
Stability of Methods for Matrix Inversion

Jeremy J. Du Croz � Nicholas J. Higham y

May 7, 1991 In IMA J. Numer. Anal., 12 (January 1992).

Abstract

Inversion of a triangular matrix can be accomplished in several ways. The

standard methods are characterised by the loop ordering, whether matrix-vector

multiplication, solution of a triangular system, or a rank-1 update is done

inside the outer loop, and whether the method is blocked or unblocked. The

numerical stability properties of these methods are investigated. It is shown

that unblocked methods satisfy pleasing bounds on the left or right residual.

However, for one of the block methods it is necessary to convert a matrix

multiplication into the solution of a multiple right-hand side triangular system

in order to have an acceptable residual bound. The inversion of a full matrix

given a factorization PA = LU is also considered, including the special cases of

symmetric inde�nite and symmetric positive de�nite matrices. Three popular

methods are shown to possess satisfactory residual bounds, subject to a certain

requirement on the implementation, and an attractive new method is described.

This work was motivated by the question of what inversion methods should be

used in LAPACK.

Key words: matrix inversion, triangular matrix, error analysis, block al-

gorithm, LAPACK.

AMS(MOS) subject classi�cations. primary 65F05, 65G05.

�Numerical Algorithms Group Ltd., Wilkinson House, Jordan Hill Road, Oxford, OX2 8DR.

(nagjdc@vax.oxford.ac.uk).
yDepartment of Mathematics, University of Manchester, Manchester, M13 9PL, UK.

(mbbgsnh@cms.mcc.ac.uk).

1



1 Introduction

As Forsythe, Malcolm and Moler [8, p .31] point out, \In the vast majority of prac-

tical computational problems, it is unnecessary and inadvisable to actually compute

A�1." Nevertheless, there are some applications that genuinely require computation

of a matrix inverse|see [1, sec. 7.5], [14, p. 342�] and [4,10] for example. LAPACK

[3], like LINPACK before it, will include routines for matrix inversion. LAPACK will

support inversion of triangular matrices and of general, symmetric inde�nite, and

symmetric positive de�nite matrices via an LU (or related) factorization. Each of

these matrix inversions can be done in several ways. For example, in triangular ma-

trix inversion di�erent loop orderings are possible and either triangular matrix-vector

multiplication, solution of a triangular system, or a rank-1 update of a rectangular

matrix can be employed inside the outer loop. As a further example, given a factor-

ization PA = LU , two ways to evaluate A�1 are as A�1 = U�1 � L�1 � P , and as

the solution to UA�1 = L�1 � P . These methods generally achieve di�erent levels

of e�ciency on high-performance computers, and they propagate rounding errors in

di�erent ways. The performance issues are fairly well understood. The purpose of

this work is to investigate the numerical stability properties of the methods, with a

view to guiding the choice of inversion method in LAPACK.

Existing error analysis, such as that in [18,20] and [11], is applicable to two of the

methods considered here (Method 1 and Method A). We believe our analysis for the

other methods to be new. A secondary aim of this work is to use matrix inversion as

a vehicle for illustrating some important principles in error analysis. Our strategy is

to determine what sorts of error bounds we can expect to prove, do the error analysis

in a concise and modular fashion, and then gain further insight from numerical tests.

The quality of an approximation Y � A�1 can be assessed by looking at the right

and left residuals AY � I and Y A� I, and the forward error, Y �A�1. Suppose we

perturb A! A+�A with j�Aj � �jAj, where the absolute value and the inequality

hold componentwise; thus we are making relative perturbations of size at most � to

the elements of A. If Y = (A+�A)�1 then (A+�A)Y = Y (A+�A) = I, so that

jAY � Ij = j�AY j � �jAjjY j; (1.1)

jY A� Ij = jY�Aj � �jY jjAj; (1.2)

2



and, since (A+�A)�1 = A�1 �A�1�AA�1 +O(�2),

jA�1 � Y j � �jA�1jjAjjA�1j+O(�2): (1:3)

(Note that (1.3) can also be derived from (1.1) or (1.2).) The bounds (1.1){(1.3)

represent \ideal" bounds for a computed approximation Y to A�1 if we regard � as

a small multiple of the unit roundo� u. We will show that, for triangular matrix

inversion, appropriate methods do indeed achieve (1.1) or (1.2) (but not both) and

(1.3).

We stress that neither (1.1), (1.2) nor (1.3) implies that Y +�Y = (A+�A)�1 with

k�Ak1 � �kAk1 and k�Y k1 � �kY k1, that is, Y need not be close to the inverse

of a matrix near to A, even in the norm sense. Indeed, such a result would imply

that both the left and right residuals are bounded in norm by (2� + �2)kAk1kY k1,

and this is not the case for any of the methods we will consider. See [15, pp. 375{377]

and [18, sec. 26] for more on this aspect of the stability of matrix inversion.

We will use the following model of 
oating point arithmetic:

fl(x � y) = x(1 + �) � y(1 + �); j�j; j�j � u;

fl(x op y) = (x op y)(1 + �); j�j � u; op = �; =:

We quote the standard result that if L 2 IRn�n is lower triangular then forward

substitution applied to Lx = b produces a computed solution bx that satis�es (see, for

example, [17, pp. 150,408])

(L +�L)bx = b; j�Lj � cnujLj: (1:4)

Here, and below, we use cn to denote a constant of order n. We are not concerned

with the precise values of the constants in the analysis. (See [19, pp. 102,108] for

some comments on the interpretation of the constants.)

