Combining Process Replication and Checkpointing
for Resilience on Exascale Systems

_ Henri Casanova
Univ. of Hawai‘i at Manoa,

Honolulu, USA
henric@hawaii.edu

Yves Robert!?, Frédéric Vivien', and Dounia Zaidouni'
1. Ecole Normale Supérieure de Lyon & INRIA, France
{Yves.Robert|Frederic.Vivien|Dounia.Zaidouni } @ens-lyon.fr
2. University of Tennessee Knoxville, USA

May 2012

Abstract—Processor failures in post-petascale set-
tings are common occurrences. The traditional fault-
tolerance solution, checkpoint-rollback, severely limits
parallel efficiency. One solution is to replicate appli-
cation processes so that a processor failure does not
necessarily imply an application failure. Process repli-
cation, combined with checkpoint-rollback, has been
recently advocated by Ferreira et al. We first identify an
incorrect analogy made in their work between process
replication and the birthday problem, and derive cor-
rect values for the Mean Number of Failures To Inter-
ruption and Mean Time To Interruption for Exponen-
tial failures distributions. We then extend these results
to arbitrary failure distributions, including closed-form
solutions for Weibull distributions. Finally, we evaluate
process replication using both synthetic and real-world
failure traces. Our main findings are: (i) replication is
beneficial in fewer scenarios than claimed by Ferreira et
al; (ii) although the choice of the checkpointing period
can have a high impact on application execution in the
no-replication case, with process replication this choice
is no longer critical.

I. INTRODUCTION

As plans are made for deploying post-petascale high
performance computing (HPC) systems [1], [2], solutions
need to be developed to ensure that applications on such
systems are resilient to faults. Resilience is particularly
critical for applications that enroll large numbers of pro-
cessors, including those applications that are pushing the
limit of current computational capabilities and that could
benefit from enrolling all available processors. For such
applications, processor failure is the common case rather
than the exception. For instance, the 45,208-processor
Jaguar platform is reported to experience on the order
of 1 failure per day [3], [4], and its scale is modest
compared to upcoming platforms. Failures occur because
not all faults can be automatically detected and corrected
in hardware [5], [6], [7]. To tolerate failures rollback-
recovery is used to resume job execution from a previously
saved fault-free execution state, or checkpoint. Frequent
checkpointing leads to higher overhead during fault-free
execution, but less frequent checkpointing leads to a larger
loss when a failure occurs. A large literature is devoted to
rollback-recovery, including both theoretical and practical

efforts. The former typically rely on assumptions regarding
the probability distributions of times to failure of the
processors (e.g., Exponential, Weibull), while the latter
rely on simulations driven by failure datasets obtained
on real-world platforms. We have, ourselves, made several
contributions in this context, including optimal check-
pointing strategies for Exponential failures and dynamic
programming solutions for Weibull failures [8].

Unfortunately, even assuming an optimal checkpointing
strategy, at large scale, processors end up spending as
much or even more time saving state than computing
state, leading to poor parallel efficiency [5], [6], [7]. Conse-
quently, additional mechanisms must be used. In this work
we focus on replication: several processors perform the
same computation synchronously, so that a failure on one
of these processors does not lead to an application failure.
Replication is an age-old fault-tolerance technique, but it
has gained traction in the HPC context only relatively
recently. While replication wastes compute resources in
fault-free executions, it can alleviate the poor scalability
of rollback-recovery. With process replication, a single
instance of an application is executed but each application
process is (transparently) replicated. For instance, instead
of executing the application with 2n distinct processes
on a 2n-processor platform, one executes the application
with n processes so that there are two replicas of each
process, each running on a distinct physical processor. The
advantage of this approach is that the mean time to failure
of a group of two replicas is larger than that of a single
processor, meaning that the checkpointing frequency can
be lowered in order to improve parallel efficiency. Process
replication has been proposed and studied by Ferreira et
al. at the SC’2011 conference [9]. In this paper we revisit
and extend the results in their work. More specifically, our
contributions are:

« We identify an incorrect analogy between process
replication and the birthday problem in [9]. As a re-
sult, not only are the MNFTI (Mean Number of Fail-
ures To Interruption) and the MTTI (Mean Time To
Interruption) values in [9] erroneous, but computing
them correctly is more challenging than anticipated.

Nevertheless, we are able to derive correct values for
Exponential failures.

« Following a different approach we then extend our
results to arbitrary failure distributions, including
closed-form solutions for Weibull distributions (the
results in [9] were limited to Exponential failures).

o We present simulation results, based on both syn-
thetic and real-world failure traces, to compare exe-
cutions with and without process replication. We find
that the choice of a good checkpointing period is no
longer critical when process replication is used.

o We revisit the “break-even point” results in [9] and
obtain results less favorable for process replication.
These results, unlike those in [9], are not biased by
the choice of a particular checkpointing period.

The remainder of this paper is organized as follows. Sec-
tion IT discusses related work. Section ITI defines the theo-
retical framework and states key assumptions. Section IV
presents the bulk of our theoretical contribution. Section V
presents our simulation methodology. Sections VI presents
our simulation results. Finally, Section VII concludes the
paper with a summary of our findings.

II. RELATED WORK

Checkpointing policies have been widely studied in the
literature. In [10], Daly studies periodic checkpointing
policies for Exponentially distributed failures, generaliz-
ing the well-known bound obtained by Young [11]. Daly
extended his work in [12] to study the impact of sub-
optimal checkpointing periods. In [13], the authors de-
velop an “optimal” checkpointing policy, based on the
popular assumption that optimal checkpointing must be
periodic. In [14], Bouguerra et al. prove that the optimal
checkpointing policy is periodic when checkpointing and
recovery overheads are constant, for either Exponential
or Weibull failures. But their results rely on the unstated
assumption that all processors are rejuvenated after each
failure and after each checkpoint. In our recent work [8],
we have shown that this assumption is unreasonable for
Weibull failures. We have developed optimal solutions
for Exponential failures and dynamic programming so-
lutions for Weibull failures, demonstrating performance
improvements over checkpointing approaches proposed in
the literature in the case of Weibull failures. Note that
the Weibull distribution is recognized as a reasonable
approximation of failures in real-world systems [15], [16],
[17], [18]. The work in this paper relates to checkpointing
policies in the sense that we study a replication mechanism
that is complementary to checkpointing.

In spite of all the above advances, several studies have
questioned the feasibility of pure rollback-recovery for
large-scale systems [5], [6], [7]. Replication has long been
used as a fault-tolerance mechanism in distributed sys-
tems [19], and more recently in the context of volunteer
computing [20]. The idea to use replication together with
checkpoint-recovery has been studied in the context of grid

computing [21]. One concern about replication in HPC is
the induced resource waste. However, given the scalability
limitations of pure rollback-recovery, replication has re-
cently received more attention in the HPC literature [22],
[23], [24]. Most recently, the work by Ferreira et al. [9] has
studied the use of process replication for MPI applications.
They provide a theoretical analysis of parallel efficiency, an
implementation of MPI that supports transparent process
replication (including failure detection, consistent message
ordering among replicas, etc.), and a set of convincing
experimental and simulation results. The work in [9] only
considers 2 replicas per application process. The theoret-
ical analysis, admittedly not the primary objective of the
authors, is not developed in details. In this work we focus
on the theoretical analysis of the problem, both correcting
and extending the results in [9], as detailed in Section IV.

III. FRAMEWORK

We consider the execution of a tightly-coupled parallel
application, or job, on a large-scale platform composed
of p processors. We use the term processor to indicate
any individually scheduled compute resource (a core, a
multi-core processor, a cluster node) so that our work is
agnostic to the granularity of the platform. We assume
that a standard checkpointing and roll-back recovery is
performed at the system level. One application process
(replica) runs on one processor, and thus we use the terms
processor and process interchangeably.

The job must complete W units of (divisible) work,
which can be split arbitrarily into separate chunks. The
job can execute on any number g < p processors. Letting
W(q) be the time required for a failure-free execution on
q processor, we use three models:

o Perfectly parallel jobs: W(q) = W/q.

o Generic parallel jobs: W(q) = W/q + yW. As in
Amdahl’s law [25], v < 1 is the fraction of the work
that is inherently sequential.

« Numerical kernels: W(q) = W/q +yW?/3/,/q. This
is representative of a matrix product or a LU/QR
factorization of size N on a 2D-processor grid, where
W = O(N3). In the algorithm in [26], ¢ = r?
and each processor receives 2r blocks of size N2 /r?
during the execution. Here ~ is the communication-
to-computation ratio of the platform.

Each participating processor is subject to failures. A
failure causes a downtime period of the failing processor, of
duration D. When a processor fails, the whole execution is
stopped, and all processors must recover from the previous
checkpointed state. We let C'(¢) denote the time needed
to perform a checkpoint, and R(g) the time to perform a
recovery. The downtime accounts for software rejuvenation
(i.e., rebooting [27], [28]) or for the replacement of the
failed processor by a spare. Regardless, we assume that
after a downtime the processor is fault-free and begins a
new lifetime at the beginning of the recovery period. This
recovery period corresponds to the time needed to restore

the last checkpoint. Assuming that the application’s mem-
ory footprint is V' bytes, with each processor holding V/q
bytes, we consider two scenarios:

« Proportional overhead: C(q) = R(q) = aV/q = C/q
for some constant «. This is representative of cases
where the bandwidth of the network card/link at each
processor is the I/O bottleneck.

o Constant overhead: C(q) = R(q) = oV = C, which is
representative of cases where the bandwidth to/from
the resilient storage system is the I/O bottleneck.

