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Abstract

The BLAS library is one of the central libraries for the implementation of nu-
merical algorithms. It serves as the basis for many other numerical libraries like
LAPACK, PLASMA or MAGMA (to mention only the most obvious). Thus a fast
BLAS implementation is the key ingredient for efficient applications in this area.
However, for debugging or benchmarking purposes it is often necessary to replace
the underlying BLAS implementation of an application, e.g. to disable threading
or to include debugging symbols. In this paper we present a novel framework
that allows one to exchange the BLAS implementation at run-time via an envi-
ronment variable. Our concept neither requires relinkage, nor recompilation of
the application. Numerical experiments show that there is no notable overhead
introduced by this new approach. For only a very little overhead the framework
naturally extends to a minimal profiling setup that allows one to count numbers
of calls to the BLAS routines used and measure the time spent therein.
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Figure 1: Shared library dependencies of an example application.

1 Introduction

The BLAS library [2, 3, 6] is one of the most important basic software libraries in sci-
entific computing. The Netlib reference implementation defines the standard Fortran
interface and its general behavior. Besides this, optimized variants for nearly every
computer architecture exist. These implementations are mostly provided by the CPU
or hardware vendors to get the maximum performance out of their specific devices. In
addition to the vendor implementations powerful Open Source implementations like
OpenBLAS [7] and the Automatically Tuned Linear Algebra Software (ATLAS) [8]
exist. Besides the standard Fortran interface Netlib provides a C interface too. The
so called CBLAS is normally only a wrapper to the Fortran interface which converts
some data types and make the calling sequences more convenient for C programmers
in the end.

Although one is only interested in using the most efficient BLAS implementation
on each hardware, it is often helpful to exchange the BLAS implementation during
development. This is, for example, necessary in the debugging process to turn off
multithreading or to include additional debug symbols. Benchmarks, comparing dif-
ferent BLAS versions to find the best one for the current hardware, are other reasons
to switch the BLAS implementation. Our FlexiBLAS concept accelerates this process
and resolves the issues often encountered. The three main categories of these issues,
the authors are aware of, are explained below.

Normally the exchange of a library is performed by relinking the program or even
recompiling the entire software project. This can be a difficult and time consuming
process. Unfortunately this procedure does not always solve all the problems regarding
the change of the BLAS library in the whole application. The main problems are the
following:

Problem 1: Dynamically Linked Libraries and their dependencies. To explain this
issue, we consider an example application which uses BLAS directly for some com-
putations and relies on LAPACK and UMFPACK [1] for more complex operations. If
LAPACK and UMFPACK are linked dynamically they are usually linked against BLAS,
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Figure 2: Wrong symbol resolution after relinking the example application.

as well, since this is necessary to resolve their internal symbols. We assume that the
example application is compiled and linked dynamically using

gcc Applicaton.c -o Applicaton -lblas -llapack -lumfpack

with LAPACK and UMFPACK as shared libraries too. The dependencies between the
application and the libraries are shown in Figure 1.

We observe that the BLAS library is referenced several times. First it is directly
connected to the application and second it is an indirect dependency through LAPACK
and UMFPACK. If one now wants to use an alternative BLAS implementation, e.g.
to check if the application performs well with threading, one might link the above
program against OpenBLAS via:

gcc Applicaton.c -o Applicaton -lopenblas -llapack -lumfpack

If we now take a look at the dependencies of the example application we see in Figure 2
that we integrated two different BLAS libraries. The program now tries to resolve all
symbols by looking in both libraries and we can not influence which one is used. Pro-
gram crashes, segmentations faults or other unwanted effects are possible and indeed
often observed in this situation.

Problem 2: Incompatibilities Even though the Netlib BLAS implementation defines
the standard interface and the behavior, not all available BLAS variants are 100%
compatible with this interface. For example the auxiliary functions SCABS1/DZABS1 are
only used as tools by some BLAS routines, i.e., they are not part of the official BLAS
subroutines [6], still they are provided by the Netlib reference implementation and
might be called by users unaware of this fact. In order to end up with an 100% Netlib
compatible interface we have to provide these functions even if they are not available
in some BLAS implementations like ATLAS or Apple Accelerate. Other examples for
incompatibilities are differing interfaces for functions returning complex values inside
the Intel® MKL [5]. This affects ZDOTC, ZDOTU, CDOTC and CDOTU. However, there
is a GNU compatible interface of the MKL in which these functions behave like the
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Figure 3: Application with integrated FlexiBLAS.

ones from the reference. If we use the icc/ifort compatible interface the signature
of these functions changes, though. Intel® introduced an additional parameter to
return the result and not as a normal return value. In turn it changes the Fortran
function to a Fortran subroutine. If a program uses at least one of those functions
when recompiling against different BLAS version, the source code needs to be modified
to match the varying BLAS interfaces.

