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Figure 11: Speed of Level 1, 2, and 3 BLAS on the RISC System 6000-550

Table 6: Speed of €' — C' + AB on the RISC System6000- 550
Conditias befare perution ‘ Syeed in M flgs
Al arraysinitially in cache  79.3
A or Binjtiallyincajhe 75.6
Cinitially in cache 70.9
No arrays injtiallyincaLhe 70.2
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Appendix: The Model 550

Since this report was first prepared, I BM has announced a newnodel in the RISC Systeny6000
famly—the Mdel 550. This nodel has exactly the same architecture as the Mydel 530 used
in the experinents reported earlier, but has a faster (PU, running at 41.6 Mz (conpared
with 25 M for the Mdel 530), and a faster menory. In this appendi x we reproduce versions
of Tables 1-3, with data gathered fromthe Mydel 550. We also reproduce Figure 5, which

denonstrates the performance attainable with the three levels of BLAS.

Table 4 (simlar to Table 1) shows the speed of various Level 1 BLAS operations. Inthis case
the predictions are based on the cl ock speed of 41.6 Mk, and a tine of 9 cycles toload a cache
line fromnenory to cache. This val ue fits the observed data better than the 11 cycles used for

the Mvdel 530. The other tables correspond exactly to those in the text.

Table 4: Speed in Mops of Level 1 BLAS on the RISCSystem6000- 550

DOT AXPY
Type of nenory access | predicted neasured | predicted neasured
all datain cache 41.6 41. 15 27.72 27.4
all data fromnenory:
xand y withunit stride 26.62 26. 04 20. 17 19.53
x withstride 16 7.20 5.90 6.62 5.29
x and y withstride 1 4.16 3.40 3.96 2.60

Table 5: Speed in Mlops of Level 2 BLAS on the RISC System6000- 550

ata in Cache Ihtain Mnory
y —y +Ax y —y +Ax y —y +Ax y —vy +A 2
depth | DOI' | AXPY | DOI' | AXPY | DOI' | AXPY | DOI' | AXPY
1 38.0 | 26.2 | 38.0| 26.3 | 16.1| 15.5 | 18.8 | 13.4
51.0 | 39.2 | 51.0| 39.2 | 17.9| 17.4 | 19.2| 16.4
57.5 | 40.0 | 57.8 | 40.0 | 19.0| 21.2 | 19.7| 17.1
61.0| 40.0 | 61.7| 40.2 | 19.6 | 17.2 | 19.8 | 17.2

= W N
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floati ng- poi nt operations per cycle we expect that the RISC superscal ar machines will
performat the same rates as the vector nachi nes for vector operations with simlar cycle
tines. Mreover, the RISCnachi nes will exceed the performance of those vector processors

on non- vector probl ens.

3. The LAPACKsof t ware based on bl ocked operations perforns at near-optinal perfornance
with mninal effort. Ghe shoul d note, however, that the workstation does not natch the

I/Operformance and the nunber of users accommodated on largeer conputers.

4. Fssential tohighperfornanceis the use of opti mzed versions of the Level 1, 2, and 3 BLAS.
The techni ques and i deas used here to gain perfornance on the IBMRISC Systeny6000
shoul d work on all RISG based nachines. b a large extent, the success will depend
on the lortran conpiler’s ability to generate efficient code. (W believe that this high
performance is due, at least in part, to the fact that conpiler writers were invol vedin the
early design stages, rather than after the hardware desi gners had conpl eted mmuch of their

vork. )
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Figure 10: Speed of LU Variants on the RISC System6000- 530

right-1looking and (rout variants because nore of the operations are in DM H gure 10
shows the performance rates in Mops of these three variants for different natrix sizes on a
IBMRS/600- 530, al ong with the perfornmance of the LINPACKroutine DEFFA The optinal

bl ocksize on the RISC Systeny6000 conputers is 32 for nost natrix sizes, but the perfornance

varies less than 10% over a wi de range of bl ocksizes.

