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Abstract

This note describes an LAPACK based implementation of the Dynamic Mode Decom-
position (DMD) for data snapshots that are generated by real symmetric or complex
Hermitian matrices. It is a second part of the recently published LAPACK Working Note
298. The new software implementation is suitable for applications where e.g. the physics
of the underlying problem implies hermiticity and the computed Ritz values should be real
with the mutually orthogonal corresponding Ritz vectors. Such a solution is not guaran-
teed by the standard DMD, which may result in non-physical solutions. We analyze the
problem and show that adaptation to the Hermitian case has several fine and instructive
numerical details. Our analysis also explains the numerics and reveals interesting details
behind the physic-informed DMD (piDMD), that is recently introduced by P. J. Baddoo,
B. Herrmann, B.J. McKeon, J. N. Kutz and S. L. Brunton.

1 Introduction

The Dynamic Mode Decomposition (DMD) is a computational tool for analysis of the structure
of nonlinear dynamical systems, both in data driven scenarios and in computer simulations.
Since its introduction by Schmid [20] in the context of computational fluid dynamics (CFD),
the DMD has been attracting researchers from various fields and, as a result, it has become
a versatile computational tool with many applications in robotics, aeroacustic, epidemiology,
algorithmic trading on financial markets, video processing, neural networks, physics informed
machine learning and many others; for an overview see [1], [4].

In a nutshell, the DMD works as follows. Suppose we are given a sequence x1,x2, . . . ,xm+1

in Rn (or in Cn) such that xi+1 ≈ Axi, with some inaccessible n×n matrix A; that is, given is
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a Krylov sequence of A with an initial vector x1, but A is unknown or difficult to apply. The
xi’s may originate in a computer simulation or from measurements of some physical process. In
general, xi is the numerical value of a vector valued observable f evaluated at the state si of an
underlying discrete dynamical system si+1 = T(si), i.e. xi = f(si), xi+1 = f(T(si)) ≈ Af(si).
The task of the DMD is to identify k (k ≤ m) approximate eigenpairs (λj, zj) such that

Azj ≈ λjzj, j = 1, . . . , k, (1)

and to analyze (decompose) the given sequence (dynamics) using the approximate eigenvectors
(modes) zj and the eigenvalues λj. In the seminal work [20], Schmid proposed a numerical
scheme to compute the eigenpairs (1); this triggered an intensive research resulting in various
modifications of the algorithm and its adaptation to a host of applications. The resulting
decomposition can be used for an analysis of the structure of the dynamics (coherent structures
of the flow [21], [22], [23], [17], [24], [14], [15], [19], [12]), or e.g. for forecasting and control, or
for a model order reduction.

This seemingly simple matrix computation is rooted in a particular linearization of the
underlying dynamics. Namely, to the dynamical system si+1 = T(si), there is an associated
linear operator U that, in an infinite dimensional function space of scalar observables, acts as
the composition with T, Uf = f ◦T. The operator U , called the Koopman operator, provides
a particular global infinite dimensional linearization; see [5], [28], [26], [4]. If f = (f1, . . . , fd)

T

is a vector valued observable, then the composition operator is defined component-wise as
Udf = (Uf1, . . . ,Ufd)T . The relation xi+1 = f(T(si)) ≈ Af(si) can be written as xi+1 =
(Udf)(si) = Af(si) + ρ(si), i.e.

xi+1 = (Udf)(si) =

Uf1(si)...
Ufd(si)

 =

f1(T(si))
...

fd(T(si))

 = A

f1(si)
...

fd(si)

+

ρ1(si)
...

ρd(si)

 = Af(si) + ρ(si),

(2)
where ρ(·) is a residual. Now, the sequence x1, x2 = Ax1, x3 = Ax2 = A2x1, x4 = A3x1, . . .
represents evaluation of an observable f along a trajectory initialized at s1 and it can be
interpreted as a Krylov sequence of (Ud, f), evaluated at s1:

f(s1), (Udf)(s1), (U2
d f)(s1), (U3

d f)(s1), . . .

More generally, the data may be gathered from several trajectories with different initial condi-
tions, so that we have a sequence of snapshot pairs (xi,yi)

m
i=1, m ≪ n, such that xi = f(si),

yi = f(T(si)). Then at s = si the relation (2) reads yi = Axi + ρ(si). In matrix notation, this
is compactly written as Y = AX+R, where R(:, i) = ρ(si). The DMD computes the eigenpairs
(1) using the Rayleigh-Ritz extraction procedure with a suitable subspace of the range of X.

Recently, we published a LAPACK implementation of the DMD [7], that is based on our
earlier work [9], [6]. During the work on the code, in a discussion on the implementation,
Julien Langou (University of Colorado at Denver) raised the question of the symmetric case,
i.e. what is the best software solution if it is known that the matrix A that generated the data
(2) is real symmetric or complex Hermitian. Using a general DMD code such as [7] is clearly
not optimal because the Rayleigh-Ritz procedure does not use hermiticity – the eigenvalues and
eigenvectors of the Rayleigh quotient are computed using general eigensolver (e.g. xGEEV from
LAPACK), which does not guarantee the fundamental properties of a Hermitian eigenvalues
problem, namely the real spectrum and an orthonormal system of eigenvectors.

This paper addresses that problem and proposes a LAPACK [2] based software solution
to the symmetric/Hermitian DMD. It is derived from the recent implementation [7] of the
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DMD. In the process of adaptation of the subroutines xGEDMD and xGEDMDQ (see [7]) to the
Hermitian/symmetric case, we realized that the task was more than a mere mutatis mutandis.
We had to deal with some subtle details that we describe in this note.

The material is organized as follows. For the reader’s convenience, in §2 we review the details
of the Schmid’s DMD algorithm (§2.1) and its variation [9], [7] (§2.2). The Hermitian DMD is
analyzed in detail in §3. We start in §3.1 with a theoretical remark on the residual bound that
exploits the hermiticity and guarantees approximation of certain number of eigenpairs of the
Hermitian matrix that generated the data. An analysis of the loss of hermiticity and a possible
method of restoring it are given in §3.2. In §3.2.3 we briefly discuss how the proposed scheme
extends to the skew-Hermitian case. A possible adaptation of the Exact DMD to the Hermi-
tian case is outlined in §3.3. In §4 we analyze another approach to the symmetric/Hermitian
DMD, the physics-informed DMD [3] based on a solution of the Hermitian Procrustes problem.
Our analysis reveals interesting details about the structure of the computational errors and
we also show that the hermiticity/symmetry constraint does not require explicit use of the
concept of the Hermitian/symmetric Procrustes problem. In fact, if the data is generated by
a Hermitian/symmetric operator then the DMD preserves hermiticity/symmetry without any
additional modification and the only problem is how to handle the non-Hermitian perturbations
incurred by the finite precision arithmetic. We show that the actual benefit of the formula for
the solution of the Hermitian Procrustes problem is that it helps damping the perturbations.
In §5, we show that the QR compressed DMD can be formulated for the Hermitian/symmetric
case as well. In §6 we discuss our work in progress on a DMD for highly non-normal cases. The
software implementation is briefly described in §8.

2 The DMD

With only X and Y at hand, A can be guessed by minimizing the residual AX−Y in some con-
venient norm. The well developed least squares theory motivates taking an A ∈ argminA ∥AX−
Y∥F , and commonly used choice is the unique minimal norm solution1 A = YX†, where ∥ · ∥F
is the Frobenius matrix norm and X† is the Moore-Penrose generalized inverse of X. Clearly,
if B such that BX = 0, then (A + B)X = AX, so that A + B is a solution as well. From
X∗B∗ = 0, we see that the columns of B∗ can be selected from the at least (n−m)-dimensional
null space of X∗. Following [7], set

[A] = [A;X,Y] = argmin
A

∥AX−Y∥F = {A+B : BX = 0}. (3)

It may seem, at first, that we seek certain number of eigenpairs of a matrix that is not uniquely
determined by the data X, Y. Independent of a particular least squares solution A ∈ [A] = [A],
we have AX = YX†X = YPX∗ , where PX∗ is the orthogonal projector onto the range of X∗.
The relation AX = YPX∗ should be at the center of any further considerations because it
contains information on what A does in the range of X, independent of what particular A ∈ [A]
is selected. With a slight abuse of notation, we can write [A]X = YPX∗ ; if X is of full rank,
then [A]X = Y.

