
COMMUNICATION AVOIDING RANK REVEALING QR
FACTORIZATION WITH COLUMN PIVOTING

JAMES W. DEMMEL∗, LAURA GRIGORI† , MING GU ‡ , AND HUA XIANG §

Abstract. In this paper we introduce CARRQR, a communication avoiding rank revealing QR
factorization with tournament pivoting. We show that CARRQR reveals the numerical rank of a
matrix in an analogous way to QR factorization with column pivoting (QRCP). Although the upper
bound of a quantity involved in the characterization of a rank revealing factorization is worse for
CARRQR than for QRCP, our numerical experiments on a set of challenging matrices show that this
upper bound is very pessimistic, and CARRQR is an effective tool in revealing the rank in practical
problems.

Our main motivation for introducing CARRQR is that it minimizes data transfer, modulo poly-
logarithmic factors, on both sequential and parallel machines, while previous factorizations as QRCP
are communication sub-optimal and require asymptotically more communication than CARRQR.
Hence CARRQR is expected to have a better performance on current and future computers, where
commmunication is a major bottleneck that highly impacts the performance of an algorithm.

Key words. QR factorization, rank revealing, column pivoting, minimize communication

AMS subject classifications. 65F25, 65F20

1. Introduction. Revealing the rank of a matrix is an operation that appears
in many important problems as least squares problems, low rank approximations,
regularization, nonsymmetric eigenproblems (see for example [8] and the references
therein). In this paper we focus on the rank revealing QR factorization [8, 7, 16],
which computes a decomposition of a matrix A ∈ Rm×n of the form

AΠ = QR = Q

[
R11 R12

R22

]
, (1.1)

where Q ∈ Rm×m is orthgonal, R11 ∈ Rk×k is upper triangular, R12 ∈ Rk×(n−k),
and R22 ∈ R(m−k)×(n−k). The column permutation matrix Π and the integer k are
chosen such that ||R22||2 is small and R11 is well-conditioned. This factorization was
introduced in [16], and the first algorithm to compute it was proposed in [6] and
is based on the QR factorization with column pivoting (QRCP). A BLAS-3 version
of this algorithm [25] is implemented in LAPACK [1], and its parallel version in
ScaLAPACK [5].

∗Computer Science Division and Mathematics Department, UC Berkeley, CA 94720-1776, USA
(demmel@cs.berkeley.edu). We acknowledge funding from Microsoft (award #024263) and Intel
(award #024894), and matching funding by UC Discovery (award #DIG07-10227), with additional
support from ParLab affiliates National Instruments, Nokia, NVIDIA, Oracle, and Samsung, and sup-
port from MathWorks. We also acknowledge the support of the US DOE (grants DE-SC0003959, DE-
SC0004938, DE-SC0005136, DE-SC0008700, DE-AC02-05CH11231), and DARPA (award #HR0011-
12-2-0016).
†INRIA Rocquencourt, Alpines, B.P. 105, F-78153 Le Chesnay Cedex and UPMC Univ

Paris 06, CNRS UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France
(laura.grigori@inria.fr). This work has been supported in part by French National Research
Agency (ANR) through COSINUS program (project PETALh no ANR-10-COSI-013).
‡Mathematics Department, UC Berkeley, CA 94720-1776, USA (mgu@math.berkeley.edu). The

author was supported in part by NSF Award CCF-0830764 and by the DOE Office of Advanced
Scientific Computing Research under contract number DE-AC02-05CH11231.
§School of Mathematics and Statistics, Wuhan University, Wuhan 430072, P. R. China

(hxiang@whu.edu.cn). The work of this author was supported by the National Natural Science
Foundation of China under grants 10901125 and 91130022.

1

The performance of an algorithm is highly impacted by the amount of commu-
nication performed during its execution, where communication refers to both data
transferred between different levels of the memory hierarchy of a processor or be-
tween different processors of a parallel computer. Research performed in the recent
years has shown that most of the classic algorithms in direct dense linear algebra
transfer more data than lower bounds on communication indicate is necessary, and
new, communication optimal algorithms can and should be developed. In this con-
text, the goal of this paper is to design a pivoted QR factorization that is effective in
revealing the rank of a matrix but also minimizes communication, on both sequential
and parallel machines.

There are several different definitions for determining when the factorization from
equation (1.1) reveals the rank (see, for example, [15]), one of them [22, 9] says that
the factorization from equation (1.1) is a rank revealing QR factorization (RRQR) if

σmin(R11) ≥ σk(A)

p(k, n)
and σmax(R22) ≤ σk+1(A)p(k, n), (1.2)

where σmin(A) and σmax(A) are the smallest and the largest singular values of A
respectively, and p(k, n) is a low degree polynomial in n and k. Since the (k + 1)-th
largest singular value σk+1 ≤ σmax(R22) = ||R22||2 and ||R22||2 is small, then A can
be considered to have numerical rank k. The first k columns Q(:, 1 : k) form an

approximate orthogonal basis for the range of A and Π

[
R−1

11 R12

−I

]
are approximate

null vectors.
Given a rank k and a parameter f > 1, it is shown in [20] that there exists a

permutation Π such that the factorization displayed in equation (1.1) satisfies the
inequality (

R−1
11 R12

)2
i,j

+ ω2
i (R11) γ2

j (R22) ≤ f2, (1.3)

where Ri,j is the element in position (i, j) of R, ωi(R11) denotes the 2-norm of the
i-th row of R−1

11 , and γj(R22) denotes the 2-norm of the j-th column of R22. This
factorization is called a strong RRQR factorization, and is more powerful than the
classic QR factorization with column pivoting which only guarantees that f = O(2n).
A strong RRQR factorization is computed by performing first a QR factorization with
column pivoting followed by additional swaps of columns. In Section 2, we discuss in
more detail the characterization of a strong rank revealing QR factorization, as well
as more relaxed versions of the bounds from equation (1.3).

In practice the QR factorization with column pivoting often works well, and it
is widely used even if it is known to fail, for example on the so called Kahan matrix
that we describe in more detail in section 4. However in terms of communication, the
QR factorization with column pivoting is sub-optimal with respect to lower bounds
on communication identified in [3] (under certain assumptions in the case of the QR
factorization). If the algorithm is performed in parallel, then typically the matrix
is distributed over P processors by using a two-dimensional block cyclic partition-
ning. This is indeed the approach used in the psgeqpf routine from ScaLAPACK. At
each step of the decomposition, the QR factorization with column pivoting finds the
column of maximum norm and permutes it to the leading position, and this requires
exchanging O(n) messages, where n is the number of columns of the input matrix. For
square matrices, when the memory per processor used is on the order of O(n2/P), the

2

lower bound on the number of messages to be exchanged is Ω(
√
P). The number of

messages exchanged during the QR factorization with column pivoting is larger by at
least a factor of n/

√
P than the lower bound. When QRCP is executed on a sequential

machine with a fast memory of size M and a slow memory, then the volume of data
transferred between fast and slow memory is on the order of Θ(n3), and the number
of messages is at least Θ(n3/M). The lower bound on the volume of communication
and the number of messages is Ω(n3/M1/2), Ω(n3/M3/2) respectively. We note that
the classic QR factorization with no pivoting in which each column is annihilated by
using one Householder transformation is also sub-optimal in terms of communication.
A communication optimal algorithm (modulo polylogarithmic factors), referred to as
communication avoiding QR (CAQR), has been introduced in [10, 11].

In this paper we introduce CARRQR, a communication optimal (modulo polylog-
arithmic factors) RRQR factorization based on tournament pivoting. The factoriza-
tion is based on an algorithm that computes the decomposition by blocks of b columns
(panels). For each panel, tournament pivoting proceeds in two steps. The first step
aims at identifying a set of b candidate pivot columns that are as well-conditioned
as possible. These columns are permuted to the leading positions, and they are used
as pivots for the next b steps of the QR factorization. To identify the set of b can-
didate pivot columns, a tournament is performed based on a reduction operation,
where at each node of the reduction tree b candidate columns are selected by using
the strong rank revealing QR factorization. The idea of tournament pivoting has been
first used to reduce communication in Gaussian elimination [18, 19], and then in the
context of a newly introduced LU factorization with panel rank revealing pivoting [24].
CARRQR is optimal in terms of communication, modulo polylogarithmic factors, on
both sequential machines with two levels of slow and fast memory and parallel ma-
chines with one level of parallelism, while performing three times more floating point
operations than QRCP. We expect that on computers where communication is the
bottleneck, CARRQR will be faster than other algorithms as QRCP which do not
minimize communication. We believe that large speedups can be obtained on future
computers (if not the present for sufficiently large matrices) where communication
plays an increasingly important role for the performance and parallel scalability of an
algorithm.

We show that CARRQR computes a permutation that satisfies(
R−1

11 R12

)2
i,j

+ (γj (R22) /σmin (R11))
2 ≤ F 2, (1.4)

where F is a constant dependent on k, f , and n. Equation (1.4) looks very similar
to equation (1.3), and reveals the matrix numerical rank in a completely analogous
way (see Theorems 2.2 and 2.4). While our upper bound on F is super-exponential
in n (see Theorem 2.10), our extensive experiments, including those on challenging
matrices, show that this upper bound is very pessimistic in general (see Section 4).
These experiments demonstrate that CARRQR is as effective as QR with column
pivoting in revealing the rank of a matrix. For the cases where QR with column
pivoting does not fail, CARRQR also works well, and the values on the diagonal of
the R factor are very close to the singular values of the input matrix computed with
the highly accurate routine DGESVJ [13, 14]. The matrices in our set were also used
in previous papers discussing rank revealing factorizations [4, 20, 26, 23].

The rest of this paper is organized as follows. Section 2 presents the algebra of
CARRQ and shows that it is a rank revealing factorization that satisfies equation
(1.4). Section 3 analyzes the parallel and sequential performance of CARRQR and

3

discusses its communication optimality. Section 4 discusses the numerical accuracy
of CARRQR and compares it with QRCP and the singular value decomposition.
Section 5 outlines how tournament pivoting can be extended to other factorizations as
Cholesky with diagonal pivoting, LU with complete pivoting, or LDLT factorization
with pivoting. Finally, section 6 concludes our paper.

2. Rank revealing QR factorization with tournament pivoting. This sec-
tion presents the algebra of the QR factorization algorithm based on a novel pivoting
scheme referred to as tournament pivoting and analyzes its numerical stability. We
refer to this algorithm as CARRQR.

2.1. The algebra. We consider a block algorithm that partitions the matrix A
of size m×n into panels of size b. In classic QR factorization with column pivoting, at
each step i of the factorization, the remaining unselected column of maximum norm
is selected and exchanged with the i-th column, its subdiagonal elements are annihi-
lated, using for example a Householder transformation, and then the trailing matrix is
updated. A block version of this algorithm is described in [25]. The main difficulty in
reducing communication in rank revealing QR factorization lies in identifying b pivot
columns at each step of the block algorithm. Our communication avoiding algorithm,
CARRQR, is based on tournament pivoting, and uses a reduction operation on blocks
of columns to identify the next b pivot columns at each step of the block algorithm.
This idea is analogous to the reduction operation used in CALU [18] to identify the
next b pivot rows. The operator used at each node of the reduction tree is a RRQR
factorization. Our theoretical analysis presented in section 2.3 is general enough to
account for any kind of RRQR factorization, from classical column pivoting to the
“strong” RRQR factorization in [20], and gives tighter bound if a strong RRQR fac-
torization is used. The numerical experiments from section 4 will show that using
CARRQR is adequate in practice, and indeed much better than the bounds derived
in this section. This is somewhat similar to using traditional column pivoting for the
overall factorization: the average case is much better than the worst case, although
the worst case can occur with traditional column pivoting.

To illustrate tournament pivoting, we consider an m-by-n matrix A. We use a
binary reduction tree and operate on blocks of bT columns, so there are n/bT such
blocks. In our example bT = n/4, so A is partitioned as A = [A00, A10, A20, A30].
Hence our communication avoiding algorithm has two parameters, b which determines
the panel size and bT which determines the height of the reduction tree. These two
parameters will be discussed in more detail in section 3.

Tournament pivoting starts by computing a (strong) RRQR factorization of each
column block Ai0 to identify b column candidates,

Ai0Πi0 = Qi0

[
Ri0 ∗

∗

]
, for i = 0 to 3,

where Πi0 are permutation matrices of size bT × bT , Qi0 are orthogonal matrices of
size m×m, and Ri0 are upper triangular matrices of size m× b. The first subscript i
indicates the column block of the matrix, while the second subscript 0 indicates that
the operation is performed at the leaves of the binary reduction tree.

At this stage we have n/bT sets of b column candidates. The final b columns are
selected by performing a binary tree (of depth log2 (n/bT) = 2) of (strong) RRQR
factorizations of matrices of size m× 2b. At the first level of the binary tree, we form

4

two matrices by putting together consecutive sets of column candidates.

A01 = [(A00Π00)(:, 1 : b), (A10Π10)(:, 1 : b)]

A11 = [(A20Π20)(:, 1 : b), (A30Π30)(:, 1 : b)]

From each matrix we select a new set of b column candidates by again computing a
(strong) RRQR factorization:

Ai1Πi1 = Qi1

[
Ri1 ∗

∗

]
, for i = 0 to 1,

where Πi1 are permutation matrices of size 2b × 2b, Qi1 are orthogonal matrices of
size m×m, and Ri1 are upper triangular matrices of size b× b.

At the second (and last) level of the binary tree, the two sets of b column candi-
dates from the first level are combined into a matrix A02,

A02 = [(A01Π01)(:, 1 : b), (A11Π11)(:, 1 : b)].

The final b columns are obtained by performing one last (strong) RRQR factorization
of A02:

A02Π02 = Q02

[
R02 ∗

∗

]
,

where Π02 is a permutation matrix of size 2b × 2b, Q02 is an orthogonal matrix of
size m×m, and R02 is an upper triangular matrix of size b× b: The final b columns
selected are A02Π02(:, 1 : b).

The matrices Πij , i = 0, 1 and j = 1, 2, are partitioned into four blocks of size
b× b as

Πij =

[
Π

(1)
ij Π

(2)
ij

Π
(3)
ij Π

(4)
ij

]
.