Problem 3: Easy Profiling In many cases it is desirable to count how often a certain
BLAS function is called in a given context and how much time is spent inside this
function. This type of profiling is normally enabled by special compiler options. If
the BLAS library was not compiled with these options and we can not recompile it
ourselves to enable them, profiling can be complicated or impossible. This is often the
case when we use a vendor provided BLAS implementation like Intel® MKL or AMD
ACML. Besides the recompilation, additional tools like gprof are necessary. Also
enabling the profiling flags can considerably slow down the entire application because
the compiler integrates additional code and information.

With FlexiBLAS we try to overcome all three problems by providing a wrapper
library which acts as an interface between the application and the real BLAS imple-
mentation. The API of the wrapper looks exactly like the standard Netlib Fortran
reference implementation and behaves like that independent of the actual implemen-
tation used. Additionally FlexiBLAS can also provide the CBLAS reference interface
defined by Netlib. The underlying BLAS, the so called backend, is selected via config-
uration files or an environment variable. Figure 3 shows how the application and its
dependencies connect to FlexiBLAS. Inside our wrapper a simple profiling system to
analyze the function calls can be integrated very naturally and at very limited cost.

The remainder of our article is structured as follows. In the following section we
describe the basic techniques behind the FlexiBLAS implementation and its usage. The
computational results in Section 4 will show that the additional overhead caused by

4



FlexiBLAS is negligible.

2 Implementation Details

The main idea behind our wrapper library is to use the dlopen-mechanism specified
in POSIX.1-2001 [4]. The mechanism allows one to open shared libraries or other
elf-binaries and search for functions or symbols inside of them. This technique is
often used for plugin infrastructures where parts of a program are loaded at runtime
instead of linking the entire program against them. This mechanism gives us great
flexibility to enhance the features of a program or exchange parts of the program
without recompiling it. This corresponds to our requirements from Section 1.

The dlopen-mechanism consists of four functions that we will use in our implemen-
tation:

dlopen The dlopen function is an interface to the dynamic loader. It loads a shared
object or an arbitrary elf-binary in the address space of the current program
and returns a handle to deal with the loaded object. The shared object can
be addressed either by a relative or an absolute path. If it is an absolute path
it is opened directly, otherwise it searches in the default linker paths (as they
are defined in ld.so.conf or LD LIBRARY PATH. Additionally the behavior of the
symbol resolution can be influenced by a flag. Basically there are two options.
The first one, RTLD NOW, resolves all symbols when a shared object is opened. The
second one, RTLD LAZY allows one to resolve only the necessary symbols when a
function out of the shared object is called. Other flags decide if the symbols of
the library are integrated into the global address space or not.

dlsym The dlsym function is the look up function of the dlopen mechanism. It
searches a given shared object handle for a desired symbol. In this way one
can extract pointers to functions or variables inside the previously loaded shared
library. If a symbol is not found inside the specified handle it returns a NULL

pointer. Using two predefined library handles RTLD NEXT and RTLD DEFAULT one
can search inside the current address space for a symbol too.

dlclose The dlclose function closes a shared library using a reference counting sys-
tem. If the shared object was opened more than once the library is closed after
the last reference vanishes.

dlerror The error handling of the dlopen mechanism is realized by dlerror. It must
be called before one of the above function calls to reset the internal error flag.
If an error occurs, i.e. one of the above functions returns NULL, the dlerror

function returns a human readable error string.

Besides these functions the different Unix-like operating systems provide numerous
extensions. We will not use any of them in order to get a portable library which
should only use POSIX compatible functions.

Unfortunately the idea of using dlopen to extend the functionality of the program
has three issues for our case which we have to solve:
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void *__flexiblas_library;

void *call_sdot, *call_ddot,...

