
Robust Triangular Solves

for Use in Condition Estimation
�

Edward Anderson

Cray Research Inc.

655F Lone Oak Drive

Eagan, MN 55121

August 16, 1991

Abstract

Fortran codes are presented for solving a triangular system when the tri-

angular matrix is badly scaled or badly conditioned. These subroutines incor-

porate scaling to prevent over
ow and thus are more robust than their coun-

terparts STRSV, STPSV, and STBSV from the Level 2 BLAS. Solving badly

conditioned triangular systems arises in condition estimation when the proce-

dure developed by Hager and Higham is used to estimate the norm of A�1

from the triangular factorization of A. We discuss situations in which scaling

is necessary to prevent over
ow and give an example of how our routines are

used in the LAPACK condition estimators.

1 Introduction

The condition estimators in the LAPACK software package are based on the esti-
mate described by Hager [3] and Higham [4]. The norm of the matrix A is com-
puted by conventional means, an estimate is obtained for the 1-norm (or in�nity-
norm) of its inverse, and the reciprocal condition estimate is computed as RCOND =
1=(kAkkA�1k). When used to estimate kA�1k, Higham's version of Hager's norm
estimation routine is a multi-step procedure that uses a reverse communication in-
terface, asking the higher level routine to supply A�1x or A�Tx for a given vector
x between steps. This design is very convenient for the development of a software

�This work was performed while the author was employed by the University of Tennessee and

was supported by NSF Grant No. ASC-8715728.

1

package like LAPACK, because A�1x is computed by di�erent means in di�erent con-
texts, depending on the storage used for A and the triangular factorization that has
been applied.

When solving linear systems of the form Ax = b, we typically begin with a tri-
angular factorization of the form PAQ = LDU , where P and Q are permutation
matrices, L is lower triangular, D is diagonal, and U is upper triangular. This formu-
lation includes the LU factorization, for which L is unit lower triangular and Q and
D are identity matrices, the Cholesky factorization of a symmetric positive de�nite
matrix, for which P = Q = I and U = LT , and the Bunch-Kaufman diagonal pivoting
factorization of a symmetric inde�nite matrix, for which Q = P T , U = LT , and D is
block diagonal with 1� 1 and 2� 2 diagonal blocks.

For simplicity, we assume the triangular factorization has the form A = LU . The
norm estimation routine (called SONEST in [4] or SLACON in the LAPACK library)
asks that we supply A�1x (if the integer parameter KASE = 1) or A�Tx (if KASE =
2) for a given vector x on an intermediate return. If we are computing the norm of
A�1, we replace x with A�1x = U�1L�1x by computing

x L�1x; x U�1x

or we replace x with A�Tx = U�TL�Tx by computing

x U�Tx; x L�Tx:

These operations require solving a triangular system involving a unit or non-unit
upper or lower triangular matrix.

Triangular solves are available from the Level 2 BLAS routines STRMV, STPMV,
and STBMV [2], but we found these routines unsuitable for condition estimation. The
condition estimator should logically be one of the most robust pieces of software in a
software package, because it will often be called to estimate the condition number of a
matrix that is already suspected to be ill-conditioned. Our early e�orts using STRSV
would cause a
oating-point exception to occur if the matrix were badly scaled or
badly conditioned, obviously not the best way to indicate ill-conditioning!

In this paper we describe the subroutines we have written to take the place of the
Level 2 BLAS solves in the condition estimation routines. These auxiliary routines,
named SLATRS, SLATPS, and SLATBS for the three types of triangular matrix
storage in the REAL data type, solve the scaled problem Tx = sb or T Tx = sb for x,
avoiding over
ow by an appropriate choice of s. We give speci�c examples illustrating
features of the code and analyze the additional overhead in using the robust solves in
place of the BLAS. We conclude with an example of how SLATRS is used in one of
the LAPACK condition estimation routines.

2

2 Hager's algorithm for estimating the norm of a

matrix

In this section, we brie
y describe Hager's method for estimating the 1-norm of a
matrix. The main application is in estimating the norm of B = A�1 when B has not
been explicitly computed. For further details, refer to [3] or [4].

The 1-norm of an n by n matrix B is de�ned in terms of the vector 1-norm
kxk1 =

Pn
i=1 jxij as

kBk1 = max
x6=0

kBxk1
kxk1

:

A well-known property is that kBk1 is equal to the maximum column sum:

kBk1 = max
1�j�n

nX
i=1

jbi;jj; (2:1)

hence the maximum in (2.1) is attained at x = �ei for some 1 � i � n, where ei is
the ith column of the identity matrix. From the optimization point of view, kBk1 is
the global maximum of the convex function

f(x) = kBxk1

over the convex set
S = fx 2 Rn : kxk1 � 1g:

For a convex function f on a convex set S and a point x 2 S, a vector z such that

f(y) � f(x) + zT (y � x) (2:2)

for all y 2 S is called a subgradient of f at x. Hager constructs a particular subgradient
of f at x by de�ning a vector � such that

�i =

(
1 if

Pn
j=1 bi;jxj � 0

�1 otherwise

and setting z = BT�. This choice of � allows us to express f(x) = kBxk1 without
using absolute values:

f(x) =
nX
i=1

�i

0
@ nX
j=1

bi;jxj

1
A :

Hence f(x) = �TBx = zTx, and the proof that z is a subgradient follows by showing

f(y) � �TBy:

The subgradient at x is unique only if f(x) is di�erentiable at x, i.e., if Bx has
no zero components. If this is the case, the subgradient we construct is the gradient
of f at x.

3

Hager's algorithm is an iterative procedure which starts at a point on the boundary
of S and moves between vertices feig. First, the subgradient z of f at x is constructed
and the maximum element of z is found:

jzjj = max
1�i�n

jzij:

If jzjj � zTx = kBxk1, the procedure stops; if f is di�erentiable at x, then x is
a local maximum of f . If jzjj > zTx, then one of the points y = ej or y = �ej
makes the expression zT (y � x) in (2.2) positive, and therefore f(y) > f(x). Since
f(ej) = f(�ej), we replace x by ej and repeat. Since f increases at each step, no
vertex ej is ever repeated, and the algorithm terminates in at most n+ 1 steps.

Higham [4] demonstrated that Hager's algorithm does much better than n + 1
iterations on average, usually converging in two steps. He also constructed several
examples for which Hager's algorithm does not return a good estimate, usually be-
cause of di�culty in determining if a local maximum is also a global maximum. We
have used Higham's subroutines SONEST and CONEST (renamed SLACON and
CLACON), which do at least two iterations of Hager's algorithm and never more
than �ve.

In computing the subgradient z, we must be able to multiply by both B and
BT . Multiplication by B is required to form Bx, so that we can then construct �.
Multiplication by BT is required to form z = BT�. If B = A�1, the most important
application of this algorithm, then we must compute

y = A�1x; � = sign(y); z = A�T �;

which typically involves solving triangular systems for y and z using a previously
computed triangular factorization for A.