To simplify the presentation we introduce a special notation. Let Ai 2 IRmi�ni ,

i = 1: k, be matrices such that the product A1A2 � � �Ak is de�ned and let

p =
k�1X
i=1

ni:

Then �(A1; A2; . . . ; Ak) 2 IRm1�nk denotes a matrix bounded according to

j�(A1; A2; . . . ; Ak)j � cpujA1jjA2j � � � jAkj+O(u2):

3



This notation is chosen so that if bC = fl(A1A2 � � �Ak), with the product evaluated in

any order, then bC = A1A2 � � �Ak +�(A1; A2; . . . ; Ak);

as is easily veri�ed. Note also that the matrix �L in (1.4) can be expressed as �(L),

if we de�ne p = n1 when k = 1.

We consider the inversion of triangular matrices in section 2. The inversion of full

matrices is treated in section 3, and conclusions are given in section 4.

2 Inverting a Triangular Matrix

We consider the inversion of a lower triangular matrix L 2 IRn�n, treating unblocked

and blocked methods separately.

2.1 Unblocked Methods

We focus our attention on two \j" methods that compute L�1 a column at a time.

Analogous \i" and \k" methods exist, which compute L�1 row-wise or use outer

products, respectively, and we comment on them at the end of the section. (The

names \i", \j" and \k" refer to the outermost loop index, according to the convention

introduced by [7], and used in [9], to describe the di�erent possible orderings of the

loops.)

The �rst method computes each column of X = L�1 independently, using con-

ventional forward substitution. We write it as follows, to facilitate comparison with

the second method. We use MATLAB-style indexing notation, as in [9].

Method 1.

for j = 1:n

xjj = l�1jj

X(j + 1:n; j) = �xjjL(j + 1:n; j)

Solve L(j + 1:n; j + 1:n)X(j + 1:n; j) = X(j + 1:n; j) by forward substitution

end

4



In BLAS terminology, this method is dominated by n calls to a level 2 BLAS

routine xTRSV (TRiangular SolVe).

The second method computes the columns in the reverse order. On the jth step it

multiplies by the previously computed inverse L(j+1:n; j+1:n)�1 instead of solving

a system with coe�cient matrix L(j + 1:n; j + 1:n).

Method 2.

for j = n:�1: 1

xjj = l�1jj

X(j + 1:n; j) = X(j + 1:n; j + 1:n)L(j + 1:n; j)

X(j + 1:n; j) = �xjjX(j + 1:n; j)

end

Method 2 uses n calls to the level 2 BLAS routine xTRMV (TRiangular Matrix

times Vector). On most high-performance machines xTRMV can be implemented to

run faster than xTRSV, so Method 2 is generally preferable to Method 1 from the

point of view of e�ciency (see the performance �gures at the end of section 2.2). We

now compare the stability of the two methods.

The result (1.4) shows that the jth column of the computed cX from Method 1

satis�es

(L +�Lj)bxj = ej; j�Ljj � cnujLj:

It follows that we have the componentwise residual bound

jLcX � Ij � cnujLjjcXj (2:1)

and the componentwise forward error bound

jcX � L�1j � cnujL
�1jjLjjcXj: (2:2)

Since cX = L�1 +O(u), (2.2) can be written as

jcX � L�1j � cnujL
�1jjLjjL�1j+O(u2); (2:3)

which is invariant under row and column scaling of L. If we take norms we obtain

normwise relative error bounds that are either row or column scaling independent:

5



from (2.3) we have

kcX � L�1k1
kL�1k1

� cnu cond(L
�1) +O(u2); (2:4)

where cond(A) = k jA�1jjAj k1 is the condition number of Bauer [2] and Skeel [16],

and the same bound holds with cond(L�1) replaced by cond(L).

Notice that (2.1) is a bound for the right residual, LcX � I. This is because

Method 1 is derived by solving LX = I. Conversely, Method 2 can be derived by

solving XL = I, which suggests that we should look for a bound on the left residual

for this method.

Lemma 2.1 The computed inverse cX from Method 2 satis�es

jcXL� Ij � cnujcXjjLj+O(u2): (2:5)

Proof. The proof is by induction on n, the case n = 1 being trivial. Assume the

result is true for n� 1 and write

L =

"
� 0

y M

#
; X = L�1 =

"
� 0

z N

#
;

where �; � 2 IR, y; z 2 IRn�1 and M;N 2 IR(n�1)�(n�1). Method 2 computes the �rst

column of X by solving XL = I according to

� = ��1; z = ��Ny:

In 
oating point arithmetic we obtain

b� = ��1(1 + �); j�j � u;

bz = � b�cNy +�( b�; cN; y):

Thus

b�� = 1 + �;

bz�+ cNy = ��cNy + ��( b�; cN; y):

This may be written as

jcXL� Ij(1:n; 1) �

"
u

ujcN jjyj+ cnu(1 + u)jcN jjyj
#
+O(u2)

� c0n

�
jcXjjLj�(1:n; 1) +O(u2):

By assumption the corresponding inequality holds for the (2:n; 2:n) submatrices and

so the result is proved.

6



Lemma 2.1 shows that Method 2 has a left residual analogue of the right residual

bound (2.1) for Method 1. From (2.5) we obtain the forward error bound

jcX � L�1j � cnujcXjjLjjL�1j+O(u2); (2:6)

which is essentially the same as (2.2), since cX = L�1 +O(u).

