stopping criterion usedin QR iterationis eps = 1.2 x 10 -,
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subroutine SLASY2, and the subprobl emof standardizing a 2x2 blockis inplenentedin subroutine
SLANV2.

Intheinterest of sinplicity, we also used sone other subrouti nes fromlLAPACKand the BLAS
to performsone basic linear al gebra operations, such as generating Househol der transformnations,
conputing the 2-normof a vector and so on.

Finally, atest subroutine has been writtento automatically test the subroutine SLAEXC: There
are nested loops over diflerent bl ock sizes, di flerent nunerical scales, and di flerent condi ti oni ngs of
the probl em

5.2 Numerical experiments
521 Backwardstahlity test

To measure the backward stability of a swapping algorithm we need to test (I) howclose the

conputed orthogonal matrix @ is to the identity matrix, and (IT) how cl@#QT is to the
original nmatrix A. In other words, we need to test whether the two quantities:
gy I QTG 14-QiQ"
£ e [|A|l ’
are around 1, where ¢ is nmachine precision. T check the changes anong ei genval ues is not required
to judge the correctness of an algorithm since we knowthat there must have at least an order
of O(e ||A||) perturbation to the original matrix after swapping, and the nonsymwetric eigenval ue
problemis potentiallyill-conditioned. However, for a reasonabl y condi ti oned matrices, the changes
inthe eigenval ues doneasure the accuracy of aswappi ngal gori thm For this reason, inthe following
nuneri cal exanples, we al so conpare the eigenval ues before and after swapping, besides checking
backward stabl e quantitiesgland F 4.
W have done extensive testing on natrices wth various mxtures of the bl ock sizes, scal es and
closeness anong ei genval ues. Mre specifically, we showthe al gori thmSLAEXC on the fol l owi ng
four types of natrices:

Test Mitrix 1: well separation ofjiAand Ago, the eigenval ues before swappi ng are

A1 =0. 2000000£ +01 +2 0. 2085666F +02
Az =0. 1000000£ +01 +¢ 0. 2017424 F +02

Test Mitrix 2: noderate separationseparation of; And Agg, the ei genval ues before swappi ng

are:
A1 =0. 1000000F +01 +7 0. 1732051 F +01

A2 =0. 1001000£ +01 +2 0. 1732916 401

Test Mitrix 3: close ei genval ues, the correspondi ng the Syl vester equationis veryill-conditioned,
the ei genval ues before swappi ng are

A1 =0. 1000000£ +01 &2 0. 1000000£ 401
A2 =0. 1001000£ +01 +2 0. 1000000£ 401

Test Mitrix4: the extrene case, where the ei genval ues of ahd A5 1s the sane, theoretically,
the Syl vester equationsolutionis infinite. This matrixis usedtotest the robustness of our software
against overflow

Table 1 summarizes the results of algorithmSLAEXC, where sepdir, 4z) is conputed by
MIIAB, it is included here for the interest of theoretical analysis. FomTable 1, we see that
both the backward stability and accuracy of the al gori thmSLAFEXCare satisfactory.
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O the other hand, it is easy to see that

| A12]|F
Xllp < ———— .
Xl < sep( A11, 4)

where the equality is attained when tdlo) is aleft singular vector of K corresponding to the
smallest singul ar val ug g( K') =sep( 411, 4z). Conbining the above twoinequalities, we have

1 Enlla < P2 UlHalle H1A 22lle) | Arellr |
T (1403(X))sepAr, 4o)

Logically, the above bound indicates that the nunerical instability will occur if we have small
sep( A11, 4z2). But in practice, nunerical experinents showthat this upper bound is very pes-
simstic. Small s, 42) does not inplyinstability. Wwill discuss this further in the following
section.

(28)

Remark 2. Iterative refinenent applied to the Syl vester equation will inprove the accuracy of
conputed X, (unless the Syl vester equationis tooclose tosingular), but it need not i nprove ||V ||
at least when Ghussian elimnation with conplete pivotingis used tosolve the Syl vester equati on.

Remark 3. 'The factetX)/(1402( X)) that affects ||f|]2 and ||Ea2|]2 is interesting, since
it warns that large and ill-conditioned X nay endanger accuracy, because of (27) and
o (X) cond( X)
L+o3(X)  oa(X) +og (X))

where cond( X ) =o1(X)/o(X). Howcond(X), sepAir, 42), and the accuracy of the swapped
eigenval ues are related in practice needs further investigation.