Let Π̃ij , i = 0, 1 and j = 1, 2, be permutation matrices obtained by extending Πij

with identity matrices,

Π̃ij =


Π

(1)
ij Π

(2)
ij

Ir

Π
(3)
ij Π

(4)
ij

Ir

 ,
where r = n/P − b for Π̃01, Π̃11 and r = n/2 − b for Π̃02. The tournament pivoting
process can be expressed as

A


Π00

Π10

Π20

Π30

[Π̃01

Π̃11

]
Π̃02 = Q02

[
R02 ∗

∗

]
.

In other words, the factorization performed at the root of the binary tree corresponds
to the factorization of the first panel of the permuted matrix. The algorithm updates
the trailing matrix using Q02 and then goes to the next iteration.

5

Different reduction trees can be used to perform tournament pivoting. The binary
tree is presented in the following picture using an arrow notation. At each node of the
reduction tree, f(Aij) returns the first b columns obtained after performing (strong)
RRQR of Aij . The input matrix Aij is obtained by adjoining the input matrices (on
the other ends of the arrows pointing towards f(Aij)).

A00 A10 A20 A30

↓ ↓ ↓ ↓
f(A00) f(A10) f(A20) f(A30)

↘ ↙ ↘ ↙
f(A01) f(A11)

↘ ↙
f(A02)

A flat tree is presented using this arrow notation in the following picture.

A00 A10 A20 A30

↓

��)

������) ���������)

f(A00)

↓
f(A01)

↓
f(A02)

↓
f(A03)

2.2. Selecting the first b columns from (strong) rank revealing QR fac-
torization. The (possibly strong) rank revealing QR factorization of a matrix Aij is
used in tournament pivoting at each node of the reduction tree to select b candidate
columns. Suppose that Aij is of dimension m1 × n1. When the matrix fits in fast
memory on a sequential processor, the b column candidates may be selected by com-
puting the first b steps of QR with column pivoting. When a strong rank revealing
factorization is employed, several supplementary operations and swaps are performed,
as explained in [20].

When the matrix does not fit in fast memory, or it is distributed over several pro-
cessors, the b candidate columns are selected by first computing the QR factorization
of Aij without pivoting, and then the (strong) QR factorization of the much smaller
(2b-by-2b) R factor. The first QR factorization is performed using communication
avoiding QR [11] for tall and skinny matrices, referred to as TSQR, which minimizes
communication.

2.3. Why QR with tournament pivoting reveals the rank. In this section,
we first recall the characterization of a (strong) RRQR factorization from [20], modify
it slightly, and then show (with appropriate choice of bounds) that it describes the
result of tournament pivoting. The characterization depends on the particular rank k
chosen. Subsection 2.3.1 analyzes the case k = b, i.e. the result of a single tournament.
Then subsection 2.3.2 extends the analysis to any 1 ≤ k ≤ min(m,n), i.e. the final
output of the algorithm.

6

To set up the notation needed to explain [20], let ωi(X) denote the 2-norm of i-th
row of X−1, and let γj(X) denote the 2-norm of the j-th column of X.

Theorem 2.1. (Gu and Eisenstat [20]) Let B be an m × n matrix and let
1 ≤ k ≤ min(m,n). For any given parameter f > 1, there exists a permutation Π
such that

BΠ = Q

[
R11 R12

R22

]
,

where R11 is k × k and(
R−1

11 R12

)2
i,j

+ ω2
i (R11) γ2

j (R22) ≤ f2. (2.1)

The factorization in Theorem 2.1 can be computed in O(mnk) flops. Inequality (2.1)
is important because it implies bounds on the singular values of R11 and R22:

Theorem 2.2. (Gu and Eisenstat [20]) Let the factorization in Theorem 2.1
satisfy inequality (2.1). Then

1 ≤ σi(B)

σi(R11)
,
σj(R22)

σk+j(B)
≤
√

1 + f2k(n− k),

for any 1 ≤ i ≤ k and 1 ≤ j ≤ min(m,n)− k.
In particular, Theorem 2.2 shows that the QR factorization in Theorem 2.1 reveals

the rank in the sense that the singular values of R11 are reasonable approximations
of the k largest singular values of B, and the singular values of R22 are reasonable
approximations of the min(m,n) − k smallest singular values of B. We call this a
strong rank revealing factorization because the bound in Theorem 2.2 grows like a
low degree polynomial in n. In contrast, traditional column pivoting only guarantees
that f = O(2n). Still, traditional column pivoting often works well in practice, and
we will use it as a tool in our numerical experiments later.

To analyze our communication-avoiding RRQR algorithm in a more convenient
way, we consider the following relaxed version of Theorem 2.1.

Corollary 2.3. Let B be an m× n matrix and let 1 ≤ k ≤ min(m,n). For any
given parameter f > 1, there exists a permutation Π such that

BΠ = Q

[
R11 R12

R22

]
,

where R11 is k × k and√
γ2
j

(
R−1

11 R12

)
+ (γj (R22) /σmin(R11))

2 ≤ f
√
k for j = 1, · · · , n− k. (2.2)

The proof is immediate, as the permutation Π of Theorem 2.1 automatically
satisfies inequality (2.2). Below is the analogue of Theorem 2.2 based on Corollary 2.3.

Theorem 2.4. Assume that there exists a permutation Π for which the QR
factorization

BΠ = Q

[
R11 R12

R22

]
where R11 is k × k, satisfies√

γ2
j

(
R−1

11 R12

)
+ (γj (R22) /σmin(R11))

2 ≤ F for j = 1, · · · , n− k. (2.3)

7

Then

1 ≤ σi(B)

σi(R11)
,
σj(R22)

σk+j(B)
≤
√

1 + F 2(n− k),

for any 1 ≤ i ≤ k and 1 ≤ j ≤ min(m,n)− k.
Remark: By Corollary 2.3, there exists a permutation Π for which inequality (2.3)
is satisfied with F = f

√
k. For this permutation and with this choice of F , Theo-

rem 2.4 gives the same singular value ratio bounds as those in Theorem 2.2. However,
Theorem 2.4 will prove much more convenient for our subsequent analysis and could
provide a better practical bound on the singular values as we can typically expect F
to be much smaller than f

√
k.

Proof of Theorem 2.4: Define

α =
σmax(R22)

σmin(R11)
.

Then we can rewrite

BΠ = Q

[
R11

R22/α

] [
I R−1

11 R12

αI

]
.

It follows that

σi(B) ≤ σi
([

R11

R22/α

])∥∥∥∥[I R−1
11 R12

αI

]∥∥∥∥
2

i = 1, · · · , k.

On the other hand, the largest k singular values of

[
R11

R22/α

]
are precisely

those of the matrix R11, and the 2-norm of the matrix

[
I R−1

11 R12

αI

]
is bounded

above by √
1 + ‖R−1

11 R12‖22 + α2 ≤
√

1 + F 2(n− k).

In other words,

σi(B)

σi(R11)
≤
√

1 + F 2(n− k)

for i = 1, · · · , k. Conversely, observe that[
αR11

R22

]
=

[
R11 R12

R22

] [
αI −R−1

11 R12

I

]
,

where the smallest min(m,n)− k singular values of

[
αR11

R22

]
are the singular

values of R22, and the 2-norm of the matrix

[
αI −R−1

11 R12

I

]
can be similarly

bounded as √
1 + ‖R−1

11 R12‖22 + α2 ≤
√

1 + F 2(n− k).

This again leads to

σj(R22)

σk+j(B)
≤
√

1 + F 2(n− k), j = 1, · · · ,min(m,n)− k.

This completes the proof. �

8

2.3.1. Analyzing one tournament step. Next we apply Theorem 2.4 to an-
alyze one tournament step: Given a subset of b columns of matrix B that reveals its
rank (for k = b), and another subset of b columns that reveals the rank of a different

matrix B̂, we will show that computing a rank-revealing decomposition of just these
2b columns of B and B̂ will provide b columns that reveals the rank of the combined
matrix [B, B̂] (see Lemma 2.5). Then we will use this as an induction step to analyze
an entire tournament, once using a binary tree (Corollary 2.6) and once with a flat
tree (Corollary 2.7).

We use the following notation to denote the rank-revealing factorizations of B
and B̂:

BΠ = Q

[
R11 R12

R22

]
and B̂Π̂ = Q̂

[
R̂11 R̂12

R̂22

]
, (2.4)

where Π and Π̂ are permutation matrices; R11 and R̂11 are b × b upper-triangular
matrices. We assume that the factorizations in equation (2.4) satisfy

γj(N)2 +γj(R22)2/σmin (R11)
2 ≤ F 2, γj(N̂)2 +γj(R̂22)2/σmin

(
R̂11

)2

≤ F̂ 2, (2.5)

where N = R−1
11 R12 and N̂ = R̂−1

11 R̂12. For example, by Theorem 2.1, we can choose

F = F̂ = f
√
b when B and B̂ each consists of 2b columns; later on we will use this

fact as the basis of our induction. Next we develop similar bounds for the combined

matrix B̃ =
[
B B̂

]
.

Tournament pivoting continues by computing a (strong) RRQR factorization of
the form

B̄Π̄
def
=

[
Q

[
R11

]
, Q̂

[
R̂11

]]
Π̄ = Q̃

[
R̃11 R̄12

R̄22

]
, (2.6)

where (
R̃−1

11 R̄12

)2

i,j
+ ω2

i

(
R̃11

)
γ2
j

(
R̄22

)
≤ f2. (2.7)

Let

Π̃ =

[
Π

Π̂

]
I

I
I

I

[Π̄
I

]

be the accumulation of all permutations, then we can write B̃ as

B̃Π̃ =

[
Q̃

[
R̃11 R̄12

R̄22

]
, Q

[
R12

R22

]
, Q̂

[
R̂12

R̂22

]]

= Q̃

[[
R̃11 R̄12

R̄22

]
, Q̃TQ

[
R12

R22

]
, Q̃T Q̂

[
R̂12

R̂22

]]
def
= Q̃

[
R̃11 R̃12

R̃22

]
. (2.8)

9

Our goal is to derive bounds analogous to (2.5) for equation (2.8). To this end,

we need to first identify the matrices R̃12 and R̃22. Note that

Q̃TQ

[
R12

R22

]
= Q̃TQ

[
R11N
R22

]
= Q̃TQ

[
R11

]
N + Q̃TQ

[
R22

]
.

Continuing, we may write

Q

[
R11

]
= Q̃

[
R̃11N
C

]
, (2.9)

where the b × b matrices N and C are defined as follows: for each 1 ≤ t ≤ b, the
t-th column of the matrix on the left hand side of equation (2.9) must be some s-th

column of Q̃

[
R̃11 R̄12

R̄22

]
. If s ≤ b, then we set the t-th column of C to be 0, and

the t-th column of N to be all 0 except the s-th entry, which will be 1. On the other
hand, if s > b, then we set the t-th columns of C and N to be the (s− b)-th columns

of R̄22 and R̃−1
11 R̄12, respectively. Since f > 1, we must have by inequality (2.7) that

N 2
i,j + ωi

(
R̃11

)2

γ2
j (C) ≤ f2 (2.10)

for all 1 ≤ i, j ≤ b. With the additional notation

Q̃TQ

[
R22

]
def
=

[
C1

C2

]
(2.11)

we can further rewrite

Q̃TQ

[
R12

R22

]
=

[
R̃11N
C

]
N + Q̃TQ

[
R22

]
=

[
R̃11

(
NN + R̃−1

11 C1

)
CN + C2

]
. (2.12)

Similarly, define matrices N̂ , Ĉ, Ĉ1 and Ĉ2 so that

Q̃T Q̂

[
R̂12

R̂22

]
=

[
R̃11

(
N̂ N̂ + R̃−1

11 Ĉ1

)
ĈN̂ + Ĉ2

]
.

All this algebra has finally allowed us to identify

R̃12 =
[
R̄12 R̃11

(
NN + R̃−1

11 C1

)
R̃11

(
N̂ N̂ + R̃−1

11 Ĉ1

)]
R̃22 =

[
R̄22 CN + C2 ĈN̂ + Ĉ2

]
Below, we derive bounds analogous to (2.5) for equation (2.8). We do this ac-

cording to the 1× 3 partition in R̃12 and R̃22. By inequality (2.7), we have

γ2
j

(
R̃−1

11 R̃12

)
+ γ2

j

(
R̄22

)2
/σ2

min

(
R̃11

)
≤ bf2.

10

In addition, we have

γ2
j

(
NN + R̃−1

11 C1

)
+ γ2

j (CN + C2) /σ2
min

(
R̃11

)
(2.13)

= γ2
j

([
NN

CN/σmin

(
R̃11

)]
+

[
R̃−1

11 C1

C2/σmin

(
R̃11

)])

≤ 2

(
γ2
j

([
NN

CN/σmin

(
R̃11

)])
+ γ2

j

([
R̃−1

11 C1

C2/σmin

(
R̃11

)]))

≤ 2

∥∥∥∥∥
[

N
C/σmin

(
R̃11

)]∥∥∥∥∥
2

F

γ2
j (N) + γ2

j

[
C1

C2

]
/σmin

(
R̃11

)2

 . (2.14)

It follows from inequality (2.10) that∥∥∥∥∥
[

N
C/σmin

(
R̃11

)]∥∥∥∥∥
2

F

≤ f2b2,

and it follows from definition (2.11) that γ2
j

([
C1

C2

])
= γ2

j (R22). Furthermore,

equation (2.9) can be rewritten as

RT11R11 = N T R̃T11R̃11N + CTC,

which implies that

σ2
min (R11) ≤ σ2

min

(
R̃11

)
‖N‖22 + ‖C‖22

≤ σ2
min

(
R̃11

)∥∥∥∥∥
[

N
C/σmin

(
R̃11

)]∥∥∥∥∥
2

F

 ≤ f2b2σ2
min

(
R̃11

)
,

which in turn leads to

1/σ2
min

(
R̃11

)
≤ f2b2/σ2

min (R11) .

Plugging all these results into equation (2.14), we obtain an upper bound on (2.13):

γ2
j

(
NN + R̃−1

11 C1

)
+ γ2

j (CN + C2) /σ2
min

(
R̃11

)
≤ 2f2b2

(
γ2
j (N) + γ2

j (R22) /σ2
min (R11)

)
≤ 2f2b2F 2.

Similarly, we can derive an upper bound

γ2
j

(
N̂ N̂ + R̃−1

11 Ĉ1

)
+ γ2

j

(
ĈN̂ + Ĉ2

)
/σ2

min

(
R̃11

)
≤ 2f2b2F̂ 2.

