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Abstract

Linear least squares (LLS) is a classical linear algebra problem in scien-
tific computing, arising for instance in many parameter estimation prob-
lems. In addition to computing efficiently LLS solutions, an important
issue is to assess the numerical quality of the computed solution. The no-
tion of conditioning provides a theoretical framework that can be used to
measure the numerical sensitivity of a problem solution to perturbations
in its data. We recall some results for least squares conditioning and we
derive a statistical estimate for the conditioning of an LLS solution. We
present numerical experiments to compare exact values and statistical es-
timates. We also propose performance results using new routines on top
of the multicore-GPU library MAGMA. This set of routines is based on an
efficient computation of the variance-covariance matrix for which, to our
knowledge, there is no implementation in current public domain libraries
LAPACK and ScaLAPACK.
Keywords: Linear least squares, condition number, statistical condition
estimation, variance-covariance, GPU computing, MAGMA library
AMS Subject Classification (2000): 65F35

1 Introduction

We consider the overdetermined linear least squares (LLS) problem

min
x∈Rn

‖Ax− b‖2, (1)

with A ∈ Rm×n,m ≥ n and b ∈ Rm. Assuming that A is full column rank,
Equation (1) has a unique solution x = A+b where A+ is the Moore-Penrose
pseudoinverse of the matrix A, expressed as A+ = (ATA)−1AT . We can find
for instance in [6, 13, 19] a comprehensive survey of the methods that can be
used for solving efficiently and accurately LLS problems.

The condition number is a measure of the sensitivity of a mapping to per-
turbations. It was initially defined in [25] as the maximum amplification factor
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between a small perturbation in the data and the resulting change in the prob-
lem solution. The perturbations are measured using metrics, for example norms.
Namely, if the solution x of a given problem can be expressed as a function g(y)
of a data y, then if g is differentiable (which is the case for many linear algebra
problems), the condition number of g at y can be defined as (see e.g. [12])

κ(y) = max
z 6=0

‖g′(y).z‖
‖z‖ . (2)

From this definition, κ(y) is a quantity that, for a given perturbation size on
the data y, allows us to predict to first order the perturbation size on the so-
lution x. Associated with a backward error [29], condition numbers are useful
to assess the numerical quality of a computed solution. Indeed numerical al-
gorithms are always subject to errors although their sensitivity to errors may
vary. These errors can have various origins like for instance data uncertainty
due to instrumental measurements or rounding and truncation errors inherent
to finite precision arithmetic.

LLS can be very sensitive to perturbations in data in particular when the
right-hand side is too far from the column space (see [20, p. 98]). It is then
crucial to be able to assess the quality of the solution in practical applications.
It was shown in [14] that the 2-norm condition number cond(A) of the matrix A
plays a significant role in LLS sensitivity analysis. It was later proved in [28] that
the sensitivity of LLS problems is proportional to cond(A) when the residual
vector is small and to cond(A)2 otherwise. Then [12] provided a closed formula
for the condition number of LLS problems, using the Frobenius norm to measure
the perturbations of A. Since then many results on normwise LLS condition
numbers have been published (see e.g. [2, 6, 11, 15, 16]).

It was observed in [18] that normwise condition numbers can lead to a loss
of information since they consolidate all sensitivity information into a single
number. Indeed in some cases this sensitivity can vary significantly among the
different solution components (some examples for LLS are presented in [2, 22]).
To overcome this issue, it was proposed the notion of “componentwise” condition
numbers or condition numbers for the solution components [9]. Note that this
approach must be distinguished from the componentwise metric also applied
to LLS for instance in [4, 10]. This approach was generalized by the notion of
partial or subspace condition numbers where we study the conditioning of LTx
with L ∈ Rn×k, k ≤ n, proposed for instance in [2, 5] for least squares and
total least squares, or [8] for linear systems. When L is a canonical vector ei,
it is equivalent to the condition number of the ith component, while when L is
the identity matrix, it is the same as the classical condition number mentioned
above. The motivation for computing the conditioning of LTx can be found for
instance in [2, 3] for normwise LLS condition numbers.