Remark 2.1 Focusing to A = YX† has potential for a fallacy which lies behind the adjective
exact. Suppose our data is generated by an inaccessible matrixA so thatY = AX. Since AY =
Y(X†Y), the range ofY is A-invariant and all corresponding eigenvalues and eigenvectors (from

1Another choice is selecting a sparse solution as implemented e.g. in the Matlab backslash operator for least
squares solutions; for a discussion how different solution methods affect the DMD see [10].
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the range of Y) can be computed without error (barring finite precision arithmetic errors) as
it is done in the Exact DMD, but this exactness does not hold for A. See §3.3 and [7].

2.1 Schmid’s DMD

Computing approximate eigenpairs (λj, zj) of A is thus based only on the information on its
action in the range of X, and this calls for the Rayleigh-Ritz extraction procedure. Computa-
tionally, working with an orthonormal subspace basis is preferable, and this is the key in the
DMD algorithm, proposed by Schmid [20]. In the sequel, we review the DMD algorithm, and
in addition, we formulate the relevant formulas in terms of the linear manifold [A], which will
be important for the symmetric/Hermitian case. We use the results and ideas from [9] and [7].

Let r be the rank of X and let X = UΣV ∗ be the economy-size SVD of X; Σ = diag(σj)
r
j=1

with σ1 ≥ · · · ≥ σr > 0, U∗U = V ∗V = Ir. Since X† = V Σ−1U∗, X†X = PX∗ = V V ∗, we can
write AX = YPX∗ as AUΣV ∗ = YV V ∗, and then AUΣ = YV . As a Krylov matrix, X is
expected to be ill-conditioned and even if of full rank r = m it may have tiny singular values
σi ≪ σ1 = ∥X∥2, that are difficult to compute numerically. The problem is mitigated using
a truncated SVD. The truncation is defined with a user supplied tolerance τ and a numerical
rank of X is set as

k = max{i : σi > σ1τ}. (4)

The tolerance level can be set as e.g. τ = nε, where ε is the round-off unit of the working
machine precision, or it can be determined based on the noise level in the data. The choice
τ = 0 means that all nonzero singular values will be counted, no matter how tiny they are. In
addition, a user may set the parameter k directly, based on some prior information.

Let Uk = U(:, 1 : k), Vk = V (:, 1 : k), Σk = Σ(1 : k, 1 : k). Then AUk = YVkΣ
−1
k , and since

range(Uk) ⊆ range(X), we can write2

[A]Uk = YVkΣ
−1
k . (5)

Hence, the Rayleigh quotient Sk = U∗
kAUk with respect to the range of Uk can be expressed as

Sk = U∗
kAUk = U∗

kYmVkΣ
−1
k (U∗

k [A]Uk = {Sk}). (6)

Now we have all ingredients for Rayleigh-Ritz approximations. Let Skwj = λjwj with ∥wj∥2 =
1, j = 1, . . . , k. Then A(Ukwj) ≈ λj(Ukwj), and we can also write

[A](Ukwj) = λj(Ukwj) + (In − UkU
∗
k )[A]Ukwj, (7)

i.e. despite our particular choice of A that connects X and Y, the computed eigenpairs are
well determined for [A], which includes A.

2.2 xGEDMD and xGEDMDQ

In [9] we introduced some enhancements of the DMD, and implemented them in the subroutines
xGEDMD and xGEDMDQ in [7]. These subroutines are a basis for the symmetric DMD proposed in
this paper, and for the reader’s convenience we briefly outline the features that are incorporated
in the new software.

2In our notation, this means that any matrix from [A] can be used instead of A, including the inaccessible
A.
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Computable residuals. The residual Rk = AUk − UkSk is available and (A − RkU
∗
k )Uk =

UkSk, i.e. the range of Uk is invariant for a perturbed A+ δA, ∥δA∥2 = ∥Rk∥2, but there is no
guarantee that all computed Ritz pairs are good approximations. One way to select good ones
is to use computable residuals rj = Azj − λjzj,

rj = (In − UkU
∗
k )A(Ukwj) = YVkΣ

−1
k wj − λj(Ukwj), (8)

where we can set [A] instead of A. This formula is first used in [9] and proved to be useful in
many applications. For each λj we can use the fact that

(A− rjz
∗
j )zj = λjzj,

and then, by the Bauer-Fike theorem, assuming that the data generator matrix A is diagonal-
izable with the eigenvectors matrix S and eigenvalues α1, . . . , αn,

min
αi

|λj − αi| ≤ κ2(S)∥rj∥2.

That is, each λj approximates some αij , but in general there is no guarantee that k eigenvalues
of A are approximated. In the Hermitian case, we can say much more, as we outline in §3.1.

Scaling the data matrices. Optional scaling of the data matrices replaces X, Y with
Xc = XD−1

X , Yc = YD−1
X , respectively, where DX = diag(∥X(:, i)∥2)mi=1. If data scaling is

allowed, this improves the numerical robustness of the method. It is motivated by the following
theorem:

Theorem 2.2 (Van der Sluis [27]) Let X ∈ Cn×m be of full column rank and let DX =
diag(∥X(:, i)∥2)mi=1 and Xc = XD−1

X . Then κ2(Xc) ≤
√
mminD=diag κ2(XD).

As discussed in [7], the effect of scaling is twofold: it allows for a more accurate SVD and a
narrower range of the singular values in many cases allows for a larger k.

The structure of the method is given in Algorithm 1. The remaining two technical details
in the implementation [7] are the Exact DMD vectors and the QR compressed implementation
of the DMD. These themes will be presented in detail in §3.3 and §5 , respectively.

Algorithm 1: (Zk,Λk, rk, [Bk], [Z
(ex)
k ]) = xGEDMD(X,Y; τ )

Input:
X = (x1, . . . ,xm),Y = (y1, . . . ,ym) ∈ Cn×m that define a sequence of snapshots
pairs (xi,yi). (Tacit assumption is that n is large and that m≪ n.)
Tolerance τ for the truncation (4).

1: DX = diag(∥X(:, i)∥2)mi=1; Xc = XD†
X; Yc = YD†

X.
2: [U,Σ, V ] = svd(Xc) ; {The thin SVD: Xc = UΣV ∗, U ∈ Cn×m, Σ = diag(σi)

m
i=1}

3: Determine numerical rank k, using (4) with the threshold τ .
4: Set Uk = U(:, 1 : k), Vk = V (:, 1 : k), Σk = Σ(1 : k, 1 : k)
5: Bk = Yc(VkΣ

−1
k ); {Schmid’s data driven formula for AUk. [optional output]}

6: Sk = U∗
kBk {Sk = U∗

kAUk is the Rayleigh quotient.}
7: [Wk,Λk] = eig(Sk) {Λk = diag(λi)

k
i=1; SkWk(:, i) = λiWk(:, i); ∥Wk(:, i)∥2 = 1}

8: Zk = UkWk {The Ritz vectors}
9: Z

(ex)
k = BkWk {The (unscaled) Exact DMD vectors [optional].}

10: rk(i) = ∥BkWk(:, i)− λiZk(:, i)∥2, i = 1, . . . , k. {The residuals (8).}
Output: Zk, Λk, rk, [Bk], [Z

(ex)
k ].
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3 Hermitian/symmetric case

Suppose we know a priori that there is a Hermitian matrix H = H∗ such that HX = YPX∗ ,
i.e. H ∈ argminA ∥AX−Y∥F . Then A = YX† is in general not Hermitian3 but, as we showed
in §2.1, since H ∈ [A], the Rayleigh quotient satisfies Sk = U∗

kAUk = U∗
kHUk = S∗

k . Note that
in terms of the linear least squares solution manifold, [A] = [H].