We assume coordinated checkpointing [29] so that no mes-
sage logging /replay is needed for recovery. We also assume
that failures can happen during recovery or checkpointing,
but not during a downtime (otherwise, the downtime could
be considered part of the recovery).

Since we consider tightly coupled parallel jobs, all ¢
processors operate synchronously. These processors exe-
cute the same amount of work W(q) in parallel, chunk
by chunk. The total time (on one processor) to execute a
chunk of size w, and then checkpointing it, is w + C(q).
Finally, we assume that failure arrivals at all processors
are independent and identically distributed (i.i.d).

IV. PROCESS REPLICATION

A parallel application consists of several application
processes, each process running on a distinct processor.
Process replication was recently studied in [9], in which
the authors propose to replicate each application process
transparently on two processors. Only when both these
processors fail must the job recover from the previous
checkpoint. One replica performs redundant (thus waste-
ful) computations, but the probability that both replicas
fail is much smaller than that of a single replica, thereby
allowing for a drastic reduction of checkpoint frequency.
The results in [9] show large performance improvements
due to process replication. Our objective in this section is
to provide a full theoretical analysis of process replication.

We consider the general case where each application
process is replicated g > 2 times. We call replica-group
the set of all the replicas of a given process, and we denote
by n,y the number of replica-groups. Altogether, if there
are p available processors, there are n,.;, X g < p processes
running on the platform. Following [9], we assume that
when one of the g replicas of a replica-group fails, it is not
restarted, and the execution of the application proceeds
as long as there is still at least one running replica in
each of the replica-groups. In other words, for the whole
application to fail, there must exist a replica-group whose
g replicas have all been “hit” by a failure. One could
envision a scenario where a failed replica is restarted
based on the current state of the remaining replicas in its
replica-group. This would increase application resiliency
but would also be time-consuming. A certain amount of
time would indeed be needed to copy the state of one
of the remaining replicas. Because all replicas of a same
process must have a coherent state, the execution of the

still running replicas would have to be paused during this
copying. In a tightly coupled application, the copying-time
would be a time during which the execution of the whole
application must be paused. Consequently, restarting a
failed replica would only be beneficial if the restarting
cost were very small, when taking in consideration the
frequency of failures, and the checkpoint and restart costs.
The benefit of such an approach is doubtful and we do not
consider it (it was also ignored in [9]).

Two important quantities for evaluating the quality
of an application execution when replication is used is
the Mean Number of Failures To Interruption (MNFTI),
i.e., the mean number of processor failures until applica-
tion failure occurs, and the Mean Time To Interruption
(MTTI), i.e., the mean time elapsed until application
failure occurs. In the next two sections, we compute these
two quantities, contrasting our work with that in [9], and
providing a quantitative comparison in Section IV-C.

A. Computing MNFTI

Ferreira et al. [9] consider the case g = 2, and observe
that the generalized birthday problem is related to the
problem of determining the number of process failures
needed to induce an application failure. The generalized
birthday problem asks the following question: what is the
expected number of balls NF(m) to randomly put into
m (originally empty) bins, so that there are two balls
in a bin? In the context of process replication the bins
are replica groups and the balls are processor failures, so
that m = n,4 is the number of replica-groups and N F(m)
denotes the number of failures. In [9] it is stated that

e Npg! ™ 2
NF(n,,) =1+ g ~ LEAR 1
(nrg) kz::l(nrg—k)!-nﬁg V 2 3 (1)

Unfortunately, the processor replication problem is not
identical to the generalized birthday problem and Equa-
tion (1) does not apply. To illustrate the differences we
can simply consider the case g = 2. There are two possible
approaches to counting failures:

1) One counts each failure that hits any of the g - n,
initial processors, including the processors already hit
by a failure. This is the approach followed in [9]. With
this approach the target problem is not identical to
the generalized birthday problem because the second
failure to hit a given replica-group does not necessar-
ily induce an application interruption. Indeed, if the
failure hits an already hit processor, whose replica had
already been killed by the first failure, the application
is not affected. If, on the contrary, the failure hits the
other processor, both replicas of a same process are
killed and the whole application fails.

2) One only counts failures that hit running processors,
and thus effectively kill replicas. This approach may
seem more natural as the running processors are
the only ones that are important for the application
execution. With this method, the problem is still not

identical to the generalized birthday problem. Let
us consider the situation right after the first failure
occurred. In the generalized birthday problem one
assumes that all integers in the range are uniformly
distributed. In our problem, the replica-group that
suffered from the first failure only contains a sin-
gle running replica after that failure, while all the
other replica-groups still contain two running replicas.
Therefore, if the probability of failures is uniformly
distributed among processors that are still running?
(which is usually assumed), then the replica-group hit
by the first failure has half the probability of being
hit by the second failure as that of the other replica-
groups, simply because it contains half as many run-
ning replicas! Since the distribution of failure is no
longer uniform, the birthday problem is not relevant.
Now that we no longer can use the analogy to the birthday
problem, computing the MNFTI turns out to be more
challenging. To cover all cases we consider both options
above. We use MNFTI™® to denote the MNFTI (Mean
Number of Failures To Interruption) with the first option
(“ah” stands for “already hit”), and MNFTI'® to denote
the MNFEFTI with the second option (“rp” stands for “run-
ning processors”). The following theorem gives a recursive
expression for MNFTT*:

Theorem 1. If the failure inter-arrival times on the
different processors are i.i.d. and independent from the
failure history, then using process replication with g = 2,
MNFTI™ = E(NFTI™™|0) where E(NFTI™|n;) =

2
2N g
2Mpg—ny +

Proof: Let E(NFTI*"|ns) be the expectation of the
number of failures needed for the whole application to
fail, knowing that the application is still running and
that failures have already hit ny different replica-groups.
Because each process initially has 2 replicas, this means
that ny different processes are no longer replicated, and
that n,., — ny are still replicated. Overall, there are
ny +2(npg —ny) = 2n,4 — ny processors still running.

The case ny = ny,4 is the simplest. A new failure will hit

an already stricken replica-group, that is, a replica-group
where one of the two initial replicas is still running. Two
cases are then possible:

1) The failure hits the running processor. This
leads to an application failure, and in this case
E(NFTI™n,,) = 1.

2) The failure hits the processor that has already been
hit. Then the failure has no impact on the application.
The MNFTI™ of this case is then: E(NFTI™®|n,,) =

1+ E (NFTI™ [ny).

if ny =npg,
2nrg =20 (NFT]ah|nf + 1) otherwise.

2Mpg—ny

1Note that if the failure probability is uniformly distributed among
the g-n.g initial processors, including the processors already hit by a
failure, then the probability of failure is uniformly distributed among
still running processors!

The probability of failure is uniformly distributed between
the two replicas, and thus between the two previous cases.
Weighting the values by their probabilities of occurrence
yields:

E (NFTI™ [y,) =
1

1
5 X145 % (1+E(NFTIah |n,g)) _ 9.

For the general case 0 < ny < n,4 — 1, either the
next failure hits a new replica-group, that is one with
2 processors still running, or it hits a replica-group that
has already been hit. The latter case leads to the same
sub-cases as the ny = n,, case studied above. As we
have assumed that the failure inter-arrival times on the
different processors are i.i.d. and independent from the
processor failure history the failure probability is uniformly
distributed among the 2n,., processors, including the ones
already hit. Hence the probability that the next failure hits

. s, 2npg—2ny .
a new replica-group is Sy In this case, the expected
number of failures needed for the whole application to fail
is one (the considered failure) plus E (NFTIah|nf + 1).
Altogether we have:

E (NFTI™|ny) =
2n,g — 2ny ah
S Z o (14 E (NFTI™ g +1))
2Npg
om; (1 1 .
Sx1+2(1 IE(NFTI“) .
+2n7ng><<2>< +2<+ |"f))

Therefore,

E (NFTI™|ny) =

2nyg

My — 2
s =g (NFTI™ g +1)

2N, — 0y 2npg — Ny

Theorem 2. If the failure inter-arrival times on the differ-

ent processors are i.i.d. then using process replication with
g =2, MNFTI'® = E(NFTI'®|0) where E(NFTI'?|n;) =

1 Zf nf = ’n,rg,
1+ %E(NFTFW?W +1) otherwise.

Proof: Let E(NFTI'®|ny) be the expectation of the
number of failures needed for the whole application to
fail knowing that the application is still running and
that failures have already hit ns different replica-groups.
Because each process initially has 2 replicas, this means
that ny different processes are no longer replicated, and
that n,., — ny are still replicated. Overall, there are
ng + 2(npg —nyg) = 2n,g — ny processors still running.

The case ny = n,4 is the simplest: a new failure will
hit an already hit replica-group and hence leads to an
application failure, hence

E (NFTI™ |n,,) = 1.

For the general case 0 < ny < n,4 — 1, either the
next failure hits a new replica-group with 2 still running
replicas, or it hits a replica-group that had already been
hit. The latter case leads to an application failure; in that
case, after ny failures, the expected number of failures
needed for the whole application to fail is exactly one.
The failure probability is uniformly distributed among the
2n,4 — ny running processors, hence the probability that
the next failure hits a new replica-group is % In
this case, the expected number of failures needed for the
whole application to fail is one (the considered failure) plus
E (NFTI'|ns + 1). Altogether we have derived that:

E (NFTI'P|ns) =

2Ny — 2
g T (14 E(NFTI™|ny + 1))
2n.g — Ny
nif X]_
2y — Ny
Therefore,

Qn,.g —2nf E (

E(NFTI™|n;) = 1
(Ing) =1+ ap—

NFTI'®In; 4+ 1).
|
Note that Theorem 2 does not make any assumption
on the failure distribution; it only assumes that failures
are i.i.d. However, to establish Theorem 1, an additional
assumption is that the probability of failures of a node is
not affected by the fact that it may have already been hit.
This assumption seems to restrict this theorem to failures

following Exponential (i.e., memoryless) distributions.