Even though condition numbers provide interesting information about the
quality of the computed solution, they are expected to be calculated in an
acceptable time compared to the cost for the solution itself. Computing the
exact (subspace or not) condition number requires O(n3) flops when the LLS
solution x has been aready computed (e.g., using a QR factorization) and can be
reused to compute the conditioning [2, 3]. This cost is affordable when compared
to the cost for solving the problem (O(2mn2) flops when m � n). However
statistical estimates can reduce this cost to O(n2) [17, 21]. The theoretical



3

quality of the statistical estimates can be formally measured by the probability
to give an estimate in a certain range around the exact value.

This paper is organized as follows. In Section 2 we first summarize some ex-
isting results for the condition numbers of the LLS solution or its components.
For each of these quantities, we propose practical algorithms and evaluate the
computational cost. More specifically in Section 2.1 we derive a new expres-
sion for the statistical estimate of the conditioning of x. Then in Section 3 we
present numerical experiments to compare the LLS conditioning with their cor-
responding statistical estimates. We also propose performance results for the
computation of these quantities using new routines on top of the MAGMA [27]
parallel library. For the exact values, these routines are based on the computa-
tion of the variance-covariance for which, to our knowledge, there is no routine
in the public domain libraries LAPACK [1] and ScaLAPACK [7], contrary to the
NAG [26] library. Our implementation takes advantage of the current hybrid
multicore-GPU architectures and aims at being integrated into MAGMA.

Notations A ∈ Rm×nr means that A is a m-by-n matrix of rank r. The nota-
tion ‖·‖2 applied to a matrix (resp. a vector) refers to the spectral norm (resp.
the Euclidean norm ) and ‖·‖F denotes the Frobenius norm of a matrix. The ma-
trix I is the identity matrix and ei is the ith canonical vector. The uniform con-
tinuous distribution between a and b is abbreviated U(a, b) and the normal dis-
tribution of mean µ and variance σ2 is abbreviated N (µ, σ2). cond(A) denotes
the 2-norm condition number of a matrix A, defined as cond(A) = ‖A‖2‖A+‖2.
The notation | · | applied to a matrix or a vector holds componentwise.

2 Condition estimation for linear least squares

In Section 2.1 we are concerned in calculating the condition number of the LLS
solution x and in Section 2.2 we compute or estimate the conditioning of the
components of x. We suppose that the LLS problem has already been solved
using a QR factorization (the normal equations method is also possible but the
condition number is then proportional to cond(A)2 [6, p. 49]). Then the solution
x, the residual r, and the factor R ∈ Rn×n of the QR factorization of A are
readily available (we recall that the Cholesky factor of the normal equations is,
in exact arithmetic, equal to R up to some signs). We also make the assumption
that both A and b can be perturbed, these perturbations being measured using

the weighted product norm ‖(∆A,∆b)‖F =
√
‖∆A‖2F + ‖∆b‖22. In addition to

providing us with simplified formulas, this product norm has the advantage,
mentioned in [15], to be appropriate for estimating the forward error obtained
when the LLS problem is solved via normal equations.

2.1 Conditioning of the least squares solution

Exact formula We can obtain from [3] a closed formula for the condition
number of the LLS solution as

κLS = ‖R−1‖2
(
‖R−1‖22‖r‖22 + ‖x‖22 + 1

) 1
2 . (3)

This equation requires mainly to compute the minimum singular value of the
matrix A (or R), which can be done using iterative procedures like the inverse
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power iteration on R, or more expensively with the full SVD of R (O(n3) flops).
Note that ‖R−T ‖2 can be approximated by other matrix norms (see [19, p.
293]).

Statistical estimate Similarly to [8] for linear systems, we can estimate the
condition number of the LLS solution using the method called small-sample
theory [21] that provides statistical condition estimates for matrix functions. By
Taylor’s theorem, the forward error ∆x on the solution x(A, b) can be expressed
as

∆x = x′(A, b).(∆A,∆b) +O(‖(∆A,∆b)‖2F ). (4)

The notation x(A, b) means that x is a function of the dataA and b and x′(A, b) is
the derivative of this function. x′(A, b).(∆A,∆b) denotes the image of (∆A,∆b)
by the linear function x′(A, b). Then, as mentioned in Equation (2), the condi-
tion number of x corresponds to the operator norm of x′(A, b), which is a bound
to first order on the sensitivity of x at (A, b). We now use [21] to estimate ‖∆x‖2
by

ξ(q) =
ωq
ωn

√
|zT1 ∆x|2 + · · ·+ |zTq ∆x|2, (5)

where z1, · · · , zq are random orthogonal vectors selected uniformly and ran-
domly from the unit sphere in n dimensions, and ωq is the Wallis factor defined
by

ω1 = 1,

ωq =
1 · 3 · 5 · · · (q − 2)

2 · 4 · 6 · · · (q − 1)
for q odd,

ωq =
2

π

2 · 4 · 6 · · · (q − 2)

1 · 3 · 5 · · · (q − 1)
for q even.