3 Solving a triangular system with scaling

A robust triangular system solver is needed in the condition estimator when trying
to estimate the norm of A�1 and in certain other applications as well. It is easy to
construct examples where the triangular matrix T and the vector b in the system Tx =
b are reasonably well-scaled, but the vector x over
ows. Scaling x, or, equivalently,
solving Tx = sb or T Tx = sb for a scaling factor s that is determined dynamically,
takes care of most of the di�culties. But we would like to be able to identify when
scaling is not required and call the Level 2 BLAS equivalent in these cases, since
the BLAS have less overhead and may be much faster if a locally optimized version
is available. We therefore begin by computing a bound on the solution x from the
components of b, the diagonal of T , and the 1-norm of each column of T , not including
the diagonal. Computing the bound is O(n) except for the computation of the column
norms, but once the column norms have been computed, they can be reused on
subsequent calls.

4

3.1 The non-transposed problem

For the purpose of discussion, assume T = L is lower triangular. The solution of
the triangular system Lx = b generally follows the basic column-oriented algorithm:

x b

do i = 1; 2; : : : ; n

xi xi=Li;i2
66664
xi+1
xi+2
...
xn

3
77775

2
66664
xi+1
xi+2
...
xn

3
77775� xi

2
66664
Li+1;i

Li+2;i

...
Ln;i

3
77775 (3.1)

end do

Floating point errors may occur if Li;i = 0, if xi=Li;i over
ows, if xiLj;i over
ows for
any i+ 1 � j � n, or if xj � xiLj;i over
ows for any i+ 1 � j � n.

The �rst step in SLATRS is to compute a bound on x = L�1b to see if the Level
2 BLAS routine STRSV can be used. Let
 denote a machine-dependent constant
near over
ow which we will de�ne later. We de�ne bounds on the components of x
after j iterations of the above loop:

M(j) = bound on xj

G(j) = bound on xi; j + 1 <= i <= n

Initially,M(0) = 0 and G(0) = max(xi; i = 1; :::; n). Then after j iterations we have

M(j) � G(j � 1)=jLj;j j

G(j) � G(j � 1) +M(j)kLj+1:n;jk

� G(j � 1) (1 + cj=jLj;j j)

where cj is greater than or equal to the in�nity-norm of column j of L, not counting
the diagonal. Hence

G(j) � G(0)
jY

i=1

(1 + ci=jLi;ij)

and

M(j) �
G(0)

jLj;jj

j�1Y
i=1

(1 + ci=jLi;ij) :

The code actually computes the reciprocals of G(j) and M(j) to avoid over
ow in
forming these bounds. Since jxjj �M(j), we can safely use the Level 2 BLAS routine
STRSV if the reciprocal of the largest M(j) is larger than
�1.

5

Similar bounds are computed if T is upper triangular. If we assume cj contains the
norm of column j of T , not including the diagonal, the remaining discussion applies
to either the upper or lower triangular case.

The work to compute the column norms cj is O(n2), the same order as the trian-
gular solve, so we would like to be able to re-use this information if possible. In the
non-transposed case, cj need only be as large as the in�nity-norm of the o�diagonal
part of column j, but in the transposed case the 1-norm is required, and since the
1-norm is always greater than or equal to the in�nity-norm, we always compute the
1-norm. In the interest of speed, we assume that the 1-norm of the o�diagonal part
of each column does not over
ow, and we compute these norms without any scaling
if they are not already known. If any of the cj's is greater than
, we compute a
scaling factor for the triangular matrix

st =
=max(cj; j = 1; : : : ; n)

and multiply each cj by st. This allows us to assume that cj �
, which is necessary
to prevent over
ow in steps of the columnwise method. Note that the cj's are scaled
by st but T itself is not altered. Hence when the diagonal elements Ti;i are accessed,
they must be multiplied by st. The norms cj are multiplied by 1=st before return and
st is incorporated into the factor s, so st is only used internally.

We now consider the cases that could cause
oating point errors in the columnwise
method and describe the scaling used to avoid them. First, we scale the right hand
side b (contained in the vector X) if the maximum element in b is greater than
.
Subsequent steps of the solve use additional scaling as needed to guarantee that no
element of X exceeds
.

If jTi;ij �
�1, the reciprocal of Ti;i can be formed without over
ow, but the
fraction xi=Ti;i may over
ow if xi > 1. To avoid over
ow if jTi;ij > 1 and jxij > jTi;ij
,
we scale x by jxij before dividing by Ti;i. An example where a simple scaling is used
is in solving the equation

10�20 x = 1020

The exact solution x = 1040 over
ows on a Sun (
 = 3:40� 1038), but by scaling the
right hand side, we return the solution s = 10�20, x = 1020.

If 0 < jTi;ij <
�1, then 1=jTi;ij >
. Numbers less than
�1 can occur in
IEEE arithmetic because denormalized numbers are permitted near under
ow whose
reciprocals exceed the over
ow threshold. One solution would be to treat this case as
if Ti;i were zero. But if xi is also small, xi=Ti;i need not over
ow. More precisely, we
can divide by Ti;i without using the scaling factor s if jxij � jTi;ij
, as in the example

10�35 x = 10�20:

On some machines, a divide is implemented as a reciprocal followed by a multiply,
so if 10�30 were the smallest invertible number, over
ow would occur when inverting

6

10�35 even though the result, x = 1015, is well within the acceptable range. To get
around this problem, we multiply both sides by
 until the coe�cient in front of x
is greater than
�1 (usually, only one such scaling step, consisting of two multiplies,
is required). In the above example, both sides are scaled by 1030 �rst, then x is
computed as

x = 1010=10�5 = 1015:

If 0 < jTi;ij <
�1 and jxij > jTi;ij
, then we scale x by

(min(1; jTi;ij)
=jxij)min(1; 1=ci);

which we know to be less than 1. The �rst part of the scaling factor assures that
jxij=jTi;ij �
, and the second part assures that the SAXPY (3.1) in the basic algo-
rithm can also be done. An example demonstrating this scaling is"

10�35

1020 10�35

#
x =

"
10
10

#
:

Assuming
 = 1030, we scale x (currently holding the right hand side) by

10�35103010�110�20 = 10�26:

Then x1 = 1010 and the SAXPY gives a right hand side of �1030. We scale again by
10�35103010�30 = 10�35 to solve for x2, and get x2 = �1030 with s = 10�2610�35 = 0.
The result, "

10�35

1020 10�35

"
10�25

�1030

#
= 0

"
10
10

#
;

is correct for x, only the scaling factor has under
owed. The exact solution, including
the scaling factor s, would be"

10�35

1020 10�35

"
10�25

10�25 � 1030

#
= 10�61

"
10
10

#
;

If Ti;i = 0, the matrix T is singular, and in applications this information is more
important than an inexact solution x. We therefore change the problem, setting s = 0
and computing a nontrivial solution to Tx = 0. In the basic algorithm, we set xi = 1
and all other xj's to zero and continue. For example, in the system

2
64
0:0
1:0 2:0
3:0 4:0 5:0

3
75x =

2
64

0:0
3:0
12:0

3
75 ;

a zero diagonal element is immediately encountered at T1;1. The fact that an exact
(but not unique) solution could still be found because b1 = 0 is of little importance.