3.1 Residual bounds

Let Sk = WΛW ∗ be the spectral decomposition of Sk, with unitary W (W ∗W = Ik) and Λ =
diag(λj)

k
j=1, λ1 ≥ · · · ≥ λk. Then the Ritz vectors Zk = (z1, . . . , zk) = UkW are orthonormal

(Z∗
kZk = Ik) and for each pair (λj, zj) we can compute its corresponding residual (8) and decide

whether to accept or reject it, depending on a given tolerance threshold.
Here too, we can compute the residual Rk = HUk − UkSk and check that U∗

kRk = 0 and

(H− (RkU
∗
k + UkR

∗
k))Zk = ZkSk

This means that with δH = −(RkU
∗
k +UkR

∗
k), the Rayleigh-Ritz procedure ensures precisely k

eigenpairs of H + δH (counted with multiplicities) and ∥δH∥2 = ∥Rk∥2. More precisely, there
are k eigenvalues αi1 , . . . , αik of H (counted with multiplicities) such that

max
j=1:k
|λj − αij | ≤ ∥Yc(VkΣ

−1
k )− UkSk∥2.

Here we used, in terms of Algorithm 1, that HUk = Yc(VkΣ
−1
k ). For details of the Rayleigh-Ritz

theory see e.g. [18, §11.5], [25, §3.4].
This means that (barring finite precision computation errors) the DMD algorithm will au-

tomatically exploit the underlying symmetry, and the computed Ritz pairs will have the proper
structure – real Ritz values and orthonormal Ritz vectors. There is no need to determine a
Hermitian H ∈ argminA ∥AX−Y∥F ; the prior assumption/knowledge that the data is gener-
ated by a symmetric/Hermitian matrix H suffices. Note also that the Rayleigh quotient also
inherits the positive (semi)definiteness of H.

3.2 Correcting the loss of symmetry in finite precision arithmetic

Unfortunately, in a software implementation the main ingredients in the formula Sk = U∗YVkΣ
−1
k

are the elements of the SVD of a potentially highly ill-conditioned data matrix X. As a re-
sult, the computed matrix S̃k will not be symmetric/Hermitian and, if this issue is ignored,
its eigenvalues may be computed as complex and the orthogonality of the eigenvectors may
be lost. This may be the case if we e.g. in Matlab use the function eig that will detect
the non-symmetry and use a non-symmetric/non-Hermitian eigensolver. In another situation,
when using LAPACK, we may ignore the possible loss of symmetry and simply call the symmet-
ric/Hermitian subroutines xSYEV/xHEEV with an option ’U’ (or ’L’) to indicate that the
matrix is implicitly given by its upper (or lower) triangle and assumed symmetric/Hermitian.
This ignores a possibility that the content of the lower (upper) triangle may indicate substantial

loss of symmetry. The question is what Hermitian matrix we should use instead of S̃k, and how
to justify a particular choice.

3This is another argument that A should be considered as just an element of [H] = [A].
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A natural way to correct S̃k and restore hermiticity is to replace it with a close Hermitian
matrix. By a classical result of Fan and Hoffman [11], the matrix

Ŝk =
1

2
(S̃k + S̃∗

k) (9)

satisfies, for any unitarily invariant norm ∥ · ∥,

∥S̃k − Ŝk∥ = min
H=H∗

∥S̃k −H∥. (10)

This optimality of Ŝk in a large class of norms, as well as its simple computation (9), makes it

a good candidate to replace S̃k. Is this the best we can do? Is it superfluous to ask whether is
it best to chose the optimal approximation Ŝk, or, what could go wrong if we replaced S̃k with
its closest Hermitian matrix?

3.2.1 On errors in the computed Rayleigh quotient S̃k

Although the choice of Ŝk is optimal, there is a small snag: it is the closest Hermitian matrix
to a non-Hermitian approximation S̃k of Sk, and if the errors in S̃k have a particular structure
being close to S̃k does not guarantee being close to Sk. If the error is big e.g. in some entries
in the upper triangle, and small in the symmetric positions in the lower triangle, then Ŝk will
in some sense symmetrize and average the error at both sets of entries and using its spectral
decomposition in the Rayleigh-Ritz procedure may introduce large errors.

The main source of errors is the SVD of X, in particular because the columns of X are
taken from one of more Krylov sequences, possibly with initial vectors with norms that span
several orders of magnitude. To gain some insights in the errors in the computed S̃k, one can
use perturbation theory to estimate the errors in the computed SVD X ≈ ŨΣ̃Ṽ ∗, i.e. to bound
the errors in the singular vectors (the columns of Ũ and Ṽ ) and in the singular values (diagonal

entries of Σ̃). Then, the rounding errors in the computation of S̃k = computed(Ũ∗
kY)ṼkΣ̃

−1
k )

are estimated and, altogether, one can bound the error Sk− S̃k. This is a tedious work that we
omit; in fact we will show that such an analysis is needed. Instead, we follow [7], that is based
on the backward error analysis, and use it to our purpose of assessing the loss of symmetry in
S̃k.

The numerically computed SVD X ≈ ŨΣ̃Ṽ ∗ can be interpreted as

(X+ δX)Ṽ = ŨΣ̃, ∥δX∥2 ≤ ϵx∥X∥2, (11)

where Ũ and Ṽ are numerically unitary matrices, ∥Ũ∗Ũ − In∥2 ≤ ϵu, ∥Ṽ ∗Ṽ − In∥2 ≤ ϵv, and

Σ̃ = diag(σ̃j)
n
j=1. The error bounds ϵu, ϵv, ϵx depend on the details of a particular algorithm

and its software implementation, and can be estimated by expressions of the form f(m,n)ε,
where f(m,n) is a modestly growing function of the dimensions and ε is the round-off unit of
the working precision. In [7], we showed that the backward error (11) can be estimated with a
sharper snapshot-wise manner if a particular SVD algorithm is used, but for the sake of brevity
we use (11), which holds e.g. for the Matlab function svd().

Since Ũk is not orthonormal, the Rayleigh-Ritz procedure requires working with the pencil
Ũ∗
kHŨk − λŨ∗

k Ũk, but since Ũ∗
k Ũk is almost identity, the perturbation theory allows to proceed

with Ũ∗
kHŨk − λIk – the errors caused by this simplification are much smaller than the ones

already introduced up to this point. Note that for the purpose of finding approximate eigenpairs
of H we do not need to assess the accuracy of Ũk; we only need an accurate (data driven)

application of the Rayleigh-Ritz extraction procedure using the range of Ũk.
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Assume for simplicity that X and X + δX are of full column rank; although X may be
ill-conditioned this assumption is reasonable.4 Then PX∗ = In and

HŨΣ̃Ṽ ∗ = Y +HδX =⇒ HŨk = YṼkΣ̃
−1
k +HδXṼkΣ̃

−1
k =⇒ Ũ∗

kHŨk = S̃k + Ũ∗
kHδXṼkΣ̃

−1
k .

Hence, even if we could compute without roundoff errors S̃k = Ũ∗
kYṼkΣ̃

−1
k , it would differ from

the Hermitian Rayleigh quotient Ũ∗
kHŨk, with an error δS̃k = Ũ∗

kEk, where Ek = HδXṼkΣ̃
−1
k

is the error in the approximation of HŨk. We can estimate Ek as follows:

∥Ek(:, j)∥2
∥H∥2

≤ ∥δX∥2∥Ṽk(:, j)∥2/σ̃j ≤ ϵxσ1∥Ṽk(:, j)∥2/σ̃j ≤ ϵx

√
1 + ϵv
1− ϵx

σ̃1

σ̃j

(12)

∥Ek(:, j)∥2
∥HŨk(:, j)∥2

≤ ∥H∥2
1/∥(H|range(Uk))

†∥2
ϵx

√
1 + ϵv√

1− ϵu(1− ϵx)

σ̃1

σ̃j

, (13)

and then the column-wise errors in S̃k as

∥δSk(:, j)∥2
∥H∥2

≤ ∥Ũ
∗
kH∥2
∥H∥2

ϵx

√
1 + ϵv
1− ϵx

σ̃1

σ̃j

.

These bounds indicate that the accuracy in S̃k may be deteriorating with the increased column
index, which means that the upper triangle of S̃k may be more exposed to the effects of δX
(i.e. the errors in the computation of the SVD of X) and the column scaling by Σ̃−1

k . Clearly,
the accuracy of the computed residual will be also affected, and the above analysis gives an
estimate. This simple model can also be used to assess the effects of the noise ∆X, ∆Y in the
initial data.