All these results are now summarized in the following lemma.
Lemma 2.5. Suppose we are given two rank-revealing QR factorizations of B and

B̂ as in equation (2.4), that reveal their ranks as described in equation (2.5). Suppose
we perform another rank-revealing QR factorization of the b selected columns of B
and b selected columns of B̂, as described in equations (2.6) and (2.7). Then the b

11

columns selected by this last QR factorization let us perform a QR factorization of
B̃ = [B, B̂] as described in equation (2.8), that reveals the rank of B̃ with the bound√

γ2
j

(
R̃−1

11 R̃12

)
+ γ2

j

(
R̃22

)
/σ2

min

(
R̃11

)
≤
√

2fbmax
(
F, F̂

)
. (2.15)

We may use Lemma 2.5 as the induction step to analyze the result of any tourna-
ment, with any reduction tree. We consider two cases: a binary reduction tree, and a
flat reduction tree, both applied to an m× n matrix with m ≥ n.

In the case of a complete binary tree, we can let B and B̂ each contain 2h blocks
of b columns each, where 1 ≤ h ≤ log2(n/b)− 1. Assume that both B and B̂ satisfy

relations (2.5) with F = F̂ ≡ FBh (the superscript B stands for “binary tree”). By

Corollary 2.3, for the base case we can set FB1 = f
√
b. Lemma 2.5 yields the following

recursive relation

(FBh+1) ≤
√

2fbFBh .

Solving this recursion yields

FBh+1 ≤
1√
2b

(√
2fb
)h+1

. (2.16)

For h = log2(n/b)− 1, i.e. after the entire tournament has completed, we get
Corollary 2.6. Selecting b columns of the m×n matrix A using QR with tour-

nament pivoting, with a binary tree, reveals the rank of A in the sense of Theorem 2.4
for k = b, with bound

FBlog2(n/b) ≤
1√
2b

(√
2fb
)log2(n/b)

=
1√
2b

(n/b)
log2(

√
2fb) (2.17)

The bound in (2.17) can be regarded as a low degree polynomial in n in general
for a fixed b and f . Note that the upper bound is a decreasing function of b when

b >
√
n/(
√

2f).

In the case of a flat tree, we may let B and B̂ contain h blocks and 1 block of
b columns, respectively, where 1 ≤ h ≤ n/b − 1. Assume that both B and B̂ satisfy

relations (2.5) with F = FFh and F̂ = FF1 = 0, respectively (the superscript F stands
for “flat tree”). Lemma 2.5 now yields the following recursive relation

(FFh+1) ≤
√

2fbFFh .

Solving this recursion yields

FFh+1 ≤
1√
2b

(√
2fb
)h+1

. (2.18)

For h = n/b− 1, i.e. after the entire tournament has completed, we get
Corollary 2.7. Selecting b columns of the m × n matrix A using QR with

tournament pivoting, with a flat tree, reveals the rank of A in the sense of Theorem 2.4
for k = b, with bound

FFn ≤
1√
2b

(√
2fb
)n/b

. (2.19)

Bound (2.19) is exponential in n, pointing to the possibility that the QR factor-
ization we compute might not quite reveal the rank in extreme cases. But note that
the upper bound is a rapidly decreasing function of b.

12

Example: b = 1 (traditional column pivoting). We now evaluate bounds (2.17)
and (2.19) when b = 1. It is easy to see that the optimal single column to choose to
reveal the rank is the one with the largest norm, and that this choice satisfies both
Theorem 2.1 with f = 1 when k = 1, and Theorem 2.4 with F = 1, both of which
are unimprovable. Furthermore, no matter what kind of reduction tree we use for the
tournament, the column with the largest norm will be chosen by the tournament (ties
may be broken in different ways), since we always pick the column of largest norm
at each step. So when b = 1, tournament pivoting is equivalent to classical column
pivoting, whose analysis is well known. Comparing our bounds from (2.17) and (2.19)
to the optimal value of F = 1, we get FBlog2 n

≤
√
n/2 and FFn ≤ 2(n−1)/2. So the

analysis of the binary tree is reasonably close to the best bound, although the flat
tree analysis gives a weaker bound.

2.3.2. Extending the analysis to a full rank-revealing QR factorization.
In this section we perform a global analysis to extend the one-step analysis of Sec-
tion 2.3.1 to a full rank-revealing QR factorization.

Corollaries 2.6 and 2.7 in the last section showed that applying tournament piv-
oting once, to pick the leading b columns of a matrix, provide a column permuta-
tion that reveals the rank in the sense of Theorem 2.4, but just for one partition of

R =

[
R11 R12

0 R22

]
, namely when R11 is b × b. The goal of this section is to show

that using repeated tournaments to select subsequent groups of b columns can make
R rank revealing for R11 of any dimension 1 ≤ k ≤ n.

Since the algorithm described in the last section only chooses groups of b columns
at a time, it guarantees nothing about the order of columns within a group. For
example the algorithm might do nothing when given b or fewer columns. So to prove
a rank revealing property for any k, not just k = tb, we must apply a second (lower
cost) step where we apply strong RRQR to each b× b diagonal block of R.

Given this second step, we will derive an upper bound in the form of (2.3). Our
approach is to reveal the “least” rank-revealed matrix given the one-step results in
Section 2.3.1.

To this end, we first introduce some new notation. Let e be the vector of all 1’s
of various dimensions. For every matrix X, let |X| be the matrix with each entry
the corresponding entry of X in absolute value. Let N and H be two matrices of
compatible size, by the relationship

N � H,

we mean that H −N is a non-negative matrix. Our global analysis will benefit from
the following lemma, the proof of which we omit.

Lemma 2.8. Let N and H be upper triangular matrices with unit diagonal, and
with non-positive entries in the upper triangular part of H. Assume that

|N | � |H|.

Then we have

|N−1| � |H−1|.

13

Now let

N =


I N12 · · · N1t

I · · · N2t

. . .
...
I

 , (2.20)

where each Nij is a b × b matrix with 1 ≤ i < j ≤ t; and γk(Nij) ≤ ci for 1 ≤
k ≤ b. Our global analysis will critically depend on tight estimates of ‖N−1‖2. As a
surrogate, we will instead discuss the choices of all the Nij submatrices to maximize
‖N−1‖1. To start, define

H =


I −|N12| · · · −|N1t|

I · · · −|N2t|
. . .

...
I

 .
In other words, we construct H by flipping the signs of all positive off-diagonal entries
of N . It follows that |N | = |H|, and from Lemma 2.8 that |N−1| � |H−1|, which
implies that ‖N−1‖1 ≤ ‖H−1‖1. Define

M =


I M12 · · · M1t

I · · · M2t

. . .
...
I

 , (2.21)

where Mij = − ci√
b
eeT . It is easy to verify that γk(Mij) = ci for all 1 ≤ k ≤ b and

hence M satisfies the conditions on the matrix N in equation (2.20). Straightforward

algebra shows that ‖M−1‖1 =
∏t−1
j=1

(
1 +
√
bcj

)
. Lemma 2.9 below identifies M as

the matrix that maximizes ‖N−1‖1.

Lemma 2.9. Let matrices N and M be defined by equations (2.20) and (2.21),
respectively. Then

‖N−1‖1 ≤ ‖M−1‖1.

Proof: We only consider the matrix N for which the upper triangular entries
are all non-positive, so that |N−1| = N−1. We prove Lemma 2.9 by induction on t.
The lemma is obviously true for t = 1. For t > 1, we will show the sum of entries
in every column of N−1 is bounded above by ‖M−1‖1. Let N̂ and M̂ be the first
(t − 1) × (t − 1) block submatrices of N and M , respectively. By induction, for any
1 ≤ k ≤ (t− 1)b, the sum of entries in the k-th column of N−1 is bounded above by

‖M̂−1‖1 ≤ ‖M−1‖1. For any (t− 1)b+ 1 ≤ k ≤ tb, define

y =

 y1

...
yt−1

 and x =

 x1

...
xt−1

 = −N̂−1y,

14

where yi is the (k − (t− 1)b)-th column of Nit, with ‖yi‖2 ≤ ci. By definition, y and
x are the k-th columns of N and N−1 without the bottom b components, hence the
sum of entries in the k-th column of N−1 is simply

1 + eTx = 1 +

t−1∑
j=1

eTxj .

Since x1 = −y1 +
∑t−1
j=2 (−N1,j)xj , it follows from the Cauchy-Schwartz inequality

that

eTx1 = −eT y1 +

t−1∑
j=2

eT (−N1,j)xj ≤
√
bc1 +

t−1∑
j=2

√
bc1e

Txj =
√
bc1

1 +

t−1∑
j=2

eTxj

 ,

and that

1 + eTx ≤ 1 +
√
bc1 +

(
1 +
√
bc1

) t−1∑
j=2

eTxj =
(

1 +
√
bc1

)1 +

t−1∑
j=2

eTxj

 .

To continue with the same argument to the end, we have

1 + eTx ≤
t−1∏
j=1

(
1 +
√
bcj

)
= ‖M−1‖1.�

We are now ready to derive global upper bounds. Suppose that at least t rounds
of tournament pivoting have been computed:

BΠ = Q


R11 R12 · · · R1t R1,t+1

R22 · · · R2t R2,t+1

. . .
...

...
Rtt Rt,t+1

Rt+1,t+1

 ,
where Rii is b× b for 1 ≤ i ≤ t, and Rt+1,t+1 is (n− tb)× (n− tb), i.e. the first t tour-
naments selected the tb columns yielding R11 through Rtt. In light of equation (2.3),
we need to develop an upper bound on

τ2 def
= γ2

j



R11 R12 · · · R1t

R22 · · · R2t

. . .
...
Rtt


−1 

R1,t+1

R2,t+1

...
Rt,t+1




+γ2
j (Rt+1,t+1) /σ2

min



R11 R12 · · · R1t

R22 · · · R2t

. . .
...
Rtt


.

Let N be the matrix defined in equation (2.20) with Nij = R−1
ii Rij . Then N satisfies

γk(Nij) ≤ ci, where the exact value of ci depends on the reduction tree:

ci =


FBlog2((n−(i−1)b)/b) for binary tree (see Corollary 2.6)

FFn−(i−1)b for flat tree (see Corollary 2.7).

15

Let y =

 y1

...
yt

 be the j-th column of the matrix

 R−1
11 R1,t+1

...
R−1
tt Rt,t+1

. We rewrite τ2 as

τ2 = ‖N−1y‖22 + γ2
j (Rt+1,t+1) /σ2

min (diag (R11, · · · , Rtt)N) .

By Corollaries 2.6 and 2.7, ‖yi‖2 is bounded above by the same ci as defined
above. Repeating the same arguments made in the proof for Lemma 2.9, it is easy to
show that

‖N−1y‖2 ≤ ‖N−1y‖1 ≤ ‖M−1

 −
c1√
b
e

...
− ct√

b
e

 ‖1 =

t∏
j=1

(
1 +
√
bcj

)
− 1 <

t∏
j=1

(
1 +
√
bcj

)
.

For the second term in τ2, we note by Corollaries 2.6 and 2.7 that

γj (Rt+1,t+1) /σmin (Rii) ≤ ci ≤ c1

for all 1 ≤ i ≤ t. This implies that

γj (Rt+1,t+1) /σmin (diag (R11, · · · , Rtt)) ≤ c1.

Hence

γj (Rt+1,t+1) /σmin (diag (R11, · · · , Rtt)N)

≤ γj (Rt+1,t+1) /σmin (diag (R11, · · · , Rtt)) ‖N−1‖2

≤ c1
√
n‖N−1‖1 ≤ c1

√
n‖M−1‖1 =

√
nc1

t−1∏
j=1

(
1 +
√
bcj

)
.

Putting it all together,

τ2 ≤

 t∏
j=1

(
1 +
√
bcj

)2

+

√nc1 t−1∏
j=1

(
1 +
√
bcj

)2

=

((
1 +
√
bct

)2

+ nc21

)t−1∏
j=1

(
1 +
√
bcj

)2

≤
(

1 +
√
b+ nc1

)2

t−1∏
j=1

(
1 +
√
bcj

)2

.

To further simplify the upper bound on τ2, we consider the two special cases of
the reduction tree:

Binary tree: In this case, we simply use the relation

cj ≤ c1 =
1√
2b

(√
2fb
)log2(n/b)

so that

τ2 ≤
(

1 +
√
b+ nc1

)2 (
1 +
√
bc1

)2n/b

=
(

1 +
√
b+ nc1

)2
(

1 +
1√
2

(√
2fb
)log2(n/b)

)2n/b

.

16

Flat tree: In this case, we note that

τ2 ≤
(

1 +
√
b+ nc1

)2

t−1∏
j=1

√
bcj

2

e
∑t−1

j=1
2√
bcj

=
(

1 +
√
b+ nc1

)2

bt−1

t−1∏
j=1

cj

2

e
2√
b

∑t−1
j=1

1
cj .

Since

t−1∑
j=1

1

cj
=
√

2b

t−1∑
j=1

(√
2fb
)−(n/b−j)

≤
√

2b/
(

1− 1/(
√

2fb)
)
≤ 4
√
b,

it follows that

τ2 ≤
(

1 +
√
b+ nc1

)2

bn/b
(

1√
2b

)2n/b (
e

2√
b
4̇
√
b
)n/b∏

j=1

(√
2fb
)2(n/b−j)


= e8

(
1 +
√
b+ nc1

)2 (
1/
√

2
)2n/b (√

2fb
)n/b(n/b+1)

.

We are now ready to state the main theorem of this section.
Theorem 2.10. Let A be m × n with m ≥ n, and assume for simplicity that b

divides n. Suppose that we do QR factorization with tournament pivoting on A n/b
times, each time selecting b columns to pivot to the left of the remaining matrix. Then
for ranks k that are multiples of b, this yields a rank-revealing QR factorization of A
in the sense of Theorem 2.4, with

F =


(
1 +
√
b+ nc1

) (
1 + 1√

2

(√
2fb
)log2(n/b)

)n/b
, for binary tree

e4
(
1 +
√
b+ nc1

) (
1/
√

2
)n/b (√

2fb
)n/b(n/b+1)/2

, for flat tree.

Although the binary tree bound is relatively smaller, we must note that both
bounds in Theorem 2.10 are super-exponentially large. In contrast, our numerical
results in section 4 are much better. As with conventional column pivoting (the
special case b = 1), the worst case must be exponential, but whether these bounds
can be significantly tightened is an open question. The matrix M in equation (2.21)
was constructed to have the largest 1-norm in the inverse among all matrices that
satisfy equation (2.20), which is likely to be a much larger class of matrices than
CA-RRQR actually produces.