7

We set s = 0, x1 = 1, and x2 = x3 = 0, and continue without further trouble. The
solution that we compute to Tx = sb is therefore s = 0, x = [1:0;�0:5;�0:2]T .

The bounds on x and T are also used to determine when a step in the columnwise
method can be performed without fear of over
ow. Let xmax = G(0) = kxk1 denote
the maximum element currently in x. Adding a multiple of column j of L to x will
not over
ow if xmax + jxjjcj �
. If jxjj � 1 and jxjjcj >
 � xmax, then we scale
x by 1=2. If jxjj > 1 and cj > (
 � xmax) =jxj j, then we scale x by 1=(2jxj j). This
choice of scaling factor guarantees that each scaled term is bounded in absolute value
by
=2, and hence the sum is bounded by
. For example, suppose
 = 1030 and the
triangular system is "

1:0
1030 1:0

#
x =

"
10
1030

#
:

After obtaining x1 = 10, we have c1 = 1030 and xmax = 1030. Since c1 > (
� xmax) =jx1j,
we scale x by 1=(2jx1j) = 1=20, which makes x1c1 = 0:5� 1030 and xmax = 0:5� 1029.
Now the sum is bounded by 0:55 � 1030 <
, as desired. The solution returned by
SLATRS is s = 0:05, x = [0:05;�0:45 � 1030]T .

3.2 The transposed problem

Similarly, a row-wise scheme is used to solve T Tx = b. The basic algorithm for T
upper triangular (T = U) is

do j = 1; : : : ; n

xj =
�
bj � UT

1:j�1;jx1:j�1
�
=Uj;j (3.2)

end do

Floating point errors may occur when computing the dotproduct, when subtracting
it from bj, or when dividing by Uj;j . The algorithm for T lower triangular is similar,
with the loop indices in reverse order.

For the transposed problem, we set M(0) = max(bi; i = 1; : : : ; n) and compute
the single bound M(j), which is a bound on the magnitude of x1, x2, : : :, xj:

M(j) �M(j � 1)(1 + cj)=jUj;j j

�M(0)
Qj

i=1(1 + ci)=jUi;ij:

M(i) is assumed to be greater than or equal to M(0) for i � 1, and ci is greater than
or equal to the one-norm of column i of U , not counting the diagonal. The column
norms ci are computed and scaled as in the non-transposed problem. We can safely
call STRSV to solve the system if 1=M(n) >
�1. Otherwise, a Level 1 BLAS version
of the above algorithm is used.

Within the Level 1 BLAS solve, we must use in-line code instead of the Level 1
BLAS routines SDOT for the dot product (3.2) if st < 1, so that we may scale each

8

element of T as it is used. Furthermore, we may need to scale x to prevent over
ow
in the intermediate results. If possible, we would prefer to scale by Tj;j, since we must
divide by it anyway to form xj.

If jbjj+cjM(j�1) >
, then the intermediate results over
ow. One solution is to
scale x by 1=(2max(1;M(j � 1))), which guarantees that each term in the sum is at
most
=2, and hence that the sum is less than
. But this scaling may be more than
is necessary if jTj;jj > 1, since the sum is divided by jTj;jj before it is stored in xj.
Therefore, if jTj;jj > 1, we scale x by min(1; jTj;jj=(2M(j � 1))), and then compute
(for T upper triangular)

xj = bj=Uj;j + UT
1:j�1;jx1:j�1=Uj;j ;

using the algorithm

su = 1=Uj;j

xj = bj=(stUj;j)

do i = 1; : : : ; j � 1

xj = xj � (suUi;j)xi

end do

If jTj;jj � 1, we simply scale x by 1=(2max(1;M(j � 1))) and determine the scaling
necessary to divide by Tj;j in a separate step. The three cases for Tj;j: jTj;jj >
�1,
0 < jTj;jj �
�1, and Tj;j = 0, are the same as in the non-transposed problem.

For example, consider solving the 2 by 2 system UTx = b for x, where

U =

"
1:0 1020

1020

#
and b =

"
�2:0� 1018

2:0� 1038

#
:

After obtaining x1 = �2:0� 1018, we see that

jb1j+ c2M(1) = 2:0� 1038 + 1020 � 2:0 � 1018 = 4:0 � 1038

which is greater than over
ow (3:4 � 1038) on the Sun. But since jT2;2j is large, we
can avoid scaling by computing

x2 =
2:0� 1038

1020
�

1020(�2:0� 1018)

1020
= 4:0� 1018:

4 Implementation details

Three subroutines have been written for each Fortran
oating-point data type. For
REAL matrices, they are SLATRS for triangular matrices stored in a 2-D array,
SLATPS for triangular matrices stored in packed format in a linear array, and SLATBS
for triangular band matrices. The calling sequence of these three subroutines is as
follows:

9

SLATRS(UPLO, TRANS, DIAG, NORMIN, N, A, LDA, X, SCALE, CNORM, INFO)

SLATPS(UPLO, TRANS, DIAG, NORMIN, N, AP, X, SCALE, CNORM, INFO)

SLATBS(UPLO, TRANS, DIAG, NORMIN, N, KD, AB, LDAB, X, SCALE, CNORM,

INFO)

For a description of the arguments to SLATRS, see the leading comments to the
subroutine in Appendix A. The array A is called AP in SLATPS to indicate packed
storage, and AB in SLATBS to indicate band storage. For SLATBS, the argument KD
is the number of subdiagonals or superdiagonals of the upper or lower triangular band
matrix. The complex equivalents of these subroutines have the same calling sequence
except that the matrix A and the vector X are COMPLEX instead of REAL.

4.1 The parameter

In our software development, we assume that certain machine-dependent parame-
ters, such as the over
ow threshold and machine precision, are available. To compute
these parameters, we have used a portable Fortran function subprogram SLAMCH,
developed at NAG Ltd. for use in LAPACK. SLAMCH and its double-precision
counterpart DLAMCH are real functions that accept a single character argument
indicating the machine constant to be returned. The input values accepted are

`B': Base of the machine
`E': Epsilon [eps], the relative machine precision
`L': Largest exponent [emax] before over
ow
`M': Minimum exponent [emin] before (gradual) under
ow
`N': Number of base digits in the mantissa
`O': Over
ow threshold = (base**emax)*(1-eps)
`P': Precision = eps*base
`R': 1.0 when rounding occurs in addition, 0.0 otherwise
`S': Safe minimum, such that its reciprocal does not over
ow
`U': Under
ow threshold = base**(emin-1)

The machine-dependent constant
 is assigned to the Fortran variable BIGNUM
and
�1 is called SMLNUM. In SLATRS, these constants are set as

UNFL = SLAMCH('Safe minimum')

OVFL = SLAMCH('Overflow')

ULP = SLAMCH('Epsilon')*SLAMCH('Base')

SMLNUM = MAX(UNFL/ULP, ONE/(ULP*OVFL))

BIGNUM = (ONE-ULP) / SMLNUM

The scaled values for SMLNUM and BIGNUM allow for growth as large as 1=� when
computing intermediate terms, where � is the machine precision or \unit in the last
place".