Note that the above analysis does not include rounding errors in the computation Ũ∗
kYṼkΣ̃

−1
k ,

because they are not the main source of the loss of symmetry.
Let us try to test this analysis and its prediction using a numerical example.

Example 3.1 In this synthetic example we first generate a random real symmetric matrix H
and use it to generate real data X, Y, with n = 100, m = 44. The truncation index k = 42 is
determined using τ = ε. We will use H explicitly (only for the purpose of the test) to compute
the errors Ek and δSk and to compare them with the predicted estimates. The algorithm and
the error estimates do not have access to H. We do not use concrete upper bounds for ϵx, ϵu, ϵv
because they depend on a particular algorithm implementation. Instead, to estimate the trend
of the errors we set ϵx = ε and ignore all other errors.

We first consider Ek. The results shown in Figure 1 are instructive.

4The rank deficient case is only technically more involved.
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Figure 1: (Example 3.1) First panel: the structure of the computed S̃k = Ũ∗YṼkΣ̃
−1
k , visualized

using imagesc(log10(abs(S̃k))). The loss of symmetry is apparent. Middle panel: the
column norms of Ek and their predicted trend. Third panel: the columns of δS̃k and their pre-
dicted trend. Except for the error at the noise level mε, the analysis correctly reveals/predicts
the behavior of the error.

For the sake of the experiment and better understanding of the structure of the errors in

S̃k = Ũ∗
kYṼkΣ̃k

−1
, we compare S̃k with the explicitly computed Sk = Ũ∗

kHŨk entry-wise, i.e.
we compute the relative error in each matrix entry. Further, motivated by the above analysis
and the results of numerical experiment, we define

H̃k = diag((S̃k)ii)
k
i=1 + L̃k + L̃∗

k, (14)

where L̃k is the strict lower triangle of S̃k, and considering as a candidate to replace S̃k. We note
here that requiring entry-wise small relative errors is indeed too much to ask, but nevertheless
we check them to test whether the above analysis correctly identifies the problem. The result
shown in Figure 2 are precisely as predicted.

Figure 2: (Example 3.1) The entry-wise relative errors log10(|(Sk)ij − (S̃k)ij|/|(Sk)ij|) (first

panel) and log10(|(Sk)ij − (Ŝk)ij|/|(Sk)ij|) (second panel). Note that the upper triangle of S̃k

has large error that is symmetrized in Ŝk = 0.5(S̃k+S̃∗
k) and transplanted into the lower triangle.

The third panel shows the entry-wise errors in H̃k, which indicates that using H̃k may be better
than Ŝk. (Note that the scale in the color bar of this panel is different from the first two.)

Using smaller number k of the leading singular values and vectors produces more accurate

YṼkΣ̃k

−1
, but such an aggressive truncation causes loss of spectral information as H is com-

pressed onto a much lower dimensional subspace.

Remark 3.2 If H is positive (semi)definite, then Sk inherits the definiteness, but in ill-

conditioned cases a symmetrizer of S̃k is not guaranteed to be positive (semi)definite. Under
this implicit assumption on (semi)definiteness, if we compute the spectral decomposition of
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H̃k (or any other symmetrizer) and if some of the eigenvalues are negative, we can replace

them with zeros, thus implicitly replacing H̃k with the closest positive semidefinite matrix.5

Depending on the user’s preferences, all or only positive Ritz values can be returned.

3.2.2 Software implementation details

In LAPACK, using the symmetrizer (14) is easy to implement: it suffices to set the UPLO pa-
rameter to ’L’ in the selected eigenvalue solver xSYEV/xHEEV or xSYEVD/xHEEVD. Another
practical advantage of this is that it does not combine a matrix with its transposed.6

This shows the importance of a seemingly trivial detail of choosing whether to use the upper
or the lower triangle of a computed apparently Hermitian/symmetric matrix.

The new LAPACK subroutines for the Hermitian/symmetric DMD are designated as xSYDMD
(x ∈ {S,D}}) and xHEDMD (x ∈ {C,Z}}), following the LAPACK subroutine naming convention.

3.2.3 A remark on the skew-Hermitian case

In the case of a skew-Hermitian H = −H∗, we have Sk = −S∗
k and the Ritz values will be

purely imaginary and with orthonormal vectors. LAPACK does not have a special subroutine
for the spectral decomposition of skew-Hermitian matrices. A quick fix, at least in the complex
skew-Hermitian case is to rotate H and apply a Hermitian solver (e.g. xHEEV or xHEEVD)
to iSk (a Rayleigh quotient of iH). The computed real eigenvalues are then rotated back to
the imaginary axis, and the eigenvectors are used unchanged. Equivalently, the data Y can be
changed to iY, making the problem Hermitian, and the computed real eigenvalues should be
rotated back to the imaginary axis..

3.3 On a Hermitian Exact DMD

The Exact DMD (EDMD) [26, §2.2, §2.3] is a formulation of the DMD often used in the
literature. In [7], we showed that the Exact DMD eigenvectors can be interpreted as a result
of one step of the power iterations with (the unknown) matrix H applied to the eigenvectors
(i.e. Ritz vectors) computed by the original DMD algorithm. This is evident from the lines 5,
8, 9 of Algorithm 1.

In the Hermitian case, the Ritz vectors Zk = UkWk = (z1, . . . , zk) (line 8 in Algorithm 1) will

be numerically orthonormal (see §3.2), but the EDMD vectors Z
(ex)
k = (z

(ex)
1 , . . . , z

(ex)
k ) = HZk

are not guaranteed to be mutually numerically orthogonal. Hence, if we want to use the
EDMD vectors in a Hermitian DMD, we need an additional step of orthogonalization. Such
an orthogonalization, using the Gram-Schmidt algorithm, replaces the vectors z

(ex)
j with a

numerically orthonormal set ẑ
(ex)
1 , . . . , ẑ

(ex)
k , but this change of the vectors will change the

residuals. Note that we cannot adjust the Ritz values and use the optimality of the Rayleigh
quotient (ẑ

(ex)
j )∗Hẑ

(ex)
j /((ẑ

(ex)
j )∗ẑ

(ex)
j ) because the data does not contain information to compute

Hẑ
(ex)
j . Another possibility is to replace Z

(ex)
k with the closest unitary matrix. Following Kahan

[16], the nearest orthonormal matrix is obtained from the economy-size SVD Z
(ex)
k = ΦΣZΨ

∗

as Ω
(ex)
k = ΦΨ∗, that is the unique closest orthonormal matrix to Z

(ex)
k in both the spectral

5Recall that we cannot talk about the closest positive definite matrix because the set of positive definite
matrices is open.

6It would be convenient to have a BLAS 3 subroutine that returns only the lower or the upper triangle of a
product of two matrices.
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and the Frobenius norm. Note that changing the order of columns of Z
(ex)
k changes the closest

orthonormal matrix with the same column permutation.

Example 3.3 We compare the residuals of the Ritz pairs as returned by DSYDMD and explicitly
computed using H. The residuals of the EDMD eigenpairs (λj, z

(ex)
j ) are computed explicitly

using H. Then we perform the following experiment: We first orthogonalize (using the Gram-
Schmidt algorithm) the EDMD vectors in order in which they are received and then in order of

non-decreasing residuals. As the third option, we replace Z
(ex)
k with Ω

(ex)
k . In all three cases the

vector keep their originally assigned Ritz values, and we compute the new residuals of (λj, ẑ
(ex)
j )

explicitly, using H. The results are shown in Figure 3.

Figure 3: (Example 3.3) First panel: The residuals of (λj, ẑ
(ex)
j ) with the orthogonalization of

the EDMD vectors in order computed in DSYDMD. Second panel: The residuals of (λj, ẑ
(ex)
j )

when the EDMD vectors are ordered with non-decreasing residuals. Third panel: The residuals
when the EDMD vectors are replaced with the closest unitary matrix Ω

(ex)
k . The horizontal

green line shows a user specified threshold of 10−2.