__attribute__((constructor)) void flexiblas_init() {

__flexiblas_library = dlopen(getenv("FLEXIBLAS"), RTLD_NOW | RTLD_GLOBAL);

call_sdot = dlsym(__flexiblas_library,"sdot_");

call_ddot = dlsym(__flexiblas_library,"ddot_");

...

}

__attribute__((destructor)) void flexiblas_exit() {

dlclose(__flexiblas_library);

}

Figure 4: Sketch of the initialization and clean up functions.

1. If a shared object is loaded using dlopen its symbols will not become integrated
directly into the the name space of the current program. That means we have to
look up each necessary symbol or function from the backend BLAS library before
the program starts. In this case the user has to call an initialization function
first before a BLAS function can be used. This conflicts with our goal to replace
the BLAS library without changing the Netlib API because we would need to
call an initialization function before we can use the first BLAS function.

2. The symbol look-up is performed at runtime rather than at compile time. This
means if we only create a library containing the dlopen-mechanism to load the
backend the linker is not able to resolve any necessary symbols at compile time.
The linker is not able to detect which symbols will be integrated later on by
dlsym from the backend. This means that the application can not be linked
correctly as an executable file.

3. Some BLAS-libraries, like the Intel® MKL, consist of multiple shared object files
which do not refer to all other dependent libraries. The reason behind this is,
for example, to provide flexibility regarding threading models or for dealing with
different pointer and integer sizes. In this case not all internal symbols of the
library can be resolved when we load it by dlopen. The resulting error prevents
us from looking up the BLAS symbols inside the library. Calling dlopen for
all dependent libraries will not resolve the problem in every case. The reason
for this is already explained in Problem 1. If the desired BLAS library is only
available as a static library dlopen can not use it at all. Since the solution here
is very much the same we count this as a similar issue.

Developing solutions for all those problems enables us to resolve all problems mentioned
in Section 1 using the dlopen-mechanism.
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#define BLAS_FN(rettype, name, args, callseq)\

rettype name##_ args {\

rettype (*fn) args ;\

fn = call_##name;\

if ( fn == NULL ) {\

fprintf(stdder, #name "_not hooked, abort\n");\

abort(); \

}\

return fn callseq;\

}

BLAS_FN(float, sdot, (Int *N, float *DX, Int * INCX, float *DY, Int *INCY),\

(N,DX,INCX, DY, INCY));

BLAS_FN(double, ddot,(Int *N, double *DX, Int * INCX, double *DY, Int *INCY),\

(N,DX,INCX, DY, INCY));

Figure 5: C preprocessor macro to generate the wrapper functions.

Solution to Issue 1 The first issue is solved using a property of executable files on
POSIX operating systems. By defining a proper attribute for a function we can ensure
that this function is executed automatically before the main function of a program
starts. The same can be done for a function which should be executed directly after the
actual program terminates. The necessary function attributes to achieve this behavior
are attribute ((constructor)) and attribute ((destructor))1. They are
the successors of the deprecated init() and fini() functions. Using this technique
we define an initialization and a clean up function. The initialization function reads
the several environment variables and the configuration files, which define the backend
BLAS library to load, as well as the behavior of FlexiBLAS. It searches for the backend
library in a set of default paths and tries to open it. If this is successful it looks for
every BLAS function inside the shared library and extracts the corresponding function
pointers. The current address of the function is determined by dlsym. The addresses
are stored as ordinary void * pointers. The correct function signature does not play
a role at this time because the void pointer is cast to the correct one just when the
function is needed. In this way we load all 147 BLAS from the backend library before
the application starts. After the program terminates the cleanup function closes the
backend library automatically. The pseudo code in Figure 4 gives a sketch of how this
procedure is implemented.

This strategy offers two advantages: On the one hand, the library is loaded at start
up and all symbols are resolved. This avoids the expensive look up every time a
BLAS function is called. On the other hand, we can check if all necessary functions
are provided by the given BLAS backend. If a symbol is missing we can terminate
the program right before the main function starts. In the case of the missing SCABS1

function in ATLAS, we include our own implementation of this function instead of
terminating the program.