Since there is in general no reason to choose between a small right residual and a

small left residual, our conclusion is that Methods 1 and 2 have equally good numerical

stability properties. In fact, more is true: the two methods are \equivalent", in the

sense explained in the following result.

Lemma 2.2 Let L 2 IRn�n be a lower triangular matrix and let J 2 IRn�n be the

exchange matrix, that is, the matrix obtained by reversing the order of the columns of

the identity matrix. Suppose that in Method 1 the triangular solves use multiplication

by the reciprocals of the diagonal elements rather than division by these elements

(thus the only divisions in Method 1 are those to form the reciprocals in the �rst

place). Then Method 2 applied to L is equivalent to Method 1 applied to JLTJ , in the

sense that exactly the same arithmetic operations are performed, although possibly in

a di�erent order.

Proof. Instead of proving the result we will simply verify it for n = 3. We have

L = JLTJ =

2664
l33

l32 l22

l31 l21 l11

3775 :
Method 1 computes the �rst column of L

�1
as

[ l�133 ; �l�122 l
�1
33 l32; l�111

�
�l�133 l31 � l21(�l

�1
22 l

�1
33 l32)

�
]T : (2:7)

On its �rst two stages Method 2 computes N = L(2: 3; 2: 3)�1 as

N =

"
l�122

�l�122 l
�1
33 l32 l�133

#
: (2:8)

Then it obtains the �rst column of L�1 via

L�1(2: 3; 1) = �l�111N

"
l21

l31

#
: (2:9)

It is easy to see from (2.7), (2.8) and (2.9) that the same algebraic expressions are

used to produce L�1(3; 1) and L
�1
(3; 1), and L�1(2; 1) and L

�1
(3; 2) = N(2; 1).

7



Lemma 2.2 implies that Method 2 satis�es the same residual bound as Method 1,

modulo the L ! JLTJ transformation, and so provides an alternative derivation

of (2.5), from (2.1). Another way to express Lemma 2.2 is to say that there exist

implementations of Methods 1 and 2 such that Method 2 applied to L yields identi-

cal rounding errors to Method 1 applied to JLTJ . If the reciprocation assumption

in Lemma 2.2 does not hold, or if we do not specify whether the column scaling

should precede or follow the level 2 BLAS operation in Methods 1 and 2, then the

methods will in general sustain di�erent rounding errors but will satisfy the same

residual bounds (modulo the transformation). More generally, it can be shown that

all three i, j and k inversion variants that can be derived from the equations LX = I

produce identical rounding errors under suitable implementations, and all satisfy the

same right residual bound; likewise, the three variants corresponding to the equation

XL = I all satisfy the same left residual bound. The LINPACK routine xTRDI uses

a k variant derived from XL = I; the LINPACK routines xGEDI and xPODI con-

tain analogous code for inverting an upper triangular matrix (but [6, Chs. 1 and 3]

describes a di�erent variant from the one used in the code).

2.2 Block Methods

Let the lower triangular matrix L 2 IRn�n be partitioned in block form as

L =

2666664
L11

L21 L22
...

. . .

LN1 . . . . . . LNN

3777775 ; (2:10)

where we place no restrictions on the block sizes, other than to require the diagonal

blocks to be square. The most natural block generalizations of Methods 1 and 2 are

as follows. Here, we use the notation Lp:q;r:s to denote the submatrix comprising the

intersection of block rows p to q and block columns r to s of L.

8



Method 1B.

for j = 1:N

Xjj = L�1jj (by Method 1)

Xj+1:N;j = �Lj+1:N;jXjj

Solve Lj+1:N;j+1:NXj+1:N;j = Xj+1:N;j by forward substitution

end

Method 2B.

for j = N :�1: 1

Xjj = L�1jj (by Method 2)

Xj+1:N;j = Xj+1:N;j+1:NLj+1:N;j

Xj+1:N;j = �Xj+1:N;jXjj

end

One can argue that Method 1B carries out the same arithmetic operations as

Method 1, although possibly in a di�erent order, and that it therefore satis�es the

same error bound (2.1). For completeness, we give a direct proof.

Lemma 2.3 The computed inverse cX from Method 1B satis�es

jLcX � Ij � cnujLjjcXj+O(u2): (2:11)

Proof. Equating block columns in (2.11), we obtain the N independent inequal-

ities

jLcX1:N;j � I1:N;jj � cnujLjjcX1:N;jj+O(u2); j = 1:N: (2:12)

It su�ces to verify the inequality with j = 1. Write

L =

"
L11

L21 L22

#
; X =

"
X11

X21 X22

#
;

where L11;X11 2 IRr�r, and L11 is the (1; 1) block in the partitioning of (2.10). X11

is computed by Method 1 and so, from (2.1),

jL11
cX11 � Ij � crujL11jjcX11j = cru

�
jLjjcXj�

11
: (2:13)

9



X21 is computed by forming T = �L21X11 and solving L22X21 = T . The computedcX21 satis�es

L22
cX21 +�(L22;

cX21) = �L21
cX11 +�(L21;

cX11):

Hence

jL21
cX11 + L22

cX21j � cnu
�
jL21jjcX11j+ jL22jjcX21j

�
+O(u2)

= cnu
�
jLjjcX j�

21
+O(u2): (2.14)

Together, (2.13) and (2.14) are equivalent to (2.11) with j = 1, as required.