It turns out that both failure counting options lead to
very similar results:

Proposition 1. If the failure inter-arrival times on the
different processors are i.i.d. and independent from the
processor failure history, then

MNFETI* =1+ MNFTI™.

Proof: We prove by induction that E(NFTI*|n;) =
1+ E(NFTI'P|ny), for any ny € [0,n,4]. The base case is
for ny = n,4 and the induction uses non-increasing values
of ng.

For the base case, we have E(NFTI'"|n,s) = 1 and
E(NFTI*"n,,) = 2. Hence the property is true for
ny = n,4. Consider a value ny < n,4, and assume to
have proven that E(NFTI*"|i) = 1+E(NFTI'®}i), for any
value of i € [1 4+ ng,n,y]. We now prove the equation for
nyf. According to Theorem 1, we have:

E(NFTI™n;) =

2yg 2npg —

2
LR (NFTI™ 0y +1).

2npg — My 2n.g — Ny

Therefore, using the induction hypothesis, we have:

E(NFTI*™|ny)
= gyt + G (L E(NFTI ™ ng +1))
=2+ e UR (NFTTPny + 1)
=1+ E(NFTI™?|ny)

the last equality being established using Theorem 2.

Therefore, we have proved by induction that
E(NFTI*™™0) = 1 4+ E(NFTI'®|0). To conclude,
we remark that E(NFTI*0) = MNFTI™ and

E(NFTI'P|0) = MNFTI'™.]
We now show that Theorems 1 and 2 can be generalized
to g > 2. Because the proofs are very similar, we only give
the one for the MNFTI™ accounting approach (failures
on running processors only), as it does not make any
assumption on failures besides the i.i.d. assumption.

Proposition 2. If the failure inter-arrival times on the
different processors are i.i.d. then using process replication

for g >2, MNFTI'"® =FE | NFTI'?| 0,...,0 | where:
——

g—1 zeros
r 1 1
E(NFTI Pl .0l)) 1
) (nrg Py n;)

+
g Nrg — Zz 17’ ’fo
T 2 —1
-E(NFTIp|nf, n®, .l))
RS (9—i)-n 2)
i=1 9 Nrg — Zg 1i "
" (z OING
.E(NFTIme oD 0
EA GRS I njf‘”)
Proof:

Let E (NFTI™[n{), .. n{~"
the number of failures needed for the whole application
to fail, knowing that the application is still running and
that, for ¢ € [1..g — 1], there are n?) replica-groups that
have already been hit by exactly ¢ failures. Note that a
replica-group hit by ¢ failures still contains exactly g — 4
running replicas. Therefore, in a system where ngf) replica-
groups have been hit by exactly i failures, there are still
overall exactly g Nrg — D5 11 i - n;’ running replicas,

Zg 1 n! 7) of which are in replica-groups that
have not yet been hit by any failure. Now, consider the
next failure to hit the system. There are three cases to
consider.

) be the expectation of

1) The failure hits a replica-group that has not been hit
by any failure so far. This happens with probability:

'(nrg Zz 1nf)
i L ”f

g Nrg —

and, in that case, the expected number of

failures needed for the whole application

to fail is one (the studied failure) plus
(g—1)

E (NFTIP[1+n{ 0l Remark that
we should have conditioned the above expectation
with the statement “if n,, > Zl 1My @ In order to
keep Equation (2) as snnple as p0551b1e we rather
do not explicitly state the condition and use the
following abusive notation:

Ty

’ (nrq Zz 1 nf)
Zz 17; nf
(1+E(NFTFP|1+n D@

g'nrg

(9—1)
)

considering than when n,, = >.9_, n;) the first term
is null and thus that it does not matter that the
second term is not defined.

The failure hits a replica-group that has already been
hit by g — 1 failures. Such a failure leads to a failure
of the whole application. As there are n;g_l) such
groups, each containing exactly one running replica,

this event happens with probability:

(9—1)
Ny

P 1i nf

g Nprg —

In this case, the expected number of failures needed
for the whole application to fail is exactly equal to
one (the considered failure).

The failure hits a replica-group that had already been
hit by at least one failure, and by at most g—2 failures.
Let ¢ be any value in [1..g — 2]. The probability that
the failure hits a group that had previously been the
victim of exactly 4 failures is equal to:

(9—i)-nf
Z’L 1i nf

g'nrq

as there are n;i) such replica-groups and that each
contains exactly g — ¢ still running replicas. In this
case, the expected number of failures needed for the

whole application to fail is one (the studied failure)

plus E(NFTIrp\ngcl), . ng: b ngj) _ 1,n§f+1) b,
ngjﬂ) ngcg D) as there is one less replica-group

hit by exactly i failures and one more hit by exactly
i+ 1 failures.

We aggregate all the cases to obtain:
n(g—l)) _
o (s = L)

G Mrg— D 9_ 12’ nf
(1+]E(NFTI”’|1+n P

g—2 —7)- ('L)
B (9—i)-n

E (NFTPP|n(”,

)

i=1 9 Mrg — Zqﬂ ”f _ '
(1 +E (NFTFP|n Gl)
(1+1) (1+2) (g-1)
- ny S +1Ln o))
g—1
n
+ f
g Nrg — Zz 1 i nf
which can be rewritten as Equation (2). [|

B. Computing MTTI

n [9], for the case g = 2, the Mean Time To applica-
tion Interruption, with the “already hit” assumption, is
computed as

MTTI = systemMTBF (2n,4) x NF(n,g), (3)

where the value of NF(n,,) is given by Equation (1).
systemMTBF(n) denotes the mean time between failures
of a platform with n processors. This expression assumes
that the failures follow an Exponential distribution and
becomes correct when replacing NF(n,,) by MNFTI™" as
given by Theorem 1. A recursive expression for MTTI can
also be obtained directly.

While the MTTTI value should not depend on the way to
count failures, it would be interesting for compute it with
the “running processor” assumption as a sanity check. It
turns out that there is no equivalent to Equation (3) for
linking MTTI and MNFTI'P. The reason is straightfor-
ward. While systemMTBF(2n,4) is the expectation of the
date at which the first failure will happen, it is not the
expectation of the inter-arrival time of the first and second
failures when only considering failures on processors still
running. Indeed, after the first failure, there only remain
2n,4 — 1 running processors. Therefore, the inter-arrival
time of the first and second failures has an expectation of
systemMTBF (2n,,—1). We can, however, use a reasoning
similar to that in the proof of Theorem 2 and obtain a
recursive expression for MTTI:

Theorem 3. If the failure inter-arrival times on the
different processors follow an Ezxponential distribution of
parameter X\ then, when using process replication with
g =2, MTTI =E(TTI|0) where E(TTI|ns) =

1
tr 1 1
@nrg—ng) X +

Proof: We denote by E(TTI|ny) the expectation of
the time an application will run before failing, knowing

ifng =npg
Mg 20y E(TTIIns+1) otherwise

2Npg—nf

>l

that the application is still running and that failures
have already hit n; different replica-groups. Since each
process initially has 2 replicas, this means that ny different
processes are no longer replicated and that n,,—ny are still
replicated. Overall, there are thus still ny +2(n.qg —ny) =
2n,4 — ny running processors.

The case ny = n,y is the simplest: a new failure will
hit an already stricken replica-group and hence leads to
an application failure. As there are exactly n,, remaining
running processors, the inter-arrival times of the n,4-th
and (n,rq + 1)-th failures is equal to ﬁ (minimum of n,4
Exponential laws). Hence: '

1
E(TTI |nyg) = Mg’

For the general case, 0 < ny < n,q — 1, either the next
failure hits a replica-group with still 2 running processors,
or it strikes a replica-group that had already been victim
of a failure. The latter case leads to an application failure;
then, after ny failures, the expected application running
time before failure is equal to the inter-arrival times of the
ny-th and (ny+1)-th failures, which is equal to m
The failure probability is uniformly distributed among the
2n,4 — ny running processors, hence the probability that
the next failure strikes a new replica-group is %
In this case, the expected application running timerﬁ)efofre
failure is equal to the inter-arrival times of the ny-th and
(ny + 1)-th failures plus E (TTI|ns + 1). We derive that:

E(TTI|ng) =
2n,9 — 20y y

((Qnrg i WA +E(TTIns + 1))

ny « 1
(2npg —np)N

2N, — Ny

2npg — Ny
Therefore,
E(TTI|ns) =

1 " 2N, — 2nfE
(2npg —nyp)A

Frp— (TTIng +1).
|

The above results can be generalized to ¢ > 2. To
compute MTTI under the “already hit” assumption one
can use Equation (3) replacing NF(n,,) by the MNFTI™
value given by Theorem 1. To compute MNFTI'™® under
the “running processors,” Theorem 3 can be generalized
using the same proof technique as when proving Proposi-
tion 2.

These approaches for computing MTTI are, unfortu-
nately, limited to exponentially distributed failures. To
encompass arbitrary distributions, we use another ap-
proach based on the failure distribution density at the
platform level. Theorem 4 quantifies the probability of
successfully completing an amount of work of size YW when
using process replication for any failure distribution, which

makes it possible to compute M TTI via numerical integra-
tion. This theorem can then be used to obtain a closed-
form expression for MTTI when the failure distribution is
Exponential (Theorem 5) or Weibull (Theorem 6).