ωq can be approximated by
√

2
π(q− 1

2 )
.

It comes from [21] that if for instance we have q = 3, then the probability
that ξ(q) lies within a factor α of ‖∆x‖2 is

Pr(
‖∆x‖2
α

≤ ξ(q) ≤ α ‖∆x‖2) ≈ 1− 32

3π2α3
. (6)

For α = 10, we obtain a probability of 99.9%.
For each i ∈ {1, · · · , q}, using Equation (2) we have the first-order bound

|zTi ∆x| ≤ κi ‖(∆A,∆b)‖F , (7)

where κi denotes the condition number of the function zTi x(A, b). Then using (5)
and (7) we get

ξ(q) ≤ ωq
ωn

(
q∑
i=1

κ2i

) 1
2

‖(∆A,∆b)‖F .

Since on the other hand we have

‖∆x‖2 ≤ κLS ‖(∆A,∆b)‖F ,
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then we will consider that

κ̄LS =
ωq
ωn

(
q∑
i=1

κi
2

) 1
2

(8)

is an estimate for κLS .
We point out that κ̄LS is a scalar quantity that must be distinguished from

the estimate given in [22] which is a vector. Indeed the small-sample theory
is used here to derive an estimate of the condition number of x whereas it is
used in [22] to derive estimates of the condition numbers of the components of
x (see Section 2.2). Now we can derive Algorithm 2.1 that computes κ̄LS as
expressed in Equation (8) and using the condition numbers of zTi x. The vectors
z1, · · · , zq are obtained for instance via a QR factorization of a random matrix
Z ∈ Rn×q. The condition number of zTi x can be computed using the expression
given in [3]) as

κi =
(
‖R−1R−T zi‖22‖r‖22 + ‖R−T zi‖22(‖x‖22 + 1)

) 1
2 . (9)

The accuracy of the estimate can be tweaked by modifying the number q of
considered random samples. The computation of κ̄LS requires computing the
QR factorization of an n× q matrix for O(nq2) flops. It also involves solving q
times two n× n triangular linear systems, each triangular system being solved
in O(n2) flops. The resulting computational cost is O(2qn2) flops (if n� q).

Algorithm 2.1 Statistical condition estimation for linear least squares solution
(SCE LLS)

Require: q ≥ 1, the number of samples
Generate q vectors z1, z2, ..., zq ∈ Rn with entries in U(0, 1)
Orthonormalize the vectors zi using a QR factorization
for j = 1 to q do

Compute κj =
(
‖R−1R−T zj‖22‖r‖22 + ‖R−T zi‖22(‖x‖22 + 1)

) 1
2

end for
Compute κ̄LS =

ωq

ωn

√∑q
j=1 κ

2
j with ωq =

√
2

π(q− 1
2 )

2.2 Componentwise condition estimates

In this section, we focus on calculating the condition number for each component
of the LLS solution x. The first one is based on the results from [3] and enables
us to compute the exact value of the condition numbers for the ith component
of x. The other is a statistical estimate from [22].

Exact formula By considering in Equation (9) the special case where zi = ei,
we can express in Equation (10) the condition number of the component xi =
eTi x and then calculate a vector κCW ∈ Rn with components κi being the exact
condition number for the ith component expressed by

κi =
(
‖R−1R−T ei‖22‖r‖22 + ‖R−T ei‖22(‖x‖22 + 1)

) 1
2 . (10)
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The computation of one κi requires two triangular solves (RT y = ei and Rz = y)
corresponding to 2n2 flops. When we want to compute all κi, it is more efficient
to solve RY = I and then compute Y Y T , which requires about 2n3/3 flops.

Statistical condition estimate We can find in [22] three different algorithms
to compute statistical componentwise condition estimation for LLS problems.
Algorithm 2.2 corresponds to the algorithm that uses unstructured perturba-
tions and it can be compared with the exact value given in Equation (10).