Example: b = 1 (traditional column pivoting). We now evaluate the bound in
Theorem 2.10 when b = 1, i.e. traditional column pivoting. In this case we know the
best bound is O(2n), which is attained by the upper triangular Kahan matrix, where
Kii = ci−1 and Kij = −sci−1 where j > i, s2 + c2 = 1 and s and c are positive. In

contrast, our bounds are much larger, at O(nn/2) and O(2n
2/4), respectively.

Finally, we consider the case of k not a multiple of b. We only sketch the derivation
of the bounds, since explicit expressions are complicated, and not more illuminating.

17

Recall that we must assume that strong RRQR has been independently performed on
the b× b diagonal block

Rii =

[
Rii11 Rii12

0 Rii22

]
of the final result of tournament pivoting, with analogous notation Rij1 and Rij2,
with j > i, for the subblocks of Rij to the right of Rii12 and Rii22, resp., and Rki1
and Rki2, with k < i, for the subblocks of Rki above Rii11 and Rii12, resp. yielding



R11 · · · R1,i−1 R1i1 R1i2 R1,i+1 · · · R1t

. . .
...

...
...

...
...

...
Ri−1,i−1 Ri−1,i,1 Ri−1,i,2 Ri−1,i+1 · · · Ri−1,t

Rii11 Rii12 Ri,i+1,1 · · · Rit1

Rii22 Ri,i+1,2 · · · Rit2
Ri+1,i+1 · · · Ri+1,t

. . .
...
Rtt



def
=


R̂11 R̂12 R̂13 R̂14

Rii11 Rii12 R̂24

Rii22 R̂34

R̂44


We first need to bound the 2-norm of each column of the matrix[

R̂11 R̂12

0 Rii11

]−1

·
[

R̂13 R̂14

Rii12 R̂24

]
=

[
R̂−1

11 R̂13 − R̂−1
11 R̂12R

−1
ii11Rii12 R̂−1

11 R̂14 − R̂−1
11 R̂12R

−1
ii11R̂24

R−1
ii11Rii12 R−1

ii11R̂24

]
If we can bound the 2-norm of every column of all 4 subblocks in the above expression,
then their root-sum-of-squares will bound the overall column 2-norms:

• column norms of R̂−1
11 R̂12, R̂−1

11 R̂13, and R̂−1
11 R̂14 are all bounded by our pre-

vious result on tournament pivoting alone, since R̂11 is (i− 1)b× (i− 1)b.
• R−1

ii11Rii12 is bounded since we did strong RRQR on Rii.

• To see that columns of R−1
ii11R̂24 are bounded we note that columns of R−1

ii Rij
are bounded (for j > i) by our previous result for tournament pivoting alone.
Performing strong RRQR on Rii changes Rii to Q̂RiiΠ and Rij to Q̂Rij for

some permutation Π and orthogonal Q̂, so columns of

R−1
ii Rij = Π · (Q̂RiiΠ)−1(Q̂Rij)

= Π ·
[
Rii11 Rii12

0 Rii22

]−1 [
R̂24

R̂34

]
= Π ·

[
R−1
ii11R̂24 −R−1

ii11Rii12R
−1
ii22R̂34

R−1
ii22R̂34

]
18

are bounded by our previous result, and so for each j,

γj

(
R−1
ii11R̂24

)
≤ γj

(
R−1
ii11R̂24 −R−1

ii11Rii12R
−1
ii22R̂34

)
+ γj

(
R−1
ii11Rii12R

−1
ii22R̂34

)
≤ γj

(
R−1
ii Rij

)
+ ‖R−1

ii11Rii12‖2 · γj
(
R−1
ii22R̂34

)
≤ γj

(
R−1
ii Rij

)
+ ‖R−1

ii11Rii12‖2 · γj
(
R−1
ii Rij

)
≤ (1 + ‖R−1

ii11Rii12‖2)γj
(
R−1
ii Rij

)
is bounded.

• Finally, we can combine these bounds to bound above

γj

(
R̂−1

11 R̂13 − R̂−1
11 R̂12R

−1
ii11Rii12

)
≤ γj

(
R̂−1

11 R̂13

)
+‖R̂−1

11 R̂12‖2·γj
(
R−1
ii11Rii12

)
and

γj

(
R̂−1

11 R̂14 − R̂−1
11 R̂12R

−1
ii11R̂24

)
≤ γj

(
R̂−1

11 R̂14

)
+‖R̂−1

11 R̂12‖2·γj
(
R−1
ii11R̂24

)
Now we must bound from above

γj

([
Rii22 R̂34

0 R̂44

])
/σmin

([
R̂11 R̂12

0 Rii11

])
Using the previously established bounds on column norms of R̂−1

11 R̂12 and R−1
ii22R̂34,

it is as before enough to bound above

γj

([
Rii22 0

0 R̂44

])
/σmin

([
R̂11 0
0 Rii11

])
= γj

([
Rii22 0

0 R̂44

])
/min(σmin(R̂11), σmin(Rii11))

By the strong rank-revealing property for k = (i − 1)b, we know that σmin(R̂11)
cannot be much smaller than γj (Rii11), so the denominator in the last fraction can
be replaced by σmin(Rii11). Similarly, the numerator can be replaced by γj (Rii22).
This leaves us with γj (Rii22) /σmin(Rii11), which is bounded above by the strong
rank-revealing property of Rii.

3. Performance analysis of QR with tournament pivoting. In this section
we analyze the performance of parallel communication avoiding QR with tournament
pivoting and we show that it minimizes communication, at the cost of roughly tripling
the number of arithmetic operations. Algorithm 1 presents the parallel CARRQR
factorization of a matrix A of size m × n. The matrix is distributed block cyclically
on a grid of P = Pr × Pc processors using blocks of size b. For simplicity we suppose
n/b is an integer. Consider step j of the factorization, and let mb = m − (j − 1)b,
nb = n−(j−1)b. The size of the matrix on which the algorithm operates at this step is
mb×nb. First, tournament pivoting is used to identify b pivot columns, using a binary
tree of depth log2 nb/bT . For the ease of the analysis, we consider that tournament
pivoting is performed as an all-reduce operation, that is all processors participate at
all the stages of the reduction, and the final result is available on all processors.

Depending on the size of bT , a processor can be involved in operations at more
than one node at each level of the binary tree. At the leaves, the b candidate columns

19

are selected from blocks of size mb × bT . For this, the processors in the same process
column perform the QR factorization of their blocks of columns, using TSQR [11].
The R factors obtained from this factorization are available on all processors. Each
processor selects b column candidates by performing QR with column pivoting on
their R factor.

After this step, there are nb/bT candidate columns. The subsequent steps of the
reduction operate on blocks of 2b columns, where the new column candidates are
chosen similarly by computing TSQR followed by QR with column pivoting on the R
factor. In the first log2 (n/(bPc)) levels of the reduction tree, a processor is involved in
the computation of several nodes per level. In other words, it is the owner of several
sets of candidate columns. Hence it can form with no communication the matrix of
2b column candidates of the next level. At the last log2 Pc levels of the reduction
tree, a processor is involved in the computation performed at only one node per level.
Hence the processors in the same process row need to exchange their local parts of
the candidate columns.

Algorithm 1 Parallel QR with tournament pivoting

1: Input matrix A of size m× n, block size b, bT
2: for j = 1 to n/b do
3: Let mb = m− (j − 1)b, nb = n− (j − 1)b
4: /* Perform tournament pivoting to choose b pivot columns */
5: for k = 1 to nb/(2bPc) do
6: Let A0k be the k-th column block of size mb× 2b that belongs to the process

column of my processor.
7: Processors in the same process column select b column candidates by per-

forming TSQR of their block A0k followed by strong RRQR of the R factor.
8: end for
9: for i = 1 to log2(nb/bT) do

10: for each node k = 1 to nb/(2bPc2
i) in the current level assigned to my

processor do
11: if at most one node is assigned per processor then
12: Each two processors in the same process row exchange their local parts

of the b column candidates selected at the sons of their current node k.
13: end if
14: Let Aik be the matrix obtained by putting next to each other the two sets

of b column candidates selected at the sons of the current node k.
15: Processors in the same process column select b column candidates by per-

forming TSQR of their block Aik followed by strong RRQR of the R factor.
16: end for
17: end for
18: Swap the b pivot columns to j-th column block: A(:, j0 : end) = A(:, j0 : end)Πj ,

where j0 = (j−1)b+1 and Πj is the permutation matrix returned by tournament
pivoting.

19: TSQR factorization of the j-th column block A(j0 : end, j0 : j1) = QjRj , where
j1 = jb, Rj is an upper triangular matrix.

20: Update of the trailing matrix A(j0 : end, j1 + 1 : end) = QTj A(j0 : end, j1 + 1 :
end).

21: end for

20

To study the theoretical performance of CARRQR, we use a simple model to
describe a machine architecture in terms of speed, network latency, and bandwidth.
The time needed to send a message of m words between two processors is estimated to
be α+mβ, where α specifies the latency and β the inverse of the bandwidth. The cost
of performing parallel CARRQR of an m×n matrix is given in Table 3.1. We display
separately the cost of performing communication avoiding QR factorization and the
cost of performing tournament pivoting, with bT = 2b and bT = n/Pc. The total cost
of CARRQR is the cost of performing CAQR plus the cost of performing tournament
pivoting. The parallel CARRQR factorization based on tournament pivoting with
bT = 2b requires three times more flops than the QR factorization. However for
bT = n/Pc, the parallel CARRQR factorization performs a factor of n/(bPc) more
flops than the QR factorization. Hence the former choice of bT = 2b should lead to a
faster algorithm in practice.

Parallel CAQR

flops 2mn2−2n3/3
P

+ bn2

2Pc
+ 3bn(2m−n)

2Pr
+

(
4b2n

3
+ n2(3b+5)

2Pc

)
log2 Pr − b2n

words
(
n2

Pc
+ bn

2

)
log2 Pr +

(
mn−n2/2

Pr
+ 2n

)
log2 Pc

messages 3n
b

log2 Pr + 2n
b

log2 Pc

Tournament pivoting with bT = 2b (excluding cost of QR factorization)

flops 4mn2−4n3/3
P

+ 8n2b
3Pc

(log2 Pr + 2) + f(m,n, b, Pr, Pc)

words n2

Pc
log2 Pr + mn−n2/2

Pr
(log2 Pc + 1)

messages n2

2b2Pc
log2 Pr + n

b
log2 Pc(log2 Pr + 1)

Tournament pivoting with bT = n/Pc (excluding cost of QR factorization)

flops 2
3
mn2−n3/4

P
n
bPc

+ 1
6
n3

P2
c

n
bPc

(log2 Pr + 2) + f(m,n, b, Pr, Pc)

words 1
6
n2

Pc

n
bPc

log2 Pr + mn−n2/2
Pr

(log2 Pc + 1) + 2nb log2 Pr log2 Pc
messages n

b
(log2 Pr + 2 log2 Pc + log2 Pr log2 Pc)

Table 3.1
Performance models of parallel CAQR and tournament pivoting when factoring an m × n

matrix, distributed in a 2-D block cyclic layout on a Pr × Pc grid of processors with square b × b
blocks. All terms are counted along the critical path. We generally assume m ≥ n. The cost
of CARRQR is equal to the cost of tournament pivoting plus the cost of CAQR. In the table,

f(m,n, b, Pr, Pc) =
4(2mnb−n2b)

Pr
log2 Pc + 16nb2

3
log2 Pr log2 Pc + 11nb2 log2 Pc.

We recall now briefly the lower bounds on communication from [3], which apply
to QR under certain hypotheses. On a sequential machine with fast memory of size
M and slow memory, a lower bound on the volume of data and on the number of
messages transferred between fast and slow memory during the QR factorization of a
matrix of size m× n is

words ≥ Ω

(
mn2

√
M

)
, # messages ≥ Ω

(
mn2

M3/2

)
. (3.1)

When the matrix is distributed over P processors, the size of the memory per
processor is on the order of O(mn/P), and the work is balanced among the P pro-
cessors, then a lower bound on the volume of data and the number of messages that
at least one of the processors must transfer is

words ≥ Ω

(√
mn3

P

)
, # messages ≥ Ω

(√
nP

m

)
. (3.2)

21

To minimize communication in parallel CARRQR, we use an optimal layout, with
the same values as in [10],

Pr =

√
mP

n
, Pc =

√
nP

m
and b = B ·

√
mn

P
. (3.3)

The number of flops required by tournament pivoting with bT = 2b, which does not
include the number of flops required for computing the QR factorization once the
pivot columns have been identified, is

#flops=
4mn2 − 4n3/3

P
+

+
mn2

P

(
8B

(
1

3
log2 Pr + log2 Pc +

2

3

)
+ 32B2

(
1

6
log2 Pr log2 Pc +

1

3
log2 Pc

))
By choosing B = 8−1 log−1

2 (Pr) log−1
2 (Pc), the first term in #flops dominates the

redundant computation due to tournament pivoting. This is a term we cannot de-
crease. After dropping some of the lower order terms, the counts of the entire parallel
CARRQR factorization become

#flops ≈ 6mn2 − 6n3/3

P
+ cmn2, c < 1,

#words ≈ 2

√
mn3

√
P

(
log2

√
mP

n
+ log2

√
nP

m

)
,

#messages ≈ 27

√
nP

m
log2

2

√
mP

n
log2

2

√
nP

m
,

and this shows that parallel CARRQR is communication optimal, modulo polyloga-
rithmic factors.

Appendix B describes briefly the performance model of a sequential communica-
tion avoiding QR. It shows that sequential CARRQR performs three times more flops
than QRCP, transfers Θ(mn2/M1/2) number of words and exchanges Θ(mn2/M3/2)
number of messages between the slow memory and the fast memory of size M of the
sequential computer. Thus sequential QR attains the lower bounds on communica-
tion. As explained in the introduction, neither sequential QRCP nor parallel QRCP
are communication optimal. We note however that parallel QRCP minimizes the
volume of communication, but not the number of messages.