1http://gcc.gnu.org/onlinedocs/gcc-4.8.1/gcc/Function-Attributes.html
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Solution to Issue 2 The second issue is solved by implementing wrapper functions
for each of the 147 BLAS functions which have exactly the same function signature as
the reference Netlib implementation. This allows the linker to resolve all symbols at
compile time. The wrapper has to check if the corresponding BLAS symbol is loaded
by dlsym. If not, it has to abort the program or switch to a replacement. After
this check the void * pointer addressing the real BLAS function in the backend is
cast to a function pointer with the correct function signature. Then this function is
called with all given function arguments and performs the proper BLAS computations
in the backend. Because all 147 wrapper functions are equally structured and have
nearly the same function body expect of the their name and the function signature we
package them as a C preprocessor macro. This macro is instantiated for every BLAS
function. A brief implementation for such a macro is shown in Figure 5. The macro
needs the return type, the name of the function, its signature and the calling sequence.
In fact the calling sequence is the same as the signature but without the data types.
Using a similar macro we also add aliases for all BLAS functions without the trailing
underscore. The figure also shows the instantiation of the macro for sdot and ddot.
In the case of sdot the macro expands to

float sdot_ (Int *N, float *DX, Int * INCX, float *DY, Int *INCY) {

float (*fn) (Int *N, float *DX, Int * INCX, float *DY, Int *INCY);

fn = call_sdot;

if ( fn == NULL ) {

fprintf(stdder, "sdot_ not hooked, abort\n");

abort();

}

return fn(N, DX, INCX, DY, INCY);

}

The manipulated calling procedure is shown in Figure 6. The application first calls
the sdot routine from our FlexiBLAS library which internally calls the real sdot im-
plementation from the backend. The return values are transferred using the reversed
path.

Besides helping the linker to resolve all symbols, we use the wrapper functions to
solve the incompatibility problem described in the Introduction. Because we always
define the Netlib reference interface the wrapper functions are used to rearrange the
calling sequence if the backend library has some abnormalities. In this way we can use
the Intel®-ifort MKL interface for ZDOTC, ZDOTU, CDOTC and CDOTU like the standard
Netlib ones without changing the application. In these few cases we replace the general
macro from Figure 5 by a handwritten function.

Solution to Issue 3 The problem with incomplete shared library dependencies or
static libraries can not be solved directly from inside our wrapper library. The reason
behind this problem is that dlopen can only open one shared library per call and try
to resolve the missing symbols inside the library from its shared library dependencies
if they are present in the current linker search path. In some cases these dependencies
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Figure 6: Calling sdot from an application.

void blas_dummy_function(){

sdot_();

ddot_();

cdotc_();

cdotu_();

...

}

void __flexiblas_info(struct flexiblas_info *info) {

info->missing_scabs1 = 1;

}

Figure 7: Source code of the dummy library.

are not completely included in the shared object because they are resolved by a special
linking sequence at compile time. The most prominent BLAS implementations with
this issue are Intel® MKL and ATLAS. In the case of the MKL the implementation is
split into three parts, the frontend which provides the interface to the user program, a
threading middleware to change the threading model and the backend which includes
all computational program code. In the case of ATLAS the Fortran standard library
is not referenced if it is compiled using the GNU Fortran compiler. This is necessary
to use a new version of the compiler without performing a time-consuming recompile
of the library.

The issue is solved by a smart usage of the linker and a dummy library. Our first idea
was to create a dummy library without own symbols only referencing the necessary
BLAS library and its dependencies. Intuitively we would call:

gcc -shared -o libmkl_wrapper.so -lmkl_gf -lmkl_gnu_thread \

-lmkl_core -lgomp

to generate a dummy library including a threaded MKL. Unfortunately, the linker does
not integrate the symbols in libmkl wrapper.so such that they can not be resolved
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#define BLAS_FN_VOID_PROFILE(name, args, callseq)\

void name args {\

void (*fn) args ;\

fn = call_##name;\

double time_start = get_wtime();\

call_counter_##name ++;\

if ( fn == NULL ) {\

fprintf(stdder, #name "_not hooked, abort\n");\

abort(); \

}\

fn callseq;\

time_##name = get_wtime()-time_start;\

return;\

}

Figure 8: Wrapper macro with integrated profiling for a Fortran subroutine.

when we call dlsym on it. The solution is to create a non-static dummy function inside
the library which calls or references each of the 147 BLAS symbols once. Introducing
this dummy function the linker is forced to integrate all necessary symbols and their
dependencies in the dummy library. If we now open the dummy library using dlopen

it is possible to search for all BLAS symbols inside the desired backend. The knowledge
about the correct calling sequence of the functions is not necessary inside the dummy
function. It is enough to list all BLAS functions with following parentheses to identify
the function call as shown in Figure 7.