We can attempt a similar analysis for Method 2B. With the same notation as

above, X11 is computed by Method 2, so that

jcX11L11 � Ij � crujcX11jjL11j+O(u2) = cru
�
jcX jjLj�

11
+O(u2); (2:15)

and X21 is computed as X21 = �X22L21X11. Thus

cX21 = �cX22L21
cX11 +�(cX22; L21; cX11): (2:16)

To bound the left residual we have to post-multiply by L11 and use (2.15):

cX21L11 + cX22L21(I +�(cX11; L11)) = �(cX22; L21; cX11)L11:

This leads to a bound of the form

jcX21L11 + cX22L21j � cnujcX22jjL21jjcX11jjL11j;

which would be of the desired form in (2.5) if it were not for the factor jcX11jjL11j.

This analysis suggests that the left residual is not guaranteed to be small.

This di�culty with the analysis of Method 2B can be overcome by modifying the

method so that instead of multiplying by Xjj we perform a solve with Ljj . This gives

the following variation:

Method 2C.

for j = N :�1: 1

Xjj = L�1jj (by Method 2)

Xj+1:N;j = Xj+1:N;j+1:NLj+1:N;j

Solve Xj+1:N;jLjj = �Xj+1:N;j

end

10



For this method, the analogue of (2.16) is

cX21L11 +�(cX21; L11) = �cX22L21 +�(cX22; L21);

which yields

jcX21L11 + cX22L21j � cnu
�
jcX21jjL11j+ jcX22jjL21j

�
+O(u2):

Hence we have the following result.

Lemma 2.4 The computed inverse cX from Method 2C satis�es

jcXL� Ij � cnujcXjjLj+O(u2):

In summary, block versions of Methods 1 and 2 are available that have the same

residual bounds as the point methods. However, in general, there is no guarantee

that stability properties remain unchanged when we convert a point method to block

form, as shown by Method 2B.

The analysis in this section can be modi�ed to cater for the possibility that matrix

multiplication and solution of a multiple right-hand side triangular system are done

by \fast" techniques|for example, ones based on Strassen's method [12]. The ap-

propriate changes to Lemmas 2.3 and 2.4 are to replace the absolute values by norms

and to modify the constants. See [5] for details of this type of analysis.

Finally, in Table 2.1 we present some performance �gures for inversion of a tri-

angular matrix on a Cray 2. These clearly illustrate the possible gains in e�ciency

from using block methods, and also the advantage of Method 2 over Method 1. For

comparison, the performance of a k variant is also shown (both k variants run at the

same rate). The performance characteristics of the i variants are similar to those of

the j variants, except that since they are row-oriented rather than column-oriented,

they are liable to be slowed down by memory-bank con
icts, page-thrashing or cache-

missing.

2.3 Numerical Experiments

In this section we describe some numerical experiments that provide further insight

into the stability of the methods analysed above. The experiments were performed in

11



Table 2.1: M
op rates for inverting a lower triangular matrix on a Cray 2.

n = 128 n = 256 n = 512 n = 1024

Unblocked: Method 1 95 162 231 283

Method 2 114 211 289 330

k variant 114 157 178 191

Blocked: Method 1B 125 246 348 405

(block size = 64) Method 2C 129 269 378 428

k variant 148 263 344 383

MATLAB, which has a unit roundo� u � 2:2� 10�16. We simulated single precision

arithmetic of unit roundo� uSP = 2�23 � 1:2 � 10�7 by rounding the result of every

arithmetic operation to 23 signi�cant bits. We regard the computed \double precision

inverse" as being exact when computing forward errors.

One of the main aims of the experiments is to determine the behaviour of those

left or right residuals for which we do not have bounds. If we �nd a numerical example

where a residual is large then we are assured that it is not possible to obtain a small

bound through rounding error analysis.

An important point to stress is that large residuals are hard to �nd! The examples

we present were found after careful searching. We had to look at very ill-conditioned

matrices to �nd interesting behaviour. Our experience ties in with the accepted fact

that \The solutions of triangular systems are usually computed to high accuracy"

[17, p. 150]|see [11] for an investigation of this phenomenon.

We present numerical results in Tables 2.2 and 2.3. For each method and matrix

we tabulate left and right componentwise and normwise relative residuals, which in

the \right" case are given by

minf� : jLcX � Ij � �jLjjcXjg and
kLcX � Ik1

kLk1kcXk1 ; (2:17)

respectively. We also report the normwise relative error

kL�1 � cXk1
kL�1k1

(2:18)

12



Table 2.2: L = qr(vand(15))
T
.

�1(L) = 2:18e12

cond(L) = 3:62e11, cond(L�1) = 2:33e7

Method 1 Comp'wise Normwise

left residual 2.99e-4 3.06e-5

right residual 8.35e-8 2.23e-13

relative error 7.54e-2 5.05e-4

Method 2 Comp'wise Normwise

left residual 1.16e-7 2.01e-9

right residual 5.61e-5 7.50e-11

relative error 3.07e-2 8.12e-4

and the componentwise relative error (for which we have no theoretical bounds)

minf� : jL�1 � cXj � �jL�1jg: (2:19)

The reason for looking at the normwise quantities is that they may be small when

the corresponding componentwise ones are large.

The matrix L in Table 2.2 is the transpose of the upper triangular QR factor of

the 15 � 15 Vandermonde matrix V = (�i�1j ), where the �j are equally spaced on

[0; 1]. We see that (2.1) is satis�ed for Method 1 and (2.5) for Method 2, but not vice

versa. It is interesting to note that both the normwise relative errors are three orders

of magnitude smaller than the upper bound in (2.4).