Theorem 4. Consider an application with n,., processes,
each replicated g times using process replication, so that
processor P;, 1 < i < g - ngg, exvecutes a replica of

é . Assume that the failure inter-arrival times

process
on the difj”erent processors are i.i.d, and let 7; denote the
time elapsed since the last failure of processor P;. Let F
denote the cumulative distribution function of the failure
probability, and F(t|T) be the probability that a processor
fails in the next t units of time, knowing that its last failure
happened T units of time ago. The probability that the

application will still be running after t units of time is:

R(t) = H (1 - HF (t|7i+g(j—1))> (4)
i=1

j=1

and the MTTI is given by:

“+ o0 Nrg g
MTTI = / 11 (1 ~-1IF (t|n+g(j_1))> dt. (5
0 j=1 i=1

While failure independence is necessary to prove The-
orem 4, the assumption that failures are i.i.d. can be
removed. Nevertheless, we include this assumption here
so as to simplify the writing of Equations 4 and 5 above.

Proof: The probability that processor P; suffers from
a failure during the next ¢ units of time, knowing that
the time elapsed since its last failure is 7;, is equal by
definition to F;(t) = F(t|7;). Then the probability that the
g processors running the replicas of process j, 1 < j < n,g,
all suffer from a failure during the next ¢ units of time is
then equal to:

g

g
FO) =[] Firoi—n® = [F (trisg-n) -
=1

i=1

Therefore, the probability that at least one of the g
duplicates of process j is still running after ¢ units of time
is equal to:

g9
Fj(g) (t) =1- HF (t"ri—‘,—g(j—l)) .

=1

@) () —
R (t)=1-

For the whole application to still be running after ¢ units
of time, each of the n,, application processes must still
be running (i.e., each must have at least one of its g
initial replicas still running). So, the probability that the
application is still running after ¢ units of time is:

g

rRt)=[[RY® =] (1 ~TIF (tmgw)) :

j=1 i=1

We can then compute the Mean Time To Interruption of application is:
the whole application: +00
/ R(t)dt
0

oo +o00 Mrg .
MTTI / R(t)dt :/ <nr9) (71)2' (1 767)\t)2'9 dt

0 oo Mg g 0 =0
/ (— T F (g)) dt.

j=1 i=1

[}

=0 j=1
| n
+ T
We now consider the case of the Exponential law. 0 im0 \
Nrg i-g .
n ; i- Y
Theorem 5. Consider an application with n,., processes, + Z (;g> (—1)Z ('g) (—1)j e Nt de
each replicated g times using process replication. If the i=0 =N
probability distribution of the time to failure of each pro- o0 Mg g
cessor is Exponential with parameter A, then the MTTI is _ ' <nrg> (_1)1' ' (Z : 9) (_1),7' e Nt qt
given by: 0 o i = J

1) Nj
DY - i=0 | j=1]
i=1 j=1 J - ‘ Z
Mg i 2 J
_ Tlrg (_1)1' g (]‘g) (71)
i=1 | L j=1 Aj]
Thus,
Nrg g (Nrg zg 1 i+j
P S i il
Proof: According to Theorem 4, the probability that i=1 j=1 J
the application is still running after ¢ units of time is: [|
The following corollary gives a simpler expression for the
case g = 2:

Corollary 1. Consider an application with n,., processes,
each replicated 2 times using process replication. If the
probability distribution of the time to failure of each pro-

R(t) = (1 — (1 — e_’\t)g> v cessor is Exponential with parameter X\, then the MTTI is
given by:
Nrg -2 n, i 2 i+
g -1 J
=1 j=1

(”;9)

onrs 4 (1"
and the Mean Time To Interruption (MTTI) of the whole D) pard (2) (nrg + 1)

Proof: The first expression is a simple corollary of further refined as follows:
Theorem 5 for the case ¢ = 2. The second expression
is obtained through direct computation. Let f(¢) be the
probability density function associated to the cumulative
distribution function F'(t). Then, we have:

1 1
M <(k+z‘>2 - (k+i+1)2>
:/ t- f(t)dt
0

+00 AN i—0
= / t 2FEN (1 — e) e M (1 — 2) dt
0

+oo
= 2’%)\/ t (1 — e_)‘t) e~ Akt
0

k—

() E) e A

(2

- 2’%AI:ZS (k ; 1) (_21> - (kl l
k

/+oo " (1 _ ef)‘t) e~ AR+t g4 A
0

._.
Il
‘1\3

E
x5

VRS

B

I |

o =

| — |

7N
o~
=
—_
N~~~
‘I
—_
N~
~
—
o~
+ | =
~

Nas2

[\v]

k—1 7
k—1\ /-1
:2’%AZ< . ><2> +2k1[<k—1 -1\ 1
i=0 - I-1)\ 2 2
* (tef)\(k+i)t_tef/\(k+i+1)t) dt I=1 k (k+1)
; : o k—1) (-1 1
k=1)\ 2) (2k)?
2k (1 o1yt
o k2 2 2k?2
5 w1 ()
i=1 2 (k-|—’6)2 ‘

+o0
1
Y .)
As /0 te = the expression of MTTI can be Using the equation (k;l) 2(1;:11) (lz) (kz—z), o derive

the desired expression for MTTI:

We now consider the case of the Weibull law.

Theorem 6. Consider an application with n,., processes,
each replicated g times using process replication. If the
probability distribution of the time to failure of each proces-
sor is Weibull with scale parameter X and shape parameter
k, then the MTTI is given by:

A (1) S () () ()
MTTI:kF<k) ZZ : .

Proof: According to Theorem 4, the probability that
the application is still running after ¢ units of time is:

and the Mean Time To Interruption of the whole applica-

tion is:

MTTI
—+o0

0

j=1

We consider any value j €
following change of variable:

tot:A(g)l

" and thus dt =
notation,

[0.. Tg - g] and we make the
u =3k Ltk This is equivalent
2 (3) "
k\J

?r\»a

(-1) du With this

Therefore, MTT1I is equal to:

> () e (2 () v g ()
i=1 j=1 kj® k

Thus,

an g i+J
J—)0)(n

w\y

(1) Ex

r\»—-

C. Numerical Evaluation

Table I shows the MNFTI* values as computed by
the formula in [9] and by Theorem 1, for various values
of n,4 and for g = 2. The percentage relative difference
between the two values is included in the table as well. The
two values diverge significantly, with relative differences
between 29% and 33%. Here again we conclude that the
formula in [9] significantly under-estimates MNFTI for
either of the failure accounting approaches (recall that
MNFTI*™ and MNFTI'™ differ only by 1).

Table IT shows the MTTI values as computed by the
formula in [9] and by Corollary 1, for various values of n,,
and for g = 2. The percentage relative difference between
the formula in [9] and our recursive formula is indicated
as well. Here again the two values diverge significantly,
exactly in the same proportion as for the MNF Tr*®
(see Equation (3)). We conclude that the formula in [9]
significantly under-estimates MTTI.

As expected, using the formula from Corollary 1, plug-
ging in the value from Theorem 1 into Equation (3), and
a using the recursive computation given all lead to the
same numerical values. To validate these computations
we have compared the values that they produce to the
MTTI as computed through simulations. For each studied
value of n,q, we have generated 200,000 random failure
dates, computed the Time To application Interruption for
each instance, and computed the mean of these values.
This simulated MTTI, also reported in Table II, is in full
agreement with Corollary 1.

V. SIMULATION FRAMEWORK

In this section we detail our simulation methodology
for evaluating the benefits of process replication. We
use both synthetic and real-world failure distributions.
The source code and all simulation results are pub-
licly available at: http://perso.ens-lyon.fr/frederic.vivien/
Data/Resilience/SC2012Replication.

Synthetic failure distributions — To choose failure
distribution parameters that are representative of realistic
systems, we use failure statistics from the Jaguar platform.
Jaguar is said to experience on the order of 1 failure per
day [3], [4]. Assuming a 1-day platform MTBF gives us
a processor MTBF equal to % ~ 125 years, where
Drotal = 45,208 is the number of processors in the Jaguar
platform. We then compute the parameters of Exponential
and Weibull distributions so that they lead to this MTBF
value. Namely, for the Exponential distribution we set A =
MTlB + and for the Weibull distribution, which requires two
parameters k and A, we set A = MTBF/I‘(l +1/k). W

fix k to 0.7 and 0.5 based on the results in [16] and [17].

Log-based failure distributions — We also consider
failure distributions based on failure logs from production
clusters. We used logs for the largest clusters among the
preprocessed logs in the Failure trace archive [30], i.e
for clusters at the Los Alamos National Laboratory [16].
In these logs, each failure is tagged by the node —and
not just the processor— on which the failure occurred.
Among the 26 possible clusters, we opted for the logs of
the only two clusters with more than 1,000 nodes. The
motivation is that we need a sample history sufficiently
large to simulate platforms with more than ten thousand
nodes. The two chosen logs are for clusters 18 and 19
in the archive (referred to as 7 and 8 in [16]). For each
log, we record the set & of availability intervals. The
discrete failure distribution for the simulation is generated
as follows: the conditional probability P(X >t | X > 1)
that a node stays up for a duration ¢, knowing that it has
been up for a duration 7, is set to the ratio of the number
of availability durations in S greater than or equal to t,
over the number of availability durations in S greater than
or equal to 7.

Scenario generation — Given a p-processor job, a failure
trace is a set of failure dates for each processor over a
fixed time horizon h set to 2 years. The job start time
is assumed to be one year to avoid side-effects related
to the synchronous initialization of all nodes/processors.
Given the distribution of inter-arrival times at a processor,
for each processor we generate a trace via independent
sampling until the target time horizon is reached.