An additional feature of introducing this dummy library is that we can integrate an
information function. This function provides information about the used BLAS library,
such as missing functions, or functions with non-standard signatures. This is used to
install the correct wrappers such that our library always behaves and looks like the
Netlib reference interface. The example in Figure 7 shows the information function for
ATLAS. If FlexiBLAS now opens such a dummy library it calls the flexiblas info

function first before it installs the wrappers. Depending on the results in the info

structure the behavior of some wrappers is changed. At the moment this affects the
aforementioned functions from the Intel® MKL and ATLAS. Beside this purpose the
dummy library allows to create a dynamically loadable backend from a static object.
When the linker builds the shared library out of our dummy library it integrates all
necessary functions from the static library archive into our backend. It is only necessary
that the static library was compiled with position independent code, i.e. with the the
-fPIC switch enable for gcc or icc.

Profiling Employing the dlopen idea presented above the first two problems from
the introduction have been resolved. The profiling problem has been left open up to
now. Normally, if one want to profile a program one has to compile it with a set
of extra compiler options. The GNU compilers, e.g. use the -g and -pg options for
this purpose. This solution has two disadvantages. On the one hand, the additional
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information integrated for the profiling usually makes the program run slower, and
on the other hand, one requires special tools to interpret and analyze the profiling
output. Especially if one uses a proprietary BLAS implementation it is not possible
to recompile the library. Even in the case where access to the source code is possible,
recompilation may be time consuming (e.g. automatic tuning in ATLAS takes quite
a while).

For the case where one only wants to profile the usage of the BLAS library, i.e. is
interested in how long a program stays inside BLAS subroutines and how often they
are called, we integrate an easy profiling possibility in FlexiBLAS. Due to the fact that
we already created wrapper functions for all BLAS routines we can easily and naturally
extend them to count the number of calls and measure the wall-time of each function.
If the BLAS symbol called is a subroutine, i.e. it returns void, we can modify the
general macro from Figure 5 to the one shown in Figure 8. If the symbol returns
a value, i.e. it is a function in the Fortran context, the macro is slightly changed.
The call-counter and the accumulated time are stored in a global variable. Using the
cleanup function introduced to resolve Problem 1 the results are then printed to the
screen or a file once the application terminates.

CBLAS As already mentioned, our FlexiBLAS implementation is able to provide a
CBLAS compatible API, too. In general the CBLAS wrapper is realized in the same
way. We extend the initialization function to search for all CBLAS symbols in the
backend and we provide similar wrappers for all CBLAS functions. This works in
exactly the same way as for the traditional Fortran interface. But in contrast to this
we can handle the situation that the backend does not include any CBLAS function
at all. If this is the case we use the Netlib CBLAS wrapper with relies on the loaded
Fortran BLAS backend. As an example we present the CBLAS wrapper for the sdot

function in Figure 9. Because of the slightly more complicated internal structure of
this wrappers, especially for the level 2 and 3 BLAS operations, the wrappers can not
be replaced by one single generic macro like in Figure 5. Finally this behavior allows
us to use both Fortran BLAS and the CBLAS in our programs independently from the
capabilities of the current backend. The profiling is integrated in the same natural way
as in the Fortran case. Depending on whether the backend provides a CBLAS interface
or not, we measure the runtime differently. In case a CBLAS backend exists we measure
both runtime and the number of function calls. If the CBLAS wrapper redirects to the
Fortran backend we only count the number of function calls and the time is measured
by the Fortran BLAS wrapper function. The profiling output indicates this by printing
“redirected to BLAS” for each CBLAS call which uses the Fortran BLAS wrappers.