For Table 2.3 we used a 10 � 10 matrix L generated as the eighth power of

a random lower triangular matrix with elements from the normal (0; 1) distribu-

tion. (This matrix is generated in MATLAB by the statements rand('normal'),

rand('seed',71), L = tril(rand(10))^8.) For each block method we used a �xed

block size of 2. Table 2.3 con�rms Lemmas 2.3 and 2.4. It also shows that both

residuals can be large simultaneously for Method 2B; therefore the method must be

regarded as unstable when the block size exceeds 1.

13



Table 2.3: L = tril(rand(10))8.

�1(L) = 8:67e12

cond(L) = 3:41e12, cond(L�1) = 2:28e11

Method 1B Comp'wise Normwise

left residual 1.12e-2 3.47e-3

right residual 1.13e-7 1.18e-9

relative error 1.88e-1 4.49e-2

Method 2B Comp'wise Normwise

left residual 5.16e-2 2.70e-3

right residual 7.54e-2 1.07e-3

relative error 1.55e1 1.05e0

Method 2C Comp'wise Normwise

left residual 9.58e-8 1.60e-8

right residual 7.50e-2 5.83e-4

relative error 3.91e-1 3.06e-2

14



3 Inverting a Full Matrix

In this section we consider four methods for inverting a full matrixA 2 IRn�n given an

LU factorization computed by Gaussian elimination with partial pivoting (GEPP).

We assume, without loss of generality, that there are no row interchanges. Recall

that the computed LU factors L and U satisfy (see, for example, [13])

LU = A+ E; jEj � cnujLjjU j: (3:1)

3.1 Method A

Perhaps the most frequently described method for computing X = A�1 is the follow-

ing one.

Method A.

for j = 1:n

Solve Axj = ej

end

Compared to the methods to be described below, Method A has the disadvantages

of requiring more temporary storage and of not having a convenient block version.

However, it is simple to analyse. Using (3.1) and (1.4) we �nd that

(A+�Aj)bxj = ej; j�Ajj � c0nujLjjU j+O(u2);

and so

jAcX � Ij � c0nujLjjU jj
cXj+O(u2): (3:2)

This bound departs from the form (1.1) only in that jAj is replaced by its upper

bound jLjjU j+O(u). The forward error bound corresponding to (3.2) is

jcX �A�1j � c0nujA
�1jjLjjU jjcXj+O(u2): (3:3)

3.2 Method B

Next, we consider the method used in LINPACK's routine xGEDI [6, Ch. 1].

15



Method B.

Compute U�1 and then solve for X the equation XL = U�1.

To analyse this method we will assume that U�1 is computed by an analogue of

Method 2 or 2C for upper triangular matrices that obtains the columns of U�1 in the

order 1 to n. Then the computed inverse XU � U�1 will satisfy the residual bound

jXUU � Ij � cnujXU jjU j+O(u2):

We also assume that the triangular solve from the right with L is done by backward

substitution. The computed cX therefore satis�es

cXL = XU +�(cX;L)

and so cX(A+ E) = cXLU = XUU +�(cX;L)U:

This leads to the residual bound

jcXA� Ij � cnu
�
jU�1jjU j+ 2jcX jjLjjU j�+O(u2)

� c0nuj
cXjjLjjU j+O(u2); (3.4)

which is the left residual analogue of (3.2). From (3.4) we obtain the forward error

bound

jcX �A�1j � c0nuj
cXjjLjjU jjA�1j+O(u2):

Note that Methods A and B are equivalent, in the sense that Method A solves for

X the equation LUX = I while Method B solves XLU = I. Thus the two methods

carry out analogous operations but in di�erent orders. It follows that the methods

must satisfy analogous residual bounds, and so (3.4) can be deduced from (3.2).

We mention in passing that the LINPACK manual [6, p. 1.20] states that for

Method B a bound holds of the form

kAcX � Ik � dnukAkkcXk:
This is incorrect, although counter-examples are rare (one is given in Table 3.2); it is

the left residual that is bounded this way, as follows from (3.4).

16



3.3 Method C

The next method that we consider appears to be new. It solves the equation UXL =

I, computing X a partial row and column at a time. To derive the method partition

X =

"
x11 xT12

x21 X22

#
; L =

"
1 0

l21 L22

#
; U =

"
u11 uT12

0 U22

#
;

where the (1; 1) blocks are scalars, and assume that the trailing submatrix X22 is

already known. Then the rest of X is computed according to

x21 = �X22l21;

xT12 = �uT12X22=u11;

x11 = 1=u11 � xT12l21:

The method can also be derived by forming the product X = U�1 � L�1 using the

representation of L and U as a product of elementary matrices (and diagonal matrices

in the case of U). In detail the method is as follows.

Method C.

for k = n:�1: 1

X(k + 1:n; k) = �X(k + 1:n; k + 1:n)L(k + 1:n; k)

X(k; k + 1:n) = �U(k; k + 1:n)X(k + 1:n; k + 1:n)=ukk

xkk = 1=ukk �X(k; k + 1:n)L(k + 1:n; k)

end

The method can be implemented so that X overwrites L and U , with the aid of a

work vector of length n (or a work array to hold a block row or column in the block

case). Because most of the work is performed by matrix-vector (or matrix-matrix)

multiplication Method C is likely to be the fastest of those considered in this section

on many machines. (Some performance �gures are given at the end of the section.)