5 Software Devel opnent and Nunerical Experinents

Inthis section, we first discuss the devel opnent of software for the swappi ng al gorit hmSLAEXC
Then we discuss nunerical experinents to showthe capability of our software to deal with ill-
condi tioned cases, conpare with Stewart’s swappi ng al gori thmEXCHNG and final | y denonstrate
the sharpness of our perturbation bounds.

Al nunerical experinents were carried out ona SUNsparc station 14+ The arithneticis [FFEE
standard single precision, w th machine precisionz®3=2l. 192 x10~7.

5.1 Software development

Aset of FORIRANsubroutines has been devel oped to inpl enent the direct swapping al gorithm
described in Section 3. It is part of LAPACKproject.[2s with other LAPACKroutines, this
al gori thmwas designed for accuracy, robustness and portability.

The nain subroutine is called STREXC. STREXC noves a given 1 X1 or 2 x2 di agonal block
of areal quasi-triangul ar matrix to a user specified position. (h return, paraneter INFO reports
whet her the gi ven bl ock has noved to the desirted position, or whether there are bl ocks too close to
swap, and what is the current position of the gi ven bl ock. The subrouti ne STREXC is supported by
subroutine SLAEXC, whi ch performa swaptoexchange adjacent bl ocks. The subrouti ne SLAEXCis an
inpl enentation of the al gori thmSLAEXCdescribedin Section 3, where the subprobl emof sol vi ng
the Syl vester equation (12) by (hussian elinination with conplete pivoting is inplenented in
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By the (S deconposition of ¢ and (23), we have

o1(X)

HQHHz = W

and
HleHz :HQ 21Hz§ HszHz :HQ 11Hz§
Thus, for Ky, we have

O'l(X)

Enllz <[1Q L2 1Y - i = ——5 A=Y |k
[l 1@ wall2 [V [k 1R ]2 [|Q11[l2 112712 1+U%(X)H [k

Simlarly, forydy we have

O'l(X)

T _
12l <@ 5l 1Y I 1A~ < oy ooyl

Finally, forofi we have

1

T _
H%MzﬁwlﬂﬂW%WRlhziiggyﬂY%-

Hence we have the fol lowi ng theorem

Thaem 2 Let Y =A 19—A 11 X + XAy, where X =X +F is the conputed sol ution of t he
Syl vester equation (6), assune that the error natrix F is nonsingul ar, let the QR factorization of

[ _IX ] sati sfies

x1 _[=&
t hen - B
ST A A Ay A Ey E
TAD = 22 A2 22 L2
0 Al | 0 A | En B
where A;; issinilar to;Ai =1, 2, and up to the first order perturbation Q|||
O'l(X)
E < oAy 24
IEnle < PG (24)
a1(X)
E < Y 25
1Bal < poncer i ozl (23)
1
E < Y I, 2
Bl < Y (26)

where o1(X) > o(X) > 0 are the si ngul ar val ues of 2 X2 natrix X.

W make the foll owing remarks for the above theorem
Remark 1. IFromthe theorem we see that the departure fromupper bl ock-triangul ar form(the
neasure of nunerical instability)is domnated bygld(JH+o3(X)). Fomthe normof the residual
Y (16), we have
1Y Ik <pe ([[Anlle A 22[[e) [[ X - (27)
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and
Fy = —Q 1T2A11Q1_2TQ1T2ER_1 +Q LER 'RAR™!
= QL(AnE+EAyn) R
= QLY R

W see that up to first order perturbations, 1 Fpo and Foy are essentially rel ated to the residual
vector Y of the Syl vester equation sol ver, R and the subbl qgkan) ()12 of ¢). Furthernore,

rewiting (7) as
X | _ | @u @z R
I @n Q2 0

Qa1 =R 7!

we see that

and

RTR=T +XxTXx.

Let 0 (C') denote the set of singular values of matrix €', and A (C') denote the set of eigenval ues of
matrix €', then

o} (R) =A (KR) =X (I +X'X) =1 4+) (XTX) =1 +0 (X).

