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Abstract. This paper presents a generalization of incremental condition estimation, a technique for tracking the

extremal singular values of a triangular matrix. While the original approach allowed for the estimation of the largest
or smallest singular value, the generalized scheme allows for the estimation of any number of extremal singular values.
For example, we can derive estimates for the three smallest singular values and the corresponding singular vectors at

the same time. When estimating k singular values at the same time, the cost of one step of our generalized scheme on
an n� n matrix is O(nk2). Experimental results show that the resulting estimator does a good job of estimating the

extremal singular values of triangular matrices and that, in particular, it leads to an inexpensive, yet very accurate
and robust condition estimator.

AMS(MOS) subject classi�cations. 65F35, 65F05
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1 Introduction

Let A = [a1; � � � ; an] be an m� n matrix, and let �1 � � � � � �min(m;n) � 0 be the singular values of
A. The smallest singular value

�min � �min(m;n)

of A measures how close A is to a rank-de�cient matrix [14, p. 19]. If one lets �max � �1, the
condition number

�2(A) �
�max

�min

determines the sensitivity of equation systems involving A [14, 21]. For most practical purposes
an order-of-magnitude estimate of �min or �2(A) is su�cient. Most of the schemes for estimating
�min and �2(A) apply to triangular matrices, since in common applications A will be factored into a
product of matrices involving a triangular matrix. A survey of those so-called condition estimation
techniques for triangular matrices as well as their applications is given by Higham [15].

All of these condition estimators estimate the smallest singular value of a triangular matrix R in
O(n2) time after it has been factored; and the entire condition estimation process has to be repeated
if one wishes to estimate the condition number of a di�erent matrix R̂, even when R̂ is closely related
to R. This issue has been addressed by recent work on so-called incremental and adaptive condition
estimators.

�This work was supported by the Applied Mathematical Sciences subprogram of the O�ce of Energy Research,
U. S. Department of Energy, under Contract W-31-109-Eng-38.
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Incremental condition estimation [3, 5] is anO(n) scheme to arrive at an estimate for the condition
number of R̂ when

R̂ =

�
R w




�
;

that is, R̂ is R augmented by a column. This estimator is well suited for restricting column exchanges
in rank-revealing orthogonal factorizations [1, 2, 4, 6].

Adaptive condition estimation schemes address the issue of rank-one updates of a triangular ma-
trix R. Pierce and Plemmons [17, 16] suggest an O(n) scheme and Ferng, Golub, and Plemmons [11]
an O(n2) scheme for the situation where

R̂T R̂ = RTR+ uuT :

These schemes are designed for recursive least-squares computations in signal processing. Shro� and
Bischof [18] extend this work to the general rank-one update

R̂ = R+ uvT ;

which appears for example in many optimization algorithms. The key di�erence between these two

avors of condition estimators is that incremental condition estimation obtains condition number es-
timates of a triangular factor that grows, whereas adaptive condition estimation maintains condition
estimates when information is added or extracted from an already existing factorization.

In this paper, we generalize incremental condition estimation to estimate any number of extremal
singular values (and the corresponding vectors) instead of just the largest or smallest one as the
original incremental condition estimation scheme suggested. In Section 2 we show how we can
estimate k extremal singular values by computing the eigensystem of a (k+ 1)� (k + 1) symmetric
rank-one perturbed diagonal matrix, and we give some examples of how this scheme could be used.
In Section 3 we discuss the issues that arise in the accurate solution of this eigensystem in 
oating-
point arithmetic. In Section 4 we present numerical experiments showing that the scheme delivers
good singular value estimates and that, in particular, it delivers more reliable estimates for the
smallest singular value than the original incremental condition estimation (ICE) scheme. Lastly, we
present some concluding remarks and suggest some problems where it is useful to obtain estimates
of several extremal singular values and vectors.

