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Abstract. This paper presents an improved version of incremental condition estimation, a technique for tracking

the extremal singular values of a triangular matrix as it is being constructed one column at a time. We present a new

motivation for this estimation technique using orthogonal projections. The paper focuses on an implementation of this

estimation scheme in an accurate and consistent fashion. In particular, we address the subtle numerical issues arising

in the computation of the eigensystem of a symmetric rank-one perturbed diagonal 2�2 matrix. Experimental results

show that the resulting scheme does a good job in estimating the extremal singular values of triangular matrices,

independent of matrix size and matrix condition number, and that it performs qualitatively in the same fashion as

some of the commonly used nonincremental condition estimation schemes.
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1 Introduction

Let A = [a1; � � � ; an] be an m� n matrix, and let �1 � � � � � �min(m;n) � 0 be the singular values of
A. The smallest singular value

�min � �min(m;n)

of A measures how close A is to a rank-de�cient matrix [18, p. 19]. If we let �max � �1, the condition
number

�2(A) �
�max

�min

;

which determines the sensitivity of equation systems involving A [18, 28], also depends crucially on
�min. For most practical purposes an order-of-magnitude estimate of �min or �2(A) is su�cient.
Most of the schemes for estimating �min and �2(A) apply to triangular matrices, since in common
applications A will be factored into a product of matrices involving a triangular matrix. A survey of
those so-called condition estimation techniques for triangular matrices as well as their applications
is given by Higham [20].

All of these condition estimators estimate the smallest singular value of a triangular matrix R in
O(n2) time after it has been factored; and the entire condition estimation process has to be repeated
if one wishes to estimate the condition number of a di�erent matrix R̂, even when R̂ is closely related

�This work was supported by the Applied Mathematical Sciences subprogram of the O�ce of Energy Research,

U. S. Department of Energy, under Contract W-31-109-Eng-38.

1



to R. This issue has been addressed by recent work on so-called incremental and adaptive condition
estimators.

\Incremental" condition estimation [5, 7] is an O(n) scheme to arrive at an estimate for the
condition number of R̂ when

R̂ =

�
R w




�
;

that is, R̂ is R augmented by a column. This estimator is well suited for restricting column exchanges
in rank-revealing orthogonal factorizations [3, 4, 6, 8].

\Adaptive" condition estimation schemes address the issue of rank-one updates of a triangular
matrix R. Pierce and Plemmons [25, 24] suggest an O(n) scheme and Ferng, Golub, and Plem-
mons [14] an O(n2) scheme for the situation where

R̂T R̂ = RTR+ uuT :

These schemes are designed for recursive least-squares computations in signal processing. Shro� and
Bischof [26] extend this work to the general rank-one update

R̂ = R+ uvT ;

which appears for example in many optimization algorithms. The key di�erence between these two

avors of condition estimators is that incremental condition estimation obtains condition number
estimates of a triangular factor that grows, whereas adaptive estimators maintain condition estimates
when information is added or extracted from an already existing factorization.

In this paper we present an improved version and a robust implementation of the incremental
condition estimator (ICE) originally suggested by Bischof [5]. We present a di�erent motivation
of this technique using orthogonal projections, and we address the subtle numerical issues involve
in implementing this scheme in a numerically robust and consistent fashion. At the heart of our
technique is the accurate computation of the eigensystem of a symmetric rank-one perturbed diagonal
2� 2 matrix, and considerable care must be taken to compute this eigensystem accurately.

The paper is organized as follows. Section 2 derives the incremental condition estimation
scheme, and Section 3 shows how we can ensure consistency in the sense of always producing an
over(under)estimate for the smallest (largest) singular value, as the mathematical theory suggests.
We then turn to the actual implementation of ICE; Section 4 discusses special cases, and Section 5
discusses the general case. In Section 6, we present numerical results that illustrate the reliability
of our scheme and implementation; in particular, we show that the scheme behaves as reliably as
nonincremental condition estimation schemes. Lastly, we summarize our contribution and discuss
future work.