Therefore ) )
=R~ = — 23
HQ21H2 H H2 O'Q(R) (1_|_O_%(X))1/27 ( )
where 01(C'), o6C') denote the singular values of 2 x2 matrix C' wWi4h@) > ¢(C) > 0. Now
to estimate the normof the blocks ;Qof @), we use the followi ng (S deconposition (cosine-sine
deconposi tion) of a partitioned orthogonal natrix, which was i ntroduced by Stewalt pl8hough
itisinplicit in a paper of Dhvis and Kahah.[9he deconposition has led to sone useful results

on the singul ar val ues of products and diflerence of projections. Aproof of the existence of the

deconposi tion can be found in [ 20

CS Decanpsition Let the ort hogonal natrix () € R**2% be partitioned in the form
k k
Q= kE[Qu Q12
E\Q2 Q2
Then there are ort hogonal natrices U =dildg &) and V =diadVi, ¥) withl, Ve Rk

such that
kK

o k[C S
rev= 114 ¢

C =diage, £ ... >0, S=diag, 5 .,.5 >0, E+52=I.

wher e
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and up to the first order perturbations, we have

Zn = QLERT (20)
Zn = QLER (21)

1o express g, again from(18),
X —F R F X F
rran 7 e [Ble S [T e 3]

By canceling[ _i_( ] fromboth sides of the equation, and premil tiplying by ¢J, we obtain

T| X-F | F T| F
Inserting @Q =I in the left side of the above equation, we have
Tt | X —F | F T| F
Since WIQ =—Q TW =—Z, we have

Sl B _, | QLE | __ | F|_|QLE |

0 Qi 0 Qi
Thus the “bottont equationis

ZInR -7 2QHE ~Z0QhLE =-Q LE,
by (21) and assunmi ng that error matrix F is nonsingular, then

Zyy =7 nQ11Q1 =Q LER'QHLQL (22)
;Fromexpressions (20), (21) and (22) of14 £ and Z33, the Ky, Fzp and Eyp are recast as

B = QhAnQn QLER'QLQL —Q LER'Q1Q1 QlhAnQn
1Q LE R (-RARRT'QLOT, +Q [141Q%)

Qi (ALE —EAy)R'Q1,Q1;
= QLY R'Q1,Q%,

and

Eyp = —RApRT'QLER'+Q{,ER'RARR™!
(—RA »R7'QLQL +Q 1, AnQn ) QLER
= QL (AnE+EAyp)R!
= erle R_lv
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perturbation of the (Rfactorization, we knowthat the C}{factorizati{nai( ] can be written

) e [Y]

where W and F are the perturbations of orthogonal natrix ¢} and triangul ar matrix R, respectivel y,
Q =Q+W is orthogonal . ||[W|| and ||F|| are essentially bounded by the terns of order{|{3d|E]|.
From(Q +W) T(Q +W) =I , up to the first order of the perturbation, we have

as

QW = TQ.
Wen @Q =Q +W transforns A, ignoring the second order perturbation we have

QTAQ = (Q+W)TA(Q+W)
= QTAQ +WTAQ+Q AW +W TAW
= A+WTQ-QTAQ+QTAQ - d'W
= A+ AQ™W —Q TWA.

Defining Z =Q TW and partitioning it conformally widlin the form

Z:lZn %2L

Zo1 Lo
we have B B
7 = A A Fsy F
TAD = 22 A1z | 22 12 | 19
@ 4Q [0 Azz] lEn En] (19)
where
Evw = AyZag—7 29411 —Z 91 Avg,
Foy = AgZin —Z 11A2 + A12701,
FEor = AnZo —7Z 1A,

F11 and Fyy perturb the eigenval ues directly; i of interest because it essentially reflects the
nunerical stability of swapping.oEs the error to the blodkg,. It is not of interest since it

nei ther affects the nunerical stability of the algori thmnor the perturbation of eigenvalues. The
following taskis to give bounds on the norns of; 2/ k) and Fo1. To doso, let us first express; 7
interns of the blocks Qof ), £ and R. From(18), we have

e e (3 e [T 1) 60e

Postmul ti pl yi ng by ( R-+F¥! on both si des of the above equation, and noting that Z L&, the
result is

I _[R—QlTlE

(1 +Z)l0 = otk ](R—I—F)‘l,

therefore

N
|

~ +(R-Q [, E)(R+F)™",
Zn = -QLE(R+F)™,
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If the two bl ocks are exchanged, then an orthogonal simlarity transformationis perforned on
the 2 X2 blocks (if any exist) toreturn themto standard form(4).