3 Usage

The FlexiBLAS library is used exactly like the standard Netlib BLAS implementation.
That means it only needs to be linked to an application instead of the usual BLAS
library. There is no need to change any source code to use FlexiBLAS. If the application
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float cblas_sdot( const int N, const float *X,

const int incX, const float *Y, const int incY){

float dot;

#define F77_N N

#define F77_incX incX

#define F77_incY incY

if ( cblas_sdot != NULL ) {

float (*fn)(const int , const float *, const int, const float *Y,

const int ) = cblas_sdot;

dot = fn(N,X,incX,Y,incY);

} else {

dot = sdot_( &F77_N, X, &F77_incX, Y, &F77_incY);

}

return dot;

}

Figure 9: CBLAS wrapper for sdot.

is dynamically linked against other libraries which also depend on BLAS, as well, one
has to make sure that those libraries are linked against FlexiBLAS, as well. Otherwise
we end up with the problem described in the introduction again. If all other libraries
are linked statically this problem is does not exists. Instead of

gcc YourApplicaton.c -o YourApplicaton -lSOMEBLAS ...

the application is linked by calling

gcc YourApplicaton.c -o YourApplicaton -lflexiblas ...

This is the only necessary change in order to use FlexiBLAS.
Linux distributions like Debian and all its derivates (Ubuntu, Mint, . . . ) include

a technique called “update-alternatives” which can be used to exchange the system
BLAS library to FlexiBLAS without relinking any library. In this case FlexiBLAS will
be the system wide default. The FlexiBLAS Debian packages make use of this feature.
Other distributions like Gentoo, OpenSuse or Fedora have a similar technique. Obvi-
ously those mechanisms allow an easy exchange of the active BLAS implementation as
well. In contrast to the FlexiBLAS method, however, these approaches require super-
user privileges, which especially in academic software development environments, the
default user usually does not have. This is possibly the most important advantage of
our approach.

Selecting the BLAS backend. The behavior of the FlexiBLAS library can be influ-
enced by a set of environment variables, a system level and a user level configuration
file. All this information is read when FlexiBLAS initializes. The configuration files are
optional and skipped if they do not exist. The system level configuration is stored in a
file named flexiblasrc which normally resides in /etc, or in a sub-directory etc of
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the FlexiBLAS installation prefix. The user configuration file is named .flexiblasrc

inside the root of the user’s home directory.
Each line of the configuration files has either the following syntax

AliasNameForTheBlasBackend | SharedObjectOfTheBackend

or

default | AliasOfTheDefaultBlasBackend

If the default BLAS backend should not be set, the default entry has to be removed
from both configuration files. All alias names are case-insensitive. The name of the
shared objects can be a simple file name, in case the backend resides in the default
search path of FlexiBLAS or an absolute path if it is located somewhere else in the
file system. The default search path is the directory $(libdir)/flexiblas inside the
FlexiBLAS installation. Here $libdir depends on the system and hardware of the
installation but should be one of lib, lib32 and lib64. When there are multiple
equally named definitions, the last one is used. An example configuration file on a
system with OpenBLAS and ATLAS installed looks like:

Netlib | libblas_netlib.so

OpenBLAS | libblas_openblas.so

ATLAS | libblas_atlas.so

default | OpenBLAS

The configuration files are evaluated in the following order:

1. /etc/flexiblasrc or etc/flexiblasrc from the FlexiBLAS install directory.

2. ~/.flexiblasrc for the user defined settings.

Eventually existing aliases or default settings are overwritten in the order the con-
figuration files are read, i.e. the settings in ~/.flexiblasrc supersede the global
one.

In order to manage the configuration files easily we provide a command line tool
flexiblas to view and change the user’s default BLAS backend. Using

flexiblas list

all available BLAS backends that are registered in any of the configuration files are
listed. By calling

flexiblas set NameOfTheBlasBackend

the user can set their personal default BLAS backend in ~/.flexiblasrc. The default
entry can be removed from the user configuration file via

flexiblas unset

In addition to the configuration files the following environment variables can be used
to influence the behavior of FlexiBLAS:
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FLEXIBLAS The FLEXIBLAS environment variable is used to override the default back-
end setting from the configuration files. It can either be an alias name specified
in one of the configuration files or a path to a shared library file which should
be used as the backend. If it is a path-less filename, FlexiBLAS tries to find this
library file in its default path. If the environment variable contains an absolute
path to a file, FlexiBLAS tries to open the file directly as its backend. For ex-
ample, if we want to use the OpenBLAS implementation without the dummy
libraries created for FlexiBLAS we set

export FLEXIBLAS=/usr/lib/libopenblas.so.0

before our program starts. Then the initialization function tries to open the spec-
ified shared library and resolve the BLAS symbols in it. If we set the environment
variable via

export FLEXIBLAS=libblas_atlas.so

it searches only inside the default search path of FlexiBLAS. This is the same
behavior for shared library names as in the configuration file entries.