Figure 4: (Example 3.3) First panel: Orthogonality of the normalized EDMD vectors in order

of computation in DSYDMD. The data shown is log10[|(z
(ex)
i )∗z

(ex)
j |/(∥z

(ex)
i ∥2∥z

(ex)
j ∥2)]. Second

panel: The data form the first panel with the EDMD vectors reordered to get non-decreasing
residuals. Compare these two panels with the first two panels in Figure 3. Third panel: The
orthogonality of the new vectors ẑ

(ex)
j , the data shown is log10[|(ẑ

(ex)
i )∗ẑ

(ex)
j |/(∥ẑ

(ex)
i ∥2∥ẑ

(ex)
j ∥2)].

Remark 3.4 Correcting a loss of orthogonality of a computed set of eigenvectors is a well
studied theme, but in the context of a data driven DMD application, our maneuvering space
is limited because we are only given how H transforms the range of X.

3.3.1 A discussion

One can argue that using the Gram-Schmidt orthogonalization on the EDMD vectors ordered
to have non-decreasing residuals of the Ritz pairs is, given the data driven setting, in a sense
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optimal. First note that this ordering is not based on the residuals corresponding to the EDMD
vectors, because computing those residuals is not feasible. However, based on [7], we know that
the EDMD residuals behave similarly, so that this ordering lists the EDMD vectors in order
of the quality measured by the residual. We ease the notation and assume that z

(ex)
1 , . . . , z

(ex)
k

are already listed in that manner. Further, we assume that they are all normalized to unit
Euclidean length. Hence, z

(ex)
1 is the most valuable EDMD vector and we want to keep its

direction (span), and the first step of the Gram-Schmidt orthogonalization is ẑ
(ex)
1 = z

(ex)
1 .

Because the eigenvectors should be orthonormal and ẑ
(ex)
1 is accepted as a good approximate

eigenvector, no other eigenvector should have any component in its direction, i.e. we update
them as

z
(ex)
2 ← z

(ex)
2 −ẑ

(ex)
1 (ẑ

(ex)
1 )∗z

(ex)
2 , z

(ex)
3 ← z

(ex)
3 −ẑ

(ex)
1 (ẑ

(ex)
1 )∗z

(ex)
3 , . . . , z

(ex)
k ← z

(ex)
k −ẑ

(ex)
1 (ẑ

(ex)
1 )∗z

(ex)
k

(15)

Now, ẑ
(ex)
1 = z

(ex)
1 and z

(ex)
2 are the two best EDMD vectors, so their span is a good approximate

invariant subspace and it makes sense to require that ẑ
(ex)
1 and ẑ

(ex)
2 span the same subspace,

and, since z
(ex)
2 is considered a good (i.e. second best) EDMD vector it should be changed as

little as possible when defining ẑ
(ex)
2 . This is precisely what the Gram-Schmidt orthogonalisation

does, and after the update (15) we have ẑ
(ex)
2 = z

(ex)
2 /∥z(ex)2 ∥2. This way of reasoning continues

analogously to (15) – z
(ex)
3 , . . . , z

(ex)
k are purged from components in the direction of ẑ

(ex)
2 etc.

We have included this orthonormalization of the Exact DMD eigenvestors as an option in
the new subroutines, but it is not clear whether in an application the benefits (only slightly
improved residual) of using EDMD justify the computational effort.

4 A Physics Informed (piDMD) solution

The symmetric DMD has been already analyzed in7 [3] in a framework of physics informed
DMD (piDMD), where a prior knowledge of the underlying dynamics determines that A ∈M,
where a matrix manifold M is defined by the additional (physics informed) constraints such
that e.g. A must be Hermitian, or skew-Hermitian, unitary, Toeplitz etc. In our case, M
stands for Hermitian matrices. Let us briefly review the piDMD approach proposed in [3]. It
is nicely motivated by numerical examples e.g. with learning the energy states of a quantum
Hamiltonian [3, §4.3.1] where it is shown that the loss of hermiticity/symmetry may result
in a non-physical and thus inaccurate/useless results. To mitigate the problem, [3] proposes
selecting a DMD matrix that solves

A ∈ argmin
A∈M

∥AX−Y∥F . (16)

This is a well studied structured (symmetric/Hermitian) Procrustes problem with an explicitly
known solution [13]. Although the solution presented in [13] is derived for n ≤ m, the same
procedure applies for n ≫ m and we present it here because of the details needed to analyze
the piDMD solution and to compare it to the material in §3.2.

7The author is indebted to Allan Avila, AIMdyn Inc. Santa Barbara CA, for calling his attention to this
paper.
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4.1 Hermitian Procrustes problem

Let X = Ux ( Σ
0 )V

∗ = UΣV ∗ be a full SVD of X with n × n unitary Ux. Let r be the rank of
X, Σr = diag(σi)

r
i=1, σ1 ≥ · · · ≥ σr > 0. Then

∥AX−Y∥2F = ∥AUx

(
Σ
0

)
V ∗ −Y∥2F = ∥ (U∗

xAUx)︸ ︷︷ ︸
M

(
Σ
0

)
− U∗

xYV︸ ︷︷ ︸
C

∥2F = ∥M
(
Σ
0

)
− C∥2F

= ∥
(
G L∗

L K

)(
Σ
0

)
−
(
C[1]

C[2]

)
∥2F , G = G∗ ∈ Cm×m, C[1] ∈ Cm×m,

= ∥GΣ− C[1]∥2F + ∥LΣ− C[2]∥2F . (17)

Clearly, K = K∗ ∈ C(n−m)×(n−m) can be taken arbitrary Hermitian, and the optimal choice of
L in the second term in (17) is

L =
(
C[2](:, 1 : r)Σ−1

r L[2]

)
, L[2] ∈ C(n−m)×(m−r) arbitrary.

Further, taking the hermiticity into account, the first term in (17) reads

∥GΣ− C[1]∥2F =
m∑
j=1

|gjjσj − cjj|2 +
m∑
i=2

i−1∑
j=1

(|gijσj − cij|2 + |gijσi − cji|2),

which is minimized for

gii =


ℜ(cjj)
σj

, j = 1, . . . , r

arbitrary real, j = r + 1, . . . ,m
, gij = gji =


σjcij + σicji
σ2
i + σ2

j

, σi + σj ̸= 0

arbitrary whenever σi + σj = 0
.

(18)
The structure of M can be illustrated as follows:

M=



⋆ ⋆ × × + + +
⋆ ⋆ × × + + +
× × ⊗ ⊗ ⊕ ⊕ ⊕
× × ⊗ ⊗ ⊕ ⊕ ⊕
+ + ⊕ ⊕ ■ ■ ■
+ + ⊕ ⊕ ■ ■ ■
+ + ⊕ ⊕ ■ ■ ■


(19)

Note the two levels of the non-uniqueness in M .
First, the matrix K (elements denoted by ■)
is arbitrary Hermitian and this freedom comes
from m < n. If r < m, the elements ⊗, ⊕ can
be selected freely under the constraint that the
matrix remains Hermitian (or real symmetric).
Setting all free entries to zero yields the solution
of minimal Frobenius norm.

Any matrix A = A∗ that solves (16) is then of the form A = UxMU∗
x .

Remark 4.1 Note that a skew-Hermitian Procrustes problem is reduced to the Hermitian one
by a multiplication with the imaginary unit i, which rotates a skew-Hermitian B = −B∗ into
the Hermitian H = iB, so that ∥BX−Y∥F = ∥HX− iY∥F .

4.2 An analysis and a twist

Note that the solution A = UxMU∗
x is n × n and forming it explicitly is not needed. A low

rank approximation of A, proposed in [3] is Aπ = UkGkU
∗
k , where Gk = G(1 : k, 1 : k) and Uk

is as in §2.1. (Note that there is no guarantee that Aπ is in the solution set of (16).) Then,
using the spectral decomposition Gk = WΛW ∗, the Ritz vectors are computed as the columns
of UkW and the Ritz values are λi = Λii.
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A closer look at these formulas reveals that the elements cij used in (18) to compute Gk

are the entries of the matrix Ck = U∗
kYVk, which is actually Ck = SkΣk, where Sk = U∗

kHUk is
Hermitian. This implies in (18) that, for 1 ≤ i, j ≤ k ≤ r,

gij = gji =
σjcij + σicji
σ2
i + σ2

j

=
σ2
j sij + σ2

i sji

σ2
i + σ2

j

=
σ2
j sij + σ2

i sij

σ2
i + σ2

j

= sij = sji. (20)

In other words, using a low rank approximation of a solution of the structured Procrustes
problem (16) did not produce anything new if the data is indeed generated by a Hermitian
matrix.