Finally, since the nonsymetric eigenval ue problemis anill-conditioned problem a snall per-
turbation to a 2 x2 block (conpl ex conjugate eigenpair) could cause a large perturbation of its
eigenval ues. In the extrene case, a 2 X2 block could split into two 1 x1 blocks if its conplex
conjugate ei genval ues becone real . Carefully designed standardizationsteps will detect and report
such phenonena.

Al above considerations are sunmed up in the followi ng al gorithm

Algaithm SLAEXC (Il rect Swappi ng Al gori thmusing floati ng point arithnetic)

1. Copy A toT:

| T The | A Ap
T‘[ 0 TQQ]HA—[ 0 Am]

2. Use Gaussi an el i ni nation wi th conplete pivoting to sol ve
T X —XT 9 =T 12,

where v is a scaling factor to prevent overflow If thereis a snnll diagonal el enent during
Gaussi an el i ni nation, set it to roughly nachine precision (scal ed by the normof t he natrix

ifdesired).

3. Conpute the QR factori zati c{n_X

o ] =@ R by Househol der transfornations.

4. Performswappi ng tentati vel y. Deci de whet her to accept swap: i fthe normofthe (2,1)entry
(block) of FTQ isless than or equal to O(e W14o to the next step, and ot her wi se exi t;

5. If the swap is accepted, transformA by Q and set the (2,1) entry (bl ock) 61Ag) to zero.

6. Standardize 2 X2 bl ock(s) i any exi st.

In our inplenentation of SLAEXCin LAPACK we have chosen 10e ||A|| as as the stability
criterioninstep 4, where |pmx ;;|a;].

Finally, we note that we al so provide a subrouti ne STREXCin LAPACKwhi ch calls SLAEXC
to reorder all the eigenval ues into a user selected order. In particular, the user may select any
subset of the spectrumwhich will be reordered to appear at the top left of the matrix using the
fewest possible calls to SLAEXC

4 Error Analysis of the Direct Swapping Al gorithm

Inthis section, we gi ve an error anal ysis of the direct swapping al gori t hmSLAEXCdescribedin the
last section. In the interest of brevity, we assume that p =¢ =2, i.e., we only consider swapping
two 2 X2 blocks, the hardest case of the problem In addition, we also assune that the scaling
factor ¥ =1. Quantities with bars (1i%kp denote conputed quanti ties.

Let X be the conputed sol ution of the Syl vester equation, wh&re=X +F, X is the exact
solution, and £ is an error matrix. By the argunent of (17), and a result of Stewhrdn]fiBe
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case, if 14 and Aoy have the sane ei genval ues, the Syl vester equationis singul ar and the sol ution
X is infinite. 10 prevent possible overflow, i nstead we sol ve the equation

AnX — XA =vAq, (12)

or the correspondi ng linear system
Kz =+b (13)

where v is ascaling factor (7 <1), and K is defined as (9). Possible overflowof X is taken care

of by choosing a small scaling factor y. In the extrene case, whemumtl A,y have the sane

ei genval ues, we choose v =0. Because the linear system(13) can only be up to 4 x4, it does not

cost too mich to use Ghussian elimnation with conplete pivotingtosolveit withbetter nunerical
properties (in particular, the pivots are within a nodest factor of the singular values of the 4 by
4 matrix, so setting tiny pi vots to a chosen tiny val ue controls the conditioning of the systemand
normof the solution). Applying standard results from| 22strai ghtforward anal ysis shows that

for the conputed sol uti oX of the Syl vester equation:

Elr -
IEE < pe Cllake 1B 1) 167 (14)
X e

where ¥ =X — X, pis small constant of order O(1), and ¢ is nachine precision. Notice that
I~z is the reciprocal of the mininal singular value of K, dengtfdho). Since gn(K) is
closely related to the separation of the spectra of matuhcesd4 sz, dqun( /) is also called the
separation of the matrices;idand Agy, denoted sepAyr, 42) [20. Therefore (14) can be witten

as
IEls _ pe (I1AH +]Blr) 1
X S sepAu, &) (15)

In the following error anal ysis of the al gorithm we will see that the nunerical stabilityis essential
governed by the residual

Y = Ay -AnX+ XAy =-A nF+EAy.
Appl yi ng standard error anal ysis of Ghussian elim nation, [W2have
IV [ =[1412 A 11X + X Agallr <pe ([|Aullr +][A 22/le) | X - (16)
Noti ce that the bound does not invol ve |[#||2, or sepAir, 4o).