The two clusters used for computing our log-based
failure distributions consist of 4-processor nodes. Hence,
to simulate a 45,208-processor platform we generate 11,302
failure traces, one for each four-processor node.

Checkpointing policy — Replication dramatically re-
duces the number of application failures, so that standard
periodic checkpointing strategies can be used (in [8] we
have developed a dynamic programming strategy that
leads to non-periodic checkpointing in the general case).
The checkpointing period can be computed based on the
MTTI value using Young’s approximation [11] or Daly’s
first-order approximation [10], the latter being used in [9].
Alternately, since our experiments are in simulation, we
can search numerically for the best period. To build
the candidate periods, the period computed by OPTEXP
from [8] is multiplied and divided by 1 + 0.05 x ¢ with
i € {1,..,180}, and by 1.17 with j € {1,...,60}. We
present results with the period as given by Daly’s approx-
imation and with the best period found numerically.

Replication overhead — In [9], the authors consider that
the communication overhead due to replication is propor-
tional to the application’s communication demands. Argu-
ing that, to be scalable, an application must have sublinear
communication costs with respect to increasing processor
counts, they consider an approximate logarithmic model

S log(p)
for the percentage replication overhead: ;%> +3.67, where

Table I

MNFTI?® AS COMPUTED BY THE FORMULA IN (9] AND BY THEOREM 1, FOR Npg = 20, R 220, WITH g = 2.
[Number of processes [20 [2T [22 [23 [24 [25 [26]
Formula in [9] 2 2.5 3.22 | 4.25 5.7 7.77 10.7
Theorem 1 3 3.67 | 4.66 | 6.09 | 8.15 11.1 15.2
% Relative Difference -33 -32 -31 -30 -30 -30 -30
[Number of processes [27 [28 29 [210 [21T [212 [213]
Formula in [9] 149 | 207 | 29 | 40.8 | 57.4 | 80.9 114
Theorem 1 21.1 | 29.4 | 41.1 | 57.7 | 81.2 114 161
% Relative Difference | —30 -29 -29 -29 -29 -29 -29
[Number of processes [214 [215 216 [217 [218 [219 [220]
Formula in [9] 161 228 322 454 642 908 1284
Theorem 1 228 | 322 | 455 | 643 | 908 | 1284 | 1816
% Relative Difference | -29 -29 -29 -29 -29 -29 -29
Table 11
MTTI AS COMPUTED BY THE FORMULA IN [9] AND BY COROLLARY 1, FOR npg = 20,...,220 wiTH g = 2.
| Number of processes | 20 | 21 | 2 | 23 | 24 | 2° | 20 |
Formula in [9] 1 0.625 0.402 0.265 0.178 0.121 0.0836
Corollary 1 1.5 0.917 0.582 0.381 0.255 0.173 0.119
% Relative Diff -33.33 -31.82 -30.89 -30.32 -29.97 -29.75 -29.6
Simulated MTTI 1.498 0.9184 0.5831 0.3808 0.2542 0.1725 0.1188
| Number of processes | 27 | 28 | 29 | 210 | 2 | 212 | 213 |
Formula in [9] 0.058 0.0405 0.0284 0.0199 0.014 0.00987 0.00696
Corollary 1 0.0823 0.0574 0.0402 0.0282 0.0198 0.014 0.00985
% Relative Diff -29.5 -29.44 -29.39 -29.36 -29.34 -29.33 -29.31
Simulated MTTI 0.08226 | 0.05738 0.0401 0.02825 | 0.01982 | 0.01399 | 0.009853
| Number of processes | 214 | 215 | 216 | 217 | 218 | 21 | 220 |
Formula in [9] 0.00492 | 0.00347 | 0.00245 | 0.00173 | 0.00123 | 0.00086 | 0.000612
Corollary 1 0.00695 | 0.00491 | 0.00347 | 0.00245 | 0.00173 | 0.00122 | 0.000866
% Relative Diff -29.31 -29.3 -29.3 -29.3 -29.29 -29.29 -29.29
Simulated MTTI 0.00693 | 0.00491 | 0.00347 | 0.00245 | 0.00173 | 0.00123 | 0.000868

p is the number of processors. The parameters to this
model are instantiated from the application in [9] that
has the highest replication overhead. We use the same
logarithmic model to augment our first two parallel job
models in Section III:

« Perfectly parallel jobs: W(p) = ¥ x (1 + 15 x

P
(foele) 1 3.67)).
« Generic parallel jobs: W(p) = (¥ + W) x (1 +
1
= X

P
lo
o5 % (2 +3.67)).

For the numerical kernel job model, we can use a more ac-
curate overhead model that does not rely on the above log-
arithmic approximation. Our original model in Section III
comprises a computation component and a communication
component. Using replication (¢ = 2), for each point-
to-point communication between two original application
processes, now a communication occurs between each pro-
cess pair, considering both original processors and replicas,

for a total of 4 communications. We can thus simply
multiply the communication component of the model by
a factor 4 and obtain the augmented model:

2
: . _w yxXW3
 Numerical kernels: W(p) = =~ + 5 X4
Parameter values — We use the same parameters as
in [8]. Namely, C = R = 600 s, D = 60 s and

W = 10,000 years (except for log-base simulations for
which W = 1,000 years).

VI. SIMULATION RESULTS
A. Checkpointing Period

Our first set of experiments aims at determining
whether using Daly’s approximation for computing the
checkpointing period, as done in [9], is an effective ap-
proach. In the g = 2 case (two replicas per application
process), we compute this period using the correct MTTI
expression from Corollary 1 rather than the erroneous

value given in [9]. Given a failure distribution and a
parallel job model, we compute the average makespan
over 100 sample simulated application executions for a
range of numbers of processors. Each sample is obtained
using a different seed for generating random failure events
based on the failure distribution. We present results using
the best period found via a numerical search in a similar
manner. In addition to the g = 2 results, we also present
results for ¢ = 1 (no replication) as a baseline (in which
case the MTTI is simply the processor MTBF).

We ran experiments for five failure distributions: (i) Ex-
ponential with a 125-year MTBF; (ii) Weibull with a 125-
year MTBF and shape parameter k = 0.70; (iii) Weibull
with a 125-year MTBF and shape parameter £ = 0.50;
(iv) Failures drawn from the failure log of LANL cluster
18; and (v) Failures drawn from the failure log of LANL
cluster 19. For each failure distribution, we use five parallel
job models as described in Section ITI, augmented with the
replication overhead model described in Section V: (i) per-
fectly parallel; (ii) generic parallel jobs with v = 1075;
(iii) numerical kernels with v = 0.1; (iv) numerical kernels
with v = 1; and (v) numerical kernels with v = 10. We
thus have 5 x 5 = 25 sets of results.

We found that for a given failure distribution all results
follow the same trend regardless of the job model. We
show results for the five considered parallel job models.
Figures 1, 2, 3, 4, and 5 show results for each of the
five considered failure distributions. Each figure shows five
graphs, each graph shows average makespan vs. number
of processors for one of the five parallel job models. The
two curves for g = 1 are exactly superposed in all graphs
of Figure 1, and the two curves for ¢ = 2 are exactly
superposed in all graphs of all figures.

Results for the case ¢ = 1 (no replication) show that
Daly’s approximation achieves the same performance as
the best periodic checkpointing policy for Exponential
failures. For our two real-world failure datasets using the
approximation also does well, deviating from the best
periodic checkpointing policy only marginally as the plat-
form becomes large. For Weibull failures, however, Daly’s
approximation leads to significantly suboptimal results
that worsen as k decreases (as we already reported in [8]).
What is perhaps less expected is that in the case g = 2,
using Daly’s approximation leads to virtually the same
performance as using the best period even for Weibull fail-
ures. This is not to say that Daly’s approximation yields
the best checkpointing period. Application makespan is
simply not sentitive to the checkpointing period, at least
in a wide neighborhood around the best period. With
process replication, application failures and recoveries are
so infrequent, i.e., the MTBF of a pair of replicas is
so large, that Daly’s approximation is good enough. To
quantify the frequency of application failures, Table III
shows the percentage of processor failures that actually
lead to failure recoveries when using process replication.
Results are shown in the case of Weibull failures for £ = 0.5

Table 111
FRACTION OF PROCESSOR FAILURES THAT LEAD TO APPLICATION
FAILURES WITH PROCESS REPLICATION (g = 2) ASSUMING WEIBULL
FAILURE DISTRIBUTIONS (k = 0.7,0.5) FOR VARIOUS NUMBERS OF
PROCESSORS AND C'=600s. RESULTS ARE AVERAGED OVER 100

EXPERIMENTS.
of app. failures | % of proc. failures
#ofproc. | k=07 | k=05 | k=07 | k=05
211 1.95 4.94 0.35 0.39
215 1.44 3.77 0.25 0.28
216 0.88 2.61 0.15 0.19
217 0.45 1.67 0.075 0.12
218 0.20 1.11 0.034 0.076
219 0.13 0.72 0.022 0.049
220 0.083 0.33 0.014 0.023

and k£ = 0.7, C' = 600s, and for various numbers of proces-
sors. We see that very few application failures, and thus
recoveries, occur throughout application execution (recall
that makespans are measured in days in our experiments).
This is because a very small fraction of processor failures
manifest themselves as application failures (below 0.4% in
our experiments). While this low fraction showcases the
benefit of process replication, it also makes the choice of
the replication period non-critical.

When setting the processor MTBF to a lower value so
that the MTBF of a pair of replicas is not as large, one does
observe that Daly’s approximation leads to longer average
makespans than when using the best checkpointing period
(see Figures 6, 7, 8,9, and 10). This is even true for expo-
nential failures. Consider for instance a process replication
scenario with Weibull failures of shape parameters k = 0.7,
a perfect parallel job, and a platform with 22° processors.
When setting the MTBF to an unrealistic 0.1 year, using
Daly’s approximation yields an average makespan of 20.76
days, as opposed to 18.1 days when using the best period—
an increase of more than 12%.