A straightforward error analysis of Method C shows that the computed cX satis�es

jUcXL� Ij � cnujU jjcXjjLj+O(u2): (3:5)

We will refer to UcXL� I as a \mixed residual". From (3.5) we can obtain bounds on

the left and right residual that are weaker than those in (3.4) and (3.2) by a factor

17



jU�1jjU j on the left or jLjjL�1j on the right, respectively. We also obtain from (3.5)

the forward error bound

jcX �A�1j � cnujU
�1jjU jjcXjjLjjL�1j+O(u2);

which is (3.3) with jA�1j replaced by its upper bound jU�1jjL�1j + O(u) and the

factors re-ordered.

The LINPACK routine xSIDI uses what is essentially a special case of Method C.

This routine inverts a symmetric inde�nite matrix A 2 IRn�n factored

A = UDUT ; U = UnUn�1 � � �U1;

by forming the product

A�1 = U�T
n � � �U�T

1 D�1U�1
1 � � �U�1

n :

Here, D = DT is a block diagonal matrix with diagonal blocks of order 1 or 2, and

Uk is a matrix di�ering from the identity above the diagonal in s adjacent columns,

where s = 1 or 2; we have ignored the permutations required by the pivoting strategy.

Analogously to (3.5) a residual bound holds of the form

jUTcXU �XDj � cnujU
T jjcXjjU j+O(u2);

where XD is the computed inverse of D. Multiplying on the left by D, and using a

bound for the left residual of XD, we obtain

jDUT cXU � Ij � cnu(jDjjU
T jjcX jjU j+ jDjjXDj) +O(u2):

3.4 Method D

The next method has been used in preliminary versions of the LAPACK routine

xGETRI.

Method D.

Compute L�1 and U�1 and then form A�1 = U�1 � L�1.

The advantage of this method is that no extra workspace is needed; U�1 and L�1

can overwrite U and L, and can then be overwritten by their product which is formed

by steps analogous to those of LU factorization.

18



To analyse Method D we will assume initially that L�1 is computed by Method 2

(or Method 2C) and, as for Method B above, that U�1 is computed by an analogue

of Method 2 or 2C for upper triangular matrices. We have

cX = XUXL +�(XU ;XL): (3:6)

Since A = LU � E,

cXA = XUXL(LU � E) + �(XU ;XL)A

= XUXLLU �XUXLE +�(XU ;XL)A: (3.7)

Rewriting the �rst term of the right-hand side using XLL = I + �(XL; L), and

similarly for U , we obtain

cXA� I = �(XU ; U) +XU�(XL; L)U �XUXLE +�(XU ;XL)A; (3:8)

and so

jcXA� Ij � c0nu
�
jU�1jjU j+ 2jU�1jjL�1jjLjjU j+ jU�1jjL�1jjAj

�
+O(u2)

� c00nujU
�1jjL�1jjLjjU j+O(u2): (3.9)

This bound is weaker than (3.4) to the extent that jcXj � jU�1jjL�1j + O(u). Note,

however, that the term �(XU ;XL)A in the residual (3.8) is an unavoidable conse-

quence of forming XUXL, and so the bound (3.9) is essentially the best possible.

The analysis above assumes that XL and XU both have small left residuals. If

they both have small right residuals, as when they are computed using Method 1,

then it is easy to see that a bound analogous to (3.9) holds for the right residual

AcX � I. If XL has a small left residual and XU has a small right residual (or vice

versa) then it does not seem possible to derive a bound of the form (3.9). However,

we have

jXLL� Ij = jL�1(LXL � I)Lj � jL�1jjLXL � IjjLj; (3:10)

and since L is unit lower triangular with jlijj � 1, we have j(L�1)ijj � 2n�1, which

places a bound on how much the left and right residuals of XL can di�er. Further-

more, since the matrices L from GEPP tend to be well-conditioned (�1(L)� n2n�1),

and since our numerical experience is that large residuals tend to occur only for ill-

conditioned matrices, we would expect the left and right residuals of XL almost

19



always to be of similar size. We conclude that even in the \con
icting residuals"

case Method D will, in practice, usually satisfy (3.9) or its right residual counterpart,

according to whether XU has a small left or right residual respectively. Similar com-

ments apply to Method B when U�1 is computed by a method yielding a small right

residual.

These considerations are particularly pertinent when we consider Method D spe-

cialized to symmetric positive de�nite matrices and the Cholesky factorization A =

RTR. Now A�1 is obtained by computingXR = R�1 and then forming A�1 = XRX
T
R;

this is the method used in the LINPACK routine xPODI [6, Ch. 3]. If XR has a small

right residual then XT
R has a small left residual, so in this application we naturally

encounter con
icting residuals. Fortunately, the symmetry and de�niteness of the

problem help us to obtain a satisfactory residual bound. The analysis parallels the

derivation of (3.9), so it su�ces to show how to treat the term XRX
T
RR

TR (cf. (3.7)),

where R now denotes the computed Cholesky factor. AssumingRXR = I+�(R;XR),

and using (3.10) with L replaced by R, we have

XRX
T
RR

TR = XR

�
I +�(R;XR)

T
�
R

= I + F +XR�(R;XR)
TR; jF j � jR�1jj�(R;XR)jjRj;

= I +G;

and

jGj � cnu(jR
�1jjRjjR�1jjRj+ jR�1jjR�T jjRT jjRj) +O(u2):

From the inequality k jBj k2 �
p
nkBk2 for B 2 IRn�n, together with kAk2 = kRk22+

O(u), it follows that

kGk2 � 2n2cnukAk2kA
�1k2 +O(u2);

and thus overall we have a bound of the form

kcXA� Ik2 � dnukAk2kcXk2 +O(u2):

Since cX and A are symmetric the same bound holds for the right residual.