10

4.2 Modi�cations for the COMPLEX data type

The complex version of the triangular solve routines is similar to the real version,
but we use the quantity

CABS1(z) = jRe(z)j+ jIm(z)j

in place of jzj, since the absolute value is only used to compute scaling factors. The
o�diagonal column norms cj are computed using the Level 1 BLAS routine SCASUM,
so CLATRS, CLATPS, and CLATBS are only guaranteed against over
ow if the sum
of the 1-norm of the real part of each column and the 1-norm of the imaginary
part of each column excluding the diagonal can be computed without over
ow. The
maximum in b is computed as max(Re(bi)=2+Im(bi)=2); i = 1 : : : n) in order to avoid
over
ow if both the real and imaginary parts of some bi are close to over
ow.

We use the auxiliary routine CLADIV to compute the complex divide xi=Ti;i in real
arithmetic, to avoid potential problems when a complex divide y=z is implemented
as (y�z)=(z�z). Both A�Tx and A�Hx are provided, in addition to A�1x.

4.3 Operation count

The operation count for the Level 2 BLAS solve STRSV, assuming the matrix is
order n, is n(n+1)=2 multiplies plus n(n�1)=2 adds, for a total of n2 operations, less
n divides if the matrix is unit triangular. Computing the o�diagonal column norms
cj in SLATRS requires (n�2)(n�1)=2 adds, but the cj's can be saved and reused on
a subsequent call, and with at least two iterations in the condition estimate we know
there will be at least one more call to SLATRS with the same matrix. The additional
�xed costs are 2n multiplies if the cj's are scaled and n adds and 3n or 4n multiplies
to compute the bounds to see if STRSV can be used. If the Level 1 BLAS solve is
used, there are an additional n multiplies each time the vector x is scaled; in the
worst case, where x is rescaled at every step, an extra n2 multiplies would be needed,
doubling the work of the standard triangular solve. If we assume two iterations of
the Hager/Higham procedure and no extra scaling in SLATRS, then using the robust
triangular solves instead of the BLAS increases the work by about 25%.

4.4 Test software

The subroutines SLATRS, SLATPS, and SLATBS are tested in the LAPACK lin-
ear equation test program as part of the test paths STR, STP, and STB, respectively
[1]. Special pathological test matrices are generated to exercise all the scaling options
to these subroutines, including

� Large right hand side, to test scaling of b

1. Non-unit triangular with O(1) matrix elements

11

2. Unit triangular

� Small �rst diagonal causes immediate over
ow

1. O�diagonal column norms < 1

2. O�diagonal column norms > 1

� Small diagonals cause gradual over
ow

� Small diagonals make growth factor under
ow, but a small right hand side
means that the solution does not over
ow

� One zero diagonal element

� Large o�diagonals cause over
ow when adding a column

5 Example of a robust condition estimator

We now show how the triangular matrix operations described in this report are used
in the subroutine SGECON from LAPACK, which estimate the condition number of
a real general matrix from its LU factorization. We assume that the LU factorization
of A has been computed and work exclusively with the factors L and U .

SGECON is the high level routine which handles the reverse communication inter-
face to SLACON, the routine to estimate the 1-norm of a matrix. SLACON returns a
status value in the integer variable KASE, which expects the following actions when
estimating the norm of A�1:

KASE = 0: Done. The algorithm has converged or the maximum number of itera-
tions has been reached. ANORM contains the estimate of the 1-norm.

KASE = 1: Compute x A�1x and call SLACON again with the other parameters
unchanged.

KASE = 2: Compute x A�Tx and call SLACON again with the other parameters
unchanged.

The computations for KASE = 1 or 2 are performed by SLATRS. We call SLATRS
twice for KASE = 1, to compute

y = L�1slb

and
z = U�1suy;

where y and z each overwrites x. Since

U�1L�1b = U�1y=sl = z=(slsu);

12

we form s = susl, and if s > 0 and kxk=s <
 then we compute x x=s and call
SLACON again, otherwise, we set AINVNM = 0 and quit. For further details, refer
to the preliminary source code for SGECON in Appendix B.

The scaling step x x=s is done by an LAPACK auxiliary routine SRSCL,
instead of SSCAL from the Level 1 BLAS, because of the possibility that s could be
less than
�1. SRSCL (the RSCL stands for \Reciprocal Scaling") divides a vector x
by a scalar s in a way that will not cause over
ow, even on a machine for which the
divide operation x=s is implemented as (1=s)x, unless the �nal result x=s over
ows.
First, SRSCL checks if s �
�1, and if it is, calls SSCAL to do the scaling with 1=s.
Otherwise, if s <
�1, both x and s are scaled repeatedly by
 until s is larger than

�1, and at that point SSCAL is called to multiply x by 1=s.

The result returned for RCOND is usually 1=(kAk1kA�1k1), but if AINVNM =
kA�1k1 = 0, RCOND returns zero. RCOND also returns zero without computing
AINVNM if N = 0 or if ANORM= 0 on entry to SGECON.

6 Conclusions

Higham's reverse communication procedure to implement Hager's method is a con-
venient tool, and it has been used in the LAPACK condition estimation routines to
estimate the norm of the inverse of a matrix from its triangular factorization. The
robustness of the Hager/Higham method depends on that of the high-level routine,
which must form A�1x and A�Tx for a given vector x using the factorization of A.
Subroutines that solve a triangular system with scaling have been presented which are
more suitable than the Level 2 BLAS for handling the badly conditioned triangular
matrices that are likely to arise in condition estimation. Even if the solution of the
triangular system over
ows, these routines will not over
ow as long as the 1-norm of
each column of the triangular matrix excluding the diagonal can be computed with-
out over
ow. Additional work is required equal to about half of a triangular solve if
no scaling is done, but the largest component of this work can be reused when the
subroutine is called again, as it will be in Hager and Higham's iterative procedure.

Solving a scaled triangular system is a useful and general operation and is not
restricted to condition estimation. The subroutine SLATRS is also used in the inverse
iteration procedure in LAPACK, and may �nd application in other areas as well.

13

References

[1] E. Anderson, J. Dongarra, and S. Ostrouchov. Implementation guide for
LAPACK. LAPACK Working Note 35, Technical Report CS-91-138, University
of Tennessee, August 1991.

[2] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. An extended
set of FORTRAN basic linear algebra subprograms. ACM Trans. Math. Soft.,
14(1):1{17, March 1988.

[3] W. W. Hager. Condition estimates. SIAM J. Sci. Stat. Comput., 5:311{316, 1984.

[4] N. J. Higham. FORTRAN codes for estimating the one-norm of a real or com-
plex matrix, with applications to condition estimation. ACM Trans. Math. Soft.,
14(4):381{396, Dec. 1988.