We summarize our findings so far. Without replication,
Daly’s approximation produces significantly suboptimal
checkpointing policies when failures are not exponentially
distributed. The Weibull distribution is recognized as a
reasonable approximation of failures in real-world sys-
tems [15], [16], [17], [18]. When using replication, Daly’s
approximation can also lead to poor periodic checkpoint-
ing. However, this never happens in practical settings
because replication drastically reduces the number of fail-
ures. In fact, in practical process replication settings, the
choice of the checkpointing period is not critical. Conse-
quently, setting the checkpointing period based on Daly’s
approximation is a safe choice when process replication is
used. This validates the unsubstantiated choice of using
this approximation in [9].

B. Revisiting the Results in [9]

Figure 9 in [9] presents interesting results for the“break-
even” point for process replication. More specifically, in
a 2-D plane defined by the processor MTBF and the
number of processors, and given a checkpointing overhead,

the figure shows a curve that divides the plane into two
regions. Points above the curve correspond to cases in
which process replication is beneficial. Points below the
curve correspond to cases in which process replication is
detrimental, i.e., the resource waste due to replication is
not worthwhile because the processor MTBF is too large
or the number of processors is too low. Several curves
are shown for different checkpointing overheads, and as
expected, the higher the overhead, the more beneficial it
is to use process replication.

These results are obtained for exponential failures and
using the checkpointing period given by Daly’s approxima-
tion. In the previous section we have seen that in the no-
replication case this approximation leads to poor results
when the failure distribution is Weibull (see the g = 1
curves in Figures 2 and 3).

Although our results for two particular production
workloads show that Daly’s approximation led to rea-
sonably good results, there is evidence that, in general,
failure distributions are well approximated by Weibull
distributions [15], [16], [17], [18]. Most recently, in [18],
the authors show that failures observed on a production
cluster, over a cumulative 42-month time period, are
modeled well by a Weibull distribution. Furthermore,
the shape parameter of this distribution, &, is below 0.5.
In other words, the failure distribution is far from being
Exponential and thus Daly’s approximation would be far
from the best period (compare Figure 2 for k = 0.7 to
Figure 3 for k = 0.5). Nevertheless, in the case of process
replication, Daly’s approximation leads to the same results
as the best checkpointing period for practical settings. We
conclude that the results in [9] give a biased answer to
the break-even point question, or at least an answer that
is limited to the use of Daly’s approximation. Such an
answer is sensitive to the effect of this approximation on
application execution, and turns out to be too favorable
for process replication.

We now revisit the results in [9] by always using the best
checkpointing period for each simulated application exe-
cution, as computed by a numerical search. Therefore, our
results quantify the definitive break-even point, removing
the choice of the checkpointing period from the equation.
These results are shown as solid curves in Figure 11 for
exponential failures and for Weibull failures with £ = 0.7
and £k = 0.5, each curve corresponding to a different
checkpointing overhead (C') value. For comparison, dashed
curves correspond to results obtained using Daly’s approx-
imation as done in [9]. The area above a curve corresponds
to settings for which replication is beneficial. As expected,
the general trends are similar to that seen in Figure 9
in [9]: process replication becomes detrimental when the
number of processors is too small, when the checkpointing
overhead is too low, and/or when the processor MTBF
is too large. More importantly, the distance between
each solid line and its dashed counterpart shows by how
much the results in [9] are optimistic in favor of process

replication due to the use of Daly’s approximation. This
distance increases as k decreases, which is expected since
the Weibull distribution is then further away from the
Exponential distribution. (For exponential distributions,
the curves match.) For instance, in the case k = 0.5 (Fig-
ure 11(c)), the break-even curve for C' = 600s as obtained
using Daly’s approximation is in fact, for most values of
the MTBF, below the break-even curve for C = 900s,
obtained using the best checkpointing period. Considering
the solid curve for C' = 150s and the dashed one for
C = 300s, one sees that the impact of the checkpointing
overhead is twice as unfavorable for process replication as
that indicated by results obtained with the approach in [9]
when the process MTBF is over 100 years.

VII. CONCLUSION

In this paper we have presented a rigorous study of
process replication for large-scale platforms. We have con-
ducted a thorough analysis, providing recursive expres-
sions for MNFTI, and analytical expressions for MTTI
with arbitrary distributions, that lead to closed-form ex-
pressions for Exponential and Weibull distributions. We
have explained why the MNFTI and MTTI values de-
termined in [9] are not accurate, leading to a difference
of roughly 30% with our own calculations, which are
validated via simulation experiments. In addition, we have
identified an unexpected relationship between two natural
failure models (already hit and running processors).

We have conducted an extensive set of simulations for
Exponential, Weibull and trace-based failure distributions.
These results have shown that although the choice of a
good checkpointing period can be important in the no-
replication case, namely for Weibull failure distributions,
this choice is not critical when process replication is used.
This is because with process replication few processor
failures lead to application failures (i.e., rollback and
recovery). This effect is essentially the reason why process
replication was proposed in the first place. But a surprising
and interesting side-effect is that choosing a good check-
pointing period is no longer challenging. Finally, we have
revisited the results in [9] that quantify the break-even
point between replication and no-replication for Weibull
failures. Our results differ and are less favorable for process
replication. This difference is because we use the best
checkpointing period rather than that provided by Daly’s
approximation, since we have shown the latter to be detri-
mental to the no-replication case. Our break-even results
thus provide a fairer comparison that is not impacted by
the choice of a particular checkpointing period.

Altogether, our results provide a sound basis for quanti-
fying the potential benefit of process replication for future
HPC platforms. While not as favorable for replication
as those in [9], our results nevertheless point to relevant
scenarios, defined by instantiations of the platform and
application parameters, in which replication is worthwhile
when compared to the no-replication case. This is in spite

of the resource waste that it induces, and even if the best
checkpointing period is used in the no-replication case.
Finally, our results also have laid the necessary theoretical
foundations for future studies of process replication.

ACKNOWLEDGMENT

We would like to thank Kurt Ferreira and Leonardo
Bautista Gomez for discussions. This work was supported
in part by the French ANR White Project RESCUE. Yves
Robert is with Institut Universitaire de France.

REFERENCES

[1] J. Dongarra, P. Beckman, P. Aerts, F. Cappello, T. Lippert,
S. Matsuoka, P. Messina, T. Moore, R. Stevens, A. Trefethen,
and M. Valero, “The international exascale software project:
a call to cooperative action by the global high-performance
community,” Int. J. High Perform. Comput. Appl., vol. 23, no. 4,
pp- 309-322, 2009.

[2] V. Sarkar and others, “Exascale software study: Software
challenges in extreme scale systems,” 2009, white
paper available at: http://users.ece.gatech.edu/mrichard/
ExascaleComputingStudyReports/ECSS%20report%20101909.

pdf.
3] E. Meneses, “Clustering Parallel Applications
to Enhance Message Logging Protocols,” https:

//wiki.ncsa.illinois.edu/download /attachments/
17630761 /INRIA-UIUC-WS4-emenese.pdf?version=
1&modificationDate=1290466786000.

[4] L. Bautista Gomez, A. Nukada, N. Maruyama, F. Cappello, and
S. Matsuoka, “Transparent low-overhead checkpoint for GPU-
accelerated clusters,” https://wiki.ncsa.illinois.edu/download/
attachments/17630761/INRIA-UIUC-WS4-1bautista.pdf?
version=1&modificationDate=1290470402000.

(5] E. Elnozahy and J. Plank, “Checkpointing for Peta-Scale Sys-
tems: A Look into the Future of Practical Rollback-Recovery,”
IEEE Transactions on Dependable and Secure Computing,
vol. 1, no. 2, pp. 97—108, 2004.

[6] R. A. Oldfield, S. Arunagiri, P. J. Teller, S. Seelam, M. R.
Varela, R. Riesen, and P. C. Roth, “Modeling the Impact of
Checkpoints on Next-Generation Systems,” in Proc. of the 24th
IEEE Conference on Mass Storage Systems and Technologies,
2007, pp. 30—46.

[7] B. Schroeder and G. A. Gibson, “Understanding Failures in
Petascale Computers,” Journal of Physics: Conference Series,
vol. 78, no. 1, 2007.

[8] M. Bougeret, H. Casanova, M. Rabie, Y. Robert, and F. Vivien,
“Checkpointing strategies for parallel jobs,” in Proceedings of
2011 International Conference for High Performance Comput-
ing, Networking, Storage and Analysts, ser. SC’11. ACM Press,
2011.

9] K. Ferreira, J. Stearley, J. H. I. Laros, R. Oldfield, K. Pe-
dretti, R. Brightwell, R. Riesen, P. G. Bridges, and D. Arnold,
“Evaluating the Viability of Process Replication Reliability for
Exascale Systems,” in Proceedings of 2011 International Con-
ference for High Performance Computing, Networking, Storage
and Analysis, ser. SC ’11. ACM Press, 2011.

[10] J. T. Daly, “A higher order estimate of the optimum checkpoint
interval for restart dumps,” Future Generation Computer Sys-
tems, vol. 22, no. 3, pp. 303-312, 2004.

[11] J. W. Young, “A first order approximation to the optimum
checkpoint interval,” Communications of the ACM, vol. 17,
no. 9, pp. 530-531, 1974.