What about the computed matrix G̃k? In a software implementation [3] computes the

diagonal and the strictly upper triangle using the computed C̃k, and the lower triangle is set
to enforce G̃k = G̃∗

k, so that the rounding errors do not destroy the hermiticity. But, we saw in

§3.2.1 that the upper triangle of S̃k is a bad choice, and, since Ck = SkΣk, we may expect that
the upper triangle of C̃k may have large errors in its entries. Now, if the upper triangle of G̃k

is computed using the upper triangle of C̃k, the question is how accurate is G̃k.
To get a clue, we use the data from Example 3.1 and test the accuracy of C̃k and G̃k. The

results are shown in Figure 5.

Figure 5: (continuation of Example 3.1) First panel: The entry-wise relative errors

log10(|(Ck)ij − (C̃k)ij|/|(Ck)ij|) where Ck = Ũ∗
kHŨkΣ̃k is computed explicitly using H. Sec-

ond panel: log10(|(Sk)ij − (G̃k)ij|/|(Sk)ij|), where Sk = Ũ∗
kHŨk. Note that the large errors in

the upper triangle of C̃k did not pollute the symmetrizing matrix G̃k. The third panel shows
the entry-wise difference between H̃k and G̃k. Recall that in exact computation Hk = Gk.

There an interesting subtlety here. Although the upper triangle of C̃k has large relative
errors (as compared to Ũ∗

kHŨkΣ̃k) in the northeastern corner, the matrix G̃k approximates the

Rayleigh quotient Sk = Ũ∗
kHŨk to the same level of accuracy as H̃k does, as shown in Figure 5.

Consider now computation of the elements g̃ij in the upper triangle (i ≤ j ≤ k) of G̃k. We
continue using the simplified model of error analysis where the only error is the one from the
computed SVD of X. The rounding errors in computing e.g. C̃k = Ũ∗

kYṼk are neglected. We

have, using Sk = S̃k + δS̃k and C̃k = S̃kΣ̃k,

g̃ij =
σ̃j c̃ij

σ̃2
i + σ̃2

j

+
σ̃ic̃ji

σ̃2
i + σ̃2

j

=
σ̃2
j s̃ij

σ̃2
i + σ̃2

j

+
σ̃2
i s̃ji

σ̃2
i + σ̃2

j

=
σ̃2
j (sij − δs̃ij)

σ̃2
i + σ̃2

j

+
σ̃2
i (sji − δs̃ji)

σ̃2
i + σ̃2

j

=
σ̃2
j sij

σ̃2
i + σ̃2

j

+
σ̃2
i sji

σ̃2
i + σ̃2

j

−
σ̃2
j δs̃ij

σ̃2
i + σ̃2

j

− σ̃2
i δs̃ji

σ̃2
i + σ̃2

j

= sij − (
σ̃2
j

σ̃2
i + σ̃2

j

δs̃ij +
σ̃2
i

σ̃2
i + σ̃2

j

δs̃ji)

i.e.

sij = g̃ij + δg̃ij, δg̃ij = (
σ̃2
j

σ̃2
i + σ̃2

j

δs̃ij +
σ̃2
i

σ̃2
i + σ̃2

j

δs̃ji).
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Note that the entries of G̃k are computed from the entries of S̃k as convex combinations that
put more weight of the more accurate lower triangle. Indeed, for σ̃j ≪ σ̃i, δsij is scaled with
σ̃2
j/(σ̃

2
i + σ̃2

j )≪ 1. This is illustrated in Figure 6.

Note the difference from the computation of Ŝk in (9) where the upper and the lower triangle

are averaged, in a convex combination with the coefficient 1/2, i.e. Ŝk = Sk−(0.5δS̃k+0.5δS̃∗
k).

Further, H̃k computed as in (14), is contaminated by only the lower triangle of the error in S̃k.

Figure 6: The distribution of the val-
ues σ̃2

j/(σ̃
2
i +σ̃2

j ) illustrate why the large

errors in the northeastern corner of C̃k

(the first panel in Figure 5) did not pol-

lute the entries of G̃k (the second panel
in Figure 5). See how the triangles are
differently weighted in the convex com-
bination in relation (20).

Finally, note the entry-wise matching of H̃k and G̃k in the third panel in Figure 5. Just
comparing their diagonals seems to indicate how well their leading submatrices approximate Sk.
In our software implementation, by setting a suitable work parameter, a user can choose between
H̃k and G̃k. When computing G̃k we evaluate its lower triangle – same analysis holds as for
the upper triangle and this compatibility with the computation of H̃k makes the code simpler.
Using G̃k and the framework of the Hermitian Procrustes problem may be advantageous if the
data is corrupted by noise so that the hermiticity/symmetry is simply imposed by working
with nearest Hermitian/symmetric matrix. However, it should be noted that the truncation at
k < r (see the definition of Aπ) does not inherit the optimality.

5 QR compressed symmetric/Hermitian DMD

In [9], [6], [7] we used the QR factorization to compute a basis of a subspace in the state space
Cn (or Rn) that contains all snapshots. In the case of interest where n is much larger than the
number of available snapshots, the snapshots are represented in the lower dimensional subspace
which allows for a more efficient computation. This QR compressed DMD can be formulated
for X,Y that contain data from an arbitrary number of trajectories. Here we briefly review
the single trajectory case, using the material from [9], [7] and show that this step preserves the
hermiticity/symmetry.

In the case of data from a single trajectory F = (z1, . . . , zm, zm+1), we haveX = (z1, . . . , zm),
Y = (z2, . . . , zm+1), and the auxiliary subspace is of dimension m + 1. If we compute the QR
factorization

(z1, . . . , zm, zm+1) = Q

(
R
0

)
= Q̂R, where Q∗Q = In, Q̂ = Q(:, 1 : m+ 1), (21)

then

X = Q

(
Rx

0

)
= Q̂Rx, Y = Q

(
Ry

0

)
= Q̂Ry,

15



where

R =

( × ⋇ ⋇ ⋇ ÷
⋇ ⋇ ⋇ ÷

⋇ ⋇ ÷
⋇ ÷

÷

)
, Rx = R(:, 1 : m) =

(
× ⋇ ⋇ ⋇

⋇ ⋇ ⋇
⋇ ⋇

⋇
0

)
, Ry = R(:, 2 : m+ 1) =

( ⋇ ⋇ ⋇ ÷
⋇ ⋇ ⋇ ÷

⋇ ⋇ ÷
⋇ ÷

÷

)
.

(22)

∥AX−Y∥2F = ∥AQ
(
Rx

0

)
−Q

(
Ry

0

)
∥2F = ∥Q∗AQ︸ ︷︷ ︸

M

X′ −Y′∥2F , X′ =

(
Rx

0

)
, Y′ =

(
Ry

0

)
.

In the new coordinates, the matrix representation of the linear operator changes by similarity,
and in the new representation we have M = Q∗AQ and the data snapshots are ( Rx

0 ) and(
Ry

0

)
= M ( Rx

0 ). Clearly, if H = H∗ ∈ argminA ∥AX − Y∥F , then M = Q∗HQ = M∗ ∈
argminM ∥MX′ − Y′∥F . Hence, we have arrived at an equivalent formulation of the original
Hermitian DMD problem. According to the discussions in the previous sections, if we set
M = Y′(X′)†, then

M = Y′(X′)† = Q∗YX†Q = Q∗AQ, Y′(X′)† =

(
Ry

0

)(
R†

x 0
)
=

(
RyR

†
x 0

0 0

)
.