Algorithm 2.2 computes a vector κ̄CW = (κ̄1, · · · , κ̄n)
T

containing the statisti-
cal estimate for the κi’s. Depending on the needed accuracy for the statistical
estimation, the number of random perturbations q ≥ 1 applied to the input data
in Algorithm 2.2 can be adjusted. This algorithm involves two n× n triangular
solves with q right-hand sides, which requires about qn2 flops.

Algorithm 2.2 Componentwise statistical condition estimate for linear least
squares (SCE LLS CW)

Require: q ≥ 1, the number of perturbations of input data
for j = 1 to q do

Generate Sj ∈ Rn×n, gj ∈ Rn and hj ∈ Rn with entries in N (0, 1)
Compute uj = R−1(gj − Sjx+ ‖Ax− b‖2R−Thj)

end for
Let p = m(n+ 1) and compute vector κ̄CW =

∑q
i=1 |uj |
qωp
√
p with ωq =

√
2

π(q− 1
2 )

3 Numerical experiments

In the following experiments, random LLS problems are generated using the
method given in [24] for generating LLS test problems with known solution x
and residual norm. Random problems are generated as [A, x, r, b] = P (m,n, ρ, l)
such that A ∈ Rm×n, ‖r‖2 = ρ and cond(A) = nl. The matrix A is generated
using

A = Y

(
D
0

)
ZT , Y = I − 2yyT , Z = I − 2zzT

where y ∈ Rm and z ∈ Rn are random unit vectors and D = n−ldiag(nl, (n −
1)l, (n− 2)l, · · · , 1). We have x = (1, 22, ..., n2)T , the residual vector is given by

r = Y

(
0
v

)
where v ∈ Rm−n is a random vector of norm ρ and the right-hand

side is given by b = Y

(
DZx
v

)
. In Section 3.1, we will consider LLS problems

of size m× n with m = 9984 and n = 2496.

3.1 Accuracy of statistical estimates

3.1.1 Conditioning of LLS solution

In this section we compare the statistical estimate κLS obtained via Algo-
rithm 2.1 with the exact condition number κLS computed using Equation (3). In
our experiments, the statistical estimate is computed using two samples (q = 2).
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For seven different values for cond(A) = nl (l ranging from 0 to 3, n = 2496)
and several values of ‖r‖2, we report in Table 1 the ratio κ̄LS/κLS , which is the
average of the ratios obtained for 100 random problems.

Table 1: Ratio between exact and statistical condition numbers (q = 2)

cond(A) n0 n
1
2 n1 n

3
2 n2 n

5
2 n3

‖r‖2 = 10−10 57.68 3.32 1.46 1.19 1.10 1.03 1.07

‖r‖2 = 10−5 57.68 3.33 1.45 1.18 1.07 1.09 1.05

‖r‖2 = 1 57.68 3.36 1.45 1.19 1.19 1.05 1.15

‖r‖2 = 105 57.68 3.33 1.24 1.04 1.05 1.05 1.02

‖r‖2 = 1010 57.68 1.44 1.07 1.09 1.00 1.01 1.07

The results in Table 1 show the relevance of the statistical estimate presented
in Section 2.1. For n ≥ 1

2 the averaged estimated values never differ from the
exact value by more than one order of magnitude. We observe that when l tends
to 0 (i.e., cond(A) gets close to 1) the estimate becomes less accurate. This can
be explained by the fact that the statistical estimate κLS is based on evaluating
the Frobenius norm of the Jacobian matrix [17]. Actually some additional ex-

periments showed that κLS/κLS evolves exactly like
∥∥R−1∥∥2

F
/
∥∥R−1∥∥2

2
. In this

particular LLS problem we have∥∥R−1∥∥2
F
/
∥∥R−1∥∥2

2
=

(
1 + (n/(n− 1))2l + (n/(n− 2))2l + · · ·+ n2l

)
/n2l

=

n∑
k=1

1

k2l
.

Then when l tends towards 0,
∥∥R−1∥∥

F
/
∥∥R−1∥∥

2
∼ √n, whereas this ratio gets

closer to 1 when l increases. This is consistent with the well-known inequality
1 ≤

∥∥R−1∥∥
F
/
∥∥R−1∥∥

2
≤ √n. Note that the accuracy of the statistical estimate

does not vary with the residual norm.