4 Summary and Concl usions

The aimof this work has been to examne the performance of block al gorithns on the IBM

RISCworkstation. Based on our experinents, we drawthe followi ng concl usions.

1. Neither the nenory bandwi dth nor the cycle tine for the IBMRISC Systeny6000 is at
the level of current-generation vector superconputers. There is, however, no technical

reason why this situation coul d not be i nproved.

2. The IBMRISC processor is close to matching the perfornance level of vector processors
with matched cycle tines [ ][0 Because of the regularity of vector loops and the ability

of the RISCarchitecture toissue floati ng-point instruction every cycle and conplete two
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Figure 6: Variants of LU factorization on the RISCSystem6000- 530
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Figure 7: Breakdown of workin left-1ooking LU

speed of DIRSMdepends on the size of the triangul ar natrices. For the left-1ooking variant,
the triangul ar natrices at eachstep range insize frombton —b, where b is the bl ocksize and n
the order of the original matrix, and the average perfornance is 38 Mlops. For the right-1o0king
and (rout variants, on the other hand, the triangul ar natrices are al ways of order b, and the
average speed is only 29 Mops. (early the average performance of the Level 3 BLAS routines

inablocked routine is as inportant as the percentage of Level 3 BLAS work.

Despite the differences in the perfornance rates of their conponents, the block variants of

the LU factorization tend to showsimlar overall perfornance, with a slight advantage to the
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on this idea |1

The LAPACKIibrary will provide routines for sol ving systens of similtaneous 1inear equa-
tions, least-squares sol utions of overdetermned systens of equations, and ei genval ue probl ens.
The library is intended to be effcient and transportable across a wide range of conputing en-
vironnents, with special enphasis on nodern hi gh- perfornance conputers. 1o achieve high
effci ency, LAPACK devel opers are restructuring nost of the al gorithns from LI NPACK and
HSPACKin terms of calls to asnall nunber of extended BLAS, each of which inplenents a
bl ock nmatrix operation such as matrix mul tiplication, rank- & matrix updates, and the sol ution
of triangul ar systens. These bl ock operations can be optim zed for each architecture, but the

nuneri cal al gorithns that call themwill be portable.

3.1 Performance of Blocked Algorithm on the RISC Systeni6000

W used three bl ocked vari ants fromLAPACKto conpare the perfornance of LU factorization

for a general matrix. These bl ocked variants are shown in Fgure 6. The l1ightly shaded parts
indi cate the matrix el enents accessedin formng a bl ock rowor col umm, and the darker shading
indi cates the bl ock rowor col umm being conputed. 'The left-lakingvari ant conputes a bl ock
colum at a tine using previously conputed col umms. 'The right-lodirg variant (the famliar
recursive al gori thm conputes a bl ock rowand col umm at each step and uses themto update the
trailing subnmatrix. The G variant is a hybrid al gori thmin which a bl ock rowand col um

are conputed at each step using previously conputed rows and previously conputed col unms.

Al of the conputational work for the LU variantsis containedin three routines: the matrix-
matrix mil tiply DM the triangul ar solve with mul tiple right-hand sides DIRSM and
the unbl ocked LU factorization for operations within a block colum. FK gures 7-9 show the

distribution of work anong these three routines.

Fach variant calls its own unbl ocked variant, and the rowinterchanges use about 2%of the

total tine. The average speed of DMV s over 40 Mlops for all three vari ants, but the average
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Figure 5: Speed of level 1, 2, and 3 BLAS on the RISC System6000- 530

3 Block Algorithns and LAPACK

Fxperience wi th nachi nes havi ng a nenory hierarchy [,67 indicates that it is often preferable
topartitionthe matrixor matrices into bl ocks and to performthe conputation by matrix-matrix
operations on the blocks. By organizing the conputation in this fashion, one can provide for
full reuse of data while a given blockis heldin the cache or local menory. This approach avoi ds
excessive novenent of data to and fromnenory, and its benefits on the RISC Systemy/6000 in

particul ar are clear fromthe previous section.