Next for the QRfactorization of the Imtr{xjyi_(

x1 _[=r
BRI (1)
vhere Q =Q +6Q, [|6Q] ~¢, JQ =1, i.e., the conputed matr{)kis orthogonal to nachine

precision [ 22

] , by Househol der el enentary reflectors, we

knowt hat

W will showin the next section, insone pathol ogical cases, the normof the (2,1) entry (block)
of QT AQ mny be larger than O(e )||A||, i.e., it may be backward unstable i f we are forced to treat
QT AQ as bl ock upper triangul ar by setting the (2,1) entrytozero. Therefore we propose to perform
adjacent bl ocks swapping tentatively; if the normof the (2,1) entry (bl @kN@fis less than
or equal to O(e )||Al|, we swap them otherwise we return wi thout performng the swap.
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2. Conpute an ort hogonal natrix ) such that

X R
T _ .
3. Performan orthogonal sinilarity transfornation

QTAQ:lAZQ %12‘|‘

0 Anp

For literature on howto sol ve the Syl vester equation, sel)[.7(he direct wayis torecast it
as alinear systemof equations:

Kz =b, (8)
where
K=I,0A1 -AL®IL, z=cdX), b=cdldy). (9)

Here the Kronecker product W@ Z of two matrices W and Z is the block matrix whose (7 , j) block
is (yZ). For an m xn mtrix W, colW) denotes the columm vector forned by taki ng col umms
of W and stacking thematop one another fromleft to right. That is

COl(W) :[U)llv B, - W1, Y, ¥R, . 5 .W2, . . -Uh, . '7-79%71]T-

Since Ay and Az have no common ei genval ues, the coeffeient matrix K of the linear system(8)
is nonsingular. Hence there is a uni que solution. Note that the matrjcase A X1 or 2 X2
nmatrices, the linear system(8) canonly be up to 4 x4. W can sinply use (hussian elinination
tosolveit.

In the second step, the orthogonal matrix @ which swaps the; And A9y can be conputed by

I
Finally, we note that fromthe QRfactorization (7), the orthogonal matrix @ which swaps A
and Ago can also be explicitly written as

_ ot
@:[jj )ﬁTH : CO] (10)

Cicy =I,+Xx'x, {dcy=r,+xx " (11)

the Rfactorization o ] using Househol der or (3 vens transfornations.

where

Hence another inplenentation of the direct swapping al gorithmis to use the explicit expression
(10) for @, after conputing the (holesky factorizations (11). Ng and Parlleftmplldnented this

schene, but our nunerical experinents showthat this schene is michless robust than A gorithm

1, because of the nunerical sensitivityof the Choleskyfactorization (11), and the use of the inverses
Cl_l and 02—1‘ W have not pursued this schene.

3 The Practical Direct Swapping Al gorithm

In the presence of roundoff, the biggest concernis solving the Syl vester equation (6). The linear
system(8) coul d possibly be ill-conditionegdiidndl Aoy have close eigenval ues. In the extrene
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then
QT X Ip — R Q’II‘I .
Iy 0 0 Qf

Since both matrices on the left are invertible so are R jnd Thus

7| Ain Ar2 _ | 4 =X A 0 I, X
Il i | R AT

_ R QL Az 0 R™Y R 11O
0 Qf 0 Ap 0 Qi
_ [ BAnRT RARRTQLOT 40 1T1A11Q1T2]
I 0 QLALQT,
_ Az %12
where A; is simlar togd i =1, 2, so that the eigenval ues are invariant, but their positions are

exchanged. Furthernore, we have the follow ng theoremto specify such orthogonal transfornation,

whichis due to Ng and Parlett [ 14

Thaaem 1 (Ng and Parlett). An orthogonal (p+¢) X(p+q) natrix Q) swaps Aqq and Ayy if

andonlyif
o3[

for sone invertible g Xxq matrix R where X is defined in (6).