3.1.2 Componentwise condition estimation

Figure 1 depicts the conditioning for all LLS solution components, computed as
κi/|xi| where the κi’s are obtained using Equation (10). Figures 1(a) and 1(b)
correspond to random LLS problems with respectively cond(A) = 2.5 · 103 and
cond(A) = 2.5 · 109. These figures show the interest of the componentwise
approach since the sensitivity to perturbations of each solution component varies
significantly (from 102 to 108 for cond(A) = 2.5 · 103, and from 107 to 1016

for cond(A) = 2.5 · 109). The normalized condition number of the solution
computed using Equation (3) is κLS/ ‖x‖2 = 2.5 · 103 for cond(A) = 2.5 ·
103 and κLS/ ‖x‖2 = 4.5 · 1010 for cond(A) = 2.5 · 109, which in both cases
greatly overestimates or underestimates the conditioning of some components.
Note that the LLS sensitivity is here well measured by cond(A) since ‖r‖2 is
small compared to ‖A‖2 and ‖x‖2, as expected from [28] (otherwise it would be
measured by cond(A)2).
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Figure 1: Componentwise condition numbers of LLS (problem size 9984×2496)

In Figure 2 we represent for each solution component, the ratio between
the statistical condition estimate computed via Algorithm 2.2, considering two
samples (q = 2), and the exact value computed using Equation (10). The ratio
is computed as an average on 100 random problems. We observe that this ratio
is lower than 1.2 for the case cond(A) = 2.5 ·103 (Figure 2 (a)) and close to 1 for
the case cond(A) = 2.5 · 109 (Figure 2 (b)), which also confirms that, similarly
to κLS in Section 3.1.1, the statistical condition estimate is more accurate for
larger values of cond(A).
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Figure 2: Comparison between componentwise exact and statistical condition
numbers
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3.2 Computing least squares condition numbers on multicore-
GPU architectures

3.2.1 Variance-covariance matrix

In many physical applications, LLS problems are considered using a statistical
model often referred to as linear statistical model where we have to solve

b = Ax+ ε, A ∈ Rm×nn , b ∈ Rm,

where ε is a vector of random errors having expected value E(ε) = 0 and
variance-covariance V (ε) = σ2

b I. In statistical language, the matrix A is called
the regression matrix and the unknown vector x is called the vector of regres-
sion coefficients. Following the Gauss-Markov theorem [30], the least squares
estimates x̂ is the linear unbiased estimator of x satisfying

x̂ = arg min
x∈Rn

‖Ax− b‖2,

with minimum variance-covariance equal to

C = σ2
b (ATA)−1. (11)

The diagonal elements cii of C give the variance of each component x̂i. The
off-diagonal elements cij , i 6= j give the covariance between x̂i and x̂j . Then
instead of computing condition numbers (which are notions more commonly
handled by numerical linear algebra practitioners) physicists often compute the
variance-covariance matrix whose entries are intimately correlated with condi-
tion numbers κi and κLS mentioned previously.

When the variance-covariance matrix has been computed, the condition
numbers described in Section 2 can be easily obtained. Indeed, we can use

the fact that
∥∥R−1∥∥2

2
=
‖C‖2
σ2
b

, ‖R−T ei‖22 = cii
σ2
b

, and ‖R−1R−T ei‖2 =
‖Ci‖2
σ2
b

where Ci and cii are respectively the ith column and the ith diagonal element
of the matrix C. Then by replacing respectively in Equations (3) and (10) we
get the formulas

κLS =
‖C‖1/22

σb
((m− n)‖C‖2 + ‖x‖22 + 1)1/2, (12)

and

κi =
1

σb
((m− n)‖Ci‖22 + cii(‖x‖22 + 1))1/2. (13)

Note that, when m > n, 1
m−n ‖r‖

2
2 is an unbiased estimate of σ2

b [6, p. 4].

3.2.2 Implementation details

To our knowledge, there is no existing routine in public domain libraries LA-
PACK [1], ScaLAPACK [7], PLASMA [23], MAGMA [27] to compute the
variance-covariance matrix or LLS condition numbers. We propose an imple-
mentation for the MAGMA library (release 1.2.1) which is a dense linear algebra
library for heterogeneous multicore-GPU architectures with interface similar to
LAPACK. We developped a set of routines that compute the following quanti-
ties:
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- Variance-covariance matrix C.

- κLS , condition number of x.