Miny al gori thns can be bl ocked. For exanpl e, researchers have used bl ocking torewite codes
for the sol ution of partial differential equations. Such codes nake effei ent use of superconputers
with small nain nenory and large solid-state diskd.[9A] experience with these techni ques
has shown themto be enornously effecti ve at squeezing the best possible perfornmance out of

advanced archi tectures.

Recent work by nunerical anal ysts has shown that the nost inportant conputations for

dense matrices are also bl ockable. Amajor software devel opnent project dealing with bl ocked

al gorithns for linear al gebra, called LAPACK(shorthand for Linear Al gebra Package), is based
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corfortably fit into cache together, and the length of the dot products is suffeiently long so

that they reach their asynptotic speed.

(he other inportant detail of the blocking strategy nerits discussion. Suppose that the
matrix Ais declared with a very unfavorable |l eadi ng di nension. Then it is possible that only
a fewcol umms of the matrixA will fit into cache before new col umns begin to flush the ol d
col urms. For exanple, if the leading di nension of Ais 512,And 32 by 32, it turns out that
only 16 colums of A will fit in cache. T overcone this problem we copy the bl otlinto a
work array and then performall the operations with the work array, rather than addressing a
part of the array A. This approach requires us to access A with a bad |l eadi ng di nension only

once, rather than 16 tines, for the matrix di nensions nentioned above.

Atortran version of the level 3 BLAS routine DAMMusing these techni ques is available

fromretlib(send mail to rlib@orl.goy in the mail nessage type: send dmr from misc).

2.4 Summary of H.AS Rrfornance

Figure 5 shows a graph of the speed of the three BLAS routines DDOL, DM, and DGFMM
for increasing matrix di nensions. 'The operations perforned by DEFMW and DFMMare
chosen so that dot products are perforned on contiguous elenents, i.e., y — 'y fot

DE¥FWand C «— C +A4 TR for DAFM

This graph clearly shows the benefit of increasing the ratio of floating- point operations to
nenory references achieved by using the Tevel 3 BLAS. For matrix-natrix miltiply we are
doing O( 1) operations on O(%) data, representing a favorabl e sufaetowduneffect. Hence
matrix-natrix ml tiply offers much greater opportunity for exploiting the nenory hierarchy
than the lover-level BLAS routines. Al the experinents described here were perforned on
a IBMRISC Systeny6000 Mydel 530 running at 25 Mk, using the AIXXL conpiler version
01.01.0000. 0000 wi th the - Ooption. The BLAS shownin Figure 5 wvereinpl enentedinstandard

Fortran 77.
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ACI, K)*B(X,J )
A(I+1,K)*B(K,J )
ACI, K)*B(K,J+1)
A(I+1,K)*B(K,J+1)

|_]
N
[
1
|_]
N
[
+ + 4+ + B

T22 = T22

10 CONTINUE
c(I, J )
C(I+1,J )
C(I, J+1)
C(I+1,J+1)

20 CONTINUE

30 CONTINUE

c(I, J ) + Ti1
C(I+1,J ) + T21
C(I, J+1) + T12
C(I+1,J+1) + T22

Figure 3: (bde fragment for near-optinal performance of C «— C +AB

to be perforned with data largely in cache by dividing the natrix into blocks, as shown in
Figure 4. W nay then fix the block A of the matrix A and performevery operation i nvol vi ng
this bl ock before noving on to another block of A. In other words, we conpute the products
Ci—Ci+ ABy, G — Cy+ ABy,. .,.(5 — Cs+ ABg. In this way the blocK can be kept in

cache and the data reused nany tines.