[12] W. Jones, J. Daly, and N. DeBardeleben, “Impact of sub-
optimal checkpoint intervals on application efficiency in com-
putational clusters,” in HPDC’10. ACM, 2010, pp. 276-279.

[13] K. Venkatesh, “Analysis of Dependencies of Checkpoint Cost
and Checkpoint Interval of Fault Tolerant MPI Applications,”
Analysis, vol. 2, no. 08, pp. 2690-2697, 2010.

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]

24]

(25]

(26]

27]

(28]

29]

(30]

M.-S. Bouguerra, T. Gautier, D. Trystram, and J.-M. Vincent,
“A flexible checkpoint/restart model in distributed systems,”
in PPAM, ser. LNCS, vol. 6067, 2010, pp. 206-215. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-14390-8 22

T. Heath, R. P. Martin, and T. D. Nguyen, “Improving cluster
availability using workstation validation,” SIGMETRICS Perf.
FEwval. Rev., vol. 30, no. 1, pp. 217-227, 2002.

B. Schroeder and G. A. Gibson, “A large-scale study of failures
in high-performance computing systems,” in Proc. of DSN,
2006, pp. 249-258.

Y. Liu, R. Nassar, C. Leangsuksun, N. Naksinehaboon,
M. Paun, and S. Scott, “An optimal checkpoint/restart model
for a large scale high performance computing system,” in IPDPS
2008. 1EEE, 2008, pp. 1-9.

R. Heien, D. Kondo, A. Gainaru, D. LaPine, B. Kramer, and
F. Cappello, “Modeling and Tolerating Heterogeneous Failures
on Large Parallel System,” in Proc. of the IEEE/ACM Super-
computing Conference (SC), 2011.

F. Gartner, “Fundamentals of fault-tolerant distributed com-
puting in asynchronous environments,” ACM Computing Sur-
veys, vol. 31, no. 1, 1999.

D. Kondo, A. Chien, and H. Casanova, “Scheduling Task Par-
allel Applications for Rapid Application Turnaround on Enter-
prise Desktop Grids,” Journal of Grid Computing, vol. 5, no. 4,
pp- 379-405, 2007.

S. Yi, D. Kondo, B. Kim, G. Park, and Y. Cho, “Using Repli-
cation and Checkpointing for Reliable Task Management in
Computational Grids,” in Proc. of the International Conference
on High Performance Computing € Stmulation, 2010.

B. Schroeder and G. Gibson, “Understanding failures in petas-
cale computers,” Journal of Physics: Conference Series, vol. T8,
no. 1, 2007.

Z. Zheng and Z. Lan, “Reliability-aware scalability models for
high performance computing,” in Proc. of the IEEE Conference
on Cluster Computing, 2009.

C. Engelmann, H. H. Ong, and S. L. Scorr, “The case for mod-
ular redundancy in large-scale highh performance computing
systems,” in Proc. of the 8th IASTED Infernational Conference
on Parallel and Distributed Computing and Networks (PDCN),
2009, pp. 189-194.

G. Amdahl, “The validity of the single processor approach to
achieving large scale computing capabilities,” in AFIPS Con-
ference Proceedings, vol. 30. AFIPS Press, 1967, pp. 483-485.
L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel,
I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet,
K. Stanley, D. Walker, and R. C. Whaley, ScaLAPACK Users’
Guide. SIAM, 1997.

N. Kolettis and N. D. Fulton, “Software rejuvenation: Analysis,
module and applications,” in FTCS ’95. Washington, DC,
USA: IEEE CS, 1995, p. 381.

V. Castelli, R. E. Harper, P. Heidelberger, S. W. Hunter, K. S.
Trivedi, K. Vaidyanathan, and W. P. Zeggert, “Proactive man-
agement of software aging,” IBM J. Res. Dewv., vol. 45, no. 2,
pp. 311-332, 2001.

L. Wang, P. Karthik, Z. Kalbarczyk, R. Iyer, L. Votta, C. Vick,
and A. Wood, “Modeling Coordinated Checkpointing for Large-
Scale Supercomputers,” in Proc. of the International Conference
on Dependable Systems and Networks, June 2005, pp. 812—-821.
D. Kondo, B. Javadi, A. Tosup, and D. Epema, “The failure trace
archive: Enabling comparative analysis of failures in diverse
distributed systems,” Cluster Computing and the Grid, IEEE
International Symposium on, vol. 0, pp. 398-407, 2010.

200

100 4

average makespan (in days)

71— DALY-g =1
— DALY-g =2
—— BESTPERIOD-g = 1

200
7
150 4
100
E
s
Ed
£ N DALY-g = 1
— DA =2
—— BESTPERIOD-g =1
04— BESTPERIOD-g = 2

—— BESTPERIOD-g = 2

o5 o6 : o8 10 20 g1 15 o6 17 i o0 20
number of processors number of processors
(a) Perfectly parallel jobs: W(q) = % (b) Generic parallel jobs:
W(g) =% +107° W.
200 | 200 |
_§ 150 4 _g 150 4
g 8]
é 100 é 100 4
< <
g g
& &
£ 50 4 £ 50
R — DaLy-g=1 El — DALy-g=1
— DALY-g =2 ; — DALY-g =2
—— BESTPERIOD-g = 1 —— BESTPERIOD-g = 1
0ol — BESTPERIOD-g = 2 0ol — BESTPERIOD-g = 2
T T T T T T T T T T T T T
215 216 2]7 218 219 22(] 221 21) 2][)‘ 2]7 21)‘ 2]9 22U
number Of processors number (Jf processors
. w w?2/3 . w w?2/3
(¢) Numerical kernels: W(q) = 2 + 0.1 . (d) Numerical kernels: W(q) = 2> +
q Va q Va
200
Z 150
E
é 100
<
%b
5 50
z — DALy-g=1
— DALY-g =2
—— BESTPERIOD-g = 1
0 —— BESTPERIOD-g = 2
T T T T T T T
2]5 2]li 217 213 QISI 220 22]
number Uf processors
. w w?2/3
(e) Numerical kernels: W(q) = 2 + 10 .
q Va
Figure 1. Average makespan vs. number of processors for two choices of the checkpointing period, without process replication (DALY-g=1

and BESTPERIOD-g=1) and with process replication (DALY-g=2 and BESTPERIOD-g=2), for Exponential failures (MTBF = 125 years).

200

150

100

average makespan (in days)

200

150

100

average makespan (in days)

DALy-g =1
DaLy-g =2
BESTPERIOD-g = 1
BESTPERIOD-g = 2

200
z
é&" 150 —
g
=
g
2 100 4
£
<
g
o
=)
£ 50 4
EO — DALy-g=1
: — DALY-g =2
—— BESTPERIOD-g = 1
od — BESTPERIOD-g = 2

215 2]5 2]7 21?{ 2]9 QQU
number ()f processors
(a) Perfectly parallel jobs: W(q) = %

T T T T T T T T
215 216 217 218

number of processors

b) Generic parallel jobs: W(q) = & + 1076 W.
q

DALy-g =1

200

50

average makespan (in days)

DALy-g =1
DALY-g =2

BESTPERIOD-g = 1
BESTPERIOD-g = 2

—— DALY-g =2

— BESTPERIOD-g = 1

—— BESTPERIOD-g = 2

T T T T T T
215 21(5 217 218 219 220

number of processors
. w w?2/3

(¢) Numerical kernels: W(q) = * + 0.1 N

221 915 916 17 918 919 220 921
number of processors
. w w?2/3
(d) Numerical kernels: W(q) = 7 NG

200

150

100

50

average makespan (in days)

DaLy-g =1
DALY-g =2
BESTPERIOD-g = 1
BESTPERIOD-g = 2

T T
916

(e) Numerical kernels: W(q) = % + 10

917 918 219 220 921
number of processors
w?2/3
NG

Figure 2. Average makespan vs. number of processors for two choices of the checkpointing period, without process replication (DALY-g=1 and
BESTPERIOD-g=1) and with process replication (DALY-g=2 and BESTPERIOD-g=2), for Weibull failures (MTBF = 125 years and k = 0.70).

200

150

100

average makespan (in days)

200

150

100

average makespan (in days)

— DaALy-g =1
— DALY-g =2

—— BESTPERIOD-g = 1
—— BESTPERIOD-g = 2

200
z
é&" 150 —
g
=
g
100 4
é 00
<
g
o
z
— DarLy-g=1 2 Bl
— DALY-g =2 :
—— BESTPERIOD-g = 1
—— BESTPERIOD-g = 2 0
T T T T T T T
215 2]6 2]7 21% 2]9 220 22] 2
number ()f processors
(a) Perfectl llel jobs: W(g) = &
a errectly parallel Jobs: q—q

T T T T T T T
15 216 217 218

number of processors

b) Generic parallel jobs: W(q) = & + 1076 W.
q

200

150

100

average makespan (in days)

— Dary-g=1 i [— DALY-g = 1

— DaLy-g =2 — DALY-g =2

— BESTPERIOD-g = 1 —— BESTPERIOD-g = 1
| — BESTPERIOD-g =2 od — BESTPERIOD-g = 2

T T T T T T T T T T T T T T
215 21(5 217 218 219 220 221 215 21[5 217 218 219 2‘20 221

number of processors number of processors
. w w?2/3 . w w?2/3

(¢) Numerical kernels: W(q) = = + 0.1 NG (d) Numerical kernels: W(q) = 7 NG

200

150

100

50

average makespan (in days)

DaLy-g =1
DALY-g =2
BESTPERIOD-g = 1
BESTPERIOD-g = 2

T T T T
916 917 918

number of processors

(e) Numerical kernels: W(q) =

21‘) 220 221
w Ww2/3
g + 10 NI

Figure 3. Average makespan vs. number of processors for two choices of the checkpointing period, without process replication (DALY-g=1 and
BESTPERIOD-g=1) and with process replication (DALY-g=2 and BESTPERIOD-g=2), for Weibull failures (MTBF = 125 years and k = 0.50).