2 Incremental Condition Estimation

Let R be an m�m upper triangular complex matrix (in particular, R can be real), x be a complex
m-vector, and � be a real scalar such that

kxHRk = � and

�
� � �max(R); or
� � �min(R):

Throughout this paper, k � k denotes the 2-norm, and �j(R) denotes the j-th singular value of R,

�max(R) � �1(R) � �2(R) � : : : � �m(R) � �min(R):

Clearly, having estimates for both �max(R) and �min(R) gives an estimate for the condition number
of R in the 2-norm.
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Given such a pair (x; � ), our goal is to obtain a new pair (x̂; �̂) for the augmented matrix

R̂ =

�
R w




�
;

where w is a complex m-vector and 
 a complex scalar.
Bischof [5] motivated ICE by exploiting the implication

Rx = d =) 1

�min(R)
= kR�1k2 �

kR�1dk2
kdk2

=
kxk2
kdk2

;

which suggests generating a large norm solution x to a moderately sized right-hand side d and then
using

�̂ :=
kdk2
kxk2

as an estimate for �min(R). This idea underlies many condition estimators [12, 13, 19]. The incre-
mental characteristic of ICE was achieved by choosing the right-hand side d in a special way.

As it turns out, the same estimator can also be derived by considering the following well-known
projection property of singular values. Let A be an n�n complex matrix and Y be an n�k, k � n,
complex matrix of orthonormal columns, that is, Y HY = I. Then,

�1(A) � �1(Y
HA); �2(A) � �2(Y

HA); : : : ; �k(A) � �k(Y
HA);

and
�n(A) � �k(Y

HA); �n�1(A) � �k�1(Y
HA); : : : ; �n�k+1(A) � �1(Y

HA):

We apply these inequalities to estimate the extremal singular values of R̂ by letting k = 2,

Y =

�
x

1

�
2 jC(m+1)�2; and A = R̂:

The left singular vectors of Y HA = Y HR̂ are the eigenvectors of M � Y H R̂R̂HY , and the
singular values are the square roots of M 's eigenvalues. Denote M 's eigenvalues by �1; �2, where
�1 � �2, and denote the corresponding eigenvectors by z1; z2, respectively. The new estimates
suggested naturally by the mathematics are� p

�1 and Y z1p
�2 and Y z2

�
if

�
� � �1(R)
� � �n(R)

�
:

As a result of the choice of Y , M can be expressed in a particularly simple form:

M = Y H R̂R̂HY

=

�
xH

1

� �
R w




� �
RH

wH �


� �
x

1

�

=

�
xHRRHx

0

�
+

�
xHw




�
[wHx �
]

=

�
�2

0

�
+

�
�




�
[�� �
]; � = xHw:

The eigensystems of rank-one perturbed diagonal systems are well understood (see [10, 15, 16]
for example).

The eigenvalues �1; �2 are the roots of the rational function

f(�) = 1� j
j2
�

+
j�j2

�2 � �
;
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and �1 > �2 > �2 > 0. The corresponding eigenvectors are

�
�2 � �1

��1

�
�1

�
�
�




�
and

�
�2 � �2

��2

�
�1 �

�




�
;

respectively.

3 Ensuring Consistency

Theoretically, the estimate �̂ lies between the extreme singular values of R̂. That is,

�m+1(R̂) � �̂ � �1(R̂):

It is desirable, therefore, for the computed estimate to also lie in this range. We call such an
implementation consistent. By the basic properties of extremal singular values, the implementation
will remain consistent as long as

�̂2c = zHc Mzc (1 +O(")) ;

where �̂c is the computed new estimate and zc is the computed eigenvector of M . That is, whatever
the computed eigenvector zc is, we would like the computed eigenvalue to be consistent with zHc Mzc.
The following example shows that ful�lling this requirement is not as straightforward as it seems.