FLEXIBLAS VERBOSE If this environment variable is set to 1 additional output informa-
tion will be displayed at the start and the termination of the application. This
does not affect the execution speed of the program.

FLEXIBLAS NOPROFILE If this environment variable is set to 1 the profiling information
will not be printed to the screen or a file. The variable is only used if FlexiBLAS
is compiled with the profiling support described in Section 2.

FLEXIBLAS PROFILE FILE This environment variable defines the file the profiling out-
put should be written to. If the variable is not set or the file cannot be opened
the standard error output stderr is used to display the profiling result.

Add more BLAS backends. As we have seen in Section 2 some BLAS libraries can
be loaded directly using the dlopen-mechanism. If this is not the case we have to
use the dummy library workaround. The template for the dummy library can be
found in src/dummy lib.c of the FlexiBLAS source directory. This file contains two
C functions, the first one is the dummy function to resolve all BLAS symbols. The
second one called flexiblas info is the information function to tell FlexiBLAS some
details about the backend and its problems. At the moment this information describes
whether the complex dot products use the Intel® or the GNU calling sequence and
if SCABS1 exist. These two cases can be selected by setting the ZDOTC MKL or the
SCABS1 MISSING preprocessor macro. Basically a new backend is created by

gcc -shared -o yourbackend.so -O2 dummy_lib.c -lA_BLAS_IMPLEMENTATION

Other options like the two previously mentioned macros or runtime time paths can be
added to this command line as well. This allows one to create backends from static
BLAS libraries, too. Finally one can add the newly created .so files with an alias to
one of the configuration files to use it easily.
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Netlib Intel MKL OpenBLAS ATLAS
n no FB with FB no FB with FB no FB with FB no FB with FB

1 · 106 0.0021 0.0021 5.4 e-5 5.3 e-5 7.1 e-5 6.7 e-5 0.0007 0.0007
2 · 106 0.0044 0.0045 0.0007 0.0007 0.0011 0.0006 0.0024 0.0024

Table 1: Runtime in seconds of daxpy for random input data of dimension n on
x86/x86-64. (FB = FlexiBLAS)

Remark for the Profiling library. If FlexiBLAS is compiled with profiling support all
file names, like the shared library, the default backend path and the configuration files,
get an additional -profile appended. The linking step changes to

gcc YourApplicaton.c -o YourApplicaton -lflexiblas-profile ...

The name of the configuration tool changes to flexiblas-profile.

4 Numerical Test

The numerical tests are only meant to check if the introduced wrapper functions pro-
duce a measurable overhead, or slow down the application. Numerical differences be-
tween the results of the different BLAS implementations are not covered here. We have
to rely on the fact that the effects of threading on the accuracy have been considered
adequately by the maintainers of the corresponding implementations.

The runtime tests are done on two different architectures. The first one is the classic
x86/x86-64 architecture (Dual-Socket Intel® Xeon® E5-2690, 2 × 8 Cores) running
Ubuntu Linux 12.04. The second one is an IBM POWER7 based big-endian system
(POWER7 3.72 GHz, 6 Cores, 4-way SMT) with Fedora Linux 19. We use typical
BLAS implementations like the Netlib reference, the Intel® MKL 11, OpenBLAS 0.2.8
and ATLAS 3.10.1. On the IBM architecture we restrict to ATLAS.