4. Experimental results. In this section we discuss the numerical accuracy of
our CARRQR and compare it with the classic QR factorization with column pivoting
(QRCP) and the singular value decomposition. We focus in particular on the value
of the elements obtained on the diagonal of the upper triangular factor R (referred
to as R-values) of the factorization AΠ = QR, and compare them with the singular
values of the input matrix. For the CARRQR factorization, we test binary-tree-
based CARRQR and flat-tree-based CARRQR, denoted in the figures as CARRQR-B
and CARRQR-F respectively. The singular values are computed by first performing
a QR factorization with column pivoting of A, and then computing the singular
values of the upper triangular factor R with the highly accurate routine DGESVJ
[13, 14]. We use this approach to compute the singular values since given a matrix
A = DY (or A = Y D), where D is diagonal and Y is reasonably well conditioned,

22

the Jacobi SVD algorithm in DGESVJ computes the singular values with relative
error of at most O(ε)κ(Y), whereas the SVD algorithm based on the QR iteration
has a relative error of at most O(ε)κ(A). Here κ(A) is the condition number of A,
κ(A) = ||A||2 ·

∣∣∣∣A−1
∣∣∣∣

2
. This choice affects in particular the accuracy of the small

singular values. Not all our input matrices A have the scaling property that A can be
expressed as the multiplication of a diagonal matrix and a well-conditioned matrix, but
after computing AΠ = QR by using a rank revealing QR factorization and R = DY ,
we expect to obtain a well conditioned Y . Even when Y is not well conditioned, it is
still expected that DGESVJ of R is more accurate than SVD of R.

In the plots displaying R-values and singular values, we also display bounds for
trustworthiness computed as,

εmin{||(AΠ0)(:, i)||2 , ||(AΠ1)(:, i)||2 , ||(AΠ2)(:, i)||2} (4.1)

εmax{||(AΠ0)(:, i)||2 , ||(AΠ1)(:, i)||2 , ||(AΠ2)(:, i)||2} (4.2)

where Πj(j = 0, 1, 2) are the permutation matrices obtained by QRCP, CARRQR-B,
and CARRQR-F (represented by the subscripts j = 0, 1, 2 respectively), (AΠ)(:, i) is
the i-th column of the permuted matrix AΠ, and ε is the machine precision. Since the
algorithm can be interpreted as applying orthogonal transformations to each column
separately, machine epsilon times the norm of column i is a reasonable estimate of the
uncertainty in any entry in that column of R, including the diagonal, our estimate of
σi. Therefore the quantities in (4.1) and (4.2) describe the range of uncertainties in
σi, for all three choices of column i, from the three pivoting schemes tested.

For each matrix in our test set we display the ratio R(i, i)/σi, where R is the upper
triangular factor obtained by QRCP, CARRQR-B or CARRQR-F, R(i, i) denotes the
i-th diagonal element of R, assumed to be nonnegative, and σi is the i-th singular
value computed as described above. Consider the factorization AΠ = QR obtained
by using QRCP, CARRQR-B, or CARRQR-F. Let D = diag(diag(R)) and define
Y by R = DY T . Then we have AΠ = QDY T . The R-values of QRCP decrease
monotonically, and it follows straightforwardly from the minimax theorem that the
ratio R(i, i)/σi can be bounded as

1

||Y ||
≤ R(i, i)

σi
≤ ||Y −1||, (4.3)

and these lower and upper bounds are also displayed in the corresponding plots.
As described in [26], if after a first factorization AΠ = QR, a second QR factor-

ization of RT is performed, RTΠ1 = Q1L
T , then the diagonal elements of the lower

triangular factor L approximate more accurately the singular values of the input ma-
trix. The obtained factorization A = QΠ1LQ

T
1 ΠT is called a QLP factorization, a

special case of ULV decomposition, where Q and Q1 are orthogonal matrices that
approximate the left and right singular subspaces. Stewart notes that there is no
need to perform pivoting in the second QR factorization, and hence a communica-
tion optimal (modulo polylogarithnic factors) QLP factorization can be obtained by
using QR with tournament pivoting for the first factorization, and then CAQR for
the second factorization. In our numerical tests we use the QLP factorization only
for two matrices, the devil’s stairs and Kahan matrix, two challenging matrices for
rank-revealing factorizations also used in [26]. For the other matrices, we test QRCP,
CARRQR-B, and CARRQR-F. The entire set of matrices is presented in Table 4.1.
Unless otherwise specified, the matrices are of size 256 × 256 and the block size is

23

b = 8. The binary tree version of CARRQR uses a tournament that has 2b columns
at the leaves of the reduction tree. These matrices were used in several previous pa-
pers focusing on rank revealing factorizations, as [4, 20, 26, 23]. A short description
is given in the table. In addition, we describe in more detail here matrices Break-1,
Break-9, H-C, and Stewart, which are random matrices of size n × n with pre-
scribed singular values {σi}. The first three matrices are of the form A = UΣV T ,
where U, V are random orthogonal matrices and Σ is a diagonal matrix. For Break-
1, Σ has the following diagonal entries σ1 = . . . = σn−1 = 1, σn = 10−9 [4]. For
Break-9, the diagonal entries of Σ are σ1 = . . . = σn−9 = 1, σn−8 = . . . = σn = 10−9

[4]. For H-C, Σ has diagonal entries 100, 10, and the following n − 2 are evenly
spaced between 10−2 and 10−8 [23]. For Stewart, A = UΣV T + 0.1σ50E [26],
where Σ is a diagonal matrix with the first 50 diagonals decreasing geometrically
from 1 to 10−3 and the last n− 50 diagonals being set to zero, U and V are random
orthogonal matrices, E is a matrix with random entries chosen from a uniform distri-
bution in the interval (0, 1). In Matlab notation, d=linspace(1,1e-3,n); d(51:end)=0;
A=orth(rand(n))∗diag(d)∗orth(rand(n))+0.1∗d(50)∗rand(n) 1.

We first discuss the Kahan matrix and the devil’s stairs. The Kahan matrix
is presented in equation (4.4) where c2 + s2 = 1. For c = 0, the singular values
are si, i = 0, . . . , n − 1. An increasing gap between the last two singular values is
obtained when the value of c is increased. Since σmin(R11) ≤ σk(A) in (1.1), we
would like to find Π such that σmin(R11) is sufficiently large. For the Kahan matrix,
it is known that σk(A)/σmin(R11) ≥ 1

2c
3(1 + c)n−4/s, and σmin(R11) can be much

smaller than σk(A) [20]. Traditional QR with column pivoting does not permute the
columns of A in exact arithmetic and fails to reveal the gap between the last two
singular values. It is easy to notice that CARRQR does not permute the columns in
exact arithmetic either, if we assume that during tournament pivoting, ties are broken
by choosing the leftmost column when multiple columns have the same norm. This
results in poor rank revealing, similarly to QRCP. However in finite precision, both
QRCP and CARRQR might permute the columns of the matrix and in this case both
reveal the rank, as the results displayed in Table 4.2 show, where we compare the last
two singular values with the last two L-values and R-values obtained from QRCP,
CARRQR-B, and CARRQR-F.

To avoid a possible non-trivial permutation in finite precision (a well-known phe-
nomenon [12] of the Kahan matrix), we multiply the j-th column of the Kahan matrix
by (1 − τ)j−1 for all j and a small τ � ε. The additional numerical experiments we
have performed revealed that when τ is small, all three algorithms, QRCP, CARRQR-
B, and CARRQR-F, pivot the columns of A and are effective in revealing the rank.
However, when the parameter τ is increased, for example for τ = 10−7, the three
algorithms do not perform any pivoting, and result in poor rank revealing.

A =



1 0 0 · · · · · · 0
0 s 0 · · · · · · 0

0 0 s2 . . . · · · 0
...

...
. . .

. . .
. . .

...
...

... · · ·
. . .

. . . 0
0 0 · · · · · · 0 sn−1





1 −c −c · · · · · · −c
0 1 −c · · · · · · −c

0 0 1
. . . · · · −c

...
...

. . .
. . .

. . .
...

...
... · · ·

. . .
. . . −c

0 0 · · · · · · 0 1


. (4.4)

1It is not exactly the matrix used in Figure 2.1 in [26].

24

No. Matrix Descriptions
1 Baart Discretization of the 1st kind Fredholm integral equation [21].
2 Break-1 Break 1 distribution, matrix with prescribed singular values,

see description in the text and [4].
3 Break-9 Break 9 distribution, matrix with prescribed singular values,

see description in the text and [4].
4 Deriv2 Computation of second derivative [21].
5 Exponential Exponential Distribution, σ1 = 1, σi = αi−1 (i = 2, . . . , n),

α = 10−1/11 [4].
6 Foxgood Severely ill-posed test problem [21].
7 Gks An upper-triangular matrix whose j-th diagonal element is

1/
√
j and whose (i, j) element is −1/

√
j, for j > i [17, 20].

8 Gravity 1D gravity surveying problem [21].
9 H-C Matrix with prescribed singular values, see description in the

text and [23].
10 Heat Inverse heat equation [21].
11 Phillips Phillips’ famous test problem [21].
12 Random Random matrix A = 2 ∗ rand(n)− 1 [20].
13 Scale Scaled random matrix, a random matrix whose i-th row is

scaled by the factor ηi/n [20]. We choose η = 10 · ε.
14 Shaw 1D image restoration model [21].
15 Spikes Test problem with a ”spiky” solution [21].
16 Stewart Matrix A = UΣV T + 0.1σ50 ∗ rand(n), see description in the

text and [26].
17 Ursell Integral equation with no square integrable solution [21].
18 Wing Test problem with a discontinuous solution [21].
19 Kahan Kahan matrix, see equation (4.4).
20 Devil The devil’s stairs, a matrix with gaps in its singular values, see

Algorithm 2 in Appendix A [26].
Table 4.1

Test matrices.

The devil’s stairs [26] is a matrix with multiple gaps in its singular values, gener-
ated by the Matlab code given in Algorithm 2 in Appendix A. From Figure 4.1, we
can see that the L-values reveal the gaps in the singular values, while the R-values do
not. Both our versions of CARRQR factorizations provide a good first step for the
QLP factorization, similar to the traditional QR with column pivoting.

We now discuss the other matrices in our test set, given in alphabetical order in
Table 4.1. The results for the first matrix, Baart, are given in Figure 4.2. Figure
4.2(a) shows the R-values of QR with column pivoting (QRCP), CARRQR-B, and
CARRQR-F, and the singular values of this matrix, while Figure 4.2(b) displays
the ratios of R-values to singular values. In Figure 4.2(a), the curves for R-values
and singular values are almost superimposed, and they are well above the bounds of
trustworthiness, except for the last few elements. Hence the R-values reveal the rank
for this matrix. The ratios R(i, i)/σi(R) shown in Figure 4.2(b) are close to 1, and
well bounded by the formulas in equation (4.3). For all the other matrices in our test
set, similar plots with similar behaviour are given in Appendix A, except that the
R-values of a few matrices as Foxgood lie under the trustworthiness bounds given

25

0 20 40 60 80 100 120
10

−3

10
−2

10
−1

10
0

Column No. i

R
−

v
a

lu
e

s
 &

 s
in

g
u

la
r

v
a

lu
e

s

QRCP

CARRQR−B

CARRQR−F

SVD

0 20 40 60 80 100 120

1

2

3

4

5

6

7

8

9

10
x 10

−16

T
ru

s
tw

o
rt

h
in

e
s
s
 c

h
e

c
k

0 20 40 60 80 100 120

1

2

3

4

5

6

7

8

9

10
x 10

−16

(a) R-values of QRCP and CARRQR

0 20 40 60 80 100 120
10

−1

10
0

10
1

Column No. i

R
a

ti
o

s
 R

(i
,i
)/

σ
(i
),

 u
p

p
e

r
&

 l
o

w
e

r
b

o
u

n
d

s

R
QRCP

(i,i)/σ(i)

R
CARRQRB

(i,i)/σ(i)

R
CARRQRF

(i,i)/σ(i)

(b) Ratios

0 20 40 60 80 100 120
10

−3

10
−2

10
−1

10
0

Column No. i

L
−

v
a

lu
e

s
 &

 s
in

g
u

la
r

v
a

lu
e

s

QRCP + QLP

CARRQR−B + QLP

CARRQR−F + QLP

SVD

(c) L-values of QRCP and CARRQR

Fig. 4.1. The devil’s stairs, matrix of size 128 × 128. The roughly horizontal dotted lines in
(a) stand for the upper and lower bounds given in (4.1) and (4.2); the horizontal dotted lines in
(b) denote the upper and lower bounds from (4.3), where the Y factors are obtained from QRCP,
CARRQR-B, and CARRQR-F respectively.

26

c
singular values QRCP CARRQR-B CARRQR-F
σn−1 σn rn−1/σn−1 rn/σn rn−1/σn−1 rn/σn rn−1/σn−1 rn/σn

0.1 5.57E-01 5.71E-06 1.0488 2.4004 1.0488 2.4004 1.0488 2.4004
0.2 8.37E-02 1.26E-11 1.0954 7.7787 1.0954 7.7787 1.0954 7.7787
0.3 3.00E-03 1.59E-17 1.1402 1.5650 1.1402 1.5650 1.1402 1.5650
0.4 2.01E-05 7.96E-24 1.1832 2.8006 1.1832 1.4289 1.1832 1.4350
0.5 1.65E-08 9.26E-31 1.2247 2.0125 1.2247 2.0014 1.2247 2.0021
0.6 7.79E-13 1.06E-38 1.2649 1.2810 1.2649 1.2894 1.2649 1.2811

c
singular values QRCP CARRQR-B CARRQR-F
σn−1 σn ln−1/σn−1 ln/σn ln−1/σn−1 ln/σn ln−1/σn−1 ln/σn

0.1 5.57E-01 5.71E-06 1.0223 1.0000 1.0223 1.0000 1.0223 1.0000
0.2 8.37E-02 1.26E-11 1.0392 1.0000 1.0392 1.0000 1.0392 1.0000
0.3 3.00E-03 1.59E-17 1.0512 1.0000 1.0512 1.0000 1.0512 1.0000
0.4 2.01E-05 7.96E-24 1.0583 1.0000 1.0583 1.0000 1.0583 1.0043
0.5 1.65E-08 9.26E-31 1.0607 1.0000 1.0607 0.9945 1.0607 0.9948
0.6 7.79E-13 1.06E-38 1.0583 1.0000 1.0583 1.0065 1.0583 1.0000

Table 4.2
Kahan matrix (of size n = 128), comparison between last two singular values, R-values, and

L-values. In the table, rn−1, rn are the last two R-values, and ln−1, ln are the last two L-values.

in equations (4.1) and (4.2).
Figures 4.3, 4.4, and 4.5 summarize these results. Figure 4.3 presents the ratios of

the R-values obtained from the different QR factorizations to the singular values. Let
r be the vector of R-values obtained from QRCP/CARRQR, and let s be the vector
of singular values. The R-values obtained from CARRQR are not in descending order
and we do not sort them. The values displayed in Figure 4.3 are the minimum of the
ratios min(r./s), the maximum of the ratios max(r./s), and the median of the ratios
median(r./s). For all the test cases, we can see that the ratios are close to 1, and
are well bounded as in equation (4.3). We conclude that the R-values obtained by
communication avoiding RRQR reveal the rank for all the matrices in our test set.