2 Derivation of the Generalized Incremental Condition Es-

timation Scheme

Assume that we are interested in estimating k extremal singular values �i1 ; : : : ; �ik (ij < ij+1) of
an m�m upper triangular matrix R. Our scheme will be able to estimate extremal singular values
at both ends of the spectrum. Thus, for k = 3, for example, we have four choices: (i1; i2; i3) =
(1; 2; 3); (1; 2;m); (1;m� 1;m); and (m� 2;m� 1;m). Further assume that we have singular value
estimates �1; �2; : : : ; �k and a corresponding set of orthonormal approximate left singular vectors xj,
that is,

kxHj Rk2 = �j; �j � �ij ; j = 1; : : : ; k;

and XHX = I, where X = [x1; : : : ; xk].
Our goal is to obtain updated singular value estimates �̂i; �̂2; : : : ; �̂k and corresponding approxi-

mate singular vectors x̂1; x̂2; : : : ; x̂k for the augmented matrix

R̂ =

�
R w




�
;
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where w is an m-vector and 
 a scalar. A scheme that accomplishes this task cheaply (that is, in less
than O(n2) work), is called an ICE(k) estimator. We present the derivation for complex matrices,
which is in particular applicable to real matrices.

As was mentioned in [7], incremental condition estimation can be motivated by the following
well-known projection property of singular values. Let A be an n� n complex matrix and Y be an
n � l, l � n, complex matrix of orthonormal columns, that is, Y HY = I. Then,

�1(A) � �1(Y
HA); �2(A) � �2(Y

HA); : : : ; �l(A) � �l(Y
HA) (2:1)

and
�n(A) � �l(Y

HA); �n�1(A) � �l�1(Y
HA); : : : ; �n�l+1(A) � �1(Y

HA): (2:2)

The ICE scheme suggested in [3, 7] applies these inequalities to estimate either �max or �min as
follows. We have

kxH1 Rk2 = �1; where �1 � �max or �1 � �min:

We let k = 1,

A = R̂ =

�
R w




�
; Y =

�
x

1

�
2 jC(m+1)�2; and l = k + 1 = 2:

Inequalities 2.1 and 2.2 suggest that we calculate the extreme singular values and vectors of Y HA

in order to estimate the extremal singular values of A. To this end, we consider the eigensystem of

M = Y HAAHY

= Y HR̂R̂HY

=

�
�21

0

�
+

�
�




�
[��; �
] ; where � = xH1 w.

Denoting M 's eigenvalues by �1; �2, where �1 � �2, and the corresponding eigenvectors by z1 and
z2, we obtain the following ICE(1) estimates for R̂:

�
�̂1 =

p
�1 and x̂1 = Y z1

�̂1 =
p
�2 and x̂1 = Y z2

�
if

�
�̂1 � �max(R)
�̂1 � �min(R)

�
:

This scheme can be generalized as follows. Assume we have approximate singular vectors xj ; j =
1; : : : ; k corresponding to the k extremal singular values �i1; �i2 ; : : : ; �ik of A. That is,

kxHj Rk2 = �j; �j � �ij ; j = 1; : : : ; k;

and XHX = I, where X = [x1; : : : ; xk]. Now let

A = R̂ =

�
R w




�
; Y =

�
x1 � � � xk 0
0 � � � 0 1

�
2 jC(m+1)�k+1; and l = k + 1:

To calculate the extreme singular values of Y HA, we compute the eigensystem of M = Y HAAHY .
Denote M 's eigenvalues by �1; �2; : : : ; �l, where �j � �j+1, and denote the corresponding eigenvec-
tors by z1; z2; : : : ; zk+1. Suppose that the �rst ` estimates �1; �2; : : : ; �` approximateR's large singular
values, �1 � �1(R); �2 � �2(R); : : : ; �` � �`(R), and suppose that the remaining k � ` estimates ap-
proximate R's small singular values, �k � �m(R); �k�1 � �m�1(R); : : : ; �`+1 � �m�(k�`�1)(R). We

then use �̂j's as new estimates for R̂ de�ned by

�̂j =
p
�j; x̂j = Y zj ; j = 1; 2; : : :; `;
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and
�̂j =

p
�j+1; x̂j = Y zj+1; j = `+ 1; `+ 2; : : : ; k:

We have, therefore,
kx̂Hj R̂k2 = �̂j ; j = 1; 2; : : :; k;

and X̂HX̂ = I. The �rst ` of the �̂j 's approximate R̂'s large singular values, and the remaining k�`

approximate R̂'s small singular values. Moreover, from the Inequalities 2.1 and 2.2, we have

�̂1 � �1(R̂); �̂2 � �2(R̂); : : : ; �̂` � �`(R̂);

and
�̂k � �m(R̂); �̂k�1 � �m�1(R̂); : : : ; �̂`+1 � �m�(k�`�1)(R̂):

Hence, our scheme will underestimate the large singular values and overestimate the small ones.
To illustrate the scheme, let us consider k = 4 and ` = 2, that is, �1 � �1(R); �2 � �2(R); �3 �

�m�1(R), and �4 � �m(R). We let

Y =

�
x1 x2 x3 x4 0
0 0 0 0 1

�

and M = Y H R̂R̂HY , a 5 � 5 Hermitian matrix. Denote M 's eigenvalues by �1; �2; : : : ; �5 and its
eigenvectors by z1; z2; : : : ; z5. We now take M 's two extreme large and two extreme small singular
pairs to construct our estimates for R̂:

�̂1 =
p
�1; �̂2 =

p
�2; �̂3 =

p
�4; �̂4 =

p
�5;

and
x̂1 = Y z1; x̂2 = Y z2; x̂3 = Y z4; x̂4 = Y z5:

The computational cost of our scheme involves the computation ofM 's eigensystem and kmatrix-
vector multiplications Y zj. The matrix-vector multiplications cost 2mk2 
ops total. This is the
dominant cost, since our choice of Y gives M a simple structure:

M =

�
x1 : : : xk 0
0 : : : 0 1

�H �
R w




� �
RH

wH �


��
x1 : : : xk 0
0 : : : 0 1

�

=

2
66664

�21
�22

. . .

�2k
0

3
77775+

2
66664

�1
�2
...
�k



3
77775 [ ��1 ��2 : : : ��k �
 ] ; where �j = xHj w.

Thus,M is a symmetric rank-one perturbed diagonal matrix. The eigensystems of such matrices have
been well studied theoretically (see [8, 12, 13] for example), and they can be computed considerably
more e�ciently than those of general l � l matrices. However, the computation of M 's eigensystem
using 
oating-point arithmetic was not resolved satisfactorily until the recent work of Sorensen
and Tang [19]. We therefore devote the next section to discussing the computational issues of our
condition estimation scheme.
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3 Eigensystems of Symmetric Rank-One Perturbed Diago-

nal Matrices

The structure of M can be expressed as

M =

2
664
�1

�2
. . .

�l

3
775+ �

2
664
�1
�2
...
�l

3
775 [ ��1 ��2 : : : ��l ]

= D + �bbH ; � > 0 and kbk2 = 1:

By applying the de
ation techniques in [8, 19] if necessary, we can assume �1 > �2 > : : : �l and
j�j j > " for j = 1; 2; : : : ; l, where " is the machine precision. As the derivation of our generalized
ICE scheme suggests, the mutual orthogonality of the approximate singular vectors of M is crucial.
Consequently, it is important that the computed eigenvectors of M be numerically orthogonal. As
it turns out, ful�lling this requirement is not a straightforward task.

With the assumptions that �1 > �2 > : : : > �l and j�j j > " (in particular, that j�j j > 0), M 's
eigenvalues �1; �2; : : : ; �l satisfy the well-known interlacing property

�1 > �1 > �2 > �2 > : : : > �l > �l:

An eigenvector corresponding to �j is given by

2
664
�1 � �j

�2 � �j
. . .

�l � �j

3
775

�1

�

2
664
�1
�2
...
�l

3
775 :

Thus, provided that the di�erences �ij � �i � �j , j = 1; 2; : : : ; l, can be computed to full machine
precision, each component of the computed eigenvectors will be fully accurate, yielding a set of
numerically orthogonal eigenvectors.