In order to get a proper overview of whether or not the wrappers affect the runtime
we checked them for the daxpy, the dgemv and the dgemm calls. This covers one oper-
ation from each BLAS level. Moreover, the benchmarks are linked against the BLAS
library directly and compared to linking against our FlexiBLAS with the correspond-
ing backend library selected using the FlexiBLAS environment variable. All tests were
performed multiple times and average times are taken for each BLAS function. The
daxpy test is only performed for two large cases because otherwise the influence of
other operating systems factors, like background tasks, disturb the measurement too
much. Tables 1 to 6 show the average runtime of all three benchmark examples using
the different BLAS libraries. We observe that all runtimes are comparable and no
mentionable differences occurred. In some cases FlexiBLAS seems to be slightly faster.
A possible explanation for this behavior can be that we look up all symbols and load
them at initialization instead of doing this when it becomes necessary. All other very
small runtime differences are regarded as measurement errors. Furthermore we see
that our technique works on a non-x86 architecture as well, with the same comparable
runtime results between the classical linkage and the FlexiBLAS variant.
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Netlib Intel MKL OpenBLAS ATLAS
n no FB with FB no FB with FB no FB with FB no FB with FB

500 0.0007 0.0010 6.6 e-5 8.2 e-5 7.4 e-5 6.3 e-5 0.0002 0.0002

1 000 0.0030 0.0030 0.0002 0.0001 0.0002 0.0002 0.0007 0.0007

5 000 0.0777 0.0777 0.0110 0.0112 0.0111 0.0115 0.0123 0.0102

10 000 0.3092 0.3100 0.0557 0.0557 0.0520 0.0495 0.0380 0.0482

20 000 1.2461 1.2454 0.1826 0.1905 0.1920 0.1567 0.1910 0.1910

Table 2: Runtime in seconds of dgemv for random input data of dimension n on
x86/x86-64.

Netlib Intel MKL OpenBLAS ATLAS
n no FB with FB no FB with FB no FB with FB no FB with FB

500 0.4672 0.4665 0.0022 0.0022 0.0030 0.0030 0.0028 0.0028

1 000 3.7289 3.7548 0.0118 0.0149 0.0169 0.0167 0.0120 0.0120

5 000 - - 0.8470 0.8307 0.7595 0.7469 0.9251 0.9167

10 000 - - 6.5394 6.4372 6.0482 6.0131 7.0418 6.9967

Table 3: Runtime in seconds of dgemm for random input data of dimension n on
x86/x86-64.

Besides the two testing systems we have checked our concept using the following
platforms and BLAS libraries:

� FreeBSD 9.1 (x86-64) with ATLAS and OpenBLAS,

� NetBSD 6.1 (x86) with Netlib,

� Ubuntu 12.04 (x86-64) with ATLAS, OpenBLAS, Intel® MKL and AMD ACML

� Ubuntu 13.04 (x86) with ATLAS, MKL and OpenBLAS,

� MacOS X 10.6.8 (x86) with Apple Accelerate, ATLAS and OpenBLAS.

5 Conclusions

We have shown that it is possible to develop a wrapper library around existing BLAS
libraries to exchange them easily without relinking any program. The library only
uses technique described in the POSIX.1-2001 standard [4] and works on all common
Unix-like operating systems and is not restricted to the x86/x86-64 platform. The
experiments have shown that the additional overhead caused by our wrapper strategy
can be safely ignored. A possible extension to the concept presented here will be the
possibility to switch the BLAS backend during runtime. This might be an advantage
if one wants to switch between sequential and threaded BLAS implementations inside
a single program. A possible application for this is when the number of threads that
the BLAS library uses is fixed at compile time so that we need at least two different
versions of the library to switch between sequential and threaded operation. The
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ATLAS
n no FB with FB

1 · 106 0.0015 0.0015

2 · 106 0.0043 0.0043

Table 4: Runtime in seconds of daxpy for
random input data of dimension
n on POWER7.

ATLAS
n no FB with FB

500 0.0002 0.0003
1 000 0.0006 0.0006
5 000 0.0186 0.0186

10 000 0.0709 0.0709
20 000 0.2789 0.2789

Table 5: Runtime in seconds of dgemv for
random input data of dimension
n on POWER7.

ATLAS
n no FB with FB

500 0.0067 0.0067
1 000 0.0345 0.0345
5 000 2.6224 2.6113

10 000 19.4905 19.4770

Table 6: Runtime in seconds of dgemm for random input data of dimension n on
POWER7.

ATLAS library is a good example for this behavior. Possible implementations of this
feature are currently being investigated and will be part of future versions of the
library. The development of a Windows version is ongoing, whilst not being POSIX.1
compliant, a construction corresponding to the dlopen-family is available and will be
included in future releases of FlexiBLAS.
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