0 50 100 150 200 250
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Column No. i

R
−

v
a
lu

e
s
,
s
in

g
u
la

r
v
a
lu

e
s
 &

 t
ru

s
tw

o
rt

h
in

e
s
s
 c

h
e
c
k

QRCP

CARRQR−B

CARRQR−F

SVD

(a) R-values

0 50 100 150 200 250
10

−2

10
−1

10
0

10
1

Column No. i

R
a
ti
o
s
 R

(i
,i
)/

σ
(i
),

 u
p
p
e
r

&
 l
o
w

e
r

b
o
u
n
d
s

R
QRCP

(i,i)/σ(i)

R
CARRQRB

(i,i)/σ(i)

R
CARRQRF

(i,i)/σ(i)

(b) Ratios

Fig. 4.2. R-values and ratios of QR with column pivoting (QRCP), binary-tree-based CARRQR
(CARRQR-B), and flat-tree-based CARRQR (CARRQR-F) of Baart matrix. The dotted lines in
(a) display the upper and lower bounds given in (4.1) and (4.2); the dotted lines in (b) represent the
upper and lower bounds in (4.3), where the Y factors are obtained from QRCP, CARRQR-B, and
CARRQR-F respectively.

In the plots displaying R-values and singular values in Figure 4.2 and in Appendix
A, it might be hard to distinguish if the computed R-values are above or below the
bounds of trustworthiness from equations (4.1) and (4.2). For the purpose of clarity,

we display in Figure 4.4 the ratio mini{ R(i,i)
ε||(AΠ)(:,i)||2 } for the first 18 matrices in our

test set. The R factor is obtained from QRCP, CARRQR-B, and CARRQR-F. It can
be seen that for the matrices numbered 1, 5 to 8, 10, 14, 15, and 18, this ratio is
smaller than 1. But as displayed in Figure 4.3, the ratios R(i, i)/σi(R) are close to 1,

27

and well bounded by equation (4.3). In other words, even when R(i,i)
ε||(AΠ)(:,i)|| is small

and we do not expect an accurate computation of the R-values due to round-off error,
the computed R-values are still very close to the accurately computed singular values
of the R matrix.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0.01

0.1

1

10

100

min

max

median

lower bound

upper bound

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
10

−2

10
0

10
2

10
1

10
−1

min

max

median

lower bound

upper bound

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
10

−2

10
2

10
0

10
1

10
−1

min

max

median

lower bound

upper bound

Fig. 4.3. Minimum, maximum, and median of the ratios R(i, i)/σi(R), where i = 1, . . . , n and
n is the size of the input matrix. The dotted horizontal lines represent the upper and lower bounds
from equation (4.3). The R factor is obtained from QRCP (top plot), CARRQR-B (middle plot),
and CARRQR-F (bottom plot).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
10

−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

QRCP

CARRQR−B

CARRQR−F

Fig. 4.4. Ratios mini=1:n{ R(i,i)
ε||(AΠ)(:,i)||2

} for the first 18 matrices in our test set, where n is the

size of the input matrix. The R factor is obtained from QRCP (left column), CARRQR-B (middle
column), and CARRQR-F (right column).

As explained earlier, tournament pivoting used in CARRQR does not guarantee
that the R-values decrease monotonically, while QR with column pivoting does. The

28

formula (4.3) should be modified for CARRQR as

1

||Y ||
≤ ρi
σi
≤ ||Y −1||,

where ρi is the i-th largest diagonal of the R-factor of CARRQR, that is, the i-th
value of the sorted R-values. Since the CARRQR factorizations have good rank-
revealing properties in practice, we can expect that (4.3) still holds approximately
for CARRQR, even without this modification. And this is indeed verified by the
numerical results in Figure 4, where the ratios R(i, i)/σi are bounded by the bounds
in (4.3) for all our test cases. To check the monotonicity of the R-values, Figure 4.5
displays the minimum, the maximum, and the median of the rations |R(i + 1, i +
1)|/|R(i, i)|, where i = 1, . . . , n− 1 and n is the size of the input matrix. The factor
R is obtained from RRQR with column pivoting (top plot), CARRQR-B (middle
plot), and CARRQR-F (bottom plot). It can be seen that for both CARRQR-B and
CARRQR-F, the ratios are well below 1 except for a very few cases.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

0.5

1

1.5

min

max

median

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

0.5

1

1.5

min

max

median

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

0.5

1

1.5

2

min

max

median

Fig. 4.5. Ratios of succesive R-values, |R(i + 1, i + 1)|/|R(i, i)|, for i = 1, . . . , n − 1 and n is
the size of the matrix. The R factor is obtained from QRCP (top plot), CARRQR-B (middle plot),
and CARRQR-F (bottom plot).

5. Tournament pivoting for other factorizations. In this section we de-
scribe very briefly how the tournament pivoting can be extended to other factoriza-
tions that require some form of pivoting.

Cholesky with diagonal pivoting. Since QR with column pivoting applied to A
is mathematically equivalent to Cholesky with diagonal pivoting applied to ATA (in
exact arithmetic), the same general techniques as for RRQR can be used in this
context. But now the leaves in our reduction tree are b-by-b diagonal subblocks of
the symmetric positive-definite matrix H to which we want to apply Cholesky with
pivoting, and at each internal node of the (binary) reduction tree we take the 2b-by-
2b diagonal submatrix enclosing the two b-by-b matrices from the child nodes, and
perform some kind of Cholesky with diagonal pivoting on this 2b-by-2b matrix to
select the best b-by-b submatrix to pass up the tree.

Rank-revealing decompositions of products/quotients of matrices. The goal is to
compute a rank-revealing QR-like decomposition of an arbitrary product P = A±1

1 ·
29

A±1
2 · · ·A

±1
k without actually multiplying or inverting any of the factors Ai. This

problem arises, for example, in algorithms for eigenproblems and the SVD that either
run asymptotically as fast as fast matrix multiplication (O(nω) for some ω < 3), or
minimize communication.

When P = A1, the communication avoiding RRQR algorithm discussed in this
paper can be used. But when P = A−1

1 , or k > 1 matrices are involved, the only
solution available so far involves randomization, i.e. computing the regular QR de-
composition of PV where V is a random orthogonal/unitary matrix. This can be
obtained by computing only QR factorizations and multiplying by orthogonal ma-
trices, and without multiplying or inverting other matrices, and so it is stable. The
resulting factorization is of the form P = QR̂V where V is random orthogonal, Q is
orthogonal, and R̂ is represented as a product of R factors and their inverses. The
useful property is that the leading columns of Q do indeed span the desired subspaces
with high probability. This approach is used for designing communication-avoiding
eigendecompositions and singular value decompositions [2].

GECP - LU with complete pivoting. An approach to extend tournament pivoting
to GECP is to perform each panel factorization as following. Tournament pivoting
uses RRQR to pick the next best b columns to use, and then uses TSLU on these
columns to pick their best b rows. Then the resulting b-by-b submatrix is permuted to
the upper left corner of the matrix, and b steps of LU with no pivoting are performed.
Then the process repeats on the trailing submatrix. The intuition is that by picking
the best b columns, and then the best b rows from these columns, we are in effect
picking the best b-by-b submatrix overall, which is then permuted to the upper left
corner. The communication costs are clearly minimal, since it just uses previously
studied components.

LDLT factorization with pivoting. The challenge here is preserving symmetry. A
possible usage of tournament pivoting is the following:

1. Use the approach for GECP above to find the ”best” b-by-b submatrix S of
the symmetric matrix A, whether or not it is a principal submatrix (i.e. lies
in the same set of b rows and b columns of A). If S is a principal submatrix,
symmetrically permute it to lie in the first b rows and columns of A, and use
it to perform b steps of symmetric LU without pivoting; otherwise continue
to step 2.

2. Expand S to be a smallest-possible principal submatrix of A, called T . The
dimension of T can be from b+1 up to 2b, depending on how much S overlaps
the diagonal of A.

3. Find a well-conditioned principal submatrix W of T of dimension d where
b ≤ d ≤ 2b, permute it into the top left corner of A, and perform d steps of
symmetric LU as above.

The conjecture is that such a well-conditioned principal submatrix W of T must
exist. Here is a sketch of an algorithm to find W . The b largest singular values of T
are at least as large as the b singular values of S, by the interlacing property. Write
the eigendecomposition T = QΛQT = [Q1, Q2]diag(Λ1,Λ2)[Q1, Q2]T where Λ1 has
the large eigenvalues, and Λ2 has the small ones. Do GEPP on Q1 to identify the
most independent rows, and choose these as pivot rows determining W . The above
sketch may serve to prove that a well-conditioned principal submatrix W exist, under
the condition that there is a big enough gap in the eigenvalues of T . But we may
prefer to simply do more conventional LDLT factorization with pivoting to find it,
instead of using an eigendecomposition as above.

30

Of course one reason for using LDLT factorization instead of LU , is that it
traditionally takes half the storage and half the flops. It is not clear whether we can
retain either of these advantages, or even how much the latter one still matters.

6. Conclusions. In this paper we introduce CARRQR, a communication opti-
mal rank revealing QR factorization based on tournament pivoting. CARRQR does
asymptotically less communication than the classic rank revealing QR factorization
based on column pivoting, at the cost of performing a factor of 3 more floating point
operations. We have shown through extensive numerical experiments on challeng-
ing matrices that the CARRQR factorization reveals the rank similarly to the QR
factorization with column pivoting, and provides results close to the singular values
computed with the highly accurate routine DGESVJ. Our future work will focus on
implementing CARRQR and studying its performance with respect to current im-
plementations of QR with column pivoting available in LAPACK and ScaLAPACK.
We have also outlined how tournament pivoting extends to a variety of other pivoted
matrix factorizations, as Cholesky with diagonal pivoting, LU with complete pivoting,
or LDLT factorization with pivoting.

REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. W. Demmel, J. Dongarra, J. Du
Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK
Users’ Guide, SIAM, Philadelphia, PA, USA, 1999.

[2] Grey Ballard, James Demmel, and Ioana Dumitriu, Minimizing communication for eigen-
problems and the singular value decomposition, Tech. Report UCB/EECS-2011-14, EECS
Department, University of California, Berkeley, Feb 2011.

[3] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz, Minimizing communication in nu-
merical linear algebra, SIAM Journal on Matrix Analysis and Applications, 32 (2011),
pp. 866–901.

[4] C. H. Bischof, A parallel QR factorization algorithm with controlled local pivoting, SIAM J.
Sci. Stat. Comput., 12 (1991), pp. 36–57.

[5] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. W. Demmel, I. Dhillon, J. J.
Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and
R. C. Whaley, ScaLAPACK Users’ Guide, SIAM, Philadelphia, PA, USA, May 1997.

[6] P. A. Businger and G. H. Golub, Linear least squares solutions by Householder transforma-
tions, Numer. Math., 7 (1965), pp. 269–276.

[7] T. F. Chan, Rank revealing QR factorization, Linear Algebra Appl., 88/89 (1987), pp. 67–82.
[8] T. F. Chan and P. C. Hansen, Some applications of the rank revealing QR factorization,

SIAM J. Sci. Stat. Comput., 13 (1992), pp. 727–741.
[9] S. Chandrasekaran and I. C. F. Ipsen, On Rank-Revealing Factorisations, SIAM. J. Matrix

Anal. Appl., 15 (1994), pp. 592–622.
[10] J. W. Demmel, L. Grigori, M. Hoemmen, and J. Langou, Communication-avoiding parallel

and sequential QR and LU factorizations: theory and practice, Tech. Report UCB/EECS-
2008-89, University of California Berkeley, EECS Department, 2008. LAWN #204.

[11] J. W. Demmel, L. Grigori, M. Hoemmen, and J. Langou, Communication-optimal parallel
and sequential QR and LU factorizations, SIAM J. Sci. Comput., 34 (2012), pp. 206–239.
short version of technical report UCB/EECS-2008-89 from 2008.

[12] Z. Drmač and Z. Bujanović, On the failure of rank revealing QR factorization software - a
case study, ACM Trans. Math. Softw., 35 (2008), pp. 1–28.

[13] Z. Drmač and K. Veselic, New fast and accurate Jacobi SVD algorithm I, SIAM J. Matrix
Anal. Appl., 29 (2008), pp. 1322–1342.

[14] , New fast and accurate Jacobi SVD algorithm II, SIAM J. Matrix Anal. Appl., 29 (2008),
pp. 1343–1362.

[15] L. V. Foster and X. Liu, Comparison of rank revealing algo-
rithms applied to matrices with well defined numerical ranks.
http://www.researchgate.net/publication/228523390 Comparison of rank revealing algorithms applied to matrices with well defined numerical ranks.

[16] G. H. Golub, Numerical methods for solving linear least squares problems, Numer. Math., 7
(1965), pp. 206–216.

31

[17] G. H. Golub, V. Klema, and G. W. Stewart, Rank degeneracy and least squares problems,
Tech. Report TR-456, Dept. of Computer Science, University of Maryland, 1976.

[18] L. Grigori, J. W. Demmel, and H. Xiang, Communication avoiding Gaussian elimination,
Proceedings of the ACM/IEEE SC08 Conference, (2008).

[19] , CALU: a communication optimal LU factorization algorithm, SIAM Journal on Matrix
Analysis and Applications, 32 (2011), pp. 1317–1350.

[20] M. Gu and S. C. Eisenstat, Efficient algorithms for computing a strong rank-revealing QR
factorization, SIAM J. Sci. Comput., 17 (1996), pp. 848–869.