Consider the situation where � = 2", � = 1, and 
 = 1 + ", where " is the machine precision.
Thus,

M =

�
4"2

0

�
+

�
1

1 + "

�
[1 1 + "]:

The characteristic equation is

1� (1 + ")2

�
+

1

4"2 � �
= 0

or, equivalently,
(4"2 � �)� � (1 + ")2(4"2 � �) + � = 0:

Let �2 be the smaller root. Expressing �2 = 2"2 +�, we have

(2"2 ��)(2"2 +�)� (1 + ")2(2"2 ��) + (2"2 +�) = 0;

which is
�2 ��(1 + (1 + ")2)� 4"3 + 2"4 = 0:

Since the smaller root is � = �2"3 +O("4), we have

�2 = 2"2 � 2"3 +O("4)

= 2"2 + O("3):

Thus, 2"2 is a fully accurate approximation to �2. Unfortunately, this fully accurate solution leads
to a potentially inconsistent estimation, as the following shows. If we use 2"2 as the computed �2
(that is, �̂2c = 2"2), the corresponding unnormalized eigenvector is

�
1

2"2
;
�(1 + ")

2"2

�T
;

which normalizes to zc = [1;�(1 + ")]T . But straightforward calculation shows

zHc Mzc = 4"2 +O("2);
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which is bigger than �̂2c by a factor of 2.
This example motivates the following analysis. Suppose R̂'s smallest singular value is approx-

imately ", but its next singular value is approximately 1. Let (�; z) be an eigenpair of M , and
let (�c; zc) be the corresponding computed quantities. Assume that (�c; zc) are computed to full
precision in the sense that

zc = z + ~z; k~zk = "1; and �c = �(1 + "2);

where j"1j; j"2j � ". Now consider

zHc Mzc = zHMz + 2~zHMz + ~zHM ~z:

Thus, the relative error
zHc Mzc � �c

�
� (2"1 � "2) + ~zHM ~z=�:

The error 2"1 � "2 is negligible. Next, denote ~z
HM ~z=� by �. Note that � � 0. If we are estimating

the largest singular value of R̂, then � � kMk, giving � � "2, which is obviously negligible.
But if are trying to estimate R̂'s smallest singular value and it happens to be near ", we will have

kMk = �21(Y
HR̂) � �2m(R̂) � 1

(recall that the dimension of R̂ is m + 1), and hence k~zHM ~zk can be as big as "2. Now if � �
�2m+1(R̂) � "2, then � � 1; that is, the �rst digit of �c is wrong in the direction that may lead to an
inconsistent estimation. Fortunately, the following simple calculation o�ers a practical safeguard.

Let �c and zc be the computed eigenpair. If we are estimating the largest singular value �1(R̂),
then proceed as usual:

�̂ :=
p
�c and x̂ := Y � z:

If we are estimating the smallest singular value, then

�̂ :=
p
�c + 4"2kMk and x̂ := Y � z:

For computational convenience, kMk can be replaced by kMk1. When the condition number of
R̂ is moderate, the compensation term 4"2kMk is so small that the quality of the estimation is
una�ected. When R̂ is ill conditioned, this compensation ensures �̂ � kx̂HR̂k � �m+1(R̂):

4 Special Cases

Mathematically, the eigensystem

M =

�
�2

0

�
+

�
�




�
[�� �
]

(� � 0 real and �; 
 complex) simpli�es greatly if one (or both) of � and 
 is zero. In this section, we
will address the cases (1) � = 0, (2) j
j � "� and � > 0, (3) j�j � "� and � > 0, and (4) 0 < � � "j
j
or 0 < � � "j�j. Handling these cases separately allows the computations for the usual case to be
free from possible spurious over
ow.

4.1 Case 1. � = 0

Since M =

�
�




�
[�� �
], the two eigenvalues of M are 0 and j�j2 + j
j2. If j�j2 + j
j2 > 0, the

corresponding eigenvectors are [��
 ��]T and [� 
]T , respectively. If � = 
 = 0, then [1 0]T

and [0 1]T are an appropriate pair of eigenvectors. By scaling properly, one can easily calculate
the square roots of the eigenvalues and the corresponding normalized eigenvectors without spurious
over
ow.
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4.2 Case 2. j
j � "� and � > 0

Note that � > 0 is immediate if we �rst test for Case 1. Now,

M = �2
��

1
0

�
+

�
�=�


=�

�
[��=� �
=� ]

�
;

where j
=� j � " and kM=�2k � 1. Thus, one can consider the two eigenvalues to be j
j2 and
�2+ j�j2. (Clearly, j
j2 is the smaller one.) The corresponding eigenvectors are [0 1]T and [1 0]T ,
respectively.