Returning to Method D for general matrices, we could obtain a forward error

bound from (3.9), but a better one can be derived directly. We have, using (3.6) and

(2.6), cX = (U�1 +�U)(L
�1 +�L) + �(U�1; L�1) +O(u2);

20



where

j�U j � cnujU
�1jjU jjU�1j+O(u2); j�Lj � cnujL

�1jjLjjL�1j+O(u2):

Hence, using (3.1),

jcX�A�1j � cnu
�
jA�1jjLjjU jjA�1j+jU�1jjL�1jjLjjL�1j+jU�1jjU jjU�1jjL�1j+jU�1jjL�1j

�
+O(u2):

This bound is broadly similar to (3.3).

3.5 Numerical Results

In terms of the above error bounds, there is little to choose between Methods A, B,

C and D. We have run extensive numerical tests in MATLAB, evaluating the same

residuals and forward errors as in section 2 (with L replaced by A in (2.17){(2.19)).

Thus, for example, the left componentwise and normwise residuals are given by

minf� : jcXA� Ij � �jcXjjAjg and
kcXA� Ik1

kcXk1kAk1 :
In Methods B and D we used Method 2 to compute L�1 and U�1. No signi�cant

di�erence of behaviour among the methods was observed. However, we make the

following observations.

(1) The componentwise relative residuals can be large, as illustrated in Table 3.1,

where

A =

"
I B

BT 0

#
; A�1 =

"
0 B�T

B�1 �(BTB)�1

#
;

with B a random 3 � 3 matrix with elements from the normal (0; 1) distribu-

tion. The bounds of this section do not guarantee small componentwise relative

residuals. One reason is that jLjjU j may have nonzeros where A has zeros, and

so, for example, the right-hand side of (3.2) is not bounded by a multiple of

jAjjcXj.
(2) Despite the observation in (1), we found that for all three methods both the left

and right componentwise relative residuals are frequently at the unit roundo�

level, and the normwise relative residuals are almost invariably at this level.

An exceptional example is shown in Table 3.2. Here A = LU , where U is

21



the transpose of the matrix used in Table 2.3 and L is the lower triangular

factor from GEPP on a random matrix with elements from the normal (0,1)

distribution. In this example each method has a large normwise left or right

residual.

Table 3.3 illustrates the e�ect of con
icting residuals. For the same matrix as in

Table 3.2 we used Methods B and D with L�1 and U�1 computed by all possible

combinations of Methods 1 and 2. The results con�rm our prediction above that in

practice it is the mode of computation of U�1 that determines whether the left or

right residual of the computed A�1 is small.

Since all four methods have similar stability properties, the choice of method for

LAPACK can be made on other grounds, namely performance and the amount of

storage required. Method A has been ruled out because it does not allow the com-

puted inverse to overwrite the LU factors. Although Method D has the advantage

of not requiring any extra working storage, its performance is signi�cantly slower

on some machines than Methods B or C, because it uses a smaller average vector

length for vector operations. In Table 3.4 we give some performance �gures for a

Cray 2, covering both blocked and unblocked forms of all three methods. A similar

performance pattern is observed on an IBM 3090 VF, except that on that machine

Method B is slightly faster than Method C. Although the blocked forms of Methods

B and C require workspace to hold one block of columns, this is no more than many

other block algorithms used in LAPACK, and is not considered a serious disadvan-

tage. There is little to choose between Methods B and C; in the end Method B has

been selected for the LAPACK routine xGETRI because it satis�es slightly cleaner

error bounds, and because it has the virtue of tradition, being the method used in

LINPACK.

22



Table 3.1: A = augment(rand(3)).

�1(A) = 9:38e1

cond(A) = 4:00e1, cond(A�1) = 3:33e1

Method A Comp'wise Normwise

left residual 6.17e-1 1.18e-8

right residual 8.06e-1 1.42e-8

relative error 2.76e8 9.50e-8

Method B Comp'wise Normwise

left residual 1.00e0 1.58e-8

right residual 1.00e0 2.26e-8

relative error 1.19e8 1.22e-7

Method C Comp'wise Normwise

left residual 1.00e0 1.58e-8

right residual 8.06e-1 2.23e-8

relative error 6.43e7 1.22e-7

Method D Comp'wise Normwise

left residual 1.00e0 2.57e-8

right residual 1.00e0 2.13e-8

relative error 1.26e8 9.83e-8

23



Table 3.2: A = LU with special U .

�1(A) = 1:07e9

cond(A) = 5:58e8, cond(A�1) = 4:24e8

Method A Comp'wise Normwise

left residual 9.37e-2 7.88e-3

right residual 1.55e-7 8.08e-9

relative error 4.64e2 1.59e0

Method B Comp'wise Normwise

left residual 8.62e-8 2.26e-8

right residual 6.57e-3 1.13e-3

relative error 4.64e2 1.59e0

Method C Comp'wise Normwise

left residual 1.83e-2 2.24e-4

right residual 2.08e-7 1.29e-8

relative error 4.64e2 1.59e0

Method D Comp'wise Normwise

left residual 1.41e-7 4.15e-8

right residual 6.57e-3 1.13e-3

relative error 4.64e2 1.59e0

24



Table 3.3: Normwise residuals.