14

Appendix A: SLATRS

SUBROUTINE SLATRS(UPLO, TRANS, DIAG, NORMIN, N, A, LDA, X, SCALE,

$ CNORM, INFO)

*

* -- LAPACK auxiliary routine (preliminary version) --

* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,

* Courant Institute, Argonne National Lab, and Rice University

* August 15, 1991

*

* .. Scalar Arguments ..

CHARACTER DIAG, NORMIN, TRANS, UPLO

INTEGER INFO, LDA, N

REAL SCALE

* ..

* .. Array Arguments ..

REAL A(LDA, *), CNORM(*), X(*)

* ..

*

* Purpose

* =======

*

* SLATRS solves one of the triangular systems

*

* A *x = s*b or A'*x = s*b

*

* with scaling to prevent overflow. Here A is an upper or lower

* triangular matrix, A' denotes the transpose of A, x and b are

* n-element vectors, and s is a scaling factor, usually less than

* or equal to 1, chosen so that the components of x will be less than

* the overflow threshold. If the unscaled problem will not cause

* overflow, the Level 2 BLAS routine STRSV is called. If the matrix A

* is singular (A(j,j) = 0 for some j), then s is set to 0 and a

* non-trivial solution to A*x = 0 is returned.

*

* Arguments

* =========

*

* UPLO (input) CHARACTER*1

* Specifies whether the matrix A is upper or lower triangular.

* = 'U': Upper triangular

* = 'L': Lower triangular

*

* TRANS (input) CHARACTER*1

* Specifies the operation applied to A.

15

* = 'N': Solve A * x = s*b (No transpose)

* = 'T': Solve A'* x = s*b (Transpose)

* = 'C': Solve A'* x = s*b (Conjugate transpose = Transpose)

*

* DIAG (input) CHARACTER*1

* Specifies whether or not the matrix A is unit triangular.

* = 'N': Non-unit triangular

* = 'U': Unit triangular

*

* NORMIN (input) CHARACTER*1

* Specifies whether CNORM has been set or not.

* = 'Y': CNORM contains the column norms on entry

* = 'N': CNORM is not set on entry. On exit, the norms will

* be computed and stored in CNORM.

*

* N (input) INTEGER

* The order of the matrix A. N >= 0.

*

* A (input) REAL array, dimension (LDA,N)

* The triangular matrix A. If UPLO = 'U', the leading n by n

* upper triangular part of the array A contains the upper

* triangular matrix, and the strictly lower triangular part of

* A is not referenced. If UPLO = 'L', the leading n by n lower

* triangular part of the array A contains the lower triangular

* matrix, and the strictly upper triangular part of A is not

* referenced. If DIAG = 'U', the diagonal elements of A are

* also not referenced and are assumed to be 1.

*

* LDA (input) INTEGER

* The leading dimension of the array A. LDA >= max (1,N).

*

* X (input/output) REAL array, dimension (N)

* On entry, the right hand side b of the triangular system.

* On exit, X is overwritten by the solution vector x.

*

* SCALE (output) REAL

* The scaling factor s for the triangular system

* A * x = s*b or A'* x = s*b.

* If SCALE = 0, the matrix A is singular or badly scaled, and

* the vector x is an exact or approximate solution to A*x = 0.

*

* CNORM (input or output) REAL array, dimension (N)

*

* If NORMIN = 'Y', CNORM is an input variable and CNORM(j)

* contains the norm of the off-diagonal part of the j-th column

16

* of A. If TRANS = 'N', CNORM(j) must be greater than or equal

* to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)

* must be greater than or equal to the 1-norm.

*

* If NORMIN = 'N', CNORM is an output variable and CNORM(j)

* returns the 1-norm of the offdiagonal part of the j-th column

* of A.

*

* INFO (output) INTEGER

* = 0: successful exit

* < 0: if INFO = -k, the k-th argument had an illegal value

*

* Further Details

* ======= =======

*

* A rough bound on x is computed; if that is less than overflow, STRSV

* is called, otherwise, specific code is used which checks for possible

* overflow or divide-by-zero at every operation.

*

* A columnwise scheme is used for solving A*x = b. The basic algorithm

* if A is lower triangular is

*

* x[1:n] := b[1:n]

* for j = 1, ..., n

* x(j) := x(j) / A(j,j)

* x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]

* end

*

* Define bounds on the components of x after j iterations of the loop:

* M(j) = bound on x[1:j]

* G(j) = bound on x[j+1:n]

* Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.

*

* Then for iteration j+1 we have

* M(j+1) <= G(j) / | A(j+1,j+1) |

* G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |

* <= G(j) (1 + CNORM(j+1) / | A(j+1,j+1) |)

*

* where CNORM(j+1) is greater than or equal to the infinity-norm of

* column j+1 of A, not counting the diagonal. Hence

*

* G(j) <= G(0) product (1 + CNORM(i) / | A(i,i) |)

* 1<=i<=j

* and

*

17

* |x(j)| <= (G(0) / |A(j,j)|) product (1 + CNORM(i) / |A(i,i)|)

* 1<=i< j

*

* Since |x(j)| <= M(j), we use the Level 2 BLAS routine STRSV if the

* reciprocal of the largest M(j), j=1,..,n, is larger than

* max(underflow, 1/overflow).

*

* The bound on x(j) is also used to determine when a step in the

* columnwise method can be performed without fear of overflow. If

* the computed bound is greater than a large constant, x is scaled to

* prevent overflow, but if the bound overflows, x is set to 0, x(j) to

* 1, and scale to 0, and a non-trivial solution to A*x = 0 is found.

*

* Similarly, a row-wise scheme is used to solve A'*x = b. The basic

* algorithm for A upper triangular is

*

* for j = 1, ..., n

* x(j) := (b(j) - A[1:j-1,j]' * x[1:j-1]) / A(j,j)

* end

*

* We simultaneously compute two bounds

* G(j) = bound on (b(i) - A[1:i-1,i]' * x[1:i-1]), 1<=i<=j

* M(j) = bound on x(i), 1<=i<=j

*

* The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we

* add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.

* Then the bound on x(j) is

*

* M(j) <= M(j-1) * (1 + CNORM(j)) / | A(j,j) |

*

* <= M(0) * product ((1 + CNORM(i)) / |A(i,i)|)

* 1<=i<=j

*

* and we can safely call STRSV if 1/M(n) and 1/G(n) are both greater

* than max(underflow, 1/overflow).

*

* ===

*

* .. Parameters ..

REAL ZERO, HALF, ONE

PARAMETER (ZERO = 0.0E+0, HALF = 0.5E+0, ONE = 1.0E+0)

* ..

* .. Local Scalars ..

LOGICAL NOTRAN, NOUNIT, UPPER

INTEGER I, IMAX, J, JFIRST, JINC, JLAST

18

REAL BIGNUM, GROW, OVFL, REC, SMLNUM, SUMJ, TJJ,

$ TJJS, TMAX, TSCAL, ULP, UNFL, USCAL, XBND, XJ,

$ XMAX

* ..

* .. External Functions ..