In addi tion, if we assune that the | eadi ng di nension of Bis such that the bjoak #1 be
contained in cache, the overhead of 1oadi ngfBommenory is not too great. Mreover, each
colum of B;is accessed a nunber of tines. Thus we nmay performthe natrix-matrix product

of these blocks at close to the peak speed of the nachine.

Toillustrate the overhead of cache 1oading, we showin Table 3 the speed of the operation
C —C4+AB

where C'is 24 by 24, and A is 24 by 128, and where diflerent arrays are forced to be accessed

either fromcache or frommenory. These di nensions were chosen so that all three arrays can
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Table 3: Speed of C' — C' +AB on the RISC System6000- 530

(dridtios before gerdion ‘ Sead in s
Al arrays injtiallyinciche 47.5
Aor Binitially in caghe 45.4
Cinjtiallyinca(jhe 42.5

No arrays injtiallyincadhe 41.5

y «— y +A"> operation based on DOI'(11.0 Mlops) are slower than the corresponding Level

1 BLAS speeds based on unit stride (11.3 Mops and 14.6 Mlops respectivel y-see Table 1),

the speeds for accessing the matrix across a roware nuch faster for the Level 2 BLAS than
for the corresponding level 1 BLAS. This is because when el enents of a rowof a matrix are
accessed, all the elenents in the correspondi ng cache line are loaded into cache, and some will

be i medi atel y avail abl e when the next rowis accessed.

2.3 Ievel 3 HAS

In performng the matrix-natrix mul tiply operation
C — (C+AB,

where we assume that all three arrays areincache, it is possible toincrease the ratioof operations
to loads to 2:1 by unrolling the DO loops in tvwo directions and thereby re-using each loaded
elenent twice. Note that this ratiois optinal, inthe sense that it is precisely what the hardware
supports. The code fragnent in Fgure 3 illustrates this technique. In theory, this approach
woul d result in a speed close to the theoretical naxi mumof 50 Mlops on a 25 ME nachi ne.

In practice, we have neasured 47.5 Mlops—see Table 3. Note that a production version woul d

be conplicated by the need to include code for the cases when Mand Nare not a mul tiple of

two.

In general, the arrays A, B and C' will be too large to fit into cache together; in any case,

they need to be loaded fromnenory initally. It is still possible to arrange for the operations
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DO 20T =1, M, 4

TEMP1 = ZERO
TEMP2 = ZERO
TEMP3 = ZERO
TEMP4 = ZERO
DO 10 J =1, N
TEMP1 = TEMP1 + A(J,I )*X(J)
TEMP2 = TEMP2 + A(J,I+1)*X(J)
TEMP3 = TEMP3 + A(J,I+2)*X(J)
TEMP4 = TEMP4 + A(J,I+3)*X(J)
10 CONTINUE
Y(I ) =Y(I ) + TEMP1
Y(I+1) = Y(I+1) + TEMP2
Y(I+2) = Y(I+2) + TEMP3
Y(I+3) = Y(I+3) + TEMP4

20  CONTINUE

Fgure 2: Mdel (bde for y — y + Az

Table 2: Speed in Mlops of Level 2 BLAS

ata in Cache Ihtain Mnory
y —y +Ax y —y +Ax y —y +Ax y —vy +A 2

depth | DOI' | AXPY DOr | AXPY DOr | AXPY DOr | AXPY
1 22.7 15.6 | 22.6 15.5 8.7 9.0 11.0 7.7
2 30.4 | 23.5 | 30.4 | 23.4 10.4 10.0 11.2 9.5
3 34.1 24.0 | 34.2 | 23.8 10.6 12.3 11.4 9.7
4 36.3 | 24.0 | 36.4 | 23.6 11.3 9.8 11.3 10.3

Table 2 1ists the speed of the various DM operations and al so incl udes speeds for data
accessed fromnenory. This table shows that for data accessed fromcache, the speed of the
operation y «— y +Az based on DOl'is the sane as that for the operation with-#here is

no penal ty for accessing with stride fromcache.