4.3 Case 3. j�j � "� and � > 0

By an analysis similar to that in Case 2, the two eigenvalues are j
j2 and �2. A comparison be-
tween j
j and � is needed to determine the smaller and the larger eigenvalues. The corresponding
eigenvectors are [0 1]T and [1 0]T .

4.4 Case 4. 0 < � � "j
j or 0 < � � "j�j

First, consider the smallest eigenvalue �2 of

M =

�
�2

0

�
+

�
�




�
[�� �
]:

Now 0 < �2 < �2, and

1� j
j2
�2

+
j�j2

�2 � �2
= 0:

But
� � "j
j or � � "j�j

implies
j
j2
�2

� "�2 � 1 or
j�j2

�2 � �2
� "�2 � 1:

Consequently, for all practical purposes,

�j
j
2

�2
+

j�j2
�2 � �2

= 0;

giving

�2 = �2
j
j2

j�j2 + j
j2 :

The corresponding eigenvector is [��
 ��]T . By scaling properly, we can compute
p
�2 and the

normalized eigenvector without spurious over
ow.
Next, consider the largest eigenvalue �1 of M . Now �1 > �2, and

1� j
j2
�1

+
j�j2

�2 � �1
= 0:

Clearly,

0 <
j
j2
�1

;
j�j2

�1 � �2
< 1:

Thus
0 < � � "j
j or 0 < � � "j�j
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implies
�1 � �2 = �1(1 +O("2)):

Consequently, for all practical purposes,

1� j
j2
�1

� j�j2
�1

= 0;

giving
�1 = j�j2 + j
j2:

The corresponding eigenvector is [� 
]T . By scaling properly, we can compute
p
�1 and the nor-

malized eigenvector without spurious over
ow.

5 The Usual Case

The goal here is to compute the eigensystem of

M =

�
�2

0

�
+

�
�




�
[�� �
]

accurately. If M does not belong to any of the special cases described previously, we must have

" � j �j=� and j
j=� � 1= ":

We therefore consider the eigensystem of

��2M =

�
1

0

�
+

�
�1
�2

�
[��1 ��2];

where �1 = �=� and �2 = 
=� . The advantage of this scaling is that subsequent computations
involving j�jj2 are extremely unlikely to over
ow or under
ow.

Denote ��2M by A, and let �1; �2, where �1 > 1 > �2 > 0, be A's eigenvalues. Clearly,p
�j = �

p
�j ; j = 1; 2;

and the eigenvectors of A and M are identical. Recall that the eigenvectors are given by

�
1� �1

��1

�
�1 �

�1
�2

�
and

�
1� �2

��2

�
�1 �

�1
�2

�
:

Hence, in order for the eigenvectors to be accurate, the quantites �j and 1 � �j , j = 1; 2, have to
be computed accurately. The implication is that, depending on the situation, computing the �j's
accurately may not be su�cient. The following example illustrates the point.

Consider

A =

�
1

0

�
+

� p
"

1

�
[
p
" 1]:

Thus,

�1 = 1 +
1

2
"+

p
"(1 +

1

4
")1=2;

�2 = 1 +
1

2
"�

p
"(1 +

1

4
")1=2:
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Clearly,

�̂1 = 1 +
p
" + "

�̂2 = 1�
p
"

are accurate approximations to �1; �2 (with only a rounding error in the last digit).
Using these computed values, we obtain for the eigenvectors

�
�(
p
" + ")

�(1 +
p
" + ")

�
�1 � p

"

1

�
=

2
4 �1

.
1 +

p
"

�1
.
1 +

p
"+ "

3
5 ; and

� p
"

�(1 �
p
")

�
�1 � p

"

1

�
=

"
1

�1
.
1 +

p
"

#
:

To normalize the vectors, we need only multiply 1=
p
2 to each. The inner product of the normalized

vectors is 1
2

p
" + O("), instead of the desired O("). The problem here is that the rounding errors

in �̂1 and �̂2 are being magni�ed in the subtractions 1 � �̂1 and 1 � �̂2. The next two subsections
show how M 's eigensystem can be computed accurately.