Proof. The ¢ f part has been shown above, we just need to showthe onl y i f part. If () swaps
Aqq and Aoy then there exist Q, R and QlTl such that

Agy %12 _ R Qf Ay 0 R=Y —R1QY 1_2T
0 Ay 0 QL 0 Ay 0 Qi

T —X Ip A22 0 0 Iq

@ l I, 0 0 Ay || x |9

-1
R QF | =X I . Asg 0 .
It follows that D % 0 Q1T2 Q I, 0 commtes with L Since 4 and

Az have no ei genval ues in common, D nust be a pol ynomi al in di dglpe, 44). See [Llvol.1, page

222] .
X I R Qf
QT v | = D
Iy 0 0 Qf
mist be bl ock upper triangul ar. This conpletes the proof. 0O.

Thus we have the fol l owi ng al gori thmto swap two adjacent bl ocks:

Algaithm 1 (Il rect Swapping Al gorithn)
1. Sol ve t he p xq Syl vester equation
AnX —X A g =A 13
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of the al gorithmshows that backward instability is possible only in veryill-conditioned cases, sc
ill-conditioned in fact that we have been unable to construct a case where it fails. Qur goal was
to have an absolute stability guarantee, however; we achieved this by directly and cheaply testing
for instability and rejecting a swapif it woul d have been unstable. This can occur only when the
eigenval ues are soill-conditioned as to be indistinguishableinacertainreasonable sense. Nunerica
experinents showthe superiorities of our direct swappi ng al gori thmover previ ous i npl enentati ons.
The rest of the paper is organized as follows: Section 2 describes the direct swappi ng al gorithm
Section 3 discusses the al gorithmin presence of roundi ngerrors. The error anal ysis of the al gorithm
is carried out in Section 4. The software i npl enentati on and nuneri cal expernents are reported
in Section 5. Section 6 draws conclusions. Al software related to the algorithns discussed in this

paper can be found in the LAPACKIi brary [2] .

W assune that any 2 x2 di agonal blockin the quasi-triangul ar matrixis instandardi zed form
This neans that its di agonal entries are equal and its off di agonal s nonzero and of opposite sign,
that is

[?; g] By <. (4)

Such a bl ock has conpl ex conj ugate ei genval ues a4y where?u=37. It is known that for any 2 x2
bl ock wi th conpl ex conjugate ei genval ues, an orthogonal simlarity transfornationwill standardize
the bl ock. The LAPACKsubroutine SHSFCR returns the real Schur factorization with 2x2 bl ocks

in standard form

2 Direct Swapping Al gorithm

As we described in the introduction, the crux of reordering the di agonal bl ocks to forma specified
invariant subspace is to interchange the consecutive di agonal blgckndAA4,; in the foll ow ng

bl ock natrix
| An A
_— .

where Ay1is pXp, A218 g Xq, p, ¢ =1, 2. Throughout this paper, we assune that dnd A,
have no ei genval ue i n common, otherwise, they need not to be exchanged. It is seen that the bl ock
matrix (5) can be di agonalized as

All A12 . Ip —X All 0 Ip X
0 Axp | |0 I 0 Ao 0 I, |’
where X is the solution of the Syl vester equation
AllX -XA 22 =A 12- (6)

Since it is assumed that f and A5, have no eigenval ue in common, the solution X is unique. If
we choose an orthogonal natrix ¢ such that

o5 )= 14

and conformally partition ¢) in the form

_ Qll QIQ
Q B l QQI Q22 ] ’
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of A. 'he eigenval ues of the 2 x2 di agonal blocks are the conpl ex conjugate eigenval ues of A.
The real Schur formnay be conputed using subroutine HQR fromEISPACK[15 | or subroutine
SHSEQR f rom LAPACK [ 2 1),

Here U or () provides an orthonornal basis for the invariant subspace of certain subsets of
eigenval ues of the matrix A. If we partition ¢) and T as

T T
Q:[le @]7 T:|: 81 TZ]7

then from(1), we have
A =Q 1T (2)

and hence )1 gives an orthonornal basis for the invariant subspaces of A corresponding to the
ei genval ues contained in{l’

Unfortunatel y, the {I' gi ven by the (R algorithmwill not generally contain the eigenval ues
in which we are interested. W mist therefore performsone further orthogonal simlarities that
preserve bl ock triangul ar formbut reorder the desired ei genval ues of A to the upper left corner of
the Schur form7', to get the desired invariant subspace as in (2). The crux of such reordering or
swappi ng techni ques is howto swap two adjacent 1 x1 or 2 x2 di agonal bl ocks by an orthogonal
transformation. Fornally, let1de a p xp natrix, Agp be a g xg natrix, p, g =1, 2; we want to
conpute an orthogonal (p+4¢) x(p+¢q) matrix @ such that

T All Al? _ 14122 14112
o[t Aela= [ ) 0

where A;; is similar togd ¢ =1, 2, so that the eigenval ues are unchanged but their positions are
exchanged al ong the (bl ock) di agonal .