First, we notice that for data accessed fromnenory, for the y «— y +Ax operationit isslightly
better to use the AXPY operation, which accesses the matrix with unit stride, rather than the
DOl version, which accesses the matrix with stride equal toits leading di nension. Second, we

see that al though the speed of the y «— y +Az operation based on AXPY (9.0 Mlops) and the



DO
DO
Y(I) = Y(I) + A(I,J)*X(J)
CONTINUE
CONTINUE

Figure 1: Ceneric matrix-vector mul tiply code

for the operation with’4 Dependi ng on the ordering of the DO 1oops, the inner loopis either a
DOlor an AXPY. W have seen fromthe discussion of the two Level 1 BLAS operations that,

because the RISC Systeny6000 systemcan performan FMAinstruction with all its operands
inregisters, it is better suited to DOl'operations than to AXPY operations. (Note that this
contrasts with the situation on vector nachines such as the CRAY Y- M?, where the tvo vector

l oads and one vector store requi red match the architecture well. Also, by unrolling, it is possible
to keep the vector Y(I) in a vector register for longer, thus i ncreasing the ratio of floati ng- point
operations to nenory references.) W have also seen fromTable 1 that when accessing data
frommenory, it is veryinportant to access the data with stride one, sothat all the elenents in

a cache line are used when that line is loaded. For these tvoreasons, we consider the operation
y —y +4,
whi ch can be expressed as a DOloperation with A accessed with unit stride.

For this operation, the peak speed is again 25 Mlops—exactly the same as for the DOL
Hovever, in this case we can unroll the dot product to re-use each X(J) a nunber of tines. As
the depth of unrolling increases, the ratio of operations to loads increases fromone and tends
towards tvwo. For exanple, for unrolling to depths 2, 3, and 4, the ratio of operations toloads is
4/3, 6/4, and 8/5, with a theoretical peak speed of 33.3, 37.5, and 40 Mlops, respectively. The
code for this operationunrolledtodepth4is showninFH gure 2. Inpractice, thereislittle benefit
inunrolling to very large depths, as there are only a fini te nunber of floati ng- point registers,
and the perfornance reaches a plateau. The code in Hgure 2 perforns at 36.3 Mlops, and a

speed of 40.3 Mlops has been neasured for unrolling to depth 8.



Table 1: Speed in Mlops of Level 1 BLAS

por AXPY
Type of nenory access | predicted neasured | predicted neasured
all datain cache 25 24.5 16. 67 16.4
all data fromnenory:
x andy withunit stride 14.81 14.6 11.43 11. 3
x withstride 16 3.65 3.2 3.40 3.2
x and y withstride 1 2.08 1.8 2 1.4

every three cycles. This corresponds to 16.67 Mops; in practice, we neasured 16.4 Mops (see

Table 1).

For data that mist be accessed fromnenory, we nust take account of the tine takenfor data
toarriveinthe registers. Eachtine acache mss occurs (every 16 el enents for stride- one access),
the processing is interrupted, and the (PUnust wait for the cache line to becone available. In
our nodel , the (PUmist wait for 11 nachine cycles. Thus, the cost of novi ng conti guous data
fromnenory to registers is, on the average, 1.69 cycles per elenent (i.e., 11 cycles to nove a
cache line frommenory to cache plus 1 cycle to transfer each of the 16 el ements fromcache to
register ((114+6)/16) cycles per elenent). In a DOloperation, on the average 2 floating- poi nt
operations (1 FM\) are schedul ed every 3. 38 machi ne cycles, giving 14.81 Mops in theory and
14.6 Mlops in practice. If the vectors are accessed with stride 16 (the length of a cache line),
eachelenent will be available after adelay of 12cycles (=11 41), gi ving 25/12 =2. 08 Mlops i n
theory and 1.8 Mlops in practice. Table 1 shows the neasured perfornance and the prediction

using the nodel for sone other nenory access patterns.