5.1 Computations for the Larger Eigenpair

Since �1 > 1, we can obtain �1 accurately by 1�(1��1), provided we can compute 1��1 accurately.
The rational function characterizing the eigenvalues of M is

f(�) = 1� j�2j2
�

+
j�1j2
1� �

:

We consider the translated equation

g(�) = f(1 + �) = 1� j�2j2
1 + �

� j�1j2
�

=
�(1 + �)� j�2j2� � j�1j2(1 + �)

�(1 + �)
:

We are interested in the larger root of

q(�) = �2 + 2b�� c = 0;

where b = (1� j�1j2 � j�2j2)=2 and c = j�1j2. The larger root �1 is given by

�1 =

�
�b+

p
b2 + c; or

c=(b+
p
b2 + c):

To avoid cancellation, we use the �rst formula when b � 0 and the second one when b > 0.
Since �1 = 1 + �1, we have �1 = �2(1 + �1) or

p
�1 = �

p
1 + �1. The corresponding eigenvector

is �
��1

�(1 + �1)

�
�1

�
�
�1
�2

�
:
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5.2 Computations for the Smaller Eigenpair

Here we are interested in the smaller root, �2, of

f(�) = 1� j�2j2
�

+
j�1j2
1� �

:

The objective is to be able to obtain both �2 and 1� �2 accurately. This objective can be achieved
by �rst computing �2 or 1��2 accurately, whichever has smaller magnitude, and then computing the
other from the �rst. Since 0 < �2 < 1, f 0(�) > 0 on (0; 1), limx!0+ f(x) = �1, and limx!1� f(x) =
+1, we know that �2 � 1 � �2 if f(1=2) � 0; otherwise �2 > 1 � �2. We therefore consider two
cases.

5.2.1 Case a. f(1=2) � 0

Here we compute the smaller root of the untranslated equation

f(�) = 1� j�2j2
�

+
j�1j2
1� �

;

which is the smaller root of the quadratic

q(�) = �2 � 2b�+ c;

where b = (1+j�1j2+j�2j2)=2 and c = j�2j2. The smaller root �2 = c=(b+
p
b2 � c). The corresponding

eigenvector is �
1� �2

��2

�
�1 �

�1
�2

�
:

5.2.2 Case b. f(1=2) < 0

Since 1� �2 < �2, the objective is to calculate 1� �2 accurately. Thus, we consider the translated
equation

g(�) = f(1 + �) = 1� j�2j2
1 + �

� j�1j2
�

=
�(1 + �)� j�2j2� � j�1j2(1 + �)

�(1 + �)
:

We are interested in the smaller root of

q(�) = �2 + 2b�� c = 0;

where b = (1� j�1j2 � j�2j2)=2 and c = j�1j2. The smaller root

�2 =

�
�b�

p
b2 + c; or

c=(b�
p
b2 + c):

The �rst formula is preferable when b � 0, while the second one is better when b < 0. Since
�2 = 1 + �2, we have �2 = �2(1 + �2) or

p
�2 = �

p
1 + �2. The corresponding eigenvector is

�
��2

�(1 + �2)

�
�1 �

�1
�2

�
:
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6 Numerical Results

The purpose of our experiments is threefold. First, we wish to establish that in practice our ICE
scheme delivers reliable estimates (even though one can construct matrices where it performs ar-
bitrarily badly [5]). Second, we wish to show that ICE performs qualitatively in the same way as
some of the well-known condition estimators currently in use, in particular the Linpack condition
estimator [13] and Higham's condition estimator [21, 22] which is being used in the LAPACK pack-
age [1, 2]. Third, we wish to demonstrate that ICE is more reliable in correctly identifying the
rank of triangular matrices produced by the QR factorization with column pivoting [17] than is
the heuristic that is typically employed. The experiments reported here were performed with real
matrices.

6.1 The Accuracy of ICE

We performed two sets of test runs. In the �rst set, we chose n singular values �1; �2; : : : ; �n,
(not necessarily in order) from [0; 1] according to some speci�ed distribution. Then, we employed
Stewart's method [27] to generate random orthogonal matrices U and V . The upper-triangular
matrix R used in testing was the R factor of the QR decomposition

QR = Udiag(�1; �2; : : : ; �n)V
T :

For n = 50; 100; 150; and 200; we used four distributions of singular values and generated 200
test matrices in each distribution. The four distributions are as follows:

Random: the singular values are chosen randomly from the interval [0; 1].