LOGICAL LSAME

INTEGER ISAMAX

REAL SASUM, SDOT, SLAMCH

EXTERNAL LSAME, ISAMAX, SASUM, SDOT, SLAMCH

* ..

* .. External Subroutines ..

EXTERNAL SAXPY, SSCAL, STRSV, XERBLA

* ..

* .. Intrinsic Functions ..

INTRINSIC ABS, MAX, MIN

* ..

* .. Executable Statements ..

*

INFO = 0

UPPER = LSAME(UPLO, 'U')

NOTRAN = LSAME(TRANS, 'N')

NOUNIT = LSAME(DIAG, 'N')

*

* Test the input parameters.

*

IF(.NOT.UPPER .AND. .NOT.LSAME(UPLO, 'L')) THEN

INFO = -1

ELSE IF(.NOT.NOTRAN .AND. .NOT.LSAME(TRANS, 'T') .AND. .NOT.

$ LSAME(TRANS, 'C')) THEN

INFO = -2

ELSE IF(.NOT.NOUNIT .AND. .NOT.LSAME(DIAG, 'U')) THEN

INFO = -3

ELSE IF(.NOT.LSAME(NORMIN, 'Y') .AND. .NOT.

$ LSAME(NORMIN, 'N')) THEN

INFO = -4

ELSE IF(N.LT.0) THEN

INFO = -5

ELSE IF(LDA.LT.MAX(1, N)) THEN

INFO = -7

END IF

IF(INFO.NE.0) THEN

CALL XERBLA('SLATRS', -INFO)

RETURN

END IF

*

19

* Quick return if possible

*

IF(N.EQ.0)

$ RETURN

*

* Determine machine dependent parameters to control overflow.

*

UNFL = SLAMCH('Safe minimum')

OVFL = SLAMCH('Overflow')

ULP = SLAMCH('Epsilon')*SLAMCH('Base')

SMLNUM = MAX(UNFL / ULP, ONE / (ULP*OVFL))

BIGNUM = (ONE-ULP) / SMLNUM

SCALE = ONE

*

IF(LSAME(NORMIN, 'N')) THEN

*

* Compute the 1-norm of each column, not including the diagonal.

*

IF(UPPER) THEN

*

* A is upper triangular.

*

DO 10 J = 1, N

CNORM(J) = SASUM(J-1, A(1, J), 1)

10 CONTINUE

ELSE

*

* A is lower triangular.

*

DO 20 J = 1, N-1

CNORM(J) = SASUM(N-J, A(J+1, J), 1)

20 CONTINUE

END IF

END IF

*

* Scale the column norms by TSCAL if the maximum entry in CNORM is

* greater than BIGNUM.

*

IMAX = ISAMAX(N, CNORM, 1)

TMAX = CNORM(IMAX)

IF(TMAX.LE.BIGNUM) THEN

TSCAL = ONE

ELSE

TSCAL = BIGNUM / TMAX

CALL SSCAL(N, TSCAL, CNORM, 1)

20

END IF

*

* Compute a bound on the computed solution vector to see if the

* Level 2 BLAS routine STRSV can be used.

*

J = ISAMAX(N, X, 1)

XMAX = ABS(X(J))

XBND = XMAX

IF(NOTRAN) THEN

*

* Compute the growth in A * x = b.

*

IF(UPPER) THEN

JFIRST = N

JLAST = 1

JINC = -1

ELSE

JFIRST = 1

JLAST = N

JINC = 1

END IF

IF(NOUNIT) THEN

*

* A is non-unit triangular.

*

* Compute GROW = 1/G(j) and XBND = 1/M(j).

* Initially, G(0) = max{x(i), i=1,...,n}.

*

GROW = ONE / MAX(XBND, SMLNUM)

XBND = GROW

DO 30 J = JFIRST, JLAST, JINC

*

* Exit the loop if the growth factor is too small.

*

IF(GROW.LE.SMLNUM)

$ GO TO 50

*

* M(j) = G(j-1) / abs(A(j,j))

*

TJJ = ABS(A(J, J))*TSCAL

XBND = MIN(XBND, MIN(ONE, TJJ)*GROW)

IF(TJJ+CNORM(J).GE.SMLNUM) THEN

*

* G(j) = G(j-1)*(1 + CNORM(j) / abs(A(j,j)))

*

21

GROW = GROW*(TJJ / (TJJ+CNORM(J)))

ELSE

*

* G(j) could overflow, set GROW to 0.

*

GROW = ZERO

END IF

30 CONTINUE

GROW = XBND

ELSE

*

* A is unit triangular.

*

* Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.

*

GROW = MIN(ONE, ONE / MAX(XBND, SMLNUM))

DO 40 J = JFIRST, JLAST, JINC

*

* Exit the loop if the growth factor is too small.

*

IF(GROW.LE.SMLNUM)

$ GO TO 50

*

* G(j) = G(j-1)*(1 + CNORM(j))

*

GROW = GROW*(ONE / (ONE+CNORM(J)))

40 CONTINUE

END IF

50 CONTINUE

*

ELSE

*

* Compute the growth in A' * x = b.

*

IF(UPPER) THEN

JFIRST = 1

JLAST = N

JINC = 1

ELSE

JFIRST = N

JLAST = 1

JINC = -1

END IF

IF(NOUNIT) THEN

*

22

* A is non-unit triangular.

*

* Compute GROW = 1/G(j) and XBND = 1/M(j).

* Initially, M(0) = max{x(i), i=1,...,n}.

*

GROW = ONE / MAX(XBND, SMLNUM)

XBND = GROW

DO 60 J = JFIRST, JLAST, JINC

*

* Exit the loop if the growth factor is too small.

*

IF(GROW.LE.SMLNUM)

$ GO TO 80

*

* G(j) = max(G(j-1), M(j-1)*(1 + CNORM(j)))

*

XJ = ONE + CNORM(J)

GROW = MIN(GROW, XBND / XJ)

*

* M(j) = M(j-1)*(1 + CNORM(j)) / abs(A(j,j))

*

TJJ = ABS(A(J, J))*TSCAL

IF(XJ.GT.TJJ)

$ XBND = XBND*(TJJ / XJ)

60 CONTINUE

GROW = MIN(GROW, XBND)

ELSE

*

* A is unit triangular.

*

* Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.

*

GROW = MIN(ONE, ONE / MAX(XBND, SMLNUM))

DO 70 J = JFIRST, JLAST, JINC

*

* Exit the loop if the growth factor is too small.

*

IF(GROW.LE.SMLNUM)

$ GO TO 80

*

* G(j) = (1 + CNORM(j))*G(j-1)

*

XJ = ONE + CNORM(J)

GROW = GROW / XJ

70 CONTINUE

23

END IF

80 CONTINUE

END IF

*

IF((GROW*TSCAL).GT.SMLNUM) THEN

*

* Use the Level 2 BLAS solve if the reciprocal of the bound on

* elements of X is not too small.

*

CALL STRSV(UPLO, TRANS, DIAG, N, A, LDA, X, 1)

ELSE

*

* Use a Level 1 BLAS solve, scaling intermediate results.