2.2 Ievel 2 HAS

Here we consider the Level 2 BLAS DAFM operati ons
y «— vy +Ax and  y —y +A 2.

The basic operationin Fortranis givenin Figure 1, where A(T,J) mnust be repl aced by A(J,I)



effciently. H gh perfornance was achieved by constructing the codes in such a way that the
conpil er can easily generate code that natches the architecture of the nachine. The techni ques
used were bl ocking (or strip-nining), loopunrolling, andloop jaming-all fairlystandardtech-
ni ques used by conpiler writers. W hope that sone of these techni ques will be incorporated
into subsequent versions of the conpiler, so that evenless work will be required to exploit the

nachi ne.

2.1 Ievel 1 HAS

The two Level 1 BLAS operations that occur nost frequently in linear al gebra are the DOL

DO 10 I 1, N

TEMP

TEMP + X(I)*Y(I)

10 CONTINUE

and the AXPY:
DO 10 I = 1, N
Y(I) = Y(I) + ALPHA*X(I)

10 CONTINUE

W begin by exam ni ng the perfornance of these operations when using data storedin cache.

For the DOl'operation, each FMAinstruction requires tvwoloads, one for X(I) and for Y(I).
Loadi ng the data requires two cycles, and performng the FMAalso requires two cycles. There
is no possibility of re-using data, so the best we can expect is that the loadi ng of the next two
operands is overlapped with an FMA This corresponds to a theoretical speed of 25 Mlops; in

practice, we neasured 24.5 Mlops (see Table 1).

For the AXPYoperation, each FMAinstructionrequires tvwoloads and one store. Again, there

is nopossibility of reusing data, so the best we can hope for in this case is one FMAinstruction



unnecessary menory references can have a severe i npact on the perfornance attainable. Indeed,
the novenent of data between nenory and registers can be nore costly than ari thnetic opera-
tions on the data. This cost provides considerabl e notivation to restructure existing al gorithns

and to devise newal gorithns that mni mze data novenent.

In this section we describe a nodel to predict the perfornance of sinple Fortran loops and
to serve as a guide to writing effeient Fortran code for the RISC Systeny6000. (W observe
that the Fortran conpiler usually takes advantage of all the parallelismof which the (PUis

capable.) Qur nodel is based on the following rules:

1. Each FMAinstruction requires two cycles to conplete. Two FMs that operate on in-
dependent data will be schedul ed on consecutive cycles, and therefore two floati ng- poi nt

operations will be executed simul taneously.

2. Loads fromcache to floati ng- point registers require one cycle to conplete. They will be
overl apped with FMss that were schedul ed earlier, evenif they operate on registers that

the earlier FMAis still using (register renamng).
3. Stores do not overlap with FMs.
4. Loop boundaries do not interrupt pipelining (zero-cycle branch).

5. Wen a cache nmiss occurs, the floati ng-point unit mist wait 11 cycles before the whole
cache line is available. The latency frommemory to cache accounts for 8 cycles. In our
nodel we add to this an additional latency of 3 cycles, which fits closely the experinental
data we collected. The details of the data transfer nay be nore conplicated in reality,

but this is the average effect that a Fortran programmer m ght expect to see.

In the following three subsections we use this nodel to explain the different levels of per-
fornance that can be achieved by using different levels of Basic Linear A gebra Subprograns

(BLAS) kernels [8 5 4, and we describe sone Fortran techni ques to inplenent the BLAS



256 Myytes of total nenory.

Separate instruction and data caches provide conflict-free access to data and instructions.
The instruction cache is organized as an 8- Kbyte, two-way set-associative cache, which has a
64-byte (16-instruction) line size. The data cache is a four-way set-associative 64- kbyte cache,
which is divided into four identical chips of 16 Kbytes each. The cache is inplenented as a
store- back cache to minimze the nenory bus traffe: data are written back to nenory only
when an updated line in cache is replaced. The cache-line size is 128 bytes. Asynchronous
128-bi t nenory bus all ows 400 Mytes per second to be transferred toor frommenory: it takes
eight cycles toload a cache line (16 double-precision words) fromnenory to cache. A64-bit
data bus connects the floating-point unit and the data cache: it takes one cycle to transfer a

doubl e- preci sion word between the data cache and the floati ng- poi nt registers.