A standard approach to determine the di�erences �ij is to numerically solve for the roots of the
secular equation (see [8] for example):

f(�) = 1 + �

lX
j=1

j�j j2
�j � �

:

Although di�erent root �nders had been proposed [8, 10], none could always guarantee numerical
orthogonality | all failed occasionally in a few examples, either contrived or natural. Only recently
did the analysis in [19] explain that there is an intrinsic di�culty related to the accuracy in which
f is evaluated. It was shown there that, for any given j, the magnitude

"maxi j�i=(�i � �j)j
f 0(�j)

is a key indicator of the accuracy of the calculated di�erences �ij. In particular, since j�jj � " for j =
1; 2; : : : ; l, the resulting bounds obtained for those magnitudes imply that numerical orthogonality
is guaranteed provided f is evaluated in a precision that doubles the working precision. An e�cient
algorithm ful�lling this requirement without the need of a double-precision data type is also given
in [19]. We have employed this eigensystem solver throughout our condition estimation scheme.
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4 Numerical Results

Our experiments were designed to answer several questions. First, we wished to see how much better
the original scheme is in estimating the smallest singular value of a matrix, since this is the di�cult
part in obtaining a reliable two-norm condition number estimate. Second, we wished to get some
idea of how the accuracy of the generalized schemes varied as we increased k. Lastly, we wished
to get a feeling for the accuracy with which the generalized schemes estimate the other extremal
singular values whose estimates are being maintained.

In our tests, we employed various triangular matrices. For the �rst class of matrices, we chose
n singular values �1; �2; : : : ; �n (not necessarily in order) from [0; 1] according to some speci�ed
distribution. Then, we employed Stewart's method [20] to generate random orthogonal matrices U
and V . The upper-triangular matrices R used in testing were the R factor of the QR decomposition,

QR = Udiag(�1; �2; : : : ; �n)V
T :

Three distributions for the singular values were used:

Cluster: ten singular values were chosen randomly from the interval ["; 4"]; the rest were chosen
randomly from the interval ("; 1].

Exponential: the singular values were 1; r; r2; : : : ; rn�1 = 10�10.

Randomlog: the singular values were random numbers in the range [10�6; 1] such that their loga-
rithms were uniformly distributed.

Other matrices were

Random: R was the upper triangular factor of a QR factorization of a full matrix with elements
uniformly random distributed in (0; 1).

Di�cult: R was generated so as to be a \di�cult" matrix for the ICE(1) scheme for estimating the
smallest singular value and was generated as follows. Given an m�m triangular matrix T (m),
and an approximate smallest left singular vector of T as generated by the ICE(1) scheme, we
augmented T by generating a random m-vector z, subtracting most of its contribution in the
direction of x. We then adjusted the diagonal entry 
 such that

T (m + 1) =

�
T (m) z




�

was not too ill conditioned. Starting with m = 2, we thus built up an n � n matrix. As was
shown in [3], the ICE(1) scheme can produce arbitrarily bad estimates when z is orthogonal
to x. While this is not the case here, these matrices should be more likely than others to cause
the ICE(1) scheme to produce large overestimates of the smallest singular value.

4.1 Accuracy of ICE(k) Estimates for Estimating the Smallest Singular

Value

Our �rst set of experiments was designed to show to what extent the generalized ICE scheme
improves the estimate for the smallest singular value. Let

rmin(k) �
�min(k)

�min

;

where �min(k) is the estimate for �min produced by the ICE(k) estimate with ` = 0, that is, the ICE-
vectors are approximations of the singular vectors corresponding to the k smallest singular values.
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Table 1: ICE(2) versus ICE(1)

rmin(1) rmin(2) rmax(1) rmax(2)
Distribution Median Worst Median Worst Median Worst Median Worst

Exponential 3.10 4.47 2.82 3.63 1.24 1.82 1.17 1.72
Randomlog 3.03 5.73 2.70 5.62 1.20 1.66 1.14 1.60
Cluster 4.75 17.00 3.89 9.92 1.15 1.26 1.13 1.21
Random 4.31 17.28 3.15 9.82 1.00 1.01 1.00 1.00
Di�cult 1.06 2181.30 1.03 15.18 2.18 2.54 1.66 2.09