Further, using the notation of (3), we have [A;X,Y] = Q[M;X′,Y′]Q∗. This is the situation
in the n-dimensional state space. On the practical side, everything we need takes place in the
(m + 1)-dimensional range of Q̂ and can be described as follows. Let Rx = UxΣV

∗ be the
economy-size SVD of Rx; Σ is r × r, and V is m × r, where r = rank(X) = rank(Rx). Note

that then X = (Q̂Ux)ΣV
∗ is the SVD of X, and that HQ̂Rx = Q̂RyV V ∗. Hence

HQ̂UxΣV
∗ = Q̂RyV V ∗ and HQ̂UxΣ = Q̂RyV. (23)

We can truncate (23) at an index k determined as in (4) to obtain

HQ̂Ux(:, 1 : k)Σk = Q̂RyVk and Ux(:, 1 : k)∗Q̂∗HQ̂Ux(:, 1 : k) = Ux(:, 1 : k)∗RyVkΣ
−1
k .

Since H = H∗, the matrix Sk = Ux(:, 1 : k)∗Q̂∗HQ̂Ux(:, 1 : k) is also Hermitian and the analysis

of §3 applies.8 Sk is the Rayleigh quotient of H with respect to the range of Q̂Ux(:, 1 : k). If
Skwj = λwj, ∥wj∥2 = 1, then

(λj, zj), where zj = Q̂Ux(:, 1 : k)wj = Q

(
Ux(:, 1 : k)wj

0

)
(24)

is the corresponding Ritz pair of H. Note that (λj, Ux(:, 1 : k)wj) is a Ritz pair for Q̂∗HQ̂
from the range of Ux(:, 1 : k). Hence, the QR compressed DMD first compresses the underlying
H onto an (m + 1)-dimensional subspace, computes the (m + 1)-dimensional DMD using the
projected data and then lifts the Ritz pairs back to the original n-dimensional state space (24).
This lifting preserves the orthogonality of the Ritz vectors, as well as the orthonormality of the
Exact DMD vectors.

The LAPACK implementation of the QR compressed Hermitian/symmetric DMD contains
subroutines xSYDMDQ (x ∈ {S,D}}) and xHEDMDQ (x ∈ {C,Z}}).

8Here one can formulate the Hermitian Procrustes problem and proceed as in §4.
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Remark 5.1 Note that, based on §3.2.3, the same procedure applies to the skew-Hermitian
case, because the unitary congruence · 7→ Q∗·Q preserves both hermiticity and skew-hermiticity.
Since this congruence also preserves unitarity (if A is unitary, so is Q∗AQ), the QR compression
can be also used as a dimension reduction preprocessing for the unitary DMD described in [3].
Working on the numerical details of the unitary case (the data are generated by a unitary
operator) in a way analogous to this note on the Hermitian case is an interesting challenging
problem, in particular because the Rayleigh quotient does not inherit unitarity/orthogonality,
and because the data must satisfy X∗X = Y∗Y. These issues are not addressed in [3].

6 Concluding remarks and outlook

The orthogonality of the Ritz vectors (Koopman modes) in the Hermitian (and also skew-
Hermitian) cases makes the applications of the DMD (such as e.g. spatio-temporal analysis of
the snapshots) more efficient and numerically robust. In a general case, the Ritz vectors can
be highly ill-conditioned which renders modal analysis numerically difficult.

Following [9], in [8], we have developed a new approach for working with orthonormal vec-
tors, based on partial Schur decomposition of numerical compressions of the Koopman operator
to a suitable finite dimensional function subspaces. This has both theoretical and computational
advantages in the case of highly non-normal operators. A software implementation of the new
proposed KSDMD (Koopman-Schur DMD), that contains the Hermitian and skew-Hermitian
DMD presented in this report as special cases, is currently under testing.
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8 Appendix: Software – implementation details

The proposed library for Hermitian DMD consists of eight subroutines as follows:

� For real data:

– SSYDMD (single precision symmetric DMD), DSYDMD (double precision symmetric
DMD)

– SSYDMDQ (single precision QR compressed symmetric DMD), DSYDMDQ (double
precision QR compressed symmetric DMD)

� For complex data:

– CHEDMD (single precision Hermitian DMD), ZHEDMD (double precision Hermitian
DMD)

– CHEDMDQ (single precision QR compressed Hermitian DMD), ZHEDMDQ (double
precision QR compressed Hermitian DMD)

In the case of complex data, the subroutines can be used to compute a skew-Hermitian
DMD, by changing the input data (X,Y) to (X, iY).

The structure of the proposed subroutines is analogous to xGEDMD and xGEDMDQ in [7], with
three main differences that are induced by the Hermitian/symmetric structure of the problem:

(i) We added a correction of the computed Rayleigh quotient to restore hermiticity/sym-
metry, based on §3.2 and §4.

(ii) Hermitian/symmetric eigensolvers (xSYEV, xHEEV or xSYEVD, xHEEVD) are used in-
stead of the general solver xGEEV.

(iii) If the Exact DMD eigenvectors are requested, we added a reorthogonalization procedure
to obtain a numerically orthonormal system. For this correction, as discussed in §3.3, a simple
Gram-Schmidt orthogonalization suffices; in the code we used (because LAPACK does not have
a Gram-Schmidt orthogonalization) xGEQRF and xORGQR, xUNGQR.

Next, we briefly describe the interface to the real double precision subroutine DSYDMD.

8.1 DSYDMD

SUBROUTINE DSYDMD( JOBS, JOBZ, JOBR, JOBF, WHTSVD, WHTSYM, WHTEIG, &
M, N, X, LDX, Y, LDY, NRNK, TOL, K, EIGS, Z, LDZ, RES, &
B, LDB, W, LDW, S, LDS, WORK, LWORK, IWORK, LIWORK, INFO )

8.1.1 Brief description of the arguments of DSYDMD

JOBS, JOBZ, JOBR, JOBF

JOBS determines whether the initial data snapshots should be scaled with a diagonal matrix
that normalizes the columns of X or Y. The scaling is determined according the value of S as
follows:
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’S’ The data snapshots matrices X and Y are multiplied with a diagonal matrix D so that
X*D has unit nonzero columns (in the Euclidean 2-norm)

’C’ The snapshots are scaled as with the ’S’ option. If it is found that an i-th column of X
is zero vector and the corresponding i-th column of Y is non-zero, then the i-th column
of Y is set to zero and a warning flag is raised.

’Y’ The data snapshots matrices X and Y are multiplied by a diagonal matrix D so that Y*D
has unit nonzero columns (in the Euclidean 2-norm)

’N’ No data scaling is used.

JOBZ Determines whether the eigenvectors (Koopman modes) will be computed.
’V’ The eigenvectors (Koopman modes) will be computed and returned in the matrix Z. See

the description of Z.
’F’ The eigenvectors (Koopman modes) will be returned in factored form as the product X*W,

where X contains a POD basis (leading left singular vectors of the data matrix) and W
contains the eigenvectors of the corresponding Rayleigh quotient. See the descriptions of
X, W, Z.

’N’ The eigenvectors are not computed.

JOBR Determines whether to compute the residuals.
’R’ The residuals for the computed eigenpairs will be computed and stored in the array RES.

See the description of RES. For this option to be legal, JOBZ must be ’V’.
’N’ The residuals are not computed.

JOBF specifies whether to store information needed for post-processing (e.g. computing refined
Ritz vectors)

’R’ The matrix needed for the refinement of the Ritz vectors is computed and stored in the
array B. See the description of B.

’E’ The unscaled eigenvectors of the Exact DMD are computed and returned in the array B.
See the description of B.

’X’ The Exact DMD vectors are orthogonalized and returned in the array B. To preserve
the residuals of the orthogonalized EDMD vectors they are reordered and the reordering
permutation is stored and returned in the array IWORK. See the descriptions of B and
IWORK.

’N’ No eigenvector refinement data is computed.

WHTSVD The SVD decomposition of X can be computed by one of the following LAPACK
subroutines: (i) DGESVD (QR SVD) ; (ii) DGESDD (divide and conquer SVD); (iii) DGESVDQ
(preconditioned QR SVD); (iv) DGEJSV (preconditioned Jacobi SVD). The concrete choice is
specified in a job parameter (WHTSVD ∈ {1,2,3,4}). This step of the algorithm provides a
low rank approximation X ≈ UkΣkV

T
k , and in future modifications of the code we can include

large scale partial SVD solver.
If the job parameters specify that the information for computing the refined computed Ritz

pairs is requested, the matrix YVkΣ
−1
k is computed and on exit returned in the array Y.