*

IF(XMAX.GT.BIGNUM) THEN

*

* Scale X so that its components are less than or equal to

* BIGNUM in absolute value.

*

SCALE = BIGNUM / XMAX

CALL SSCAL(N, SCALE, X, 1)

XMAX = BIGNUM

END IF

*

IF(NOTRAN) THEN

*

* Solve A * x = b

*

DO 100 J = JFIRST, JLAST, JINC

*

* Compute x(j) = b(j) / A(j,j), scaling x if necessary.

*

XJ = ABS(X(J))

IF(NOUNIT) THEN

TJJS = A(J, J)*TSCAL

TJJ = ABS(TJJS)

IF(TJJ.GT.SMLNUM) THEN

*

* abs(A(j,j)) > SMLNUM:

*

IF(TJJ.LT.ONE) THEN

IF(XJ.GT.TJJ*BIGNUM) THEN

*

* Scale x by 1/b(j).

*

24

REC = ONE / XJ

CALL SSCAL(N, REC, X, 1)

SCALE = SCALE*REC

XMAX = XMAX*REC

END IF

END IF

X(J) = X(J) / TJJS

XJ = ABS(X(J))

ELSE IF(TJJ.GT.ZERO) THEN

*

* 0 < abs(A(j,j)) <= SMLNUM:

*

IF(XJ.GT.TJJ*BIGNUM) THEN

*

* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM

* to avoid overflow when dividing by A(j,j).

*

REC = (TJJ*BIGNUM) / XJ

IF(CNORM(J).GT.ONE) THEN

*

* Scale by 1/CNORM(j) to avoid overflow when

* multiplying x(j) times column j.

*

REC = REC / CNORM(J)

END IF

CALL SSCAL(N, REC, X, 1)

SCALE = SCALE*REC

XMAX = XMAX*REC

END IF

*

* Scale both x(j) and A(j,j) until A(j,j) >= SMLNUM,

* then divide.

*

85 CONTINUE

IF(ABS(TJJS).LT.SMLNUM) THEN

X(J) = X(J)*BIGNUM

TJJS = TJJS*BIGNUM

GO TO 85

END IF

X(J) = X(J) / TJJS

XJ = ABS(X(J))

ELSE

*

* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and

* scale = 0, and compute a solution to A*x = 0.

25

*

DO 90 I = 1, N

X(I) = ZERO

90 CONTINUE

X(J) = ONE

XJ = ONE

SCALE = ZERO

XMAX = ZERO

END IF

END IF

*

* Scale x if necessary to avoid overflow when adding a

* multiple of column j of A.

*

IF(XJ.GT.ONE) THEN

REC = ONE / XJ

IF(CNORM(J).GT.(BIGNUM-XMAX)*REC) THEN

*

* Scale x by 1/(2*abs(x(j))).

*

REC = REC*HALF

CALL SSCAL(N, REC, X, 1)

SCALE = SCALE*REC

END IF

ELSE IF(XJ*CNORM(J).GT.(BIGNUM-XMAX)) THEN

*

* Scale x by 1/2.

*

CALL SSCAL(N, HALF, X, 1)

SCALE = SCALE*HALF

END IF

*

IF(UPPER) THEN

IF(J.GT.1) THEN

*

* Compute the update

* x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j)

*

CALL SAXPY(J-1, -X(J)*TSCAL, A(1, J), 1, X,

$ 1)

I = ISAMAX(J-1, X, 1)

XMAX = ABS(X(I))

END IF

ELSE

IF(J.LT.N) THEN

26

*

* Compute the update

* x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j)

*

CALL SAXPY(N-J, -X(J)*TSCAL, A(J+1, J), 1,

$ X(J+1), 1)

I = J + ISAMAX(N-J, X(J+1), 1)

XMAX = ABS(X(I))

END IF

END IF

100 CONTINUE

*

ELSE

*

* Solve A' * x = b

*

DO 140 J = JFIRST, JLAST, JINC

*

* Compute x(j) = b(j) - sum A(k,j)*x(k).

* k<>j

*

XJ = ABS(X(J))

USCAL = TSCAL

REC = ONE / MAX(XMAX, ONE)

IF(CNORM(J).GT.(BIGNUM-XJ)*REC) THEN

*

* If x(j) could overflow, scale x by 1/(2*XMAX).

*

REC = REC*HALF

IF(NOUNIT) THEN

TJJS = A(J, J)*TSCAL

TJJ = ABS(TJJS)

IF(TJJ.GT.ONE) THEN

*

* Divide by A(j,j) when scaling x if A(j,j) > 1.

*

REC = MIN(ONE, REC*TJJ)

USCAL = USCAL / TJJS

END IF

END IF

IF(REC.LT.ONE) THEN

CALL SSCAL(N, REC, X, 1)

SCALE = SCALE*REC

XMAX = XMAX*REC

END IF

27

END IF

*

SUMJ = ZERO

IF(USCAL.EQ.ONE) THEN

*

* If the scaling needed for A in the dot product is 1,

* call SDOT to perform the dot product.

*

IF(UPPER) THEN

SUMJ = SDOT(J-1, A(1, J), 1, X, 1)

ELSE IF(J.LT.N) THEN

SUMJ = SDOT(N-J, A(J+1, J), 1, X(J+1), 1)

END IF

ELSE

*

* Otherwise, use in-line code for the dot product.

*

IF(UPPER) THEN

DO 110 I = 1, J - 1

SUMJ = SUMJ + (A(I, J)*USCAL)*X(I)

110 CONTINUE

ELSE IF(J.LT.N) THEN

DO 120 I = J + 1, N

SUMJ = SUMJ + (A(I, J)*USCAL)*X(I)

120 CONTINUE

END IF

END IF

*

IF(USCAL.EQ.TSCAL) THEN

*

* Compute x(j) := (x(j) - sumj) / A(j,j) if 1/A(j,j)

* was not used to scale the dotproduct.

*

X(J) = X(J) - SUMJ

IF(NOUNIT) THEN

*

* Compute x(j) = x(j) / A(j,j), scaling if necessary.

*

XJ = ABS(X(J))

TJJS = A(J, J)*TSCAL

TJJ = ABS(TJJS)

IF(TJJ.GT.SMLNUM) THEN

*

* abs(A(j,j)) > SMLNUM:

*

28

IF(TJJ.LT.ONE) THEN

IF(XJ.GT.TJJ*BIGNUM) THEN

*

* Scale X by 1/abs(x(j)).

*

REC = ONE / XJ

CALL SSCAL(N, REC, X, 1)

SCALE = SCALE*REC

XMAX = XMAX*REC

END IF

END IF

X(J) = X(J) / TJJS

ELSE IF(TJJ.GT.ZERO) THEN

*

* 0 < abs(A(j,j)) <= SMLNUM:

*

IF(XJ.GT.TJJ*BIGNUM) THEN

*

* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.