Sharp Break: one singular value is 10�10; all the others are 1.

Exponential: the singular values are 1; r; r2; : : : ; rn�1 = 10�10.

Cluster: �ve singular values are chosen randomly from the interval [0:9� 10�10; 1:1� 10�10]; the
rest are chosen randomly from the interval [10�7; 1].

These experiments were performed using double precision on a Sun Sparcstation.
Figure 1 presents the results of our algorithm. The two histograms show by what factor we

overestimate the smallest singular value and underestimate the condition number of R, having used

our ICE scheme to estimate both the smallest and largest singular value of R. That is, we display

rmin �
�min

�min

and rcond �
(�max=�min)

(�max=�min)
:

So, for example, in 219 out of the total 800 cases, we overestimated the smallest singular value by a
factor between 1 and 2, and there were only two occurrences where the overestimate was worse by
a factor of more than 10. The situation for the condition number is much the same, and in all but
8 cases our estimates were within a factor of 10 of the true condition number.

Table 1 displays the median value and the worst observed value for rmin, rmax � �max=�max; and
rcond, grouped according to the di�erent singular value distributions that we employed.

We see that, apart from the \sharp break" distribution, the singular value distribution does not
have a noticeable in
uence on the performance of our estimator. We also did not notice a signi�cant
in
uence of the matrix size on the quality of the estimates produced. Except for rare occurrences,
our ICE implementation delivers estimates for the smallest singular value that are within a factor
of ten of the true smallest singular value of R. Moreover, all estimates for the largest singular value
are within a factor of two of the true largest singular value of R.
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Figure 1: Accuracy of ICE
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Underestimate of condition number

Table 1: Results of Double-Precision Tests

rmin rmax rcond
Distribution Median Worst Median Worst Median Worst

Random 3.25 11.30 1.13 1.22 3.65 12.50
Sharp Break 1.00 1.00 1.00 1.00 1.00 1.00
Exponential 3.75 6.11 1.21 1.81 4.71 9.55
Cluster 3.94 9.54 1.15 1.32 4.53 10.85
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Figure 2: Overestimates of Smallest Singular Value by ICE

0

200

400

1 1.5 2 2.5 3

400

243

101
32 8 7 3 2 2 0 1 0 1 0

6.2 ICE in Comparison with Other Estimators

The second set of experiments was designed mainly to show that ICE shows the same type of
qualitative behavior as the Linpack estimator STRCO [13] and the LAPACK estimator SGECON [21,
22]. For n = 100 and 200 we used four types of matrices:

Exponential: the singular values are 1; r; r2; : : : ; rn�1 = 10�6.

Randomlog: the singular values are random numbers in the range [10�6; 1] such that their loga-
rithms are uniformly distributed.

Cluster: ten singular values are chosen randomly from the interval ["; 4"]; the rest are chosen
randomly from the interval ("; 1].

These test matrices were generated as were those in the preceding section. Lastly, we employed

RandomA: the elements of A were generated randomly using a uniform distribution on (0; 1); R
is the triangular factor from a QR factorization of A.

The upper plot in Figure 2 shows how much ICE overestimates the smallest singular value of A
on this set of experiments. The behavior is much the same as in Figure 1; for example, in 305 of the
800 test cases, the smallest singular value was overestimated by a factor of between 3 and 4. The
second plot shows how the estimate returned by ICE is improved through one backsolve. That is,
given the approximate left nullvector x returned by ICE, we solve the triangular system

Rz = x

12



to generate an approximate right nullvector z, and we use

~� � 1=kzk2

as our estimate of the smallest singular value of R. The histogram shows by what factor we overesti-
mate the smallest singular value using this estimate, that is, ~�=�min(R). Note that while the bucket
size in upper histogram is 1.0, it is 0.15 in the lower histogram. Note further that in 243 of the
800 test cases, the smallest singular value is now overestimated by a factor between 1.15 and 1.30.
Of course, the greater is the gap between �n and �n�1, the more e�ective this improvement step
is. Nevertheless, we did not arti�cially put pronounced gaps in our examples. These experiments
show that the approximate nullvectors produced by ICE would be very good starting vectors for an
inverse iteration process for computing exact singular values and vectors of R.