[21] P. C. Hansen, Regularization tools version 4.1 for matlab 7.3.
[22] Y. P. Hong and C.-T. Pan, Rank-revealing QR factorizations and the singular value decom-

position, Math. Comp., 58 (1992), pp. 213–232.
[23] D. A. Huckaby and T. F. Chan, Stewart’s pivoted QLP decomposition for low-rank matrices,

Numer. Lin. Algebra Appl., 12 (2005), pp. 153–159.
[24] A. Khabou, J. W. Demmel, L. Grigori, and M. Gu, Communication avoiding LU factoriza-

tion with panel rank revealing pivoting, tech. report, INRIA TR 7867, 2012. submitted to
SIMAX.

[25] G. Quintana-Ort́ı, X. Sun, and C. H. Bischof, A BLAS-3 version of the QR factorization
with column pivoting, SIAM J. Sci. Comput., 19 (1998), pp. 1486–1494.

[26] G. W. Stewart, The QLP approximation to the singular value decomposition, SIAM J. Sci.
Comput., 20 (1999), pp. 1336–1348.

7. Appendix A. We present additional numerical results for the matrices in
our test set comparing the diagonal values of the R factor obtained after QRCP and
CARRQR with the singular values of the input matrices.

Algorithm 2 Matlab code for generating the devil’s stairs matrix

1: Length = 20;
2: s = zeros(n,1);
3: Nst = floor(n/Length);
4: for i = 1 : Nst do
5: s(1+Length*(i-1):Length*i) = -0.6*(i-1);
6: end for
7: s(Length*Nst:end) = -0.6*(Nst-1);
8: s = 10. ∧ s;
9: A = orth(rand(n)) * diag(s) * orth(randn(n));

8. Appendix B. We present detailed performance counts for the communica-
tion avoiding RRQR algorithms introduced in section 3. In all the counts, we ignore
lower order terms.

8.1. Performance counts of parallel QR with tournament pivoting. We
consider that the input matrix is distributed block cyclically over a grid of P = Pr×Pc
processors. The block size is b. We compute the additional flops introduced in the
algorithm due to tournament pivoting. Hence the total cost of the algorithm is the
cost of performing tournament pivoting plus the cost of performing CAQR. In the
analysis, we give in detail the counts at each step j of the block algorithm, and
mb = m− jb, nb = n− jb.

We consider first tournament pivoting with bT = nb/Pc, that is the matrices at
the leaves of the reduction tree have nb/Pc columns and as many rows as the trailing
matrix. At the upper levels of the reduction tree, the matrices have 2b columns.
Tournament pivoting performs the following operations.

• Each column grid of Pr processors performs TSQR factorization of a matrix

32

0 50 100 150 200 250

10
−15

10
−10

10
−5

10
0

10
5

Column No. i

R
−

v
a
lu

e
s
,
s
in

g
u
la

r
v
a
lu

e
s
 &

 t
ru

s
tw

o
rt

h
in

e
s
s
 c

h
e
c
k

QRCP

CARRQR−B

CARRQR−F

SVD

(a) Break-1 - R-values

0 50 100 150 200 250
−2

−1

0

1

2

3

4

5

6

7

8

Column No. i

R
a
ti
o
s
 R

(i
,i
)/

σ
(i
),

 u
p
p
e
r

&
 l
o
w

e
r

b
o
u
n
d
s

R
QRCP

(i,i)/σ(i)

R
CARRQRB

(i,i)/σ(i)

R
CARRQRF

(i,i)/σ(i)

(b) Break-1 - ratios

0 50 100 150 200 250

10
−15

10
−10

10
−5

10
0

10
5

Column No. i

R
−

v
a
lu

e
s
,
s
in

g
u
la

r
v
a
lu

e
s
 &

 t
ru

s
tw

o
rt

h
in

e
s
s
 c

h
e
c
k

QRCP

CARRQR−B

CARRQR−F

SVD

(c) Break-9 - R-values

0 50 100 150 200 250
−2

−1

0

1

2

3

4

5

6

7

8

Column No. i

R
a
ti
o
s
 R

(i
,i
)/

σ
(i
),

 u
p
p
e
r

&
 l
o
w

e
r

b
o
u
n
d
s

R
QRCP

(i,i)/σ(i)

R
CARRQRB

(i,i)/σ(i)

R
CARRQRF

(i,i)/σ(i)

(d) Break-9 - ratios

0 50 100 150 200 250
10

−20

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Column No. i

R
−

v
a
lu

e
s
,
s
in

g
u
la

r
v
a
lu

e
s
 &

 t
ru

s
tw

o
rt

h
in

e
s
s
 c

h
e
c
k

QRCP

CARRQR−B

CARRQR−F

SVD

(e) Deriv2 - R-values

0 50 100 150 200 250
10

−2

10
−1

10
0

10
1

Column No. i

R
a
ti
o
s
 R

(i
,i
)/

σ
(i
),

 u
p
p
e
r

&
 l
o
w

e
r

b
o
u
n
d
s

R
QRCP

(i,i)/σ(i)

R
CARRQRB

(i,i)/σ(i)

R
CARRQRF

(i,i)/σ(i)

(f) Deriv2 - ratios

0 50 100 150 200 250
10

−20

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Column No. i

R
−

v
a
lu

e
s
,
s
in

g
u
la

r
v
a
lu

e
s
 &

 t
ru

s
tw

o
rt

h
in

e
s
s
 c

h
e
c
k

QRCP

CARRQR−B

CARRQR−F

SVD

(g) Exponent - R-values

0 50 100 150 200 250
10

−2

10
−1

10
0

10
1

10
2

Column No. i

R
a
ti
o
s
 R

(i
,i
)/

σ
(i
),

 u
p
p
e
r

&
 l
o
w

e
r

b
o
u
n
d
s

R
QRCP

(i,i)/σ(i)

R
CARRQRB

(i,i)/σ(i)

R
CARRQRF

(i,i)/σ(i)

(h) Exponent - ratios

0 50 100 150 200 250
10

−20

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Column No. i

R
−

v
a
lu

e
s
,
s
in

g
u
la

r
v
a
lu

e
s
 &

 t
ru

s
tw

o
rt

h
in

e
s
s
 c

h
e
c
k

QRCP

CARRQR−B

CARRQR−F

SVD

(i) Foxgood - R-values

0 50 100 150 200 250
10

−2

10
−1

10
0

10
1

Column No. i

R
a
ti
o
s
 R

(i
,i
)/

σ
(i
),

 u
p
p
e
r

&
 l
o
w

e
r

b
o
u
n
d
s

R
QRCP

(i,i)/σ(i)

R
CARRQRB

(i,i)/σ(i)

R
CARRQRF

(i,i)/σ(i)

(j) Foxgood - ratios

Fig. 7.1. R-values of QR with column pivoting (QRCP), binary-tree-based CARRQR
(CARRQR-B), and flat-tree-based CARRQR (CARRQR-F) and singular values for matrices in
our test set.

33

0 50 100 150 200 250

10
−20

10
−15

10
−10

10
−5

10
0

10
5

Column No. i

R
−

v
a
lu

e
s
,
s
in

g
u
la

r
v
a
lu

e
s
 &

 t
ru

s
tw

o
rt

h
in

e
s
s
 c

h
e
c
k

QRCP

CARRQR−B

CARRQR−F

SVD

(a) GKS - R-values

0 50 100 150 200 250
10

−2

10
−1

10
0

10
1

Column No. i

R
a
ti
o
s
 R

(i
,i
)/

σ
(i
),

 u
p
p
e
r

&
 l
o
w

e
r

b
o
u
n
d
s

R
QRCP

(i,i)/σ(i)

R
CARRQRB

(i,i)/σ(i)

R
CARRQRF

(i,i)/σ(i)

(b) GKS - ratios

0 50 100 150 200 250
10

−20

10
−15

10
−10

10
−5

10
0

10
5

Column No. i

R
−

v
a
lu

e
s
,
s
in

g
u
la

r
v
a
lu

e
s
 &

 t
ru

s
tw

o
rt

h
in

e
s
s
 c

h
e
c
k

QRCP

CARRQR−B

CARRQR−F

SVD

(c) Gravity - R-values

0 50 100 150 200 250
10

−2

10
−1

10
0

10
1

10
2

Column No. i

R
a
ti
o
s
 R

(i
,i
)/

σ
(i
),

 u
p
p
e
r

&
 l
o
w

e
r

b
o
u
n
d
s

R
QRCP

(i,i)/σ(i)

R
CARRQRB

(i,i)/σ(i)

R
CARRQRF

(i,i)/σ(i)

(d) Gravity - ratios

0 50 100 150 200 250

10
−15

10
−10

10
−5

10
0

Column No. i

R
−

v
a
lu

e
s
,
s
in

g
u
la

r
v
a
lu

e
s
 &

 t
ru

s
tw

o
rt

h
in

e
s
s
 c

h
e
c
k

QRCP

CARRQR−B

CARRQR−F

SVD

(e) HC - R-values

0 50 100 150 200 250
10

−1

10
0

10
1

Column No. i

R
a
ti
o
s
 R

(i
,i
)/

σ
(i
),

 u
p
p
e
r

&
 l
o
w

e
r

b
o
u
n
d
s

R
QRCP

(i,i)/σ(i)

R
CARRQRB

(i,i)/σ(i)

R
CARRQRF

(i,i)/σ(i)

(f) HC - ratios

0 50 100 150 200 250

10
−70

10
−60

10
−50

10
−40

10
−30

10
−20

10
−10

10
0

10
10

Column No. i

R
−

v
a
lu

e
s
,
s
in

g
u
la

r
v
a
lu

e
s
 &

 t
ru

s
tw

o
rt

h
in

e
s
s
 c

h
e
c
k

QRCP

CARRQR−B

CARRQR−F

SVD

(g) Heat - R-values

0 50 100 150 200 250
10

−2

10
−1

10
0

10
1

Column No. i

R
a
ti
o
s
 R

(i
,i
)/

σ
(i
),

 u
p
p
e
r

&
 l
o
w

e
r

b
o
u
n
d
s

R
QRCP

(i,i)/σ(i)

R
CARRQRB

(i,i)/σ(i)

R
CARRQRF

(i,i)/σ(i)

(h) Heat - ratios

0 50 100 150 200 250
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Column No. i

R
−

v
a
lu

e
s
,
s
in

g
u
la

r
v
a
lu

e
s
 &

 t
ru

s
tw

o
rt

h
in

e
s
s
 c

h
e
c
k

QRCP

CARRQR−B

CARRQR−F

SVD

(i) Phillips - R-values

0 50 100 150 200 250
10

−2

10
−1

10
0

10
1

10
2

Column No. i

R
a
ti
o
s
 R

(i
,i
)/

σ
(i
),

 u
p
p
e
r

&
 l
o
w

e
r

b
o
u
n
d
s

R
QRCP

(i,i)/σ(i)

R
CARRQRB

(i,i)/σ(i)

R
CARRQRF

(i,i)/σ(i)

(j) Phillips - ratios

Fig. 7.2. R-values of QR with column pivoting (QRCP), binary-tree-based CARRQR
(CARRQR-B), and flat-tree-based CARRQR (CARRQR-F) and singular values for matrices in
our test set.

34

0 50 100 150 200 250
10

−15

10
−10

10
−5

10
0

10
5

Column No. i

R
−

v
a
lu

e
s
,
s
in

g
u
la

r
v
a
lu

e
s
 &

 t
ru

s
tw

o
rt

h
in

e
s
s
 c

h
e
c
k

QRCP

CARRQR−B

CARRQR−F

SVD

(a) Random - R-values

0 50 100 150 200 250
10

−1

10
0

10
1

Column No. i

R
a
ti
o
s
 R

(i
,i
)/

σ
(i
),

 u
p
p
e
r

&
 l
o
w

e
r

b
o
u
n
d
s

R
QRCP

(i,i)/σ(i)

R
CARRQRB

(i,i)/σ(i)

R
CARRQRF

(i,i)/σ(i)

(b) Random - ratios

0 50 100 150 200 250

10
−15

10
−10

10
−5

10
0

Column No. i

R
−

v
a
lu

e
s
,
s
in

g
u
la

r
v
a
lu

e
s
 &

 t
ru

s
tw

o
rt

h
in

e
s
s
 c

h
e
c
k

QRCP

CARRQR−B

CARRQR−F

SVD

(c) Scale - R-values

0 50 100 150 200 250
10

−2

10
−1

10
0

10
1

10
2

Column No. i

R
a
ti
o
s
 R

(i
,i
)/

σ
(i
),

 u
p
p
e
r

&
 l
o
w

e
r

b
o
u
n
d
s

R
QRCP

(i,i)/σ(i)

R
CARRQRB

(i,i)/σ(i)

R
CARRQRF

(i,i)/σ(i)

(d) Scale - ratios

0 50 100 150 200 250

10
−20

10
−15

10
−10

10
−5

10
0

Column No. i

R
−

v
a
lu

e
s
,
s
in

g
u
la

r
v
a
lu

e
s
 &

 t
ru

s
tw

o
rt

h
in

e
s
s
 c

h
e
c
k

QRCP

CARRQR−B

CARRQR−F

SVD

(e) Shaw - R-values

0 50 100 150 200 250
10

−2

10
−1

10
0

10
1

Column No. i

R
a
ti
o
s
 R

(i
,i
)/

σ
(i
),

 u
p
p
e
r

&
 l
o
w

e
r

b
o
u
n
d
s

R
QRCP

(i,i)/σ(i)

R
CARRQRB

(i,i)/σ(i)

R
CARRQRF

(i,i)/σ(i)

(f) Shaw - ratios

0 50 100 150 200 250
10

−20

10
−15

10
−10

10
−5

10
0

10
5

Column No. i

R
−

v
a
lu

e
s
,
s
in

g
u
la

r
v
a
lu

e
s
 &

 t
ru

s
tw

o
rt

h
in

e
s
s
 c

h
e
c
k

QRCP

CARRQR−B

CARRQR−F

SVD

(g) Spikes - R-values

0 50 100 150 200 250
10

−2

10
−1

10
0

10
1

Column No. i

R
a
ti
o
s
 R

(i
,i
)/

σ
(i
),

 u
p
p
e
r

&
 l
o
w

e
r

b
o
u
n
d
s

R
QRCP

(i,i)/σ(i)

R
CARRQRB

(i,i)/σ(i)

R
CARRQRF

(i,i)/σ(i)

(h) Spikes - ratios

0 50 100 150 200 250

10
−20

10
−15

10
−10

10
−5

10
0

10
5

Column No. i

R
−

v
a
lu

e
s
,
s
in

g
u
la

r
v
a
lu

e
s
 &

 t
ru

s
tw

o
rt

h
in

e
s
s
 c

h
e
c
k

QRCP

CARRQR−B

CARRQR−F

SVD

(i) Stewart - R-values

0 50 100 150 200 250
10

−2

10
−1

10
0

10
1

10
2

Column No. i

R
a
ti
o
s
 R

(i
,i
)/

σ
(i
),

 u
p
p
e
r

&
 l
o
w

e
r

b
o
u
n
d
s

R
QRCP

(i,i)/σ(i)

R
CARRQRB

(i,i)/σ(i)

R
CARRQRF

(i,i)/σ(i)

(j) Stewart - ratios

Fig. 7.3. R-values of QR with column pivoting (QRCP), binary-tree-based CARRQR
(CARRQR-B), and flat-tree-based CARRQR (CARRQR-F) and singular values for matrices in
our test set.