Small left Small right Left Right

residual residual residual residual

Method B U�1 2.26e-8 1.13e-3

Method B U�1 1.30e-5 1.50e-8

Method D L�1, U�1 4.15e-8 1.13e-3

Method D L�1 U�1 1.30e-5 1.52e-8

Method D U�1 L�1 3.03e-8 1.13e-3

Method D L�1, U�1 1.30e-5 1.55e-8

Table 3.4: M
op rates for inverting a full matrix on a Cray 2.

n = 64 n = 128 n = 256 n = 512

Unblocked: Method B 118 229 310 347

Method C 125 235 314 351

Method D 70 166 267 329

Blocked: Method B 142 259 353 406

(block size = 64) Method C 144 264 363 415

Method D 70 178 306 390

25



4 Conclusions

Our conclusions are mainly positive ones. All but one of the methods considered

here possess good enough error bounds that they are worthy contenders for practical

use. The exception is the block method 2B for inverting a triangular matrix, which

is unstable when the block size exceeds 1.

Two general points arising from this work are worth emphasising, because they do

not seem to be well known. First, for most of the inversion methods considered here

only one of the left and right residuals is guaranteed to be small; which one depends

on whether the method is derived by solving AX = I or XA = I. Second, when a

general matrix is inverted via an LU factorization, the best form of residual bound

holds only if the methods used for the \L-inversion" and the \U -inversion" satisfy

residual bounds of the same parity|both methods must have a small left residual or

both must have a small right residual.

Finally, we wish to stress that all the analysis here pertains to matrix inversion

alone. It is usually the case that when a computed inverse is used as part of a larger

computation the stability properties are less favourable, and this is one reason why

matrix inversion is generally discouraged. For a simple example, let L be the matrix

of Table 2.2, x = (1; 1; . . . ; 1)T=3, and b := Lx. We solved Lx = b in double precision

in MATLAB by forward substitution and by forming x = L�1 � b, where L�1 was

computed by Method 1. For both computed solutions bx we evaluated the normwise

relative residual � = kLbx� bk1=(kLk1kbxk1 + kbk1). We found � = 7:15�10�17 for

forward substitution and � = 6:28 � 10�12 for the inversion-based method, revealing

a di�erence in stability of �ve orders of magnitude.

26



References

[1] Y. Bard, Nonlinear Parameter Estimation, Academic Press, 1974.

[2] F.L. Bauer, Genauigkeitsfragen bei der L�osung linearer Gleichungssysteme, Z.

Angew. Math. Mech., 46 (1966), pp. 409{421.

[3] C.H. Bischof, J.W. Demmel, J.J. Dongarra, J.J. Du Croz, A. Greenbaum, S.J.

Hammarling and D.C. Sorensen, Provisional contents, LAPACK Working Note

#5, Report ANL-88-38, Mathematics and Computer Science Division, Argonne

National Laboratory, Argonne, IL, 1988.

[4] R. Byers, Solving the algebraic Riccati equation with the matrix sign function,

Linear Algebra and Appl., 85 (1987), pp. 267{279.

[5] J.W. Demmel and N.J. Higham, Stability of block algorithms with fast level 3

BLAS, LAPACK Working Note #22 and Numerical Analysis Report No. 188,

University of Manchester, England, 1990.

[6] J.J. Dongarra, J.R. Bunch, C.B. Moler and G.W. Stewart, LINPACK Users'

Guide, Society for Industrial and Applied Mathematics, Philadelphia, 1979.

[7] J.J. Dongarra, F.G. Gustavson and A. Karp, Implementing linear algebra algo-

rithms for dense matrices on a vector pipeline machine, SIAM Review, 26 (1984),

pp. 91{112.

[8] G.E. Forsythe, M.A. Malcolm and C.B. Moler, Computer Methods for Mathe-

matical Computations, Prentice-Hall, Englewood Cli�s, New Jersey, 1977.

[9] G.H. Golub and C.F. Van Loan, Matrix Computations, Second Edition, Johns

Hopkins University Press, Baltimore, Maryland, 1989.

[10] N.J. Higham, Computing the polar decomposition|with applications, SIAM J.

Sci. Stat. Comput., 7 (1986), pp. 1160{1174.

[11] N.J. Higham, The accuracy of solutions to triangular systems, SIAM J. Numer.

Anal., 26 (1989), pp. 1252{1265.

27



[12] N.J. Higham, Exploiting fast matrix multiplication within the level 3 BLAS,

ACM Trans. Math. Soft., 16 (1990), pp. 352{368.

[13] N.J. Higham, How accurate is Gaussian elimination?, in Numerical Analysis

1989, Proceedings of the 13th Dundee Conference, Pitman Research Notes in

Mathematics 228, D.F. Gri�ths and G.A. Watson, eds., Longman Scienti�c and

Technical, 1990, pp. 137{154.

[14] P. McCullagh and J.A. Nelder, Generalized Linear Models, Second Edition,

Chapman and Hall, 1989.

[15] W. Miller and D. Spooner, Software for roundo� analysis, II, ACM Trans. Math.

Soft., 4 (1978), pp. 369{387.

[16] R.D. Skeel, Scaling for numerical stability in Gaussian elimination, J. Assoc.

Comput. Mach., 26 (1979), pp. 494{526.

[17] G.W. Stewart, Introduction to Matrix Computations, Academic Press, New

York, 1973.

[18] J.H. Wilkinson, Error analysis of direct methods of matrix inversion, J. Assoc.

Comput. Mach., 8 (1961), pp. 281{330.

[19] J.H. Wilkinson, Rounding Errors in Algebraic Processes, Notes on Applied Sci-

ence No. 32, Her Majesty's Stationery O�ce, London, 1963.

[20] J.H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press,

1965.

28