Thus, rmin(k) is an overestimate of the smallest singular value by an ICE(k) estimate. Figure 1
shows average and maximum values of rmin(k), where k ranges from 1 to 6. The experiments
re
ect 50 trials with 50�50 matrices having a \random", \exponential", and \cluster" distribution.
For example, for the `random' distribution, the worst-case value for rmin(1) is 16.7, whereas the
worst-case value for rmin(2) is 6.4. In contrast, the average overestimate decreases from 3.8 to 2.9.
These results (as well as the results in the other plots, though in a somewhat less spectacular way)
suggest that the increase in accuracy for the smallest singular value is not very pronounced on
average, but that (as expected) the generalized ICE schemes are more robust, in that the worst-case
overestimate is reduced signi�cantly. The plots also suggest that for the purposes of estimating only
the smallest singular value, using k = 2, that is ICE(2), seems to be fully su�cient, and that the
added computional cost for higher-degree ICE schemes is not rewarded by great improvements in
the estimate for �min.

4.2 ICE(2) Estimates for the Largest or Smallest Singular Values

The experiments of the preceding section prompted us to investigate the behavior of the ICE(2)
estimator in more detail. Table 1 shows (for k = 1; 2) the median and worst-case values for rmin(k)
and

rmax(k) �
�max

�max(k)
;

where �max(k) is the estimate for the largest singular value of R using an ICE(k) estimator that
approximates the k largest singular values. These experiments re
ect 100 trials with matrices of size
100 and 200 each. As was suggested by the previous round of experiments, the generalized scheme
does prevent \outliers" and increases the average accuracy of the condition estimation scheme. This
point is made in a particularly impressive fashion by the \di�cult" matrices. As mentioned before,
they were designed to break the ICE(1) scheme, and they did. On one matrix, the ICE(1) scheme
overestimates the smallest singular value by a factor of more than 2,000. Equally surprising to us,
however, was the fact that the median overestimate for this distribution was only 1.06. Using the
ICE(2) scheme, the large overestimates disappear. The improvement realized by the ICE(2) scheme
in estimating �max was somewhat disappointing, largely in view of the already good performance of
the ICE(1) scheme.

While our exploration of the generalized ICE scheme was mainly motivated by the desire to
develop a more robust condition estimator, the ICE(2) schemes we employed also produce estimates
for �n�1 and �2. In Table 2 we display the median and worst-case values of

rn�1 �
�n�1

�n�1
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Figure 1: Overestimate of Smallest Singular Value by ICE(k)
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Table 2: Accuracy of ICE2 on �2 and �n�1

rn�1 r2
Distribution Median Worst Median Worst

Exponential 3.21 4.50 1.40 1.98
Randomlog 3.08 4.79 1.38 2.95
Cluster 3.92 11.42 1.17 1.33
Random 3.41 12.54 12.91 15.82
Di�cult 1.37 24.83 3.73 5.02

and
r2 �

�2

�2
;

which are the factors by which the ICE(2) schemes overestimated the next-to-smallest singular value
and underestimated the second singular value on the test matrices used for Table 1. The performance
of the ICE(2) scheme for estimating �n�1 is comparable to the performance of ICE(1) for estimating
�min. Similarly, the estimates of ICE(2) for �2 and the ICE(1) estimate of �1 are comparable,
with the ICE(2) estimate for �2 being slightly worse. At any rate, however, the quality of the ICE
estimates would be su�cient to gain a qualitative understanding of the separation of the extremal
singular values.

Using the ICE(2) estimates for �min and �max, we do obtain a condition estimator that is consid-
erably more robust than the one derived from the original ICE(1) scheme. This becomes apparent
when one considers

�̂(1)

�̂(2)
;

the ratio of the ICE(1) condition estimate

�̂(1) � �min(1)

�max(1)

to the ICE(2) condition estimate

�̂(2) � �min(2)

�max(2)
:

Figure 2 shows a histogram of

log2(
�̂(1)

�̂(2)
):