Tothis end, Stewart [ [7has described aniterative al gorithmfor swappi ng consecutive 1x1 and
2 x2 bl ocks of a quasi-triangul ar natrix, which we refer to as al gori thmEXCHNG In his nethod,
the first blockis usedtodetermine aninplicit QRshift. Anarbitrary (Rstepis performed on both
bl ocks to create a dense (p+q) X(p+¢) block. Then a sequence of QRsteps using the previously
determned shift is perforned on both blocks. Theoretically, after one step of (Riteration, the
eigenval ues of the first block will energe in the lower part. But in practice, we nmay need two
or even nore (Riterations. This use of QRiteration has been extended by Van Iboren | 2flo
reordering the eigenval ues of a generalized eigenval ue probl emusing V.iteration.

Anot her al gorithmto be further devel opedinthis paper is the so-calleddirect swappi ng me
whi ch was originally notivated by the work of Dbngarra, Hammarling and Wlkinson in 1983,
al though the paper was fini shed later (1990) [ 10Ng and Parlett [ ]4also devel oped a program
toinplenent the direct swapping al gorithm Asimlar idea has also been published by Cho and
Zhang [ 8] .

This previous vwork still does not sol ve the problemsatisfactorily. The iterative swapping al-
gorithmhas the advantage of guaranteed backward stability, since it just mmltiples the data by
orthogonal matrices. But it nay be inaccurate and even fail to reorder the eigenval ues in noder-
ately ill-condi tioned cases. (h the other hand, the direct swapping al gorithmis sinple and can
better deal withill-conditioned cases. But the current i npl enentations do not guarantee backward
stability.

In this paper, we further i nprove the direct swapping al gorithm Various strategies have been
desi gned at each stage of the al gori thmtoinproveits accuracy and robustness. Adetail ed anal ysis



On a Direct Algorithm for Computing Invariant Subspaces with
Specified Eigenvalues*
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Abstract

We discuss a direct algorithm for reordering the eigenvalues on the diagonal of a matrix in
real Schur form by performing an orthogonal similarity transformation. A new version of the
algorithm is given. A detailed error analysis and software description are presented. Numerical
examples show the superiority of our algorithm over previous algorithms.

1 Introduction

The probl emof reordering the ei genval ues i nto a desired order al ong the (bl ock) di agonal of a quasi -
triangul ar real matrixarisesinseveral applications: conputing aninvariant subspace correspondi ng
to a given group of eigenval ues, estimating condition nunbers for a cluster of eigenval ues or their
associ ated invariant subspace in the nonsymetric ei genval ue probl emJ20conputing partial
ei genval ues of alarge nonsymetric matrix by the simil taneous iteration nethod] lGonputing
matrixfunctions [614, sol ving the linear quadratic control probl pngiddsoon. These probl ens
can be sol ved in two phases: the first is to conpute the Schur deconposition of the gi ven matrix,
and the second is to reorder a group of specified ei genval ues to appear at the upper left of the
natrix to get the correspondi ng i nvari ant subspace. In this paper we describe an al gorithmandits
inplenentation for this reordering problem The softwareis available in LAPACKY 1 a public
domai n nunerial linear al gebralibrary.

Specifical l y, for any gi ven n xn natrix A, fromthe QRal gorithmwe coul d conpute the Schur
deconposition of A in the form

A=UTUH,

vhere T is an upper triangul ar matrix, called the Schur form and U is a unitarythasrix. U
the conjugate transpose of U, and sdU = . The diagonal entries of T are the eigenval ues of
A. U and T may be conplex evenif A is real, since areal matrix nmay have conpl ex ei genval ues.
For areal matrix A, there is areal orthogonal matrix ¢ such that

A=QTQ", (1)

where T is a real upper quasi-triangular nmatrix, called the real Schur form T is block u
triangul ar with 1 x1 and 2 x2 bl ocks on the di agonal . The 1 x1 bl ocks contain the real eigenval ues
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