140

120

100

80

60

40

average makespan (in days)

20

80

2

S
S

average makespan (in days)

o
=}

DaLy-g=1

| = DALY-g =2
— BESTPERIOD-g = 1
—— BESTPERIOD-g = 2
T T T T T T
212 213 214 215 216 217

number of processors

(a) Perfectly parallel jobs: W(q) = 2.

DaLy-g =1
DALy-g =2
BESTPERIOD-¢g = 1
BESTPERIOD-g = 2
T T T T T T
212 213 214 215 216 217

number of processors

; . .Y w2/3
(¢) Numerical kernels: W(q) = T 01 =

140

120

100

80 1

60 —

average makespan (in days)

— DaALy-g=1
20 4 — DALy-g =2
— BESTPERIOD-g = 1
—— BESTPERIOD-g = 2
T T T T T
212 213 214 215 216 217

number of processors

b) Generic parallel jobs: W(q) = & + 1076 W.
q

140

100
80
60 —
40

— DALY-g =1
20 4 — DALY-g =2

average makespan (in days)

BESTPERIOD-g = 1

BESTPERIOD-g = 2
T T T T T

212 213 214 215 216 217

number of processors

; . W w2
(d) Numerical kernels: W(q) = = + NG

140

40

average makespan (in days)

DALy-g =1
DALY-g =2
BESTPERIOD-¢g = 1
BESTPERIOD-g = 2

20 4 T

212 213 214 210 216 217

number of processors

(e) Numerical kernels: W(q) = % +10 X2

/3
ﬁ.

Figure 4. Average makespan vs. number of processors for two choices of the checkpointing period, without process replication (DALY-g=1 and
BESTPERIOD-g=1) and with process replication (DALY-g=2 and BESTPERIOD-g=2), for failures based on the failure log of LANL cluster

18.

140

120

100

80

60

40

average makespan (in days)

20

80

2

S
S

average makespan (in days)

o
=}

DaLy-g=1

| = DALY-g =2
— BESTPERIOD-g = 1
—— BESTPERIOD-g = 2
T T T T T T
212 213 214 215 216 217

number of processors

(a) Perfectly parallel jobs: W(q) = 2.

DaLy-g =1
DALy-g =2
BESTPERIOD-¢g = 1
BESTPERIOD-g = 2
T T T T T T
212 213 214 215 216 217

number of processors

; . .Y w2/3
(¢) Numerical kernels: W(q) = T 01 =

140

120

100

80 1

60 —

average makespan (in days)

— DaALy-g=1
20 4 — DALy-g =2
— BESTPERIOD-g = 1
—— BESTPERIOD-g = 2
T T T T T
212 213 214 215 216 217

number of processors

b) Generic parallel jobs: W(q) = & + 1076 W.
q

140

100
80
60 —
40

— DALY-g =1
20 4 — DALY-g =2

average makespan (in days)

BESTPERIOD-g = 1

BESTPERIOD-g = 2
T T T T T

212 213 214 215 216 217

number of processors

; . W w2
(d) Numerical kernels: W(q) = = + NG

140

40

average makespan (in days)

DALy-g =1
DALY-g =2
BESTPERIOD-¢g = 1
BESTPERIOD-g = 2

20 4 T

212 213 214 210 216 217

number of processors

(e) Numerical kernels: W(q) = % +10 X2

/3
ﬁ.

Figure 5. Average makespan vs. number of processors for two choices of the checkpointing period, without process replication (DALY-g=1 and
BESTPERIOD-g=1) and with process replication (DALY-g=2 and BESTPERIOD-g=2), for failures based on the failure log of LANL cluster

19.

— DALY-g =2 — DALY-g =2
—— BESTPERIOD-g = 2 —— BESTPERIOD-g = 2

average makespan (in days)
— [N} [\ w w
ot [e] ot o ot
1 | 1 1 1
average makespan (in days)
— Do [\ w w
ot o ot o ot
1 | 1 1 1

—_
o
|
—_
o
|

[
1
ot
1

o
|
o
|

1 1 1 1 1 1 1 1
0.1 1 10 100 0.1 1 10 100

Mean time between failures Mean time between failures
(a) Exponential failure distribution (b) Weibull failure distribution (k = 0.7)

407 DAvLy-g =2

—— BESTPERIOD-¢g = 2

w w
S ol
| |

]
ot
|

—
ot
|

average makespan (in days)
— [\
= S
| |

ot
|

T T T T
0.1 1 10 100
Mean time between failures

(b) Weibull failure distribution (k = 0.5)

Figure 6. Average makespan vs. processor MTBF using group replication (¢ = 2) and using Perfectly parallel jobs: W(q) =
that Daly’s approximation can be suboptimal.

% , showing

— DALY-g =2 — DALY-g =2
—— BESTPERIOD-g = 2 —— BESTPERIOD-g = 2

average makespan (in days)
— — [N} [\ w w
o o S & & &
1 1 1 1 | 1
average makespan (in days)
— — Do [\ w w
o ot o ot o ot
1 1 1 1 1 1

ot
|

ot
|

o
|
o
|

1 1 1 1 1 1 1 1
0.1 1 10 100 0.1 1 10 100

Mean time between failures Mean time between failures

(a) Exponential failure distribution (b) Weibull failure distribution (k = 0.7)
40 H

— DALY-g =2
—— BESTPERIOD-g = 2

w W
(=) a
| |

]
ot
|

—
t
|

average makespan (in days)
= DO
o S
| |

ot
|

1 1 1 1
0.1 1 10 100

Mean time between failures

(b) Weibull failure distribution (k = 0.5)

Figure 7. Average makespan vs. processor MTBF using group replication (¢ = 2) and using Generic parallel jobs: W(q) = % +1076 W,
showing that Daly’s approximation can be suboptimal.

— DALY-g =2 — DALY-g =2
—— BESTPERIOD-g = 2 —— BESTPERIOD-g = 2

average makespan (in days)
— [N} [\ w o
ot o ot o ot
1 1 1 1 1
average makespan (in days)
— Do [\ w w
ot o ot o ot
1 | 1 1 1

—_
o
|
—_
o
|

ot
1

ot
1

o
|
o
|

I I I I I I I I
0.1 1 10 100 0.1 1 10 100
Mean time between failures Mean time between failures

(a) Exponential failure distribution (b) Weibull failure distribution (k = 0.7)

407 Daryg=2
| = BESTPERIOD-g = 2

w W
=) a
|

]
ot
|

—
ot
|

average makespan (in days)
= DO
o S
| |

ot
|

1 1 1 1
0.1 1 10 100

Mean time between failures

(b) Weibull failure distribution (k = 0.5)

Ww2/3
Vva

Figure 8. Average makespan vs. processor MTBF using group replication (g = 2) and using Numerical kernels model: W(q) = % +0.1
showing that Daly’s approximation can be suboptimal.

— DALY-g =2 — DALY-g =2
—— BESTPERIOD-g = 2 —— BESTPERIOD-g = 2

w w
S (&)
| |
w w
S)]
| |

average makespan (in days)
[N~
S
1

average makespan (in days)
[\ [\
o ot
1 |

— — DO
o ot ot
| | |
— —
o ot
| |

ot
1

ot
1

o
|
o
|

I I I I I I I I
0.1 1 10 100 0.1 1 10 100
Mean time between failures Mean time between failures

(a) Exponential failure distribution (b) Weibull failure distribution (k = 0.7)

407 Daryg=2
| = BESTPERIOD-g = 2

w W
=) a
|

]
ot
|

—
ot
|

average makespan (in days)
= DO
o S
| |

ot
|

1 1 1 1
0.1 1 10 100

Mean time between failures

(b) Weibull failure distribution (k = 0.5)

Figure 9. Average makespan vs. processor MTBF using group replication (¢ = 2) and uusing Numerical kernels model: W(q) =
showing that Daly’s approximation can be suboptimal.

w w2/3
q + Va o’

— DALY-g =2 — DALY-g =2
50 o === BESTPERIOD-g = 2 50 - === BESTPERIOD-¢g =2
= 40 - = 40 -
g k=
g g
z 30 | z 30
4 —~4
g g
g
=20 520
o0 o0
g g
g 10 £ 10
0 — 0 —
T T T T T T T T
0.1 1 10 100 0.1 1 10 100
Mean time between failures Mean time between failures
(a) Exponential failure distribution (b) Weibull failure distribution (k = 0.7)

— DALY-g= 2

average makespan (in days)
[\~] w =
S S S
| | |

—_
[en)
1

1 1 1 1
0.1 1 10 100

Mean time between failures

(b) Weibull failure distribution (k = 0.5)

Figure 10. Average makespan vs. processor MTBF using group replication (g = 2) and using Numerical kernels model: W(q) = %Jrl() W\ZS ,

showing that Daly’s approximation can be suboptimal.

Number of processors Number of processors

Number of processors

1000000

800000

600000

400000

200000

1000000

800000

600000

400000

200000

1000000

800000

600000

400000

200000

C= 150

I I I
1 10 100
Processor MTBF (in years)

(a) Exponential failure distribution.

C= 150
C= 300
C= 600
C= 900
C= 1200
C= 2400

I I I
1 10 100
Processor MTBF (in years)
(b) Weibull failure distribution with k& = 0.70

C= 150
C= 300
C= 600
C= 900
C= 1200
C= 2400

w w w
1 10 100
Processor MTBF (in years)