*

REC = (TJJ*BIGNUM) / XJ

CALL SSCAL(N, REC, X, 1)

SCALE = SCALE*REC

XMAX = XMAX*REC

END IF

*

* Scale both x(j) and A(j,j) until

* abs(A(j,j)) >= SMLNUM, then divide.

*

125 CONTINUE

IF(ABS(TJJS).LT.SMLNUM) THEN

X(J) = X(J)*BIGNUM

TJJS = TJJS*BIGNUM

GO TO 125

END IF

X(J) = X(J) / TJJS

ELSE

*

* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and

* scale = 0, and compute a solution to A'*x = 0.

*

DO 130 I = 1, N

X(I) = ZERO

130 CONTINUE

X(J) = ONE

29

SCALE = ZERO

XMAX = ZERO

END IF

END IF

ELSE

*

* Compute x(j) := x(j) / A(j,j) - sumj if the dot

* product has already been divided by 1/A(j,j).

*

X(J) = X(J) / TJJS - SUMJ

END IF

XMAX = MAX(XMAX, ABS(X(J)))

140 CONTINUE

END IF

SCALE = SCALE / TSCAL

END IF

*

* Scale the column norms by 1/TSCAL for return.

*

IF(TSCAL.NE.ONE) THEN

CALL SSCAL(N, ONE / TSCAL, CNORM, 1)

END IF

*

RETURN

*

* End of SLATRS

*

END

30

Appendix B: SGECON

SUBROUTINE SGECON(NORM, N, A, LDA, ANORM, RCOND, WORK, IWORK,

$ INFO)

*

* -- LAPACK routine (preliminary version) --

* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,

* Courant Institute, Argonne National Lab, and Rice University

* August 6, 1991

*

* .. Scalar Arguments ..

CHARACTER NORM

INTEGER INFO, LDA, N

REAL ANORM, RCOND

* ..

* .. Array Arguments ..

INTEGER IWORK(*)

REAL A(LDA, *), WORK(*)

* ..

*

* Purpose

* =======

*

* SGECON estimates the reciprocal of the condition number of a real

* general matrix A, in either the 1-norm or the infinity-norm, using

* the LU factorization computed by SGETRF.

*

* An estimate is obtained for norm(inv(A)), and the reciprocal of the

* condition number is computed as

* RCOND = 1 / (norm(A) * norm(inv(A))).

*

* Arguments

* =========

*

* NORM (input) CHARACTER*1

* Specifies whether the 1-norm condition number or the

* infinity-norm condition number is required:

* = '1' or 'O': 1-norm

* = 'I': Infinity-norm

*

* N (input) INTEGER

* The order of the matrix A. N >= 0.

*

* A (input) REAL array, dimension (LDA,N)

* The factors L and U from the factorization A = P*L*U

31

* as computed by SGETRF.

*

* LDA (input) INTEGER

* The leading dimension of the array A. LDA >= max(1,N).

*

* ANORM (input) REAL

* If NORM = '1' or 'O', the 1-norm of the original matrix A.

* If NORM = 'I', the infinity-norm of the original matrix A.

*

* RCOND (output) REAL

* The reciprocal of the condition number of the matrix A,

* computed as RCOND = 1/(norm(A) * norm(inv(A))).

*

* WORK (workspace) REAL array, dimension (4*N)

*

* IWORK (workspace) INTEGER array, dimension (N)

*

* INFO (output) INTEGER

* = 0: successful exit

* < 0: if INFO = -k, the k-th argument had an illegal value

*

* ===

*

* .. Parameters ..

REAL ONE, ZERO

PARAMETER (ONE = 1.0E+0, ZERO = 0.0E+0)

* ..

* .. Local Scalars ..

LOGICAL ONENRM

CHARACTER NORMIN

INTEGER IX, KASE, KASE1

REAL AINVNM, SCALE, SL, SMLNUM, SU

* ..

* .. External Functions ..

LOGICAL LSAME

INTEGER ISAMAX

REAL SLAMCH

EXTERNAL LSAME, ISAMAX, SLAMCH

* ..

* .. External Subroutines ..

EXTERNAL SLACON, SLATRS, SRSCL, XERBLA

* ..

* .. Intrinsic Functions ..

INTRINSIC ABS, MAX

* ..

32

* .. Executable Statements ..

*

* Test the input parameters.

*

INFO = 0

ONENRM = NORM.EQ.'1' .OR. LSAME(NORM, 'O')

IF(.NOT.ONENRM .AND. .NOT.LSAME(NORM, 'I')) THEN

INFO = -1

ELSE IF(N.LT.0) THEN

INFO = -2

ELSE IF(LDA.LT.MAX(1, N)) THEN

INFO = -4

ELSE IF(ANORM.LT.ZERO) THEN

INFO = -5

END IF

IF(INFO.NE.0) THEN

CALL XERBLA('SGECON', -INFO)

RETURN

END IF

*

* Quick return if possible

*

RCOND = ZERO

IF(N.EQ.0) THEN

RCOND = ONE

RETURN

ELSE IF(ANORM.EQ.ZERO) THEN

RETURN

END IF

*

SMLNUM = SLAMCH('Safe minimum')

*

* Estimate the norm of inv(A).

*

AINVNM = ZERO

NORMIN = 'N'

IF(ONENRM) THEN

KASE1 = 1

ELSE

KASE1 = 2

END IF

KASE = 0

10 CONTINUE

CALL SLACON(N, WORK(N+1), WORK, IWORK, AINVNM, KASE)

IF(KASE.NE.0) THEN

33

IF(KASE.EQ.KASE1) THEN

*

* Multiply by inv(L).

*

CALL SLATRS('Lower', 'No transpose', 'Unit', NORMIN, N, A,

$ LDA, WORK, SL, WORK(2*N+1), INFO)

*

* Multiply by inv(U).

*

CALL SLATRS('Upper', 'No transpose', 'Non-unit', NORMIN, N,

$ A, LDA, WORK, SU, WORK(3*N+1), INFO)

ELSE

*

* Multiply by inv(U').

*

CALL SLATRS('Upper', 'Transpose', 'Non-unit', NORMIN, N, A,

$ LDA, WORK, SU, WORK(3*N+1), INFO)

*

* Multiply by inv(L').

*

CALL SLATRS('Lower', 'Transpose', 'Unit', NORMIN, N, A,

$ LDA, WORK, SL, WORK(2*N+1), INFO)

END IF

*

* Divide X by 1/(SL*SU) if doing so will not cause overflow.

*

SCALE = SL*SU

NORMIN = 'Y'

IF(SCALE.NE.ONE) THEN

IX = ISAMAX(N, WORK, 1)

IF(SCALE.LT.ABS(WORK(IX))*SMLNUM .OR. SCALE.EQ.ZERO)

$ GO TO 20

CALL SRSCL(N, SCALE, WORK, 1)

END IF

GO TO 10

END IF

*

* Compute the estimate of the reciprocal condition number.

*

IF(AINVNM.NE.ZERO)

$ RCOND = (ONE / AINVNM) / ANORM

*

20 CONTINUE

RETURN

*

34

* End of SGECON

*

END

35