1.3 Serial Optical Link

The I/Ounit contains an I/Ochannel controller and two serial link adapters, which provide

an interface to optics cards that drive fiber-optics links. It is intended for attachnent of disks,
graphi cs adapters, and other hi gh- speed peripherals. (Support for this high-speed optical linkis
pl anned for future release. ) The serial optical 1ink has a bandw dth of 220 Mi ts per second, and

it allows the attachnent of renote devices up to 2000 neters away. The linkis alsosuitable for
interprocessor nessage and data transfers in a mul ti processor configuration, and workis under

way to investigateits suitability for closely coupl ed mil tiprocessing.

2 Fortran Techni ques for Perfornance on Mitrix Operations

A nentioned in the preceding section, the RISC Systeny6000 can conplete a floating- poi nt
mul ti pl y- and-add (FMA) instruction every cycle, so that a Mdel 530 running at 25 ME has
a theoretical peak speed of 50 Mlops. Mny factors limt the anount of concurrency that can

be effectivel y used, thus limting the perfornance that an al gori thmcan achi eve. Mst notabl y,



has been used, for exanple, in sone of the math intrinsic functions. However, if strict
adherence to the I[FEEstandardis required, a conpile-tine option can be used to disable

the generation of conpound i nstructions.

o ‘The floating- poi nt divide is i npl enented by a Newton- Raphson approxi mati on al gori thm
Adivision requires 16 to 19 cycles to conpl ete and provi des correctl y rounded resul ts, but
is obviously expensive if conputed unnecessarily inside aloop. If division by a constant
is taken out of the loop and replaced by a mul tiplication with the reciprocal, the code
is nore efftient, but the results are not necessarily identical. If it is inportant to have
exactly equi val ent code, the added precision and speed of the mul tiply-addinstruction can
be used toinpl enent a reciprocal mul tiplication plus correction al gorithmat the cost of a
mul tiply and two mul tiply-adds (5 cycles). This algorithmis cheaper than a division and

still provides correctly rounded resul ts.

This design has allowed the inpl enentation of a (PUthat executes up to four instruction
per cycle: one branchinstruction, one condition register instruction, one fixed- point i nstruction,
and one floati ng- poi nt mul ti pl y-add instruction. Asecond pipelinedinstruction can begin onthe
next cycle on an independent set of operands. This neans that two i ndependent floati ng- poi nt

operations per cycle can be executed.

(I particular interest is the fact that 1oads and independent floating- point operations can
occur in parallel. The conpiler takes advantage of this capability in nany cases: with a well-
designed algorithm it is possible to execute two floating- point operations on separate data
itens and “hi de” one nenory reference all in the sane cycle. A a clock cycle of 25 ME, this

translates into a peak performance of 50 nillion floating- point operations per second ( Mops).

1.2 Menory and Giches

The RISC Systeny6000 nenory banks inpl enent a four-way i nterleaved design that provides

two words (two 64-bit words) of data every nachine cycle. Asystemcan have from16 to



In

executing branches simul taneously with fixed- or floati ng- point operations so that the
streamof data to these units is not interrupted. In practice, this configurati on neans that

l oop boundaries do not interrupt pipelining.

. The Fxed-Point Thit (FXU) is designed to execute the fixed- point arithnmetic, the logic

instructions, and the data address conputations and to schedule the novenent of data
between the floati ng- poi nt unit and the data cache. Read or write transfers between the

floating- poi nt unit and the data cache require one cycle to conplete.