Figure 3 shows the condition number estimates returned by ICE and the Linpack and LAPACK
condition estimators on these test matrices. The �rst 100 sample points correspond to the matrices
of dimension 100; the second 100 sample points correspond to the matrices of dimension 200. The
Linpack and LAPACK condition estimators both estimate the one-norm of R. To make them
comparable to the two-norm estimates returned by ICE, we scaled them by a factor of

p
n. That is,

if �̂1 is the condition number estimate returned by the Linpack or LAPACK condition estimator for
an n� n matrix, we display �̂1=

p
n. As we can see, the three estimators show the same qualitative

behavior in tracking the condition number of R. In particular, in the plots showing the \RandomA"
and \Cluster" distributions, all estimators track \spikes" in the condition number correctly.

6.3 ICE and the QR Factorization with Column Pivoting

A well-known strategy for extracting a set of reasonably independent columns of a given matrix
A and for computing an orthonormal basis for the span of A is the QR factorization with column
pivoting [9, 11, 23]:

AP = QR:

Viewed geometrically [18, p. 168, P.6.4{5] this strategy chooses at every step that column of A
that is farthest away (in the two-norm sense) from the subspace spanned by the columns that were
selected before.

One approach to estimating the rank of A is �rst to compute a QR factorization with column
pivoting of A and then to use �min(R(1 : i; 1 : i)), that is, the smallest singular value of the leading
i� i submatrix, as an estimate for the ith singular value of A. In particular, A is considered to have

rank k with respect to a condition number threshold � if

�max(R(1 : k; 1 : k))

�min(R(1 : k; 1 : k))
� � � �max(R(1 : k + 1; 1 : k + 1))

�min(R(1 : k + 1; 1 : k + 1))
:

Since the matrix R produced by the QR factorization with column pivoting is graded, the moduli
of the �rst and ith diagonal entry are heuristically good estimates for the extremal singular values
of R(1 : i; 1 : i). Thus, we estimate

�max(R(1 : i; 1 : i)) � jr11j

and
�min(R(1 : i; 1 : i)) � jriij:

In Table 2 we compare these estimates with the ICE estimates. For n = 100 we generated the same
full matrices as in the preceding section, but the triangular test matrices R were now the results of
an orthogonal factorization with column pivoting. The column labeled \ICE" shows by what factor
ICE underestimated the condition number of R; the column \Diagonal" shows by what factor the
ratio jr11j=jrnnj underestimated the condition number of R.
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Figure 3: ICE in Comparison with Other Estimators
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Table 2: ICE versus Diagonal Estimate

Median Worst
Distribution ICE Diagonal ICE Diagonal

RandomA 3.58 66.1 14.1 1343.9
Randomlog 3.48 11.7 7.46 22.8
Exponential 3.78 12.9 5.84 23.3
Cluster 4.60 10.8 12.5 46.9

In particular, the random matrices show that using ICE yields much more reliable estimates
than using the heuristics based on diagonal elements. For this reason, ICE has been incorporated
in the LAPACK driver routine SGELSX, which computes the minimum-norm solution of a possibly
rank-de�cient least-squares problem by using an orthogonal factorization with column pivoting.

7 Concluding Remarks

We have presented an improved version of incremental condition estimation, a technique for tracking
the extremal singular values of a triangular matrix as it is being constructed one column at a time. At
the heart of our technique is the accurate computation of the eigensystem of a 2�2 symmetric rank-
one perturbed diagonal matrix. This seemingly simple task requires great care when �nite-precision
arithmetic is used. The eigenvalue solver then leads to a robust and consistent implementation of
incremental condition estimation.

Experimental results show that our scheme delivers good estimates of the extremal singular
values and performs qualitatively as well as the one-norm estimators used in Linpack and LAPACK.
The results also demonstrate the advantages of using incremental condition estimation over the
usual heuristic in estimating the rank of a triangular matrix generated by the QR factorization with
column pivoting.

The derivation of incremental condition estimation used in this paper suggests that one could
design incremental condition estimators that estimate several extremal singular values at the same
time (for example, the two smallest ones). We are currently investigating this approach.
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