35

0 50 100 150 200 250

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Column No. i

R
−

v
a
lu

e
s
,
s
in

g
u
la

r
v
a
lu

e
s
 &

 t
ru

s
tw

o
rt

h
in

e
s
s
 c

h
e
c
k

QRCP

CARRQR−B

CARRQR−F

SVD

(a) Ursell - R-values

0 50 100 150 200 250
10

−2

10
−1

10
0

10
1

Column No. i

R
a
ti
o
s
 R

(i
,i
)/

σ
(i
),

 u
p
p
e
r

&
 l
o
w

e
r

b
o
u
n
d
s

R
QRCP

(i,i)/σ(i)

R
CARRQRB

(i,i)/σ(i)

R
CARRQRF

(i,i)/σ(i)

(b) Ursell - ratios

0 50 100 150 200 250

10
−20

10
−15

10
−10

10
−5

10
0

Column No. i

R
−

v
a
lu

e
s
,
s
in

g
u
la

r
v
a
lu

e
s
 &

 t
ru

s
tw

o
rt

h
in

e
s
s
 c

h
e
c
k

QRCP

CARRQR−B

CARRQR−F

SVD

(c) Wing - R-values

0 50 100 150 200 250
10

−2

10
−1

10
0

10
1

Column No. i

R
a
ti
o
s
 R

(i
,i
)/

σ
(i
),

 u
p
p
e
r

&
 l
o
w

e
r

b
o
u
n
d
s

R
QRCP

(i,i)/σ(i)

R
CARRQRB

(i,i)/σ(i)

R
CARRQRF

(i,i)/σ(i)

(d) Wing - ratios

Fig. 7.4. R-values of QR with column pivoting (QRCP), binary-tree-based CARRQR
(CARRQR-B), and flat-tree-based CARRQR (CARRQR-F) and singular values for matrices in
our test set.

of size mb/Pr × nb/Pc.

#flops =

n/b∑
j=1

(
2mbn

2
b

PPc
+

2n3
b

3P 3
c

log2 Pr

)
=

2

3

mn2 − n3/4

P

n

bPc
+

1

6

n3

P 2
c

n

bPc
log2 Pr

#words =
n2
b

2P 2
c

log2 (Pr) ≈
1

6

n2

Pc

n

bPc
log2 (Pr)

#messages =
n

b
log2 Pr

• Each processor performs locally QR with column pivoting of a matrix of size
nb/Pc × nb/Pc to select b local pivot columns.

#flops =

n/b∑
j=1

4n3
b

3P 3
c

=
1

3

n3

P 2
c

n

bPc

• Reduce operation: for each level of the reduction tree of depth log2Pc perform:
– Processors in the same row grid exchange their pivot columns

#words =

n/b∑
j=1

mbb

Pr
log2 Pc ≈

mn− n2/2

Pr
log2 Pc

#messages =
n

b
log2 Pc

– Processors in the same column grid perform TSQR factorization of ma-

36

trices of size mb × 2b.

#flops =

n/b∑
j=1

(
2mb(2b)

2

Pr
+

2(2b)3

3
log2 Pr

)
log2 Pc =

4(2mnb− n2b)

Pr
log2 Pc +

16nb2

3
log2 Pr log2 Pc

#words =

n/b∑
j=1

4b2

2
log2 (Pr) log2 (Pc) = 2nb log2 (Pr) log2 (Pc)

#messages =
n

b
log2 (Pr) log2 (Pc)

– Processors perform QR with column pivoting factorization of the matrix
of size 2b× 2b of the R factor obtained from TSQR at each node of the
reduction tree in the current level.

#flops =

n/b∑
j=1

4(2b)3

3
log2 Pc ≈ 11nb2 log2 Pc

• The b pivot columns are permuted in the diagonal positions,

#words =

n/b∑
j=1

mbb

Pr
=
mn− n2/2

Pr

#messages =
n

b
log2 Pc

Hence the additional cost introduced by tournament pivoting is:

#flops =
2

3

mn2 − n3/4

P

n

bPc
+

1

6

n3

P 2
c

n

bPc
(log2 Pr + 2)

+
4(2mnb− n2b)

Pr
log2 Pc +

16nb2

3
log2 Pr log2 Pc + 11nb2 log2 Pc

#words =
1

6

n2

Pc

n

bPc
log2 (Pr) +

mn− n2/2

Pr
(log2 Pc + 1) + 2nb log2 (Pr) log2 (Pc)

#messages =
n

b
(log2 (Pr) + 2 log2 (Pc) + log2 (Pr) log2 (Pc))

We analyze now the algorithm that uses tournament pivoting on column blocks
of size 2b at each step of the factorization. At each step of the block algorithm,
tournament pivoting performs the following operations:

• At the leaves of the reduction tree, the processors in each column grid perform
TSQR factorization of matrices of size mb × 2b, followed by the QR with

37

column pivoting of the R factor of size 2b× 2b, to identify b pivot columns.

#flops ≤
n/b∑
j=1

(
2mb4b

2

Pr
+

2(2b)3

3
log2 (Pr) +

32

3
b3
)

nb
2bPc

≈ 2mn2 − 2n3/3

P
+

4n2b

3Pc
(log2 (Pr) + 2)

#words =

n/b∑
j=1

2b2
nb

2bPc
log2 (Pr) =

n2

2Pc
log2 (Pr)

#messages =

n/b∑
j=1

nb
2bPc

log2 (Pr) =
n2

4b2Pc
log2 (Pr)

• For each level of the reduction tree of depth log2

(
nb

2b

)
do

– Processors in the same row grid exchange their portions of the previously
selected b pivot columns. This communication is performed only in the
last log2 (Pc) levels of the reduction tree, since in the previous levels the
columns reside on a same processor.

#words ≤
n/b∑
j=1

mb

Pr
b log2 (Pc) =

mn− n2/2

Pr
log2 (Pc)

#messages ≤ n

b
log2 (Pc)

– Processors in the same column grid perform TSQR factorization of ma-
trices of size mb × 2b, followed by the QR with column pivoting of the
R factor of size 2b × 2b, to identify b pivot columns. The cost at each
level is the same as the cost at the leaves of the reduction tree.

#flops ≤
n/b∑
j=1

log2 (nb/(2bPc))∑
i=1

(
2mb4b

2

Pr
+

2(2b)3

3
log2 (Pr) +

32

3
b3
)

1

2i
nb

2bPc
+

+

n/b∑
j=1

(
2mb4b

2

Pr
+

2(2b)3

3
log2 (Pr) +

32

3
b3
)

log2 (Pc)

≈ 2mn2 − 2n3/3

P
+

4n2b

3Pc
(log2 (Pr) + 2) +

+
4(2mnb− n2b)

Pr
log2 (Pc) +

16

3
nb2 log2 (Pr) log2 (Pc) +

32

3
nb2 log2 (Pc)

#words =
n2

2Pc
log2 (Pr) + 2nb log2 (Pr) log2 (Pc)

#messages =
n2

4b2Pc
log2 (Pr) +

n

b
log2 (Pr) log2 (Pc)

38

• The b pivot columns are permuted in the diagonal positions.

#words =

n/b∑
j=1

mbb

Pr
=
mn− n2/2

Pr

#messages =
n

b
log2 Pc

Hence the total cost of tournament pivoting is:

#flops =
4mn2 − 4n3/3

P
+

8n2b

3Pc
(log2 (Pr) + 2) +

+
4(2mnb− n2b)

Pr
log2 (Pc) +

16

3
nb2 log2 (Pr) log2 (Pc) +

32

3
nb2 log2 (Pc)

#words =
n2

Pc
log2 (Pr) +

mn− n2/2

Pr
(log2 (Pc) + 1)

#messages =
n2

2b2Pc
log2 (Pr) +

n

b
log2 (Pc)(log2 (Pr) + 1)

Performance with optimal layout. We analyze the two versions of tournament
pivoting when using an optimal layout. As in [10], we use the following values:

Pr =

√
mP

n
, Pc =

√
nP

m
and b = B ·

√
mn

P
, (8.1)

These values ensure that CAQR is communication optimal without increasing the
flops count. With these values, for the tournament pivoting with bT = 2b, we obtain:

#flops=
4mn2 − 4n3/3

P
+

+
mn2

P

(
8B

(
1

3
log2 (Pr) + log2 (Pc) +

2

3

)
+ 32B2

(
1

6
log2 (Pr) log2 (Pc) +

1

3
log2 (Pc)

))
By choosing B = 8−1 log−1 (Pr) log−1 (Pc), the first term in the flops dominates

the redundant computation due to tournament pivoting. This is a term we cannot
decrease. The counts become:

#flops ≈ 4mn2 − 4n3/3

P
+ cmn2, c < 1

#words =

√
mn3

√
P

log2 P −
1

2

√
n5

√
mP

log2

√
nP

m

#messages ≈ 1

27

√
nP

m

We choose the same optimal layout for tournament pivoting with bT = n/Pc. We
obtain:

#flops=
5mn2 − n3

6PB
+

+
mn2

P

(
8B log2 (Pc) + 32B2

(
1

6
log2 (Pr) log2 (Pc) +

1

3
log2 (Pc)

))
39

The communication becomes:

#words =
1

6

√
mn3

B
√
P

log2 Pr +

√
mn3

√
P

log2 Pc −
1

2

√
n5

√
mP

log2 Pc + 2B

√
mn3

√
P

log2 Pr log2 Pc

#messages =

√
nP

m
(log2 (Pr) + 2 log2 (Pc) + log2 (Pr) log2 (Pc))

8.2. Performance counts of sequential QR with tournament pivoting.
In this section we describe a performance model for sequential QR with tournament
pivoting, which is analogous to the current Algorithm 1 (Parallel QR with tournament
pivoting). Consider that the matrix A to be factored is of size m × n, and that the
sequential algorithm factors the input matrix by traversing panels of b columns. First
we count #flops, #words and #messages ignoring the cost of permuting columns,
then the cost of permuting columns is added.

1. #flops: the total, independent of the shape of the tree (as long as we only
combine two b-column panels at a time) cost of the tournament pivoting
strategy is 4mn2 − (4/3)n3, so twice the rest of QR. Quick derivation: A
single QR factorization of an r × 2b submatrix costs 2r(2b)2 − (2/3)(2b)3 =
8rb2−(16/3)b3. The subsequent RRQR on the 2b×2b R matrix costs another
O(b3), so one step of the tournament costs 8rb2 + O(b3) flops. Whether we
use a flat, binary or other kind of tree, if we started with c columns, and so
(c/b) panels of b columns each, the cost of the tournament is (c/b− 1) times
as much, or 8rcb+O(cb2). Going back to the original mxn matrix, there are
n/b− 1 tournaments with a total cost of

#flops =
∑

i=0:n/b−1

[8(m−ib)(n−ib)b+O((n−ib)b2)] = 4mn2−(4/3)n3+O(mnb).

2. #words: If we choose b = Θ(M1/2) where M is cache size, so that we can
do an r× 2b QR decomposition with a flat tree and read the panel just once,
the #words is 2rb for a single r× 2b QR factorization, 2rc for a tournament
on an r × c matrix, and altogether

#words =

n/b−1∑
i=0

2(m−ib)(n−ib) = mn2/b−(1/3)n3/b+O(mn) = Θ(mn2/M1/2)

which is the desired lower bound.
3. #messages: If we use a blocked data structure where each b× b block costs

1 message to access, then one r× 2b QR decomposition with a flat tree costs
(2rb/b2) = 2r/b messages, so we just divide #words by b2 = Θ(M) to get
#messages = mn2/b3 − (1/3)n3/b3 + O(mn/b2) = Θ(mn2/M3/2) which is
the desired lower bound.

Now we add the cost of permuting columns. This occurs both during the tourna-
ment, to build the r × 2b matrix analyzed at each step, and after the b columns are
selected by the tournament and must be moved to the front of the matrix. One can
imagine interleaving these two operations, or doing them separately. For simplicity, I
will describe the costs of doing them separately.

The basic permutation operation during the tournament is to take the list of b
selected columns of the 2b analyzed at a tournament stage, and build a new packed
r× b matrix from them. We assume 3b× b blocks fit in fast memory at the same time:

40

for i = 1 to r/b

read i-th b-by-b blocks of two input r-by-b matrices

select b columns from these 2b columns of length b

pack them into a b-by-b block

write block to slow memory

endfor

This costs #words = 3rb and #messages = 3r/b. An entire tournament on an
r× c matrix costs c/b times as much, independent of the shape of the reduction tree,
or #words = 3rc and #messages = 3rc/b2. Finally, the cost of all the tournaments
on an m× n matrix is

#words =

n/b−1∑
i=0

3(m− ib)(n− ib) = (3/2)mn2/b− (1/2)n3/b+O(mn) = Θ(mn2/M1/2)

#messages = (3/2)mn2/b3 − (1/2)n3/b3 +O(mn/b2) = Θ

(
mn2

M3/2

)
as desired.

Now suppose we have completed a tournament and need to go back to the original
matrix and permute its columns correspondingly. Note that we must permute not just
within the trailing (m − ib) × (n − ib) submatrix, but also the trailing m × (n − ib)
submatrix, i.e. the upper rows of the R factor must also be permuted. We organize
the permutation in two phases:

1. a collection of transpositions, each one swapping a desired column from a
later panel with an undesired column from the current panel

2. any subsequent reordering within the current panel.
So given an m× b panel at the left of an m× c submatrix, the algorithm is as follows:

for i = 1 to m/b

read i-th b-by-b block of first m-by-b panel (at left)

for j = 2 to c/b

if any transpositions involve j-th m/b p

endfor

endfor

41