. 'The M oating- Point Unit (FPU) supports the execution of the floati ng- point instructions.

The FPUhas a set of thirty-two 64-bit floati ng- point registers that access the data cache
directly. It conforns to the ANSI/IFFE 745- 1985 standard for binary floati ng- poi nt arith-
netic. The FPUis organized for doubl e-precision conputations. Thus, data held in the
floati ng- poi nt registers are al ways representedin doubl e- preci sion format. Therefore, when

singl e-precision data are 1 oaded, they are expanded to doubl e-precision format.

addi tion, there are a nunber of features in the architecture whi ch enhance perfornance.

Register renaning is an inportant feature of the nachine. This allows data for the next
instruction to be loaded into a floating-point register that is currently being used by an

earlier instruction.

In addition to the usual arithnetic operations, there are conpound i nstructions that mul -
tiply tvwo operands and add (or subtract) the product to a third operand. These floating-
poi nt mul tiply-and-add (FMY) instructions take two cycles to conplete. However, one
FMAinstruction nay be i ssued in each clock cycle, provided that the operands are inde-

pendent. Thus it is possible to conplete tvwo floating- poi nt conputations in each cycle.

The FMAinstructions actually produce only one roundi ng error rather than tvo and are

therefore more accurate than required by the IFEEE standard. This additional accuracy



mil tiple instructions and to overlap the execution of the fixed- point, the floati ng- point, and the
branch functional units. The 184 instructions are divided anong the functional units and are

designed to mnimze interacti on anong the functional units.

The IBMRISC Systeny6000 is i ntended to satisfy the requi renents of both comercial and
scientific applications. Our focus here is on the performance of the RISC Systeny6000 for
scientific applications, whichrequire very high floati ng- poi nt perfornance as well as specialized
peripheral s, such as high-quality graphics adapters. These, in turn, require very high nenory

bandwi dths to the central processing unit.

In what follows, we give a brief overviewof the design of the (PUand nenory and of sone
aspects of the I/Osystem In particular, we discuss those architectural features nost i nportant
for designing and inplenenting hi gh- performance nathenatical software. Note that specific
details refer to the Mydel 530. The specification of other nenbers of the RISC Systeny6000
famly may be different in sone aspects. For a more conplete discussion of the hardware,

we refer the interested reader to the January 1990 issue of the IRarrd o Rsawch ad

love grart.

1.1 Central Brocessing Unit

The (PUarchitecture is based on a design that exploits nodern conpiler technol ogy, and an
inpl enentation that exploits VLSI and CMPB technol ogy, to all owas mich parallel instruction
execution as possible. The RISCSysteny6000 processor consists of three separate but i ntegrated

functional units:

1. The Instruction Cache and Branch Processing Uhit feeds a streamof instructions to the
fixed- point and floating-point units. The branch processor provides all the branching,
interrupt, and condition code functions within the system An inportant feature of the

branch processing unit is the “zero-cycle branch.” A zero-cycle branch is achieved by
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Abstract
This paper discusses the IBM RISC System/6000 workstation and a set of experiments
with blocked algorithms commonly used in solving problems in numerical linear algebra. We

describe the performance of these algorithms and discuss the techniques used in achieving
high performance on such an architecture.

1 IBMRISCSysteny6000: SystemOverview

The I BMRI SC Systeny 6000 conputer is asuperscal ar second- generation RISCarchitecturd[2
It is the result of advances in conpiler and architecture technol ogy that have evol ved since the

late 1970s and early 1980s.

Li ke other RISCprocessors, the RISCSysten/6000i npl enents aregister-orientedinstruction
set, the (PUis hardwired rather than mcrocoded, and it features a pipelined inplenentation.
The floating-point unit is integrated in the (PU mninimzing the overhead associated with

separate floating- poi nt coprocessors.

Unli ke other RISC processors, however, the RISC Systeny6000 has the ability to dispatch
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