In 859 out of the 1,000 test cases, the generalized scheme improved the quality of the estimates,
by a factor between 1 and 2 in 785 cases, by a factor between 2 and 4 in 48 cases, and by a factor
between 29 and 210 in one case. In 141 cases the original ICE(1) scheme did produce better results
than the generalized scheme, although the improvements were not pronounced. For those 141 cases,

the median ratio for log2(
�̂(1)

�̂(2)
) was 0.96, with the smallest value being 0.53. This situation is

also re
ected in Figure 3, which shows in more detail how the ICE(2) condition estimate compared
to the ICE(1) estimate. We only show the three distributions, where (according to Table 1) the
ICE(2) scheme led to noticeable improvements, namely, the \di�cult," \cluster," and \random"

distribution. The plot shows log2(
�̂(1)

�̂(2)
), and the �rst 100 data points for each distribution correspond

to the matrices of size 100, the seond 100 data points correspond to the matrices of size 200. The
dotted line at 0 represents the cases where the ICE(1) and ICE(2) estimate produced the same
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Figure 2: Improvement of Condition Estimate through Use of Generalized Scheme
Histogram of log2 (�̂(1)=�̂(2))
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results. When the plot is above this line, ICE(2) produces a better estimate, if it is below, ICE(1)
is better. The \di�cult' distribution again con�rms the �ndings suggested by Table 1: ICE(2) is
usually more reliable, and in particular it is much less likely to produce large overestimates than is
the ICE(1) scheme.

4.3 ICE(2) Estimates for Both the Largest and Smallest Singular Values

Lastly, we used the ICE(2) scheme to estimate both the smallest and largest singular value at the
same time (that is, using the notation of Section 2, i1 = 1 and i2 = n). Table 3 shows rmin and
rmax when the smallest and largest singular values are estimated at the same time using ICE(2)
and independently using the ICE(1) scheme. As we can see, there is not a tremendous di�erence

Table 3: Estimating �min and �max at the Same Time Using ICE2 and Independently Using ICE1

rmin(ICE1) rmin(ICE2) rmax(ICE1) rmax(ICE2)
Distribution Median Worst Median Worst Median Worst Median Worst

Arithmetic 5.53 13.22 5.50 15.53 1.14 1.18 1.14 1.19
Exponential 3.13 3.65 1.09 3.09 1.22 1.39 1.19 1.34
Randomlog 3.16 4.34 1.57 3.23 1.26 1.67 1.21 1.43
Random 6.55 14.4 6.05 11.1 1.00 1.00 1.00 1.00
Di�cult 1.96 489.83 1.88 242.90 2.40 2.67 2.22 2.59
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Figure 3: ICE(1) versus ICE(2) Estimate for Selected Distributions
Graphs of log2 (�̂(1)=�̂(2))
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between the two approaches, although the ICE(2) scheme produces more accurate results for the
smallest singular value.

5 Concluding Remarks

We presented a generalization of incremental condition estimation, a technique for estimating the
extremal singular values of a triangular matrix as it is being generated one column at a time. In
contrast to previous schemes, which estimated either the smallest or largest singular value, our
generalized scheme can estimate any number of extremal singular values, from either the small or
large end of the spectrum. Usually, the estimation of k singular values requires O(2nk2) 
ops at
every step, with the computationally subtle part being the accurate computation of the eigensystem
of a symmetrically perturbed diagonal (k + 1)� (k + 1) matrix.

We performed a series of experiments showing that the generalized ICE scheme signi�cantly
improves the robustness of the estimate for the smallest singular value. The experiments also
showed that other extremal singular values were approximated well. Computationally, the ICE(2)
scheme (the simplest generalized scheme) seems the most promising for the purposes of condition
estimation, and we are working on a streamlined implementation of this case.

While the main focus of our paper was to increase the robustness of ICE for the purposes of
condition estimation, there are applications where it is advantageous to have estimates of several
singular values and vectors. One is subspace iteration, where the generalized ICE scheme provides
excellent starting vectors. Another use arises in rank estimation, where one can deduce both the
rank and the relative gap between small and large singular values from the quantities provided by
ICE, and the subsequent use of such a factorization in the solution of rank-de�cient least squares
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systems [9].
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