- κCW , vector of the κi’s, condition numbers of the solution components.

- κ̄LS , statistical estimate of κLS .

- κ̄CW , vector of the statistical estimates the κi’s.

The variance-covariance computation requires inverting a triangular matrix
and multiplying this triangular matrix by its transpose (similarly to the LA-
PACK routine DPOTRI [1, p. 26] that computes the inverse of a matrix from
its Cholesky factorization). These operations use a block algorithm which, for
the diagonal blocks, is performed recursively. The recursive part is performed
by the CPU for sake of performance while the rest of the algorithm is executed
on the GPU.

The computation of the exact condition number κLS from the variance-
covariance using Equation (12) involves the computation of the spectral norm
of C which is generally computed via an SVD. However, since A is a full rank
matrix, C is symmetric positive definite and its singular values coincide with its
eigenvalues. Then we use an eigenvalue decomposition of C which is faster than
an SVD because it takes into account the symmetry of C. The tridiagonalization
phase is performed on the GPU while the subsequent eigenvalue computation
is performed on the CPU host.

The statistical estimates computed via Algorithms 2.1 and 2.2 require the
generation and orthonormalization of random vectors followed by 2 triangular
solves. The generation of the random vectors and the triangular solves are exe-
cuted on the GPU. However the orthonormalization is applied to small matrices
(due to the small number of samples) and thus is performed on the CPU because
this procedure would not take advantage of the GPU.

3.2.3 Performance results

In this section we present performance results for computing the variance-
covariance matrix and LLS condition numbers. The tests have been achieved
on a multicore processor Intel Xeon E5645 (2 sockets × 6 cores) running at 2.4
GHz (the cache size per core is 12 MB and the size of the main memory is 48
GB). This system hosts two GPU NVIDIA Tesla C2075 running at 1.15 GHz
with 6 GB memory each. MAGMA was linked with the libraries MKL 10.3.8
and CUDA 4.1, respectively, for multicore and GPU.

We show in Figure 3 the CPU time to compute LLS solution and condition
numbers using 12 threads and 1 GPU. We observe that the computation of the
variance-covariance matrix and of the components conditioning κi’s are signif-
icantly faster than the cost for solving the problem with respectively a time
factor larger than 3 and 2, this factor increasing with the problem size. The κi’s
are computed with the variance-covariance matrix using Equation (13). The
time overhead between the computation of the κi’s and the variance-covariance
computation comes from the computation of the norms of the columns (rou-
tine cublasDnrm2) which has a nonoptimal implementation. As expected, the
routines that compute statistical condition estimates outperform the other rou-
tines. Note that we did not mention on this graph the performance for com-
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puting κLS using Equation (12). Indeed this involves an eigenvalue decomposi-
tion of the variance-covariance matrix (MAGMA routine magma dsyevd gpu),
which turns out to be much slower than the LLS solution (MAGMA routine
magma dgels3 gpu) in spite of a smaller number of arithmetic operations. Even
though the theoretical number of flops for computing κLS is much smaller than
for computing x (O(n3) vs O(mn2)), having an efficient implementation on the
targetted architecture is essential to take advantage of the gain in flops.
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Figure 3: Performance for computing LLS condition numbers with MAGMA

We can illustrate this by comparing in Figure 4 the time for computing an
LLS solution and its conditioning using LAPACK and MAGMA. We observe
that MAGMA provides faster solution and condition number but, contrary to
LAPACK, the computation of the condition number is slower than the time
for the solution, in spite of a smaller flops count. This shows the need for
improving the Gflop/s performance of eigensolvers or SVD solvers for GPUs
but it also confirms the interest of considering statistical estimates on multicore-
GPU architectures to get fast computations.

4 Conclusion

In this paper we studied the condition number of an LLS solution and of its
components. We summarized the exact values and statistical estimates for these
quantities. We also derived an expression for another statistical condition es-
timate for the LLS solution. In numerical experiments we compared the sta-
tistical estimates with the exact values. We proposed a new implementation
for computing the variance-covariance matrix and the condition numbers using
the library MAGMA. The performance results that we obtained on a current
multicore-GPU system confirm the interest of using statistical condition esti-
mates. Subsequently to this work, new routines will be proposed in the next
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Figure 4: Time for LLS solution and condition number

releases of LAPACK and MAGMA to compute the variance-covariance matrix
after a linear regression.
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