WHTSYM Specifies the method for restoring the symmetry of the Rayleigh quotient.

1 The lower triangle of the computed Rayleigh quotient is used to symmetrize the matrix,
2 The formulas for the lower triangle of a truncated solution of the symmetric Procrustes

problem are used to symmetrize the computed Rayleigh quotient.
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WHTEIG Specifies the symmetric eigensolver to compute the eigenvalues and eigenvectors of
the symmetric Rayleigh quotient.

1 DSYEV (the QR algorithm)
2 DSYEVD (the divide and conquer algorithm)

M, N, X, LDX, Y, LDY On entry, the real arrays X and Y contain the data matrices X, Y with
M columns and N rows. On exit, X contains the left singular vectors of X. If the residuals are
requested, then Y contains the residual vectors; otherwise the content of Y is not changed.

NRNK, TOL These parameter specify how to compute the numerical rank, i.e. how to truncate
singular values σ̃1 ≥ · · · ≥ σ̃n of the input matrix X. On input, if NRNK equals
-1 σ̃i is truncated if σ̃i ≤ TOL*σ̃1

-2 σ̃i is truncated if i ≥ 2 and σ̃i ≤ TOL*σ̃i−1

>0 The numerical rank can be enforced by using positive value of NRNK as follows: If
0<NRNK<=N, then at most NRNK largest singular values will be used. If the number
of the computed nonzero singular values is less than NRNK, then only those nonzero val-
ues will be used and the actually used dimension is less than NRNK. The actual number
of the nonzero singular values is returned in the variable K.

K, EIGS, Z, LDZ The dimension of the Rayleigh quotient, determined following the speci-
fications in NRNK, TOL is returned in the output variable K. The eigenvalues of the Rayleigh
quotient Sk are computed using DSYEV or DSYEVD, as specified in WHTEIG. The eigenvectors
are returned in the first K columns of Z.

If JOBZ==’F’, then the above descriptions hold for the columns of X(:,1:K)*W, where
the columns of W are the eigenvectors of the K-by-K Rayleigh quotient.

RES On exit, RES(1:K) contains the residuals for the K computed Ritz pairs, RES(j) =
∥H*Z(:,j)− EIGS(j)*Z(:,j))∥2.

B, LDB, W, LDW, S, LDS S is the K-by-K Rayleigh quotient, i.e. the matrix Sk = U∗
kHUk

described in §3. The array W is used to temporarily hold the right singular values of X, and on
return it contains the eigenvectors of S, as computed by the eigencolver selected by WHTEIG.
The array B is used only if the data for computing the refined Ritz vectors (JOBF=’R’) or the
Exact DMD eigenvectors (JOBF=’E’ or JOBF=’X’) are requested.

WORK, LWORK, IWORK, LIWORK If on entry LWORK==-1, or LIWORK==-1 then a workspace
query is assumed and the procedure only computes the minimal and the optimal workspace
lengths for both WORK and IWORK. In that case, on exit, WORK(1) contains the minimal and
WORK(2) is the optimal length of WORK. Similarly IWORK(1) contains the minimal length
of IWORK. Otherwise, WORK and IWORK are used as workspace and to return some useful
information. On exit, WORK(1:N) contain the computed singular values of X. If JOBF==’X’,
on return IWORK(1:N) contains a reordering permutation used to compute orthonormalized
Exact DMD eigenvectors, so that EIGS(IWORK(i)) is the eigenvalue that corresponds to the
i-th EDMD vector. See the descriptions of JOBF and B.
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INFO On exit, INFO contains status information on the DSYDMD run.
-i<0 On entry, the i-th argument had an illegal value

0 Successful return.
1 Void input. Quick exit (M=0 or N=0).
2 The SVD computation of X did not converge. Suggestion: Check the input data and/or

repeat with different WHTSVD.
3 The computation of the eigenvalues did not converge.
4 If data scaling was requested on input and the procedure found inconsistency in the data

such that for some column index i, X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is
set to zero if JOBS==’C’. The computation proceeds with original or modified data and
a warning flag is set with INFO=4.

8.2 DSYDMDQ

SUBROUTINE DSYDMDQ(JOBS, JOBZ, JOBR, JOBQ, JOBT, JOBF, WHTSVD, WHTSYM, WHTEIG,&
M, N, F, LDF, X, LDX, Y, LDY, NRNK, TOL, K, EIGS, Z, LDZ, &
RES, B, LDB, V, LDV, S, LDS, WORK, LWORK, IWORK, LIWORK, INFO)

8.2.1 Brief description of the arguments of DSYDMDQ

JOBS, JOBZ, JOBR, JOBF These arguments are the same as in DSYDMD.

JOBQ, JOBT
JOBQ specifies whether to explicitly compute and return the orthogonal matrix from the QR
factorization.
’Q’ The matrix Q of the QR factorization of the data snapshot matrix is computed and stored

in the array F. See the description of F.
’N’ The matrix Q is not explicitly computed.

JOBT Specifies whether to return the upper triangular factor from the QR factorization.
’R’ The matrix R of the QR factorization of the data snapshot matrix F is returned in the

array Y. See the description of Y.
’N’ The matrix R is not returned.

WHTSVD, WHTSYM, WHTEIG These arguments are defined as in DSYDMD.

M, N, F, LDF On entry, the columns of F are the sequence of data snapshots from a single
trajectory, taken at equidistant discrete times. It is assumed that the column norms of F are
in the range of the normalized floating point numbers. On exit, if JOBQ equals:
’Q’ the array F contains the orthogonal matrix/factor of the QR factorization of the initial

data snapshots matrix F. See the description of JOBQ.
’N’ the entries in F strictly below the main diagonal contain, column-wise, the information on

the Householder vectors, as returned by DGEQRF. The remaining information to restore
the orthogonal matrix of the initial QR factorization is stored in WORK(1:N). See the
description of WORK.
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X, LDX, Y, LDY X is a MIN(M,N)-by-(N-1) array that is used as worskpace to hold represen-
tations of the leading N-1 snapshots in the orthonormal basis computed in the QR factorization
of the input array F. On exit, the leading K columns of X contain the leading K left singular
vectors of the above described content of X. See the descriptions of K, V and Z.

Y is a MIN(M,N)-by-(N-1) array that is used as worskpace to hold representations of the
trailing trailingN-1 snapshots in the orthonormal basis computed in the QR factorization of the
inoput array F. On exit, if JOBT == ’R’, Y contains the MIN(M,N)-by-N upper triangular
factor from the QR factorization of the input data snapshot matrix F.

NRNK, TOL, K, EIGS, Z, LDZ, RES, W, LDW, S, LDS These parameters are defined as in
DSYDMD.

B, LDB are defined as in DSYDMD, but the content of B is in the lower dimensional space. If
needed, it can be lifted in the original space by pre-multiplication with the orthogonal factor
from the initial QR factorization.

WORK, LWORK, IWORK, LIWORK These workspace parameters are defined as in DGEDMD.
The difference is in the value of WORK on exit: WORK(1:MIN(M,N)) contain the scalar
factors of the elementary reflectors as returned by DGEQRF of the M-by-N input matrix F.
WORK(N+1:2*N-1) contains the singular values of the input submatrix F(1:M,1:N-1).

INFO On exit, INFO contains status information on the DSYDMDQ run. It is defined as in
DSYDMD.

8.3 Numerical tests

The proposed routines passed the tests described in [7], with random Hermitian/real symmetric
matrices, so that the graphical presentation of the results is as in [7] and it is omitted for the
sake of brevity. The computed eigenvectors are numerically orthonormal and the eigenvalues
are real by design, so those structural properties are guaranteed.

As an illustration, we show a result of test with the discretized two-dimensional Laplace op-
erator over a 30×30 discrete grid. In Figure 7, we show the dominant (normlaized) eigenvector
computed by DSYDMD with 400 samples from two Krylov sequences. The reference vector is
computed using the function eig() from Matlab.

Figure 7:
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